xfs: rmap btree requires more reserved free space
[linux-2.6-block.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
3ab78df2 27#include "xfs_defer.h"
57062787 28#include "xfs_da_format.h"
9a2cc41c 29#include "xfs_da_btree.h"
1da177e4 30#include "xfs_inode.h"
a4fbe6ab 31#include "xfs_dir2.h"
a844f451 32#include "xfs_ialloc.h"
1da177e4
LT
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
a4fbe6ab
DC
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
1da177e4 39#include "xfs_error.h"
1da177e4
LT
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
0b1b213f 42#include "xfs_trace.h"
6d8b79cf 43#include "xfs_icache.h"
a31b1d3d 44#include "xfs_sysfs.h"
035e00ac 45#include "xfs_rmap_btree.h"
0b1b213f 46
1da177e4 47
27174203
CH
48static DEFINE_MUTEX(xfs_uuid_table_mutex);
49static int xfs_uuid_table_size;
50static uuid_t *xfs_uuid_table;
51
af3b6382
DW
52void
53xfs_uuid_table_free(void)
54{
55 if (xfs_uuid_table_size == 0)
56 return;
57 kmem_free(xfs_uuid_table);
58 xfs_uuid_table = NULL;
59 xfs_uuid_table_size = 0;
60}
61
27174203
CH
62/*
63 * See if the UUID is unique among mounted XFS filesystems.
64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
65 */
66STATIC int
67xfs_uuid_mount(
68 struct xfs_mount *mp)
69{
70 uuid_t *uuid = &mp->m_sb.sb_uuid;
71 int hole, i;
72
73 if (mp->m_flags & XFS_MOUNT_NOUUID)
74 return 0;
75
76 if (uuid_is_nil(uuid)) {
0b932ccc 77 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
2451337d 78 return -EINVAL;
27174203
CH
79 }
80
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_nil(&xfs_uuid_table[i])) {
84 hole = i;
85 continue;
86 }
87 if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 goto out_duplicate;
89 }
90
91 if (hole < 0) {
92 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
27174203
CH
94 KM_SLEEP);
95 hole = xfs_uuid_table_size++;
96 }
97 xfs_uuid_table[hole] = *uuid;
98 mutex_unlock(&xfs_uuid_table_mutex);
99
100 return 0;
101
102 out_duplicate:
103 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 105 return -EINVAL;
27174203
CH
106}
107
108STATIC void
109xfs_uuid_unmount(
110 struct xfs_mount *mp)
111{
112 uuid_t *uuid = &mp->m_sb.sb_uuid;
113 int i;
114
115 if (mp->m_flags & XFS_MOUNT_NOUUID)
116 return;
117
118 mutex_lock(&xfs_uuid_table_mutex);
119 for (i = 0; i < xfs_uuid_table_size; i++) {
120 if (uuid_is_nil(&xfs_uuid_table[i]))
121 continue;
122 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 continue;
124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 break;
126 }
127 ASSERT(i < xfs_uuid_table_size);
128 mutex_unlock(&xfs_uuid_table_mutex);
129}
130
131
e176579e
DC
132STATIC void
133__xfs_free_perag(
134 struct rcu_head *head)
135{
136 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
137
138 ASSERT(atomic_read(&pag->pag_ref) == 0);
139 kmem_free(pag);
140}
141
1da177e4 142/*
e176579e 143 * Free up the per-ag resources associated with the mount structure.
1da177e4 144 */
c962fb79 145STATIC void
ff4f038c 146xfs_free_perag(
745f6919 147 xfs_mount_t *mp)
1da177e4 148{
1c1c6ebc
DC
149 xfs_agnumber_t agno;
150 struct xfs_perag *pag;
151
152 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
153 spin_lock(&mp->m_perag_lock);
154 pag = radix_tree_delete(&mp->m_perag_tree, agno);
155 spin_unlock(&mp->m_perag_lock);
e176579e 156 ASSERT(pag);
f83282a8 157 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 158 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 159 }
1da177e4
LT
160}
161
4cc929ee
NS
162/*
163 * Check size of device based on the (data/realtime) block count.
164 * Note: this check is used by the growfs code as well as mount.
165 */
166int
167xfs_sb_validate_fsb_count(
168 xfs_sb_t *sbp,
169 __uint64_t nblocks)
170{
171 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
172 ASSERT(sbp->sb_blocklog >= BBSHIFT);
173
d5cf09ba 174 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 175 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 176 return -EFBIG;
4cc929ee
NS
177 return 0;
178}
1da177e4 179
1c1c6ebc 180int
c11e2c36 181xfs_initialize_perag(
c11e2c36 182 xfs_mount_t *mp,
1c1c6ebc
DC
183 xfs_agnumber_t agcount,
184 xfs_agnumber_t *maxagi)
1da177e4 185{
2d2194f6 186 xfs_agnumber_t index;
8b26c582 187 xfs_agnumber_t first_initialised = 0;
1da177e4 188 xfs_perag_t *pag;
8b26c582 189 int error = -ENOMEM;
1da177e4 190
1c1c6ebc
DC
191 /*
192 * Walk the current per-ag tree so we don't try to initialise AGs
193 * that already exist (growfs case). Allocate and insert all the
194 * AGs we don't find ready for initialisation.
195 */
196 for (index = 0; index < agcount; index++) {
197 pag = xfs_perag_get(mp, index);
198 if (pag) {
199 xfs_perag_put(pag);
200 continue;
201 }
8b26c582
DC
202 if (!first_initialised)
203 first_initialised = index;
fb3b504a 204
1c1c6ebc
DC
205 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
206 if (!pag)
8b26c582 207 goto out_unwind;
fb3b504a
CH
208 pag->pag_agno = index;
209 pag->pag_mount = mp;
1a427ab0 210 spin_lock_init(&pag->pag_ici_lock);
69b491c2 211 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 212 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
213 spin_lock_init(&pag->pag_buf_lock);
214 pag->pag_buf_tree = RB_ROOT;
fb3b504a 215
1c1c6ebc 216 if (radix_tree_preload(GFP_NOFS))
8b26c582 217 goto out_unwind;
fb3b504a 218
1c1c6ebc
DC
219 spin_lock(&mp->m_perag_lock);
220 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
221 BUG();
222 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
223 radix_tree_preload_end();
224 error = -EEXIST;
225 goto out_unwind;
1c1c6ebc
DC
226 }
227 spin_unlock(&mp->m_perag_lock);
228 radix_tree_preload_end();
229 }
230
12c3f05c 231 index = xfs_set_inode_alloc(mp, agcount);
fb3b504a 232
1c1c6ebc
DC
233 if (maxagi)
234 *maxagi = index;
8018026e
DW
235
236 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
1c1c6ebc 237 return 0;
8b26c582
DC
238
239out_unwind:
240 kmem_free(pag);
241 for (; index > first_initialised; index--) {
242 pag = radix_tree_delete(&mp->m_perag_tree, index);
243 kmem_free(pag);
244 }
245 return error;
1da177e4
LT
246}
247
1da177e4
LT
248/*
249 * xfs_readsb
250 *
251 * Does the initial read of the superblock.
252 */
253int
ff55068c
DC
254xfs_readsb(
255 struct xfs_mount *mp,
256 int flags)
1da177e4
LT
257{
258 unsigned int sector_size;
04a1e6c5
DC
259 struct xfs_buf *bp;
260 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 261 int error;
af34e09d 262 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 263 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
264
265 ASSERT(mp->m_sb_bp == NULL);
266 ASSERT(mp->m_ddev_targp != NULL);
267
daba5427
ES
268 /*
269 * For the initial read, we must guess at the sector
270 * size based on the block device. It's enough to
271 * get the sb_sectsize out of the superblock and
272 * then reread with the proper length.
273 * We don't verify it yet, because it may not be complete.
274 */
275 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
276 buf_ops = NULL;
277
1da177e4 278 /*
c891c30a
BF
279 * Allocate a (locked) buffer to hold the superblock. This will be kept
280 * around at all times to optimize access to the superblock. Therefore,
281 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
282 * elevated.
1da177e4 283 */
26af6552 284reread:
ba372674 285 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
286 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
287 buf_ops);
ba372674 288 if (error) {
eab4e633 289 if (loud)
e721f504 290 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 291 /* bad CRC means corrupted metadata */
2451337d
DC
292 if (error == -EFSBADCRC)
293 error = -EFSCORRUPTED;
ba372674 294 return error;
eab4e633 295 }
1da177e4
LT
296
297 /*
298 * Initialize the mount structure from the superblock.
1da177e4 299 */
556b8883 300 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
301
302 /*
303 * If we haven't validated the superblock, do so now before we try
304 * to check the sector size and reread the superblock appropriately.
305 */
306 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
307 if (loud)
308 xfs_warn(mp, "Invalid superblock magic number");
2451337d 309 error = -EINVAL;
556b8883
DC
310 goto release_buf;
311 }
ff55068c 312
1da177e4
LT
313 /*
314 * We must be able to do sector-sized and sector-aligned IO.
315 */
04a1e6c5 316 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
317 if (loud)
318 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 319 sector_size, sbp->sb_sectsize);
2451337d 320 error = -ENOSYS;
26af6552 321 goto release_buf;
1da177e4
LT
322 }
323
daba5427 324 if (buf_ops == NULL) {
556b8883
DC
325 /*
326 * Re-read the superblock so the buffer is correctly sized,
327 * and properly verified.
328 */
1da177e4 329 xfs_buf_relse(bp);
04a1e6c5 330 sector_size = sbp->sb_sectsize;
daba5427 331 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 332 goto reread;
1da177e4
LT
333 }
334
5681ca40 335 xfs_reinit_percpu_counters(mp);
8d280b98 336
04a1e6c5
DC
337 /* no need to be quiet anymore, so reset the buf ops */
338 bp->b_ops = &xfs_sb_buf_ops;
339
1da177e4 340 mp->m_sb_bp = bp;
26af6552 341 xfs_buf_unlock(bp);
1da177e4
LT
342 return 0;
343
26af6552
DC
344release_buf:
345 xfs_buf_relse(bp);
1da177e4
LT
346 return error;
347}
348
1da177e4 349/*
0771fb45 350 * Update alignment values based on mount options and sb values
1da177e4 351 */
0771fb45 352STATIC int
7884bc86 353xfs_update_alignment(xfs_mount_t *mp)
1da177e4 354{
1da177e4 355 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 356
4249023a 357 if (mp->m_dalign) {
1da177e4
LT
358 /*
359 * If stripe unit and stripe width are not multiples
360 * of the fs blocksize turn off alignment.
361 */
362 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
363 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
364 xfs_warn(mp,
365 "alignment check failed: sunit/swidth vs. blocksize(%d)",
366 sbp->sb_blocksize);
2451337d 367 return -EINVAL;
1da177e4
LT
368 } else {
369 /*
370 * Convert the stripe unit and width to FSBs.
371 */
372 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
373 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 374 xfs_warn(mp,
39a45d84
JL
375 "alignment check failed: sunit/swidth vs. agsize(%d)",
376 sbp->sb_agblocks);
2451337d 377 return -EINVAL;
1da177e4
LT
378 } else if (mp->m_dalign) {
379 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
380 } else {
39a45d84
JL
381 xfs_warn(mp,
382 "alignment check failed: sunit(%d) less than bsize(%d)",
383 mp->m_dalign, sbp->sb_blocksize);
2451337d 384 return -EINVAL;
1da177e4
LT
385 }
386 }
387
388 /*
389 * Update superblock with new values
390 * and log changes
391 */
62118709 392 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
393 if (sbp->sb_unit != mp->m_dalign) {
394 sbp->sb_unit = mp->m_dalign;
61e63ecb 395 mp->m_update_sb = true;
1da177e4
LT
396 }
397 if (sbp->sb_width != mp->m_swidth) {
398 sbp->sb_width = mp->m_swidth;
61e63ecb 399 mp->m_update_sb = true;
1da177e4 400 }
34d7f603
JL
401 } else {
402 xfs_warn(mp,
403 "cannot change alignment: superblock does not support data alignment");
2451337d 404 return -EINVAL;
1da177e4
LT
405 }
406 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 407 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
408 mp->m_dalign = sbp->sb_unit;
409 mp->m_swidth = sbp->sb_width;
410 }
411
0771fb45
ES
412 return 0;
413}
1da177e4 414
0771fb45
ES
415/*
416 * Set the maximum inode count for this filesystem
417 */
418STATIC void
419xfs_set_maxicount(xfs_mount_t *mp)
420{
421 xfs_sb_t *sbp = &(mp->m_sb);
422 __uint64_t icount;
1da177e4 423
0771fb45
ES
424 if (sbp->sb_imax_pct) {
425 /*
426 * Make sure the maximum inode count is a multiple
427 * of the units we allocate inodes in.
1da177e4 428 */
1da177e4
LT
429 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
430 do_div(icount, 100);
431 do_div(icount, mp->m_ialloc_blks);
432 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
433 sbp->sb_inopblog;
0771fb45 434 } else {
1da177e4 435 mp->m_maxicount = 0;
1da177e4 436 }
0771fb45
ES
437}
438
439/*
440 * Set the default minimum read and write sizes unless
441 * already specified in a mount option.
442 * We use smaller I/O sizes when the file system
443 * is being used for NFS service (wsync mount option).
444 */
445STATIC void
446xfs_set_rw_sizes(xfs_mount_t *mp)
447{
448 xfs_sb_t *sbp = &(mp->m_sb);
449 int readio_log, writeio_log;
1da177e4 450
1da177e4
LT
451 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
452 if (mp->m_flags & XFS_MOUNT_WSYNC) {
453 readio_log = XFS_WSYNC_READIO_LOG;
454 writeio_log = XFS_WSYNC_WRITEIO_LOG;
455 } else {
456 readio_log = XFS_READIO_LOG_LARGE;
457 writeio_log = XFS_WRITEIO_LOG_LARGE;
458 }
459 } else {
460 readio_log = mp->m_readio_log;
461 writeio_log = mp->m_writeio_log;
462 }
463
1da177e4
LT
464 if (sbp->sb_blocklog > readio_log) {
465 mp->m_readio_log = sbp->sb_blocklog;
466 } else {
467 mp->m_readio_log = readio_log;
468 }
469 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
470 if (sbp->sb_blocklog > writeio_log) {
471 mp->m_writeio_log = sbp->sb_blocklog;
472 } else {
473 mp->m_writeio_log = writeio_log;
474 }
475 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 476}
1da177e4 477
055388a3
DC
478/*
479 * precalculate the low space thresholds for dynamic speculative preallocation.
480 */
481void
482xfs_set_low_space_thresholds(
483 struct xfs_mount *mp)
484{
485 int i;
486
487 for (i = 0; i < XFS_LOWSP_MAX; i++) {
488 __uint64_t space = mp->m_sb.sb_dblocks;
489
490 do_div(space, 100);
491 mp->m_low_space[i] = space * (i + 1);
492 }
493}
494
495
0771fb45
ES
496/*
497 * Set whether we're using inode alignment.
498 */
499STATIC void
500xfs_set_inoalignment(xfs_mount_t *mp)
501{
62118709 502 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
503 mp->m_sb.sb_inoalignmt >=
504 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
505 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
506 else
507 mp->m_inoalign_mask = 0;
508 /*
509 * If we are using stripe alignment, check whether
510 * the stripe unit is a multiple of the inode alignment
511 */
512 if (mp->m_dalign && mp->m_inoalign_mask &&
513 !(mp->m_dalign & mp->m_inoalign_mask))
514 mp->m_sinoalign = mp->m_dalign;
515 else
516 mp->m_sinoalign = 0;
0771fb45
ES
517}
518
519/*
0471f62e 520 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
521 */
522STATIC int
ba372674
DC
523xfs_check_sizes(
524 struct xfs_mount *mp)
0771fb45 525{
ba372674 526 struct xfs_buf *bp;
0771fb45 527 xfs_daddr_t d;
ba372674 528 int error;
0771fb45 529
1da177e4
LT
530 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
531 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 532 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 533 return -EFBIG;
1da177e4 534 }
ba372674 535 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 536 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
537 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
538 if (error) {
0b932ccc 539 xfs_warn(mp, "last sector read failed");
ba372674 540 return error;
1da177e4 541 }
1922c949 542 xfs_buf_relse(bp);
1da177e4 543
ba372674
DC
544 if (mp->m_logdev_targp == mp->m_ddev_targp)
545 return 0;
546
547 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
548 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
549 xfs_warn(mp, "log size mismatch detected");
550 return -EFBIG;
551 }
552 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 553 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
554 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
555 if (error) {
556 xfs_warn(mp, "log device read failed");
557 return error;
0771fb45 558 }
ba372674 559 xfs_buf_relse(bp);
0771fb45
ES
560 return 0;
561}
562
7d095257
CH
563/*
564 * Clear the quotaflags in memory and in the superblock.
565 */
566int
567xfs_mount_reset_sbqflags(
568 struct xfs_mount *mp)
569{
7d095257
CH
570 mp->m_qflags = 0;
571
61e63ecb 572 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
573 if (mp->m_sb.sb_qflags == 0)
574 return 0;
575 spin_lock(&mp->m_sb_lock);
576 mp->m_sb.sb_qflags = 0;
577 spin_unlock(&mp->m_sb_lock);
578
61e63ecb 579 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
580 return 0;
581
61e63ecb 582 return xfs_sync_sb(mp, false);
7d095257
CH
583}
584
d5db0f97
ES
585__uint64_t
586xfs_default_resblks(xfs_mount_t *mp)
587{
588 __uint64_t resblks;
589
590 /*
8babd8a2
DC
591 * We default to 5% or 8192 fsbs of space reserved, whichever is
592 * smaller. This is intended to cover concurrent allocation
593 * transactions when we initially hit enospc. These each require a 4
594 * block reservation. Hence by default we cover roughly 2000 concurrent
595 * allocation reservations.
d5db0f97
ES
596 */
597 resblks = mp->m_sb.sb_dblocks;
598 do_div(resblks, 20);
8babd8a2 599 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
600 return resblks;
601}
602
0771fb45 603/*
0771fb45
ES
604 * This function does the following on an initial mount of a file system:
605 * - reads the superblock from disk and init the mount struct
606 * - if we're a 32-bit kernel, do a size check on the superblock
607 * so we don't mount terabyte filesystems
608 * - init mount struct realtime fields
609 * - allocate inode hash table for fs
610 * - init directory manager
611 * - perform recovery and init the log manager
612 */
613int
614xfs_mountfs(
f0b2efad 615 struct xfs_mount *mp)
0771fb45 616{
f0b2efad
BF
617 struct xfs_sb *sbp = &(mp->m_sb);
618 struct xfs_inode *rip;
619 __uint64_t resblks;
620 uint quotamount = 0;
621 uint quotaflags = 0;
622 int error = 0;
0771fb45 623
ff55068c 624 xfs_sb_mount_common(mp, sbp);
0771fb45 625
ee1c0908 626 /*
074e427b
DC
627 * Check for a mismatched features2 values. Older kernels read & wrote
628 * into the wrong sb offset for sb_features2 on some platforms due to
629 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
630 * which made older superblock reading/writing routines swap it as a
631 * 64-bit value.
ee1c0908 632 *
e6957ea4
ES
633 * For backwards compatibility, we make both slots equal.
634 *
074e427b
DC
635 * If we detect a mismatched field, we OR the set bits into the existing
636 * features2 field in case it has already been modified; we don't want
637 * to lose any features. We then update the bad location with the ORed
638 * value so that older kernels will see any features2 flags. The
639 * superblock writeback code ensures the new sb_features2 is copied to
640 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 641 */
e6957ea4 642 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 643 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 644 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 645 mp->m_update_sb = true;
e6957ea4
ES
646
647 /*
648 * Re-check for ATTR2 in case it was found in bad_features2
649 * slot.
650 */
7c12f296
TS
651 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
652 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 653 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
654 }
655
656 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
657 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
658 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 659 mp->m_update_sb = true;
e6957ea4 660
7c12f296
TS
661 /* update sb_versionnum for the clearing of the morebits */
662 if (!sbp->sb_features2)
61e63ecb 663 mp->m_update_sb = true;
ee1c0908
DC
664 }
665
263997a6
DC
666 /* always use v2 inodes by default now */
667 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
668 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 669 mp->m_update_sb = true;
263997a6
DC
670 }
671
0771fb45
ES
672 /*
673 * Check if sb_agblocks is aligned at stripe boundary
674 * If sb_agblocks is NOT aligned turn off m_dalign since
675 * allocator alignment is within an ag, therefore ag has
676 * to be aligned at stripe boundary.
677 */
7884bc86 678 error = xfs_update_alignment(mp);
0771fb45 679 if (error)
f9057e3d 680 goto out;
0771fb45
ES
681
682 xfs_alloc_compute_maxlevels(mp);
683 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
684 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
685 xfs_ialloc_compute_maxlevels(mp);
035e00ac 686 xfs_rmapbt_compute_maxlevels(mp);
0771fb45
ES
687
688 xfs_set_maxicount(mp);
689
e6b3bb78
CM
690 /* enable fail_at_unmount as default */
691 mp->m_fail_unmount = 1;
692
a31b1d3d 693 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
694 if (error)
695 goto out;
1da177e4 696
225e4635
BD
697 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
698 &mp->m_kobj, "stats");
a31b1d3d
BF
699 if (error)
700 goto out_remove_sysfs;
701
192852be 702 error = xfs_error_sysfs_init(mp);
225e4635
BD
703 if (error)
704 goto out_del_stats;
705
192852be
CM
706
707 error = xfs_uuid_mount(mp);
708 if (error)
709 goto out_remove_error_sysfs;
710
0771fb45
ES
711 /*
712 * Set the minimum read and write sizes
713 */
714 xfs_set_rw_sizes(mp);
715
055388a3
DC
716 /* set the low space thresholds for dynamic preallocation */
717 xfs_set_low_space_thresholds(mp);
718
0771fb45
ES
719 /*
720 * Set the inode cluster size.
721 * This may still be overridden by the file system
722 * block size if it is larger than the chosen cluster size.
8f80587b
DC
723 *
724 * For v5 filesystems, scale the cluster size with the inode size to
725 * keep a constant ratio of inode per cluster buffer, but only if mkfs
726 * has set the inode alignment value appropriately for larger cluster
727 * sizes.
0771fb45
ES
728 */
729 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
8f80587b
DC
730 if (xfs_sb_version_hascrc(&mp->m_sb)) {
731 int new_size = mp->m_inode_cluster_size;
732
733 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
734 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
735 mp->m_inode_cluster_size = new_size;
8f80587b 736 }
0771fb45 737
e5376fc1
BF
738 /*
739 * If enabled, sparse inode chunk alignment is expected to match the
740 * cluster size. Full inode chunk alignment must match the chunk size,
741 * but that is checked on sb read verification...
742 */
743 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
744 mp->m_sb.sb_spino_align !=
745 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
746 xfs_warn(mp,
747 "Sparse inode block alignment (%u) must match cluster size (%llu).",
748 mp->m_sb.sb_spino_align,
749 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
750 error = -EINVAL;
751 goto out_remove_uuid;
752 }
753
0771fb45
ES
754 /*
755 * Set inode alignment fields
756 */
757 xfs_set_inoalignment(mp);
758
759 /*
c2bfbc9b 760 * Check that the data (and log if separate) is an ok size.
0771fb45 761 */
4249023a 762 error = xfs_check_sizes(mp);
0771fb45 763 if (error)
f9057e3d 764 goto out_remove_uuid;
0771fb45 765
1da177e4
LT
766 /*
767 * Initialize realtime fields in the mount structure
768 */
0771fb45
ES
769 error = xfs_rtmount_init(mp);
770 if (error) {
0b932ccc 771 xfs_warn(mp, "RT mount failed");
f9057e3d 772 goto out_remove_uuid;
1da177e4
LT
773 }
774
1da177e4
LT
775 /*
776 * Copies the low order bits of the timestamp and the randomly
777 * set "sequence" number out of a UUID.
778 */
779 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
780
1da177e4
LT
781 mp->m_dmevmask = 0; /* not persistent; set after each mount */
782
0650b554
DC
783 error = xfs_da_mount(mp);
784 if (error) {
785 xfs_warn(mp, "Failed dir/attr init: %d", error);
786 goto out_remove_uuid;
787 }
1da177e4
LT
788
789 /*
790 * Initialize the precomputed transaction reservations values.
791 */
792 xfs_trans_init(mp);
793
1da177e4
LT
794 /*
795 * Allocate and initialize the per-ag data.
796 */
1c1c6ebc 797 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 798 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
799 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
800 if (error) {
0b932ccc 801 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 802 goto out_free_dir;
1c1c6ebc 803 }
1da177e4 804
f9057e3d 805 if (!sbp->sb_logblocks) {
0b932ccc 806 xfs_warn(mp, "no log defined");
f9057e3d 807 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 808 error = -EFSCORRUPTED;
f9057e3d
CH
809 goto out_free_perag;
810 }
811
1da177e4 812 /*
f0b2efad
BF
813 * Log's mount-time initialization. The first part of recovery can place
814 * some items on the AIL, to be handled when recovery is finished or
815 * cancelled.
1da177e4 816 */
f9057e3d
CH
817 error = xfs_log_mount(mp, mp->m_logdev_targp,
818 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
819 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
820 if (error) {
0b932ccc 821 xfs_warn(mp, "log mount failed");
d4f3512b 822 goto out_fail_wait;
1da177e4
LT
823 }
824
92821e2b
DC
825 /*
826 * Now the log is mounted, we know if it was an unclean shutdown or
827 * not. If it was, with the first phase of recovery has completed, we
828 * have consistent AG blocks on disk. We have not recovered EFIs yet,
829 * but they are recovered transactionally in the second recovery phase
830 * later.
831 *
832 * Hence we can safely re-initialise incore superblock counters from
833 * the per-ag data. These may not be correct if the filesystem was not
834 * cleanly unmounted, so we need to wait for recovery to finish before
835 * doing this.
836 *
837 * If the filesystem was cleanly unmounted, then we can trust the
838 * values in the superblock to be correct and we don't need to do
839 * anything here.
840 *
841 * If we are currently making the filesystem, the initialisation will
842 * fail as the perag data is in an undefined state.
843 */
92821e2b
DC
844 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
845 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
846 !mp->m_sb.sb_inprogress) {
847 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 848 if (error)
6eee8972 849 goto out_log_dealloc;
92821e2b 850 }
f9057e3d 851
1da177e4
LT
852 /*
853 * Get and sanity-check the root inode.
854 * Save the pointer to it in the mount structure.
855 */
7b6259e7 856 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 857 if (error) {
0b932ccc 858 xfs_warn(mp, "failed to read root inode");
f9057e3d 859 goto out_log_dealloc;
1da177e4
LT
860 }
861
862 ASSERT(rip != NULL);
1da177e4 863
c19b3b05 864 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 865 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 866 (unsigned long long)rip->i_ino);
1da177e4
LT
867 xfs_iunlock(rip, XFS_ILOCK_EXCL);
868 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
869 mp);
2451337d 870 error = -EFSCORRUPTED;
f9057e3d 871 goto out_rele_rip;
1da177e4
LT
872 }
873 mp->m_rootip = rip; /* save it */
874
875 xfs_iunlock(rip, XFS_ILOCK_EXCL);
876
877 /*
878 * Initialize realtime inode pointers in the mount structure
879 */
0771fb45
ES
880 error = xfs_rtmount_inodes(mp);
881 if (error) {
1da177e4
LT
882 /*
883 * Free up the root inode.
884 */
0b932ccc 885 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 886 goto out_rele_rip;
1da177e4
LT
887 }
888
889 /*
7884bc86
CH
890 * If this is a read-only mount defer the superblock updates until
891 * the next remount into writeable mode. Otherwise we would never
892 * perform the update e.g. for the root filesystem.
1da177e4 893 */
61e63ecb
DC
894 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
895 error = xfs_sync_sb(mp, false);
e5720eec 896 if (error) {
0b932ccc 897 xfs_warn(mp, "failed to write sb changes");
b93b6e43 898 goto out_rtunmount;
e5720eec
DC
899 }
900 }
1da177e4
LT
901
902 /*
903 * Initialise the XFS quota management subsystem for this mount
904 */
7d095257
CH
905 if (XFS_IS_QUOTA_RUNNING(mp)) {
906 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
907 if (error)
908 goto out_rtunmount;
909 } else {
910 ASSERT(!XFS_IS_QUOTA_ON(mp));
911
912 /*
913 * If a file system had quotas running earlier, but decided to
914 * mount without -o uquota/pquota/gquota options, revoke the
915 * quotachecked license.
916 */
917 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 918 xfs_notice(mp, "resetting quota flags");
7d095257
CH
919 error = xfs_mount_reset_sbqflags(mp);
920 if (error)
a70a4fa5 921 goto out_rtunmount;
7d095257
CH
922 }
923 }
1da177e4
LT
924
925 /*
f0b2efad
BF
926 * Finish recovering the file system. This part needed to be delayed
927 * until after the root and real-time bitmap inodes were consistently
928 * read in.
1da177e4 929 */
4249023a 930 error = xfs_log_mount_finish(mp);
1da177e4 931 if (error) {
0b932ccc 932 xfs_warn(mp, "log mount finish failed");
b93b6e43 933 goto out_rtunmount;
1da177e4
LT
934 }
935
936 /*
937 * Complete the quota initialisation, post-log-replay component.
938 */
7d095257
CH
939 if (quotamount) {
940 ASSERT(mp->m_qflags == 0);
941 mp->m_qflags = quotaflags;
942
943 xfs_qm_mount_quotas(mp);
944 }
945
84e1e99f
DC
946 /*
947 * Now we are mounted, reserve a small amount of unused space for
948 * privileged transactions. This is needed so that transaction
949 * space required for critical operations can dip into this pool
950 * when at ENOSPC. This is needed for operations like create with
951 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
952 * are not allowed to use this reserved space.
8babd8a2
DC
953 *
954 * This may drive us straight to ENOSPC on mount, but that implies
955 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 956 */
d5db0f97
ES
957 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
958 resblks = xfs_default_resblks(mp);
959 error = xfs_reserve_blocks(mp, &resblks, NULL);
960 if (error)
0b932ccc
DC
961 xfs_warn(mp,
962 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 963 }
84e1e99f 964
1da177e4
LT
965 return 0;
966
b93b6e43
CH
967 out_rtunmount:
968 xfs_rtunmount_inodes(mp);
f9057e3d 969 out_rele_rip:
43355099 970 IRELE(rip);
0ae120f8
BF
971 cancel_delayed_work_sync(&mp->m_reclaim_work);
972 xfs_reclaim_inodes(mp, SYNC_WAIT);
f9057e3d 973 out_log_dealloc:
e6b3bb78 974 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
f0b2efad 975 xfs_log_mount_cancel(mp);
d4f3512b
DC
976 out_fail_wait:
977 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
978 xfs_wait_buftarg(mp->m_logdev_targp);
979 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 980 out_free_perag:
ff4f038c 981 xfs_free_perag(mp);
0650b554
DC
982 out_free_dir:
983 xfs_da_unmount(mp);
f9057e3d 984 out_remove_uuid:
27174203 985 xfs_uuid_unmount(mp);
192852be
CM
986 out_remove_error_sysfs:
987 xfs_error_sysfs_del(mp);
225e4635
BD
988 out_del_stats:
989 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
990 out_remove_sysfs:
991 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 992 out:
1da177e4
LT
993 return error;
994}
995
996/*
1da177e4
LT
997 * This flushes out the inodes,dquots and the superblock, unmounts the
998 * log and makes sure that incore structures are freed.
999 */
41b5c2e7
CH
1000void
1001xfs_unmountfs(
1002 struct xfs_mount *mp)
1da177e4 1003{
41b5c2e7
CH
1004 __uint64_t resblks;
1005 int error;
1da177e4 1006
579b62fa
BF
1007 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1008
7d095257 1009 xfs_qm_unmount_quotas(mp);
b93b6e43 1010 xfs_rtunmount_inodes(mp);
77508ec8
CH
1011 IRELE(mp->m_rootip);
1012
641c56fb
DC
1013 /*
1014 * We can potentially deadlock here if we have an inode cluster
9da096fd 1015 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1016 * the transaction is still sitting in a iclog. The stale inodes
1017 * on that buffer will have their flush locks held until the
1018 * transaction hits the disk and the callbacks run. the inode
1019 * flush takes the flush lock unconditionally and with nothing to
1020 * push out the iclog we will never get that unlocked. hence we
1021 * need to force the log first.
1022 */
a14a348b 1023 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e 1024
e6b3bb78
CM
1025 /*
1026 * We now need to tell the world we are unmounting. This will allow
1027 * us to detect that the filesystem is going away and we should error
1028 * out anything that we have been retrying in the background. This will
1029 * prevent neverending retries in AIL pushing from hanging the unmount.
1030 */
1031 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1032
c854363e 1033 /*
211e4d43
CH
1034 * Flush all pending changes from the AIL.
1035 */
1036 xfs_ail_push_all_sync(mp->m_ail);
1037
1038 /*
1039 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1040 * inodes and none should be pinned or locked, but use synchronous
1041 * reclaim just to be sure. We can stop background inode reclaim
1042 * here as well if it is still running.
c854363e 1043 */
7e18530b 1044 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1045 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1046
7d095257 1047 xfs_qm_unmount(mp);
a357a121 1048
84e1e99f
DC
1049 /*
1050 * Unreserve any blocks we have so that when we unmount we don't account
1051 * the reserved free space as used. This is really only necessary for
1052 * lazy superblock counting because it trusts the incore superblock
9da096fd 1053 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1054 *
1055 * We don't bother correcting this elsewhere for lazy superblock
1056 * counting because on mount of an unclean filesystem we reconstruct the
1057 * correct counter value and this is irrelevant.
1058 *
1059 * For non-lazy counter filesystems, this doesn't matter at all because
1060 * we only every apply deltas to the superblock and hence the incore
1061 * value does not matter....
1062 */
1063 resblks = 0;
714082bc
DC
1064 error = xfs_reserve_blocks(mp, &resblks, NULL);
1065 if (error)
0b932ccc 1066 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1067 "Freespace may not be correct on next mount.");
1068
adab0f67 1069 error = xfs_log_sbcount(mp);
e5720eec 1070 if (error)
0b932ccc 1071 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1072 "Freespace may not be correct on next mount.");
87c7bec7 1073
225e4635 1074
21b699c8 1075 xfs_log_unmount(mp);
0650b554 1076 xfs_da_unmount(mp);
27174203 1077 xfs_uuid_unmount(mp);
1da177e4 1078
1550d0b0 1079#if defined(DEBUG)
0ce4cfd4 1080 xfs_errortag_clearall(mp, 0);
1da177e4 1081#endif
ff4f038c 1082 xfs_free_perag(mp);
a31b1d3d 1083
192852be 1084 xfs_error_sysfs_del(mp);
225e4635 1085 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1086 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1087}
1088
91ee575f
BF
1089/*
1090 * Determine whether modifications can proceed. The caller specifies the minimum
1091 * freeze level for which modifications should not be allowed. This allows
1092 * certain operations to proceed while the freeze sequence is in progress, if
1093 * necessary.
1094 */
1095bool
1096xfs_fs_writable(
1097 struct xfs_mount *mp,
1098 int level)
92821e2b 1099{
91ee575f
BF
1100 ASSERT(level > SB_UNFROZEN);
1101 if ((mp->m_super->s_writers.frozen >= level) ||
1102 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1103 return false;
1104
1105 return true;
92821e2b
DC
1106}
1107
1108/*
b2ce3974
AE
1109 * xfs_log_sbcount
1110 *
adab0f67 1111 * Sync the superblock counters to disk.
b2ce3974 1112 *
91ee575f
BF
1113 * Note this code can be called during the process of freezing, so we use the
1114 * transaction allocator that does not block when the transaction subsystem is
1115 * in its frozen state.
92821e2b
DC
1116 */
1117int
adab0f67 1118xfs_log_sbcount(xfs_mount_t *mp)
92821e2b 1119{
91ee575f
BF
1120 /* allow this to proceed during the freeze sequence... */
1121 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1122 return 0;
1123
92821e2b
DC
1124 /*
1125 * we don't need to do this if we are updating the superblock
1126 * counters on every modification.
1127 */
1128 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1129 return 0;
1130
61e63ecb 1131 return xfs_sync_sb(mp, true);
92821e2b
DC
1132}
1133
8c1903d3
DC
1134/*
1135 * Deltas for the inode count are +/-64, hence we use a large batch size
1136 * of 128 so we don't need to take the counter lock on every update.
1137 */
1138#define XFS_ICOUNT_BATCH 128
501ab323
DC
1139int
1140xfs_mod_icount(
1141 struct xfs_mount *mp,
1142 int64_t delta)
1143{
8c1903d3
DC
1144 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1145 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
501ab323
DC
1146 ASSERT(0);
1147 percpu_counter_add(&mp->m_icount, -delta);
1148 return -EINVAL;
1149 }
1150 return 0;
1151}
1152
e88b64ea
DC
1153int
1154xfs_mod_ifree(
1155 struct xfs_mount *mp,
1156 int64_t delta)
1157{
1158 percpu_counter_add(&mp->m_ifree, delta);
1159 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1160 ASSERT(0);
1161 percpu_counter_add(&mp->m_ifree, -delta);
1162 return -EINVAL;
1163 }
1164 return 0;
1165}
0d485ada 1166
8c1903d3
DC
1167/*
1168 * Deltas for the block count can vary from 1 to very large, but lock contention
1169 * only occurs on frequent small block count updates such as in the delayed
1170 * allocation path for buffered writes (page a time updates). Hence we set
1171 * a large batch count (1024) to minimise global counter updates except when
1172 * we get near to ENOSPC and we have to be very accurate with our updates.
1173 */
1174#define XFS_FDBLOCKS_BATCH 1024
0d485ada
DC
1175int
1176xfs_mod_fdblocks(
1177 struct xfs_mount *mp,
1178 int64_t delta,
1179 bool rsvd)
1180{
1181 int64_t lcounter;
1182 long long res_used;
1183 s32 batch;
1184
1185 if (delta > 0) {
1186 /*
1187 * If the reserve pool is depleted, put blocks back into it
1188 * first. Most of the time the pool is full.
1189 */
1190 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1191 percpu_counter_add(&mp->m_fdblocks, delta);
1192 return 0;
1193 }
1194
1195 spin_lock(&mp->m_sb_lock);
1196 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1197
1198 if (res_used > delta) {
1199 mp->m_resblks_avail += delta;
1200 } else {
1201 delta -= res_used;
1202 mp->m_resblks_avail = mp->m_resblks;
1203 percpu_counter_add(&mp->m_fdblocks, delta);
1204 }
1205 spin_unlock(&mp->m_sb_lock);
1206 return 0;
1207 }
1208
1209 /*
1210 * Taking blocks away, need to be more accurate the closer we
1211 * are to zero.
1212 *
0d485ada
DC
1213 * If the counter has a value of less than 2 * max batch size,
1214 * then make everything serialise as we are real close to
1215 * ENOSPC.
1216 */
8c1903d3
DC
1217 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1218 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1219 batch = 1;
1220 else
8c1903d3 1221 batch = XFS_FDBLOCKS_BATCH;
0d485ada
DC
1222
1223 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
52548852 1224 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
8c1903d3 1225 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1226 /* we had space! */
1227 return 0;
1228 }
1229
1230 /*
1231 * lock up the sb for dipping into reserves before releasing the space
1232 * that took us to ENOSPC.
1233 */
1234 spin_lock(&mp->m_sb_lock);
1235 percpu_counter_add(&mp->m_fdblocks, -delta);
1236 if (!rsvd)
1237 goto fdblocks_enospc;
1238
1239 lcounter = (long long)mp->m_resblks_avail + delta;
1240 if (lcounter >= 0) {
1241 mp->m_resblks_avail = lcounter;
1242 spin_unlock(&mp->m_sb_lock);
1243 return 0;
1244 }
1245 printk_once(KERN_WARNING
1246 "Filesystem \"%s\": reserve blocks depleted! "
1247 "Consider increasing reserve pool size.",
1248 mp->m_fsname);
1249fdblocks_enospc:
1250 spin_unlock(&mp->m_sb_lock);
1251 return -ENOSPC;
1252}
1253
bab98bbe
DC
1254int
1255xfs_mod_frextents(
1256 struct xfs_mount *mp,
1257 int64_t delta)
1258{
1259 int64_t lcounter;
1260 int ret = 0;
1261
1262 spin_lock(&mp->m_sb_lock);
1263 lcounter = mp->m_sb.sb_frextents + delta;
1264 if (lcounter < 0)
1265 ret = -ENOSPC;
1266 else
1267 mp->m_sb.sb_frextents = lcounter;
1268 spin_unlock(&mp->m_sb_lock);
1269 return ret;
1270}
1271
1da177e4
LT
1272/*
1273 * xfs_getsb() is called to obtain the buffer for the superblock.
1274 * The buffer is returned locked and read in from disk.
1275 * The buffer should be released with a call to xfs_brelse().
1276 *
1277 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1278 * the superblock buffer if it can be locked without sleeping.
1279 * If it can't then we'll return NULL.
1280 */
0c842ad4 1281struct xfs_buf *
1da177e4 1282xfs_getsb(
0c842ad4
CH
1283 struct xfs_mount *mp,
1284 int flags)
1da177e4 1285{
0c842ad4 1286 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1287
0c842ad4
CH
1288 if (!xfs_buf_trylock(bp)) {
1289 if (flags & XBF_TRYLOCK)
1da177e4 1290 return NULL;
0c842ad4 1291 xfs_buf_lock(bp);
1da177e4 1292 }
0c842ad4 1293
72790aa1 1294 xfs_buf_hold(bp);
b0388bf1 1295 ASSERT(bp->b_flags & XBF_DONE);
014c2544 1296 return bp;
1da177e4
LT
1297}
1298
1299/*
1300 * Used to free the superblock along various error paths.
1301 */
1302void
1303xfs_freesb(
26af6552 1304 struct xfs_mount *mp)
1da177e4 1305{
26af6552 1306 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1307
26af6552 1308 xfs_buf_lock(bp);
1da177e4 1309 mp->m_sb_bp = NULL;
26af6552 1310 xfs_buf_relse(bp);
1da177e4
LT
1311}
1312
dda35b8f
CH
1313/*
1314 * If the underlying (data/log/rt) device is readonly, there are some
1315 * operations that cannot proceed.
1316 */
1317int
1318xfs_dev_is_read_only(
1319 struct xfs_mount *mp,
1320 char *message)
1321{
1322 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1323 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1324 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1325 xfs_notice(mp, "%s required on read-only device.", message);
1326 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1327 return -EROFS;
dda35b8f
CH
1328 }
1329 return 0;
1330}