Merge tag 'ceph-for-4.9-rc2' of git://github.com/ceph/ceph-client
[linux-2.6-block.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
3ab78df2 27#include "xfs_defer.h"
57062787 28#include "xfs_da_format.h"
9a2cc41c 29#include "xfs_da_btree.h"
1da177e4 30#include "xfs_inode.h"
a4fbe6ab 31#include "xfs_dir2.h"
a844f451 32#include "xfs_ialloc.h"
1da177e4
LT
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
a4fbe6ab
DC
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
1da177e4 39#include "xfs_error.h"
1da177e4
LT
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
0b1b213f 42#include "xfs_trace.h"
6d8b79cf 43#include "xfs_icache.h"
a31b1d3d 44#include "xfs_sysfs.h"
035e00ac 45#include "xfs_rmap_btree.h"
1946b91c 46#include "xfs_refcount_btree.h"
174edb0e 47#include "xfs_reflink.h"
0b1b213f 48
1da177e4 49
27174203
CH
50static DEFINE_MUTEX(xfs_uuid_table_mutex);
51static int xfs_uuid_table_size;
52static uuid_t *xfs_uuid_table;
53
af3b6382
DW
54void
55xfs_uuid_table_free(void)
56{
57 if (xfs_uuid_table_size == 0)
58 return;
59 kmem_free(xfs_uuid_table);
60 xfs_uuid_table = NULL;
61 xfs_uuid_table_size = 0;
62}
63
27174203
CH
64/*
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
67 */
68STATIC int
69xfs_uuid_mount(
70 struct xfs_mount *mp)
71{
72 uuid_t *uuid = &mp->m_sb.sb_uuid;
73 int hole, i;
74
75 if (mp->m_flags & XFS_MOUNT_NOUUID)
76 return 0;
77
78 if (uuid_is_nil(uuid)) {
0b932ccc 79 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
2451337d 80 return -EINVAL;
27174203
CH
81 }
82
83 mutex_lock(&xfs_uuid_table_mutex);
84 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85 if (uuid_is_nil(&xfs_uuid_table[i])) {
86 hole = i;
87 continue;
88 }
89 if (uuid_equal(uuid, &xfs_uuid_table[i]))
90 goto out_duplicate;
91 }
92
93 if (hole < 0) {
94 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
27174203
CH
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
98 }
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
101
102 return 0;
103
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 107 return -EINVAL;
27174203
CH
108}
109
110STATIC void
111xfs_uuid_unmount(
112 struct xfs_mount *mp)
113{
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
116
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
119
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
128 }
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
131}
132
133
e176579e
DC
134STATIC void
135__xfs_free_perag(
136 struct rcu_head *head)
137{
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
142}
143
1da177e4 144/*
e176579e 145 * Free up the per-ag resources associated with the mount structure.
1da177e4 146 */
c962fb79 147STATIC void
ff4f038c 148xfs_free_perag(
745f6919 149 xfs_mount_t *mp)
1da177e4 150{
1c1c6ebc
DC
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
153
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
e176579e 158 ASSERT(pag);
f83282a8 159 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 160 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 161 }
1da177e4
LT
162}
163
4cc929ee
NS
164/*
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
167 */
168int
169xfs_sb_validate_fsb_count(
170 xfs_sb_t *sbp,
171 __uint64_t nblocks)
172{
173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 ASSERT(sbp->sb_blocklog >= BBSHIFT);
175
d5cf09ba 176 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 177 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 178 return -EFBIG;
4cc929ee
NS
179 return 0;
180}
1da177e4 181
1c1c6ebc 182int
c11e2c36 183xfs_initialize_perag(
c11e2c36 184 xfs_mount_t *mp,
1c1c6ebc
DC
185 xfs_agnumber_t agcount,
186 xfs_agnumber_t *maxagi)
1da177e4 187{
2d2194f6 188 xfs_agnumber_t index;
8b26c582 189 xfs_agnumber_t first_initialised = 0;
1da177e4 190 xfs_perag_t *pag;
8b26c582 191 int error = -ENOMEM;
1da177e4 192
1c1c6ebc
DC
193 /*
194 * Walk the current per-ag tree so we don't try to initialise AGs
195 * that already exist (growfs case). Allocate and insert all the
196 * AGs we don't find ready for initialisation.
197 */
198 for (index = 0; index < agcount; index++) {
199 pag = xfs_perag_get(mp, index);
200 if (pag) {
201 xfs_perag_put(pag);
202 continue;
203 }
8b26c582
DC
204 if (!first_initialised)
205 first_initialised = index;
fb3b504a 206
1c1c6ebc
DC
207 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 if (!pag)
8b26c582 209 goto out_unwind;
fb3b504a
CH
210 pag->pag_agno = index;
211 pag->pag_mount = mp;
1a427ab0 212 spin_lock_init(&pag->pag_ici_lock);
69b491c2 213 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 214 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
215 spin_lock_init(&pag->pag_buf_lock);
216 pag->pag_buf_tree = RB_ROOT;
fb3b504a 217
1c1c6ebc 218 if (radix_tree_preload(GFP_NOFS))
8b26c582 219 goto out_unwind;
fb3b504a 220
1c1c6ebc
DC
221 spin_lock(&mp->m_perag_lock);
222 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
223 BUG();
224 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
225 radix_tree_preload_end();
226 error = -EEXIST;
227 goto out_unwind;
1c1c6ebc
DC
228 }
229 spin_unlock(&mp->m_perag_lock);
230 radix_tree_preload_end();
231 }
232
12c3f05c 233 index = xfs_set_inode_alloc(mp, agcount);
fb3b504a 234
1c1c6ebc
DC
235 if (maxagi)
236 *maxagi = index;
8018026e
DW
237
238 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
1c1c6ebc 239 return 0;
8b26c582
DC
240
241out_unwind:
242 kmem_free(pag);
243 for (; index > first_initialised; index--) {
244 pag = radix_tree_delete(&mp->m_perag_tree, index);
245 kmem_free(pag);
246 }
247 return error;
1da177e4
LT
248}
249
1da177e4
LT
250/*
251 * xfs_readsb
252 *
253 * Does the initial read of the superblock.
254 */
255int
ff55068c
DC
256xfs_readsb(
257 struct xfs_mount *mp,
258 int flags)
1da177e4
LT
259{
260 unsigned int sector_size;
04a1e6c5
DC
261 struct xfs_buf *bp;
262 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 263 int error;
af34e09d 264 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 265 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
266
267 ASSERT(mp->m_sb_bp == NULL);
268 ASSERT(mp->m_ddev_targp != NULL);
269
daba5427
ES
270 /*
271 * For the initial read, we must guess at the sector
272 * size based on the block device. It's enough to
273 * get the sb_sectsize out of the superblock and
274 * then reread with the proper length.
275 * We don't verify it yet, because it may not be complete.
276 */
277 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
278 buf_ops = NULL;
279
1da177e4 280 /*
c891c30a
BF
281 * Allocate a (locked) buffer to hold the superblock. This will be kept
282 * around at all times to optimize access to the superblock. Therefore,
283 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
284 * elevated.
1da177e4 285 */
26af6552 286reread:
ba372674 287 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
288 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
289 buf_ops);
ba372674 290 if (error) {
eab4e633 291 if (loud)
e721f504 292 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 293 /* bad CRC means corrupted metadata */
2451337d
DC
294 if (error == -EFSBADCRC)
295 error = -EFSCORRUPTED;
ba372674 296 return error;
eab4e633 297 }
1da177e4
LT
298
299 /*
300 * Initialize the mount structure from the superblock.
1da177e4 301 */
556b8883 302 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
303
304 /*
305 * If we haven't validated the superblock, do so now before we try
306 * to check the sector size and reread the superblock appropriately.
307 */
308 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
309 if (loud)
310 xfs_warn(mp, "Invalid superblock magic number");
2451337d 311 error = -EINVAL;
556b8883
DC
312 goto release_buf;
313 }
ff55068c 314
1da177e4
LT
315 /*
316 * We must be able to do sector-sized and sector-aligned IO.
317 */
04a1e6c5 318 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
319 if (loud)
320 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 321 sector_size, sbp->sb_sectsize);
2451337d 322 error = -ENOSYS;
26af6552 323 goto release_buf;
1da177e4
LT
324 }
325
daba5427 326 if (buf_ops == NULL) {
556b8883
DC
327 /*
328 * Re-read the superblock so the buffer is correctly sized,
329 * and properly verified.
330 */
1da177e4 331 xfs_buf_relse(bp);
04a1e6c5 332 sector_size = sbp->sb_sectsize;
daba5427 333 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 334 goto reread;
1da177e4
LT
335 }
336
5681ca40 337 xfs_reinit_percpu_counters(mp);
8d280b98 338
04a1e6c5
DC
339 /* no need to be quiet anymore, so reset the buf ops */
340 bp->b_ops = &xfs_sb_buf_ops;
341
1da177e4 342 mp->m_sb_bp = bp;
26af6552 343 xfs_buf_unlock(bp);
1da177e4
LT
344 return 0;
345
26af6552
DC
346release_buf:
347 xfs_buf_relse(bp);
1da177e4
LT
348 return error;
349}
350
1da177e4 351/*
0771fb45 352 * Update alignment values based on mount options and sb values
1da177e4 353 */
0771fb45 354STATIC int
7884bc86 355xfs_update_alignment(xfs_mount_t *mp)
1da177e4 356{
1da177e4 357 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 358
4249023a 359 if (mp->m_dalign) {
1da177e4
LT
360 /*
361 * If stripe unit and stripe width are not multiples
362 * of the fs blocksize turn off alignment.
363 */
364 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
365 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
366 xfs_warn(mp,
367 "alignment check failed: sunit/swidth vs. blocksize(%d)",
368 sbp->sb_blocksize);
2451337d 369 return -EINVAL;
1da177e4
LT
370 } else {
371 /*
372 * Convert the stripe unit and width to FSBs.
373 */
374 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
375 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 376 xfs_warn(mp,
39a45d84
JL
377 "alignment check failed: sunit/swidth vs. agsize(%d)",
378 sbp->sb_agblocks);
2451337d 379 return -EINVAL;
1da177e4
LT
380 } else if (mp->m_dalign) {
381 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
382 } else {
39a45d84
JL
383 xfs_warn(mp,
384 "alignment check failed: sunit(%d) less than bsize(%d)",
385 mp->m_dalign, sbp->sb_blocksize);
2451337d 386 return -EINVAL;
1da177e4
LT
387 }
388 }
389
390 /*
391 * Update superblock with new values
392 * and log changes
393 */
62118709 394 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
395 if (sbp->sb_unit != mp->m_dalign) {
396 sbp->sb_unit = mp->m_dalign;
61e63ecb 397 mp->m_update_sb = true;
1da177e4
LT
398 }
399 if (sbp->sb_width != mp->m_swidth) {
400 sbp->sb_width = mp->m_swidth;
61e63ecb 401 mp->m_update_sb = true;
1da177e4 402 }
34d7f603
JL
403 } else {
404 xfs_warn(mp,
405 "cannot change alignment: superblock does not support data alignment");
2451337d 406 return -EINVAL;
1da177e4
LT
407 }
408 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 409 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
410 mp->m_dalign = sbp->sb_unit;
411 mp->m_swidth = sbp->sb_width;
412 }
413
0771fb45
ES
414 return 0;
415}
1da177e4 416
0771fb45
ES
417/*
418 * Set the maximum inode count for this filesystem
419 */
420STATIC void
421xfs_set_maxicount(xfs_mount_t *mp)
422{
423 xfs_sb_t *sbp = &(mp->m_sb);
424 __uint64_t icount;
1da177e4 425
0771fb45
ES
426 if (sbp->sb_imax_pct) {
427 /*
428 * Make sure the maximum inode count is a multiple
429 * of the units we allocate inodes in.
1da177e4 430 */
1da177e4
LT
431 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
432 do_div(icount, 100);
433 do_div(icount, mp->m_ialloc_blks);
434 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
435 sbp->sb_inopblog;
0771fb45 436 } else {
1da177e4 437 mp->m_maxicount = 0;
1da177e4 438 }
0771fb45
ES
439}
440
441/*
442 * Set the default minimum read and write sizes unless
443 * already specified in a mount option.
444 * We use smaller I/O sizes when the file system
445 * is being used for NFS service (wsync mount option).
446 */
447STATIC void
448xfs_set_rw_sizes(xfs_mount_t *mp)
449{
450 xfs_sb_t *sbp = &(mp->m_sb);
451 int readio_log, writeio_log;
1da177e4 452
1da177e4
LT
453 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
454 if (mp->m_flags & XFS_MOUNT_WSYNC) {
455 readio_log = XFS_WSYNC_READIO_LOG;
456 writeio_log = XFS_WSYNC_WRITEIO_LOG;
457 } else {
458 readio_log = XFS_READIO_LOG_LARGE;
459 writeio_log = XFS_WRITEIO_LOG_LARGE;
460 }
461 } else {
462 readio_log = mp->m_readio_log;
463 writeio_log = mp->m_writeio_log;
464 }
465
1da177e4
LT
466 if (sbp->sb_blocklog > readio_log) {
467 mp->m_readio_log = sbp->sb_blocklog;
468 } else {
469 mp->m_readio_log = readio_log;
470 }
471 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
472 if (sbp->sb_blocklog > writeio_log) {
473 mp->m_writeio_log = sbp->sb_blocklog;
474 } else {
475 mp->m_writeio_log = writeio_log;
476 }
477 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 478}
1da177e4 479
055388a3
DC
480/*
481 * precalculate the low space thresholds for dynamic speculative preallocation.
482 */
483void
484xfs_set_low_space_thresholds(
485 struct xfs_mount *mp)
486{
487 int i;
488
489 for (i = 0; i < XFS_LOWSP_MAX; i++) {
490 __uint64_t space = mp->m_sb.sb_dblocks;
491
492 do_div(space, 100);
493 mp->m_low_space[i] = space * (i + 1);
494 }
495}
496
497
0771fb45
ES
498/*
499 * Set whether we're using inode alignment.
500 */
501STATIC void
502xfs_set_inoalignment(xfs_mount_t *mp)
503{
62118709 504 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
505 mp->m_sb.sb_inoalignmt >=
506 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
507 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
508 else
509 mp->m_inoalign_mask = 0;
510 /*
511 * If we are using stripe alignment, check whether
512 * the stripe unit is a multiple of the inode alignment
513 */
514 if (mp->m_dalign && mp->m_inoalign_mask &&
515 !(mp->m_dalign & mp->m_inoalign_mask))
516 mp->m_sinoalign = mp->m_dalign;
517 else
518 mp->m_sinoalign = 0;
0771fb45
ES
519}
520
521/*
0471f62e 522 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
523 */
524STATIC int
ba372674
DC
525xfs_check_sizes(
526 struct xfs_mount *mp)
0771fb45 527{
ba372674 528 struct xfs_buf *bp;
0771fb45 529 xfs_daddr_t d;
ba372674 530 int error;
0771fb45 531
1da177e4
LT
532 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
533 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 534 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 535 return -EFBIG;
1da177e4 536 }
ba372674 537 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 538 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
539 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
540 if (error) {
0b932ccc 541 xfs_warn(mp, "last sector read failed");
ba372674 542 return error;
1da177e4 543 }
1922c949 544 xfs_buf_relse(bp);
1da177e4 545
ba372674
DC
546 if (mp->m_logdev_targp == mp->m_ddev_targp)
547 return 0;
548
549 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
550 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
551 xfs_warn(mp, "log size mismatch detected");
552 return -EFBIG;
553 }
554 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 555 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
556 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
557 if (error) {
558 xfs_warn(mp, "log device read failed");
559 return error;
0771fb45 560 }
ba372674 561 xfs_buf_relse(bp);
0771fb45
ES
562 return 0;
563}
564
7d095257
CH
565/*
566 * Clear the quotaflags in memory and in the superblock.
567 */
568int
569xfs_mount_reset_sbqflags(
570 struct xfs_mount *mp)
571{
7d095257
CH
572 mp->m_qflags = 0;
573
61e63ecb 574 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
575 if (mp->m_sb.sb_qflags == 0)
576 return 0;
577 spin_lock(&mp->m_sb_lock);
578 mp->m_sb.sb_qflags = 0;
579 spin_unlock(&mp->m_sb_lock);
580
61e63ecb 581 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
582 return 0;
583
61e63ecb 584 return xfs_sync_sb(mp, false);
7d095257
CH
585}
586
d5db0f97
ES
587__uint64_t
588xfs_default_resblks(xfs_mount_t *mp)
589{
590 __uint64_t resblks;
591
592 /*
8babd8a2
DC
593 * We default to 5% or 8192 fsbs of space reserved, whichever is
594 * smaller. This is intended to cover concurrent allocation
595 * transactions when we initially hit enospc. These each require a 4
596 * block reservation. Hence by default we cover roughly 2000 concurrent
597 * allocation reservations.
d5db0f97
ES
598 */
599 resblks = mp->m_sb.sb_dblocks;
600 do_div(resblks, 20);
8babd8a2 601 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
602 return resblks;
603}
604
0771fb45 605/*
0771fb45
ES
606 * This function does the following on an initial mount of a file system:
607 * - reads the superblock from disk and init the mount struct
608 * - if we're a 32-bit kernel, do a size check on the superblock
609 * so we don't mount terabyte filesystems
610 * - init mount struct realtime fields
611 * - allocate inode hash table for fs
612 * - init directory manager
613 * - perform recovery and init the log manager
614 */
615int
616xfs_mountfs(
f0b2efad 617 struct xfs_mount *mp)
0771fb45 618{
f0b2efad
BF
619 struct xfs_sb *sbp = &(mp->m_sb);
620 struct xfs_inode *rip;
621 __uint64_t resblks;
622 uint quotamount = 0;
623 uint quotaflags = 0;
624 int error = 0;
0771fb45 625
ff55068c 626 xfs_sb_mount_common(mp, sbp);
0771fb45 627
ee1c0908 628 /*
074e427b
DC
629 * Check for a mismatched features2 values. Older kernels read & wrote
630 * into the wrong sb offset for sb_features2 on some platforms due to
631 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
632 * which made older superblock reading/writing routines swap it as a
633 * 64-bit value.
ee1c0908 634 *
e6957ea4
ES
635 * For backwards compatibility, we make both slots equal.
636 *
074e427b
DC
637 * If we detect a mismatched field, we OR the set bits into the existing
638 * features2 field in case it has already been modified; we don't want
639 * to lose any features. We then update the bad location with the ORed
640 * value so that older kernels will see any features2 flags. The
641 * superblock writeback code ensures the new sb_features2 is copied to
642 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 643 */
e6957ea4 644 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 645 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 646 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 647 mp->m_update_sb = true;
e6957ea4
ES
648
649 /*
650 * Re-check for ATTR2 in case it was found in bad_features2
651 * slot.
652 */
7c12f296
TS
653 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
654 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 655 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
656 }
657
658 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
659 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
660 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 661 mp->m_update_sb = true;
e6957ea4 662
7c12f296
TS
663 /* update sb_versionnum for the clearing of the morebits */
664 if (!sbp->sb_features2)
61e63ecb 665 mp->m_update_sb = true;
ee1c0908
DC
666 }
667
263997a6
DC
668 /* always use v2 inodes by default now */
669 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
670 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 671 mp->m_update_sb = true;
263997a6
DC
672 }
673
0771fb45
ES
674 /*
675 * Check if sb_agblocks is aligned at stripe boundary
676 * If sb_agblocks is NOT aligned turn off m_dalign since
677 * allocator alignment is within an ag, therefore ag has
678 * to be aligned at stripe boundary.
679 */
7884bc86 680 error = xfs_update_alignment(mp);
0771fb45 681 if (error)
f9057e3d 682 goto out;
0771fb45
ES
683
684 xfs_alloc_compute_maxlevels(mp);
685 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
686 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
687 xfs_ialloc_compute_maxlevels(mp);
035e00ac 688 xfs_rmapbt_compute_maxlevels(mp);
1946b91c 689 xfs_refcountbt_compute_maxlevels(mp);
0771fb45
ES
690
691 xfs_set_maxicount(mp);
692
e6b3bb78
CM
693 /* enable fail_at_unmount as default */
694 mp->m_fail_unmount = 1;
695
a31b1d3d 696 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
697 if (error)
698 goto out;
1da177e4 699
225e4635
BD
700 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
701 &mp->m_kobj, "stats");
a31b1d3d
BF
702 if (error)
703 goto out_remove_sysfs;
704
192852be 705 error = xfs_error_sysfs_init(mp);
225e4635
BD
706 if (error)
707 goto out_del_stats;
708
192852be
CM
709
710 error = xfs_uuid_mount(mp);
711 if (error)
712 goto out_remove_error_sysfs;
713
0771fb45
ES
714 /*
715 * Set the minimum read and write sizes
716 */
717 xfs_set_rw_sizes(mp);
718
055388a3
DC
719 /* set the low space thresholds for dynamic preallocation */
720 xfs_set_low_space_thresholds(mp);
721
0771fb45
ES
722 /*
723 * Set the inode cluster size.
724 * This may still be overridden by the file system
725 * block size if it is larger than the chosen cluster size.
8f80587b
DC
726 *
727 * For v5 filesystems, scale the cluster size with the inode size to
728 * keep a constant ratio of inode per cluster buffer, but only if mkfs
729 * has set the inode alignment value appropriately for larger cluster
730 * sizes.
0771fb45
ES
731 */
732 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
8f80587b
DC
733 if (xfs_sb_version_hascrc(&mp->m_sb)) {
734 int new_size = mp->m_inode_cluster_size;
735
736 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
737 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
738 mp->m_inode_cluster_size = new_size;
8f80587b 739 }
0771fb45 740
e5376fc1
BF
741 /*
742 * If enabled, sparse inode chunk alignment is expected to match the
743 * cluster size. Full inode chunk alignment must match the chunk size,
744 * but that is checked on sb read verification...
745 */
746 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
747 mp->m_sb.sb_spino_align !=
748 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
749 xfs_warn(mp,
750 "Sparse inode block alignment (%u) must match cluster size (%llu).",
751 mp->m_sb.sb_spino_align,
752 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
753 error = -EINVAL;
754 goto out_remove_uuid;
755 }
756
0771fb45
ES
757 /*
758 * Set inode alignment fields
759 */
760 xfs_set_inoalignment(mp);
761
762 /*
c2bfbc9b 763 * Check that the data (and log if separate) is an ok size.
0771fb45 764 */
4249023a 765 error = xfs_check_sizes(mp);
0771fb45 766 if (error)
f9057e3d 767 goto out_remove_uuid;
0771fb45 768
1da177e4
LT
769 /*
770 * Initialize realtime fields in the mount structure
771 */
0771fb45
ES
772 error = xfs_rtmount_init(mp);
773 if (error) {
0b932ccc 774 xfs_warn(mp, "RT mount failed");
f9057e3d 775 goto out_remove_uuid;
1da177e4
LT
776 }
777
1da177e4
LT
778 /*
779 * Copies the low order bits of the timestamp and the randomly
780 * set "sequence" number out of a UUID.
781 */
782 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
783
1da177e4
LT
784 mp->m_dmevmask = 0; /* not persistent; set after each mount */
785
0650b554
DC
786 error = xfs_da_mount(mp);
787 if (error) {
788 xfs_warn(mp, "Failed dir/attr init: %d", error);
789 goto out_remove_uuid;
790 }
1da177e4
LT
791
792 /*
793 * Initialize the precomputed transaction reservations values.
794 */
795 xfs_trans_init(mp);
796
1da177e4
LT
797 /*
798 * Allocate and initialize the per-ag data.
799 */
1c1c6ebc 800 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 801 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
802 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
803 if (error) {
0b932ccc 804 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 805 goto out_free_dir;
1c1c6ebc 806 }
1da177e4 807
f9057e3d 808 if (!sbp->sb_logblocks) {
0b932ccc 809 xfs_warn(mp, "no log defined");
f9057e3d 810 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 811 error = -EFSCORRUPTED;
f9057e3d
CH
812 goto out_free_perag;
813 }
814
1da177e4 815 /*
f0b2efad
BF
816 * Log's mount-time initialization. The first part of recovery can place
817 * some items on the AIL, to be handled when recovery is finished or
818 * cancelled.
1da177e4 819 */
f9057e3d
CH
820 error = xfs_log_mount(mp, mp->m_logdev_targp,
821 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
822 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
823 if (error) {
0b932ccc 824 xfs_warn(mp, "log mount failed");
d4f3512b 825 goto out_fail_wait;
1da177e4
LT
826 }
827
92821e2b
DC
828 /*
829 * Now the log is mounted, we know if it was an unclean shutdown or
830 * not. If it was, with the first phase of recovery has completed, we
831 * have consistent AG blocks on disk. We have not recovered EFIs yet,
832 * but they are recovered transactionally in the second recovery phase
833 * later.
834 *
835 * Hence we can safely re-initialise incore superblock counters from
836 * the per-ag data. These may not be correct if the filesystem was not
837 * cleanly unmounted, so we need to wait for recovery to finish before
838 * doing this.
839 *
840 * If the filesystem was cleanly unmounted, then we can trust the
841 * values in the superblock to be correct and we don't need to do
842 * anything here.
843 *
844 * If we are currently making the filesystem, the initialisation will
845 * fail as the perag data is in an undefined state.
846 */
92821e2b
DC
847 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
848 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
849 !mp->m_sb.sb_inprogress) {
850 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 851 if (error)
6eee8972 852 goto out_log_dealloc;
92821e2b 853 }
f9057e3d 854
1da177e4
LT
855 /*
856 * Get and sanity-check the root inode.
857 * Save the pointer to it in the mount structure.
858 */
7b6259e7 859 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 860 if (error) {
0b932ccc 861 xfs_warn(mp, "failed to read root inode");
f9057e3d 862 goto out_log_dealloc;
1da177e4
LT
863 }
864
865 ASSERT(rip != NULL);
1da177e4 866
c19b3b05 867 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 868 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 869 (unsigned long long)rip->i_ino);
1da177e4
LT
870 xfs_iunlock(rip, XFS_ILOCK_EXCL);
871 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
872 mp);
2451337d 873 error = -EFSCORRUPTED;
f9057e3d 874 goto out_rele_rip;
1da177e4
LT
875 }
876 mp->m_rootip = rip; /* save it */
877
878 xfs_iunlock(rip, XFS_ILOCK_EXCL);
879
880 /*
881 * Initialize realtime inode pointers in the mount structure
882 */
0771fb45
ES
883 error = xfs_rtmount_inodes(mp);
884 if (error) {
1da177e4
LT
885 /*
886 * Free up the root inode.
887 */
0b932ccc 888 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 889 goto out_rele_rip;
1da177e4
LT
890 }
891
892 /*
7884bc86
CH
893 * If this is a read-only mount defer the superblock updates until
894 * the next remount into writeable mode. Otherwise we would never
895 * perform the update e.g. for the root filesystem.
1da177e4 896 */
61e63ecb
DC
897 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
898 error = xfs_sync_sb(mp, false);
e5720eec 899 if (error) {
0b932ccc 900 xfs_warn(mp, "failed to write sb changes");
b93b6e43 901 goto out_rtunmount;
e5720eec
DC
902 }
903 }
1da177e4
LT
904
905 /*
906 * Initialise the XFS quota management subsystem for this mount
907 */
7d095257
CH
908 if (XFS_IS_QUOTA_RUNNING(mp)) {
909 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
910 if (error)
911 goto out_rtunmount;
912 } else {
913 ASSERT(!XFS_IS_QUOTA_ON(mp));
914
915 /*
916 * If a file system had quotas running earlier, but decided to
917 * mount without -o uquota/pquota/gquota options, revoke the
918 * quotachecked license.
919 */
920 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 921 xfs_notice(mp, "resetting quota flags");
7d095257
CH
922 error = xfs_mount_reset_sbqflags(mp);
923 if (error)
a70a4fa5 924 goto out_rtunmount;
7d095257
CH
925 }
926 }
1da177e4 927
17c12bcd
DW
928 /*
929 * During the second phase of log recovery, we need iget and
930 * iput to behave like they do for an active filesystem.
931 * xfs_fs_drop_inode needs to be able to prevent the deletion
932 * of inodes before we're done replaying log items on those
933 * inodes.
934 */
935 mp->m_super->s_flags |= MS_ACTIVE;
936
1da177e4 937 /*
f0b2efad
BF
938 * Finish recovering the file system. This part needed to be delayed
939 * until after the root and real-time bitmap inodes were consistently
940 * read in.
1da177e4 941 */
4249023a 942 error = xfs_log_mount_finish(mp);
1da177e4 943 if (error) {
0b932ccc 944 xfs_warn(mp, "log mount finish failed");
b93b6e43 945 goto out_rtunmount;
1da177e4
LT
946 }
947
ddeb14f4
DC
948 /*
949 * Now the log is fully replayed, we can transition to full read-only
950 * mode for read-only mounts. This will sync all the metadata and clean
951 * the log so that the recovery we just performed does not have to be
952 * replayed again on the next mount.
953 *
954 * We use the same quiesce mechanism as the rw->ro remount, as they are
955 * semantically identical operations.
956 */
957 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
958 XFS_MOUNT_RDONLY) {
959 xfs_quiesce_attr(mp);
960 }
961
1da177e4
LT
962 /*
963 * Complete the quota initialisation, post-log-replay component.
964 */
7d095257
CH
965 if (quotamount) {
966 ASSERT(mp->m_qflags == 0);
967 mp->m_qflags = quotaflags;
968
969 xfs_qm_mount_quotas(mp);
970 }
971
84e1e99f
DC
972 /*
973 * Now we are mounted, reserve a small amount of unused space for
974 * privileged transactions. This is needed so that transaction
975 * space required for critical operations can dip into this pool
976 * when at ENOSPC. This is needed for operations like create with
977 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
978 * are not allowed to use this reserved space.
8babd8a2
DC
979 *
980 * This may drive us straight to ENOSPC on mount, but that implies
981 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 982 */
d5db0f97
ES
983 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
984 resblks = xfs_default_resblks(mp);
985 error = xfs_reserve_blocks(mp, &resblks, NULL);
986 if (error)
0b932ccc
DC
987 xfs_warn(mp,
988 "Unable to allocate reserve blocks. Continuing without reserve pool.");
174edb0e
DW
989
990 /* Recover any CoW blocks that never got remapped. */
991 error = xfs_reflink_recover_cow(mp);
992 if (error) {
993 xfs_err(mp,
994 "Error %d recovering leftover CoW allocations.", error);
995 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
996 goto out_quota;
997 }
84d69619
DW
998
999 /* Reserve AG blocks for future btree expansion. */
1000 error = xfs_fs_reserve_ag_blocks(mp);
1001 if (error && error != -ENOSPC)
1002 goto out_agresv;
d5db0f97 1003 }
84e1e99f 1004
1da177e4
LT
1005 return 0;
1006
84d69619
DW
1007 out_agresv:
1008 xfs_fs_unreserve_ag_blocks(mp);
174edb0e
DW
1009 out_quota:
1010 xfs_qm_unmount_quotas(mp);
b93b6e43
CH
1011 out_rtunmount:
1012 xfs_rtunmount_inodes(mp);
f9057e3d 1013 out_rele_rip:
43355099 1014 IRELE(rip);
0ae120f8
BF
1015 cancel_delayed_work_sync(&mp->m_reclaim_work);
1016 xfs_reclaim_inodes(mp, SYNC_WAIT);
f9057e3d 1017 out_log_dealloc:
e6b3bb78 1018 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
f0b2efad 1019 xfs_log_mount_cancel(mp);
d4f3512b
DC
1020 out_fail_wait:
1021 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1022 xfs_wait_buftarg(mp->m_logdev_targp);
1023 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 1024 out_free_perag:
ff4f038c 1025 xfs_free_perag(mp);
0650b554
DC
1026 out_free_dir:
1027 xfs_da_unmount(mp);
f9057e3d 1028 out_remove_uuid:
27174203 1029 xfs_uuid_unmount(mp);
192852be
CM
1030 out_remove_error_sysfs:
1031 xfs_error_sysfs_del(mp);
225e4635
BD
1032 out_del_stats:
1033 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
1034 out_remove_sysfs:
1035 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 1036 out:
1da177e4
LT
1037 return error;
1038}
1039
1040/*
1da177e4
LT
1041 * This flushes out the inodes,dquots and the superblock, unmounts the
1042 * log and makes sure that incore structures are freed.
1043 */
41b5c2e7
CH
1044void
1045xfs_unmountfs(
1046 struct xfs_mount *mp)
1da177e4 1047{
41b5c2e7
CH
1048 __uint64_t resblks;
1049 int error;
1da177e4 1050
579b62fa 1051 cancel_delayed_work_sync(&mp->m_eofblocks_work);
83104d44 1052 cancel_delayed_work_sync(&mp->m_cowblocks_work);
579b62fa 1053
84d69619 1054 xfs_fs_unreserve_ag_blocks(mp);
7d095257 1055 xfs_qm_unmount_quotas(mp);
b93b6e43 1056 xfs_rtunmount_inodes(mp);
77508ec8
CH
1057 IRELE(mp->m_rootip);
1058
641c56fb
DC
1059 /*
1060 * We can potentially deadlock here if we have an inode cluster
9da096fd 1061 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1062 * the transaction is still sitting in a iclog. The stale inodes
1063 * on that buffer will have their flush locks held until the
1064 * transaction hits the disk and the callbacks run. the inode
1065 * flush takes the flush lock unconditionally and with nothing to
1066 * push out the iclog we will never get that unlocked. hence we
1067 * need to force the log first.
1068 */
a14a348b 1069 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e 1070
e6b3bb78
CM
1071 /*
1072 * We now need to tell the world we are unmounting. This will allow
1073 * us to detect that the filesystem is going away and we should error
1074 * out anything that we have been retrying in the background. This will
1075 * prevent neverending retries in AIL pushing from hanging the unmount.
1076 */
1077 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1078
c854363e 1079 /*
211e4d43
CH
1080 * Flush all pending changes from the AIL.
1081 */
1082 xfs_ail_push_all_sync(mp->m_ail);
1083
1084 /*
1085 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1086 * inodes and none should be pinned or locked, but use synchronous
1087 * reclaim just to be sure. We can stop background inode reclaim
1088 * here as well if it is still running.
c854363e 1089 */
7e18530b 1090 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1091 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1092
7d095257 1093 xfs_qm_unmount(mp);
a357a121 1094
84e1e99f
DC
1095 /*
1096 * Unreserve any blocks we have so that when we unmount we don't account
1097 * the reserved free space as used. This is really only necessary for
1098 * lazy superblock counting because it trusts the incore superblock
9da096fd 1099 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1100 *
1101 * We don't bother correcting this elsewhere for lazy superblock
1102 * counting because on mount of an unclean filesystem we reconstruct the
1103 * correct counter value and this is irrelevant.
1104 *
1105 * For non-lazy counter filesystems, this doesn't matter at all because
1106 * we only every apply deltas to the superblock and hence the incore
1107 * value does not matter....
1108 */
1109 resblks = 0;
714082bc
DC
1110 error = xfs_reserve_blocks(mp, &resblks, NULL);
1111 if (error)
0b932ccc 1112 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1113 "Freespace may not be correct on next mount.");
1114
adab0f67 1115 error = xfs_log_sbcount(mp);
e5720eec 1116 if (error)
0b932ccc 1117 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1118 "Freespace may not be correct on next mount.");
87c7bec7 1119
225e4635 1120
21b699c8 1121 xfs_log_unmount(mp);
0650b554 1122 xfs_da_unmount(mp);
27174203 1123 xfs_uuid_unmount(mp);
1da177e4 1124
1550d0b0 1125#if defined(DEBUG)
0ce4cfd4 1126 xfs_errortag_clearall(mp, 0);
1da177e4 1127#endif
ff4f038c 1128 xfs_free_perag(mp);
a31b1d3d 1129
192852be 1130 xfs_error_sysfs_del(mp);
225e4635 1131 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1132 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1133}
1134
91ee575f
BF
1135/*
1136 * Determine whether modifications can proceed. The caller specifies the minimum
1137 * freeze level for which modifications should not be allowed. This allows
1138 * certain operations to proceed while the freeze sequence is in progress, if
1139 * necessary.
1140 */
1141bool
1142xfs_fs_writable(
1143 struct xfs_mount *mp,
1144 int level)
92821e2b 1145{
91ee575f
BF
1146 ASSERT(level > SB_UNFROZEN);
1147 if ((mp->m_super->s_writers.frozen >= level) ||
1148 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1149 return false;
1150
1151 return true;
92821e2b
DC
1152}
1153
1154/*
b2ce3974
AE
1155 * xfs_log_sbcount
1156 *
adab0f67 1157 * Sync the superblock counters to disk.
b2ce3974 1158 *
91ee575f
BF
1159 * Note this code can be called during the process of freezing, so we use the
1160 * transaction allocator that does not block when the transaction subsystem is
1161 * in its frozen state.
92821e2b
DC
1162 */
1163int
adab0f67 1164xfs_log_sbcount(xfs_mount_t *mp)
92821e2b 1165{
91ee575f
BF
1166 /* allow this to proceed during the freeze sequence... */
1167 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1168 return 0;
1169
92821e2b
DC
1170 /*
1171 * we don't need to do this if we are updating the superblock
1172 * counters on every modification.
1173 */
1174 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1175 return 0;
1176
61e63ecb 1177 return xfs_sync_sb(mp, true);
92821e2b
DC
1178}
1179
8c1903d3
DC
1180/*
1181 * Deltas for the inode count are +/-64, hence we use a large batch size
1182 * of 128 so we don't need to take the counter lock on every update.
1183 */
1184#define XFS_ICOUNT_BATCH 128
501ab323
DC
1185int
1186xfs_mod_icount(
1187 struct xfs_mount *mp,
1188 int64_t delta)
1189{
8c1903d3
DC
1190 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1191 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
501ab323
DC
1192 ASSERT(0);
1193 percpu_counter_add(&mp->m_icount, -delta);
1194 return -EINVAL;
1195 }
1196 return 0;
1197}
1198
e88b64ea
DC
1199int
1200xfs_mod_ifree(
1201 struct xfs_mount *mp,
1202 int64_t delta)
1203{
1204 percpu_counter_add(&mp->m_ifree, delta);
1205 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1206 ASSERT(0);
1207 percpu_counter_add(&mp->m_ifree, -delta);
1208 return -EINVAL;
1209 }
1210 return 0;
1211}
0d485ada 1212
8c1903d3
DC
1213/*
1214 * Deltas for the block count can vary from 1 to very large, but lock contention
1215 * only occurs on frequent small block count updates such as in the delayed
1216 * allocation path for buffered writes (page a time updates). Hence we set
1217 * a large batch count (1024) to minimise global counter updates except when
1218 * we get near to ENOSPC and we have to be very accurate with our updates.
1219 */
1220#define XFS_FDBLOCKS_BATCH 1024
0d485ada
DC
1221int
1222xfs_mod_fdblocks(
1223 struct xfs_mount *mp,
1224 int64_t delta,
1225 bool rsvd)
1226{
1227 int64_t lcounter;
1228 long long res_used;
1229 s32 batch;
1230
1231 if (delta > 0) {
1232 /*
1233 * If the reserve pool is depleted, put blocks back into it
1234 * first. Most of the time the pool is full.
1235 */
1236 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1237 percpu_counter_add(&mp->m_fdblocks, delta);
1238 return 0;
1239 }
1240
1241 spin_lock(&mp->m_sb_lock);
1242 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1243
1244 if (res_used > delta) {
1245 mp->m_resblks_avail += delta;
1246 } else {
1247 delta -= res_used;
1248 mp->m_resblks_avail = mp->m_resblks;
1249 percpu_counter_add(&mp->m_fdblocks, delta);
1250 }
1251 spin_unlock(&mp->m_sb_lock);
1252 return 0;
1253 }
1254
1255 /*
1256 * Taking blocks away, need to be more accurate the closer we
1257 * are to zero.
1258 *
0d485ada
DC
1259 * If the counter has a value of less than 2 * max batch size,
1260 * then make everything serialise as we are real close to
1261 * ENOSPC.
1262 */
8c1903d3
DC
1263 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1264 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1265 batch = 1;
1266 else
8c1903d3 1267 batch = XFS_FDBLOCKS_BATCH;
0d485ada
DC
1268
1269 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
52548852 1270 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
8c1903d3 1271 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1272 /* we had space! */
1273 return 0;
1274 }
1275
1276 /*
1277 * lock up the sb for dipping into reserves before releasing the space
1278 * that took us to ENOSPC.
1279 */
1280 spin_lock(&mp->m_sb_lock);
1281 percpu_counter_add(&mp->m_fdblocks, -delta);
1282 if (!rsvd)
1283 goto fdblocks_enospc;
1284
1285 lcounter = (long long)mp->m_resblks_avail + delta;
1286 if (lcounter >= 0) {
1287 mp->m_resblks_avail = lcounter;
1288 spin_unlock(&mp->m_sb_lock);
1289 return 0;
1290 }
1291 printk_once(KERN_WARNING
1292 "Filesystem \"%s\": reserve blocks depleted! "
1293 "Consider increasing reserve pool size.",
1294 mp->m_fsname);
1295fdblocks_enospc:
1296 spin_unlock(&mp->m_sb_lock);
1297 return -ENOSPC;
1298}
1299
bab98bbe
DC
1300int
1301xfs_mod_frextents(
1302 struct xfs_mount *mp,
1303 int64_t delta)
1304{
1305 int64_t lcounter;
1306 int ret = 0;
1307
1308 spin_lock(&mp->m_sb_lock);
1309 lcounter = mp->m_sb.sb_frextents + delta;
1310 if (lcounter < 0)
1311 ret = -ENOSPC;
1312 else
1313 mp->m_sb.sb_frextents = lcounter;
1314 spin_unlock(&mp->m_sb_lock);
1315 return ret;
1316}
1317
1da177e4
LT
1318/*
1319 * xfs_getsb() is called to obtain the buffer for the superblock.
1320 * The buffer is returned locked and read in from disk.
1321 * The buffer should be released with a call to xfs_brelse().
1322 *
1323 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1324 * the superblock buffer if it can be locked without sleeping.
1325 * If it can't then we'll return NULL.
1326 */
0c842ad4 1327struct xfs_buf *
1da177e4 1328xfs_getsb(
0c842ad4
CH
1329 struct xfs_mount *mp,
1330 int flags)
1da177e4 1331{
0c842ad4 1332 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1333
0c842ad4
CH
1334 if (!xfs_buf_trylock(bp)) {
1335 if (flags & XBF_TRYLOCK)
1da177e4 1336 return NULL;
0c842ad4 1337 xfs_buf_lock(bp);
1da177e4 1338 }
0c842ad4 1339
72790aa1 1340 xfs_buf_hold(bp);
b0388bf1 1341 ASSERT(bp->b_flags & XBF_DONE);
014c2544 1342 return bp;
1da177e4
LT
1343}
1344
1345/*
1346 * Used to free the superblock along various error paths.
1347 */
1348void
1349xfs_freesb(
26af6552 1350 struct xfs_mount *mp)
1da177e4 1351{
26af6552 1352 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1353
26af6552 1354 xfs_buf_lock(bp);
1da177e4 1355 mp->m_sb_bp = NULL;
26af6552 1356 xfs_buf_relse(bp);
1da177e4
LT
1357}
1358
dda35b8f
CH
1359/*
1360 * If the underlying (data/log/rt) device is readonly, there are some
1361 * operations that cannot proceed.
1362 */
1363int
1364xfs_dev_is_read_only(
1365 struct xfs_mount *mp,
1366 char *message)
1367{
1368 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1369 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1370 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1371 xfs_notice(mp, "%s required on read-only device.", message);
1372 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1373 return -EROFS;
dda35b8f
CH
1374 }
1375 return 0;
1376}