sparc: switch to using asm-generic for seccomp.h
[linux-2.6-block.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
57062787 27#include "xfs_da_format.h"
9a2cc41c 28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
a4fbe6ab 30#include "xfs_dir2.h"
a844f451 31#include "xfs_ialloc.h"
1da177e4
LT
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_bmap.h"
a4fbe6ab
DC
35#include "xfs_trans.h"
36#include "xfs_trans_priv.h"
37#include "xfs_log.h"
1da177e4 38#include "xfs_error.h"
1da177e4
LT
39#include "xfs_quota.h"
40#include "xfs_fsops.h"
0b1b213f 41#include "xfs_trace.h"
6d8b79cf 42#include "xfs_icache.h"
a31b1d3d 43#include "xfs_sysfs.h"
0b1b213f 44
1da177e4 45
8d280b98 46#ifdef HAVE_PERCPU_SB
20f4ebf2 47STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
45af6c6d
CH
48 int);
49STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
50 int);
36fbe6e6 51STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
8d280b98
DC
52#else
53
45af6c6d
CH
54#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
55#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
8d280b98
DC
56#endif
57
27174203
CH
58static DEFINE_MUTEX(xfs_uuid_table_mutex);
59static int xfs_uuid_table_size;
60static uuid_t *xfs_uuid_table;
61
62/*
63 * See if the UUID is unique among mounted XFS filesystems.
64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
65 */
66STATIC int
67xfs_uuid_mount(
68 struct xfs_mount *mp)
69{
70 uuid_t *uuid = &mp->m_sb.sb_uuid;
71 int hole, i;
72
73 if (mp->m_flags & XFS_MOUNT_NOUUID)
74 return 0;
75
76 if (uuid_is_nil(uuid)) {
0b932ccc 77 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
2451337d 78 return -EINVAL;
27174203
CH
79 }
80
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_nil(&xfs_uuid_table[i])) {
84 hole = i;
85 continue;
86 }
87 if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 goto out_duplicate;
89 }
90
91 if (hole < 0) {
92 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
95 KM_SLEEP);
96 hole = xfs_uuid_table_size++;
97 }
98 xfs_uuid_table[hole] = *uuid;
99 mutex_unlock(&xfs_uuid_table_mutex);
100
101 return 0;
102
103 out_duplicate:
104 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 105 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 106 return -EINVAL;
27174203
CH
107}
108
109STATIC void
110xfs_uuid_unmount(
111 struct xfs_mount *mp)
112{
113 uuid_t *uuid = &mp->m_sb.sb_uuid;
114 int i;
115
116 if (mp->m_flags & XFS_MOUNT_NOUUID)
117 return;
118
119 mutex_lock(&xfs_uuid_table_mutex);
120 for (i = 0; i < xfs_uuid_table_size; i++) {
121 if (uuid_is_nil(&xfs_uuid_table[i]))
122 continue;
123 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
124 continue;
125 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
126 break;
127 }
128 ASSERT(i < xfs_uuid_table_size);
129 mutex_unlock(&xfs_uuid_table_mutex);
130}
131
132
e176579e
DC
133STATIC void
134__xfs_free_perag(
135 struct rcu_head *head)
136{
137 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
138
139 ASSERT(atomic_read(&pag->pag_ref) == 0);
140 kmem_free(pag);
141}
142
1da177e4 143/*
e176579e 144 * Free up the per-ag resources associated with the mount structure.
1da177e4 145 */
c962fb79 146STATIC void
ff4f038c 147xfs_free_perag(
745f6919 148 xfs_mount_t *mp)
1da177e4 149{
1c1c6ebc
DC
150 xfs_agnumber_t agno;
151 struct xfs_perag *pag;
152
153 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
154 spin_lock(&mp->m_perag_lock);
155 pag = radix_tree_delete(&mp->m_perag_tree, agno);
156 spin_unlock(&mp->m_perag_lock);
e176579e 157 ASSERT(pag);
f83282a8 158 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 159 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 160 }
1da177e4
LT
161}
162
4cc929ee
NS
163/*
164 * Check size of device based on the (data/realtime) block count.
165 * Note: this check is used by the growfs code as well as mount.
166 */
167int
168xfs_sb_validate_fsb_count(
169 xfs_sb_t *sbp,
170 __uint64_t nblocks)
171{
172 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
173 ASSERT(sbp->sb_blocklog >= BBSHIFT);
174
d5cf09ba 175 /* Limited by ULONG_MAX of page cache index */
4cc929ee 176 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 177 return -EFBIG;
4cc929ee
NS
178 return 0;
179}
1da177e4 180
1c1c6ebc 181int
c11e2c36 182xfs_initialize_perag(
c11e2c36 183 xfs_mount_t *mp,
1c1c6ebc
DC
184 xfs_agnumber_t agcount,
185 xfs_agnumber_t *maxagi)
1da177e4 186{
2d2194f6 187 xfs_agnumber_t index;
8b26c582 188 xfs_agnumber_t first_initialised = 0;
1da177e4
LT
189 xfs_perag_t *pag;
190 xfs_agino_t agino;
191 xfs_ino_t ino;
192 xfs_sb_t *sbp = &mp->m_sb;
8b26c582 193 int error = -ENOMEM;
1da177e4 194
1c1c6ebc
DC
195 /*
196 * Walk the current per-ag tree so we don't try to initialise AGs
197 * that already exist (growfs case). Allocate and insert all the
198 * AGs we don't find ready for initialisation.
199 */
200 for (index = 0; index < agcount; index++) {
201 pag = xfs_perag_get(mp, index);
202 if (pag) {
203 xfs_perag_put(pag);
204 continue;
205 }
8b26c582
DC
206 if (!first_initialised)
207 first_initialised = index;
fb3b504a 208
1c1c6ebc
DC
209 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
210 if (!pag)
8b26c582 211 goto out_unwind;
fb3b504a
CH
212 pag->pag_agno = index;
213 pag->pag_mount = mp;
1a427ab0 214 spin_lock_init(&pag->pag_ici_lock);
69b491c2 215 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 216 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
217 spin_lock_init(&pag->pag_buf_lock);
218 pag->pag_buf_tree = RB_ROOT;
fb3b504a 219
1c1c6ebc 220 if (radix_tree_preload(GFP_NOFS))
8b26c582 221 goto out_unwind;
fb3b504a 222
1c1c6ebc
DC
223 spin_lock(&mp->m_perag_lock);
224 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
225 BUG();
226 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
227 radix_tree_preload_end();
228 error = -EEXIST;
229 goto out_unwind;
1c1c6ebc
DC
230 }
231 spin_unlock(&mp->m_perag_lock);
232 radix_tree_preload_end();
233 }
234
fb3b504a
CH
235 /*
236 * If we mount with the inode64 option, or no inode overflows
237 * the legacy 32-bit address space clear the inode32 option.
1da177e4 238 */
fb3b504a
CH
239 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
240 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
241
242 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
1da177e4 243 mp->m_flags |= XFS_MOUNT_32BITINODES;
fb3b504a 244 else
1da177e4 245 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
1da177e4 246
2d2194f6 247 if (mp->m_flags & XFS_MOUNT_32BITINODES)
9de67c3b 248 index = xfs_set_inode32(mp, agcount);
2d2194f6 249 else
9de67c3b 250 index = xfs_set_inode64(mp, agcount);
fb3b504a 251
1c1c6ebc
DC
252 if (maxagi)
253 *maxagi = index;
254 return 0;
8b26c582
DC
255
256out_unwind:
257 kmem_free(pag);
258 for (; index > first_initialised; index--) {
259 pag = radix_tree_delete(&mp->m_perag_tree, index);
260 kmem_free(pag);
261 }
262 return error;
1da177e4
LT
263}
264
1da177e4
LT
265/*
266 * xfs_readsb
267 *
268 * Does the initial read of the superblock.
269 */
270int
ff55068c
DC
271xfs_readsb(
272 struct xfs_mount *mp,
273 int flags)
1da177e4
LT
274{
275 unsigned int sector_size;
04a1e6c5
DC
276 struct xfs_buf *bp;
277 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 278 int error;
af34e09d 279 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 280 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
281
282 ASSERT(mp->m_sb_bp == NULL);
283 ASSERT(mp->m_ddev_targp != NULL);
284
daba5427
ES
285 /*
286 * For the initial read, we must guess at the sector
287 * size based on the block device. It's enough to
288 * get the sb_sectsize out of the superblock and
289 * then reread with the proper length.
290 * We don't verify it yet, because it may not be complete.
291 */
292 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
293 buf_ops = NULL;
294
1da177e4
LT
295 /*
296 * Allocate a (locked) buffer to hold the superblock.
297 * This will be kept around at all times to optimize
298 * access to the superblock.
299 */
26af6552 300reread:
ba372674
DC
301 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
302 BTOBB(sector_size), 0, &bp, buf_ops);
303 if (error) {
eab4e633 304 if (loud)
e721f504 305 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 306 /* bad CRC means corrupted metadata */
2451337d
DC
307 if (error == -EFSBADCRC)
308 error = -EFSCORRUPTED;
ba372674 309 return error;
eab4e633 310 }
1da177e4
LT
311
312 /*
313 * Initialize the mount structure from the superblock.
1da177e4 314 */
556b8883 315 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
316
317 /*
318 * If we haven't validated the superblock, do so now before we try
319 * to check the sector size and reread the superblock appropriately.
320 */
321 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
322 if (loud)
323 xfs_warn(mp, "Invalid superblock magic number");
2451337d 324 error = -EINVAL;
556b8883
DC
325 goto release_buf;
326 }
ff55068c 327
1da177e4
LT
328 /*
329 * We must be able to do sector-sized and sector-aligned IO.
330 */
04a1e6c5 331 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
332 if (loud)
333 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 334 sector_size, sbp->sb_sectsize);
2451337d 335 error = -ENOSYS;
26af6552 336 goto release_buf;
1da177e4
LT
337 }
338
daba5427 339 if (buf_ops == NULL) {
556b8883
DC
340 /*
341 * Re-read the superblock so the buffer is correctly sized,
342 * and properly verified.
343 */
1da177e4 344 xfs_buf_relse(bp);
04a1e6c5 345 sector_size = sbp->sb_sectsize;
daba5427 346 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 347 goto reread;
1da177e4
LT
348 }
349
5478eead
LM
350 /* Initialize per-cpu counters */
351 xfs_icsb_reinit_counters(mp);
8d280b98 352
04a1e6c5
DC
353 /* no need to be quiet anymore, so reset the buf ops */
354 bp->b_ops = &xfs_sb_buf_ops;
355
1da177e4 356 mp->m_sb_bp = bp;
26af6552 357 xfs_buf_unlock(bp);
1da177e4
LT
358 return 0;
359
26af6552
DC
360release_buf:
361 xfs_buf_relse(bp);
1da177e4
LT
362 return error;
363}
364
1da177e4 365/*
0771fb45 366 * Update alignment values based on mount options and sb values
1da177e4 367 */
0771fb45 368STATIC int
7884bc86 369xfs_update_alignment(xfs_mount_t *mp)
1da177e4 370{
1da177e4 371 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 372
4249023a 373 if (mp->m_dalign) {
1da177e4
LT
374 /*
375 * If stripe unit and stripe width are not multiples
376 * of the fs blocksize turn off alignment.
377 */
378 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
379 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
380 xfs_warn(mp,
381 "alignment check failed: sunit/swidth vs. blocksize(%d)",
382 sbp->sb_blocksize);
2451337d 383 return -EINVAL;
1da177e4
LT
384 } else {
385 /*
386 * Convert the stripe unit and width to FSBs.
387 */
388 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
389 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 390 xfs_warn(mp,
39a45d84
JL
391 "alignment check failed: sunit/swidth vs. agsize(%d)",
392 sbp->sb_agblocks);
2451337d 393 return -EINVAL;
1da177e4
LT
394 } else if (mp->m_dalign) {
395 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
396 } else {
39a45d84
JL
397 xfs_warn(mp,
398 "alignment check failed: sunit(%d) less than bsize(%d)",
399 mp->m_dalign, sbp->sb_blocksize);
2451337d 400 return -EINVAL;
1da177e4
LT
401 }
402 }
403
404 /*
405 * Update superblock with new values
406 * and log changes
407 */
62118709 408 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
409 if (sbp->sb_unit != mp->m_dalign) {
410 sbp->sb_unit = mp->m_dalign;
61e63ecb 411 mp->m_update_sb = true;
1da177e4
LT
412 }
413 if (sbp->sb_width != mp->m_swidth) {
414 sbp->sb_width = mp->m_swidth;
61e63ecb 415 mp->m_update_sb = true;
1da177e4 416 }
34d7f603
JL
417 } else {
418 xfs_warn(mp,
419 "cannot change alignment: superblock does not support data alignment");
2451337d 420 return -EINVAL;
1da177e4
LT
421 }
422 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 423 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
424 mp->m_dalign = sbp->sb_unit;
425 mp->m_swidth = sbp->sb_width;
426 }
427
0771fb45
ES
428 return 0;
429}
1da177e4 430
0771fb45
ES
431/*
432 * Set the maximum inode count for this filesystem
433 */
434STATIC void
435xfs_set_maxicount(xfs_mount_t *mp)
436{
437 xfs_sb_t *sbp = &(mp->m_sb);
438 __uint64_t icount;
1da177e4 439
0771fb45
ES
440 if (sbp->sb_imax_pct) {
441 /*
442 * Make sure the maximum inode count is a multiple
443 * of the units we allocate inodes in.
1da177e4 444 */
1da177e4
LT
445 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
446 do_div(icount, 100);
447 do_div(icount, mp->m_ialloc_blks);
448 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
449 sbp->sb_inopblog;
0771fb45 450 } else {
1da177e4 451 mp->m_maxicount = 0;
1da177e4 452 }
0771fb45
ES
453}
454
455/*
456 * Set the default minimum read and write sizes unless
457 * already specified in a mount option.
458 * We use smaller I/O sizes when the file system
459 * is being used for NFS service (wsync mount option).
460 */
461STATIC void
462xfs_set_rw_sizes(xfs_mount_t *mp)
463{
464 xfs_sb_t *sbp = &(mp->m_sb);
465 int readio_log, writeio_log;
1da177e4 466
1da177e4
LT
467 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
468 if (mp->m_flags & XFS_MOUNT_WSYNC) {
469 readio_log = XFS_WSYNC_READIO_LOG;
470 writeio_log = XFS_WSYNC_WRITEIO_LOG;
471 } else {
472 readio_log = XFS_READIO_LOG_LARGE;
473 writeio_log = XFS_WRITEIO_LOG_LARGE;
474 }
475 } else {
476 readio_log = mp->m_readio_log;
477 writeio_log = mp->m_writeio_log;
478 }
479
1da177e4
LT
480 if (sbp->sb_blocklog > readio_log) {
481 mp->m_readio_log = sbp->sb_blocklog;
482 } else {
483 mp->m_readio_log = readio_log;
484 }
485 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
486 if (sbp->sb_blocklog > writeio_log) {
487 mp->m_writeio_log = sbp->sb_blocklog;
488 } else {
489 mp->m_writeio_log = writeio_log;
490 }
491 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 492}
1da177e4 493
055388a3
DC
494/*
495 * precalculate the low space thresholds for dynamic speculative preallocation.
496 */
497void
498xfs_set_low_space_thresholds(
499 struct xfs_mount *mp)
500{
501 int i;
502
503 for (i = 0; i < XFS_LOWSP_MAX; i++) {
504 __uint64_t space = mp->m_sb.sb_dblocks;
505
506 do_div(space, 100);
507 mp->m_low_space[i] = space * (i + 1);
508 }
509}
510
511
0771fb45
ES
512/*
513 * Set whether we're using inode alignment.
514 */
515STATIC void
516xfs_set_inoalignment(xfs_mount_t *mp)
517{
62118709 518 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
519 mp->m_sb.sb_inoalignmt >=
520 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
521 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
522 else
523 mp->m_inoalign_mask = 0;
524 /*
525 * If we are using stripe alignment, check whether
526 * the stripe unit is a multiple of the inode alignment
527 */
528 if (mp->m_dalign && mp->m_inoalign_mask &&
529 !(mp->m_dalign & mp->m_inoalign_mask))
530 mp->m_sinoalign = mp->m_dalign;
531 else
532 mp->m_sinoalign = 0;
0771fb45
ES
533}
534
535/*
0471f62e 536 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
537 */
538STATIC int
ba372674
DC
539xfs_check_sizes(
540 struct xfs_mount *mp)
0771fb45 541{
ba372674 542 struct xfs_buf *bp;
0771fb45 543 xfs_daddr_t d;
ba372674 544 int error;
0771fb45 545
1da177e4
LT
546 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
547 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 548 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 549 return -EFBIG;
1da177e4 550 }
ba372674 551 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 552 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
553 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
554 if (error) {
0b932ccc 555 xfs_warn(mp, "last sector read failed");
ba372674 556 return error;
1da177e4 557 }
1922c949 558 xfs_buf_relse(bp);
1da177e4 559
ba372674
DC
560 if (mp->m_logdev_targp == mp->m_ddev_targp)
561 return 0;
562
563 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
564 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
565 xfs_warn(mp, "log size mismatch detected");
566 return -EFBIG;
567 }
568 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 569 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
570 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
571 if (error) {
572 xfs_warn(mp, "log device read failed");
573 return error;
0771fb45 574 }
ba372674 575 xfs_buf_relse(bp);
0771fb45
ES
576 return 0;
577}
578
7d095257
CH
579/*
580 * Clear the quotaflags in memory and in the superblock.
581 */
582int
583xfs_mount_reset_sbqflags(
584 struct xfs_mount *mp)
585{
7d095257
CH
586 mp->m_qflags = 0;
587
61e63ecb 588 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
589 if (mp->m_sb.sb_qflags == 0)
590 return 0;
591 spin_lock(&mp->m_sb_lock);
592 mp->m_sb.sb_qflags = 0;
593 spin_unlock(&mp->m_sb_lock);
594
61e63ecb 595 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
596 return 0;
597
61e63ecb 598 return xfs_sync_sb(mp, false);
7d095257
CH
599}
600
d5db0f97
ES
601__uint64_t
602xfs_default_resblks(xfs_mount_t *mp)
603{
604 __uint64_t resblks;
605
606 /*
8babd8a2
DC
607 * We default to 5% or 8192 fsbs of space reserved, whichever is
608 * smaller. This is intended to cover concurrent allocation
609 * transactions when we initially hit enospc. These each require a 4
610 * block reservation. Hence by default we cover roughly 2000 concurrent
611 * allocation reservations.
d5db0f97
ES
612 */
613 resblks = mp->m_sb.sb_dblocks;
614 do_div(resblks, 20);
8babd8a2 615 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
616 return resblks;
617}
618
0771fb45 619/*
0771fb45
ES
620 * This function does the following on an initial mount of a file system:
621 * - reads the superblock from disk and init the mount struct
622 * - if we're a 32-bit kernel, do a size check on the superblock
623 * so we don't mount terabyte filesystems
624 * - init mount struct realtime fields
625 * - allocate inode hash table for fs
626 * - init directory manager
627 * - perform recovery and init the log manager
628 */
629int
630xfs_mountfs(
4249023a 631 xfs_mount_t *mp)
0771fb45
ES
632{
633 xfs_sb_t *sbp = &(mp->m_sb);
634 xfs_inode_t *rip;
0771fb45 635 __uint64_t resblks;
7d095257
CH
636 uint quotamount = 0;
637 uint quotaflags = 0;
0771fb45
ES
638 int error = 0;
639
ff55068c 640 xfs_sb_mount_common(mp, sbp);
0771fb45 641
ee1c0908 642 /*
074e427b
DC
643 * Check for a mismatched features2 values. Older kernels read & wrote
644 * into the wrong sb offset for sb_features2 on some platforms due to
645 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
646 * which made older superblock reading/writing routines swap it as a
647 * 64-bit value.
ee1c0908 648 *
e6957ea4
ES
649 * For backwards compatibility, we make both slots equal.
650 *
074e427b
DC
651 * If we detect a mismatched field, we OR the set bits into the existing
652 * features2 field in case it has already been modified; we don't want
653 * to lose any features. We then update the bad location with the ORed
654 * value so that older kernels will see any features2 flags. The
655 * superblock writeback code ensures the new sb_features2 is copied to
656 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 657 */
e6957ea4 658 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 659 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 660 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 661 mp->m_update_sb = true;
e6957ea4
ES
662
663 /*
664 * Re-check for ATTR2 in case it was found in bad_features2
665 * slot.
666 */
7c12f296
TS
667 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
668 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 669 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
670 }
671
672 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
673 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
674 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 675 mp->m_update_sb = true;
e6957ea4 676
7c12f296
TS
677 /* update sb_versionnum for the clearing of the morebits */
678 if (!sbp->sb_features2)
61e63ecb 679 mp->m_update_sb = true;
ee1c0908
DC
680 }
681
263997a6
DC
682 /* always use v2 inodes by default now */
683 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
684 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 685 mp->m_update_sb = true;
263997a6
DC
686 }
687
0771fb45
ES
688 /*
689 * Check if sb_agblocks is aligned at stripe boundary
690 * If sb_agblocks is NOT aligned turn off m_dalign since
691 * allocator alignment is within an ag, therefore ag has
692 * to be aligned at stripe boundary.
693 */
7884bc86 694 error = xfs_update_alignment(mp);
0771fb45 695 if (error)
f9057e3d 696 goto out;
0771fb45
ES
697
698 xfs_alloc_compute_maxlevels(mp);
699 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
700 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
701 xfs_ialloc_compute_maxlevels(mp);
702
703 xfs_set_maxicount(mp);
704
a31b1d3d 705 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
706 if (error)
707 goto out;
1da177e4 708
a31b1d3d
BF
709 error = xfs_uuid_mount(mp);
710 if (error)
711 goto out_remove_sysfs;
712
0771fb45
ES
713 /*
714 * Set the minimum read and write sizes
715 */
716 xfs_set_rw_sizes(mp);
717
055388a3
DC
718 /* set the low space thresholds for dynamic preallocation */
719 xfs_set_low_space_thresholds(mp);
720
0771fb45
ES
721 /*
722 * Set the inode cluster size.
723 * This may still be overridden by the file system
724 * block size if it is larger than the chosen cluster size.
8f80587b
DC
725 *
726 * For v5 filesystems, scale the cluster size with the inode size to
727 * keep a constant ratio of inode per cluster buffer, but only if mkfs
728 * has set the inode alignment value appropriately for larger cluster
729 * sizes.
0771fb45
ES
730 */
731 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
8f80587b
DC
732 if (xfs_sb_version_hascrc(&mp->m_sb)) {
733 int new_size = mp->m_inode_cluster_size;
734
735 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
736 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
737 mp->m_inode_cluster_size = new_size;
8f80587b 738 }
0771fb45
ES
739
740 /*
741 * Set inode alignment fields
742 */
743 xfs_set_inoalignment(mp);
744
745 /*
c2bfbc9b 746 * Check that the data (and log if separate) is an ok size.
0771fb45 747 */
4249023a 748 error = xfs_check_sizes(mp);
0771fb45 749 if (error)
f9057e3d 750 goto out_remove_uuid;
0771fb45 751
1da177e4
LT
752 /*
753 * Initialize realtime fields in the mount structure
754 */
0771fb45
ES
755 error = xfs_rtmount_init(mp);
756 if (error) {
0b932ccc 757 xfs_warn(mp, "RT mount failed");
f9057e3d 758 goto out_remove_uuid;
1da177e4
LT
759 }
760
1da177e4
LT
761 /*
762 * Copies the low order bits of the timestamp and the randomly
763 * set "sequence" number out of a UUID.
764 */
765 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
766
1da177e4
LT
767 mp->m_dmevmask = 0; /* not persistent; set after each mount */
768
0650b554
DC
769 error = xfs_da_mount(mp);
770 if (error) {
771 xfs_warn(mp, "Failed dir/attr init: %d", error);
772 goto out_remove_uuid;
773 }
1da177e4
LT
774
775 /*
776 * Initialize the precomputed transaction reservations values.
777 */
778 xfs_trans_init(mp);
779
1da177e4
LT
780 /*
781 * Allocate and initialize the per-ag data.
782 */
1c1c6ebc 783 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 784 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
785 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
786 if (error) {
0b932ccc 787 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 788 goto out_free_dir;
1c1c6ebc 789 }
1da177e4 790
f9057e3d 791 if (!sbp->sb_logblocks) {
0b932ccc 792 xfs_warn(mp, "no log defined");
f9057e3d 793 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 794 error = -EFSCORRUPTED;
f9057e3d
CH
795 goto out_free_perag;
796 }
797
1da177e4
LT
798 /*
799 * log's mount-time initialization. Perform 1st part recovery if needed
800 */
f9057e3d
CH
801 error = xfs_log_mount(mp, mp->m_logdev_targp,
802 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
803 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
804 if (error) {
0b932ccc 805 xfs_warn(mp, "log mount failed");
d4f3512b 806 goto out_fail_wait;
1da177e4
LT
807 }
808
92821e2b
DC
809 /*
810 * Now the log is mounted, we know if it was an unclean shutdown or
811 * not. If it was, with the first phase of recovery has completed, we
812 * have consistent AG blocks on disk. We have not recovered EFIs yet,
813 * but they are recovered transactionally in the second recovery phase
814 * later.
815 *
816 * Hence we can safely re-initialise incore superblock counters from
817 * the per-ag data. These may not be correct if the filesystem was not
818 * cleanly unmounted, so we need to wait for recovery to finish before
819 * doing this.
820 *
821 * If the filesystem was cleanly unmounted, then we can trust the
822 * values in the superblock to be correct and we don't need to do
823 * anything here.
824 *
825 * If we are currently making the filesystem, the initialisation will
826 * fail as the perag data is in an undefined state.
827 */
92821e2b
DC
828 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
829 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
830 !mp->m_sb.sb_inprogress) {
831 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 832 if (error)
6eee8972 833 goto out_log_dealloc;
92821e2b 834 }
f9057e3d 835
1da177e4
LT
836 /*
837 * Get and sanity-check the root inode.
838 * Save the pointer to it in the mount structure.
839 */
7b6259e7 840 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 841 if (error) {
0b932ccc 842 xfs_warn(mp, "failed to read root inode");
f9057e3d 843 goto out_log_dealloc;
1da177e4
LT
844 }
845
846 ASSERT(rip != NULL);
1da177e4 847
abbede1b 848 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
0b932ccc 849 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 850 (unsigned long long)rip->i_ino);
1da177e4
LT
851 xfs_iunlock(rip, XFS_ILOCK_EXCL);
852 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
853 mp);
2451337d 854 error = -EFSCORRUPTED;
f9057e3d 855 goto out_rele_rip;
1da177e4
LT
856 }
857 mp->m_rootip = rip; /* save it */
858
859 xfs_iunlock(rip, XFS_ILOCK_EXCL);
860
861 /*
862 * Initialize realtime inode pointers in the mount structure
863 */
0771fb45
ES
864 error = xfs_rtmount_inodes(mp);
865 if (error) {
1da177e4
LT
866 /*
867 * Free up the root inode.
868 */
0b932ccc 869 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 870 goto out_rele_rip;
1da177e4
LT
871 }
872
873 /*
7884bc86
CH
874 * If this is a read-only mount defer the superblock updates until
875 * the next remount into writeable mode. Otherwise we would never
876 * perform the update e.g. for the root filesystem.
1da177e4 877 */
61e63ecb
DC
878 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
879 error = xfs_sync_sb(mp, false);
e5720eec 880 if (error) {
0b932ccc 881 xfs_warn(mp, "failed to write sb changes");
b93b6e43 882 goto out_rtunmount;
e5720eec
DC
883 }
884 }
1da177e4
LT
885
886 /*
887 * Initialise the XFS quota management subsystem for this mount
888 */
7d095257
CH
889 if (XFS_IS_QUOTA_RUNNING(mp)) {
890 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
891 if (error)
892 goto out_rtunmount;
893 } else {
894 ASSERT(!XFS_IS_QUOTA_ON(mp));
895
896 /*
897 * If a file system had quotas running earlier, but decided to
898 * mount without -o uquota/pquota/gquota options, revoke the
899 * quotachecked license.
900 */
901 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 902 xfs_notice(mp, "resetting quota flags");
7d095257
CH
903 error = xfs_mount_reset_sbqflags(mp);
904 if (error)
a70a4fa5 905 goto out_rtunmount;
7d095257
CH
906 }
907 }
1da177e4
LT
908
909 /*
910 * Finish recovering the file system. This part needed to be
911 * delayed until after the root and real-time bitmap inodes
912 * were consistently read in.
913 */
4249023a 914 error = xfs_log_mount_finish(mp);
1da177e4 915 if (error) {
0b932ccc 916 xfs_warn(mp, "log mount finish failed");
b93b6e43 917 goto out_rtunmount;
1da177e4
LT
918 }
919
920 /*
921 * Complete the quota initialisation, post-log-replay component.
922 */
7d095257
CH
923 if (quotamount) {
924 ASSERT(mp->m_qflags == 0);
925 mp->m_qflags = quotaflags;
926
927 xfs_qm_mount_quotas(mp);
928 }
929
84e1e99f
DC
930 /*
931 * Now we are mounted, reserve a small amount of unused space for
932 * privileged transactions. This is needed so that transaction
933 * space required for critical operations can dip into this pool
934 * when at ENOSPC. This is needed for operations like create with
935 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
936 * are not allowed to use this reserved space.
8babd8a2
DC
937 *
938 * This may drive us straight to ENOSPC on mount, but that implies
939 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 940 */
d5db0f97
ES
941 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
942 resblks = xfs_default_resblks(mp);
943 error = xfs_reserve_blocks(mp, &resblks, NULL);
944 if (error)
0b932ccc
DC
945 xfs_warn(mp,
946 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 947 }
84e1e99f 948
1da177e4
LT
949 return 0;
950
b93b6e43
CH
951 out_rtunmount:
952 xfs_rtunmount_inodes(mp);
f9057e3d 953 out_rele_rip:
43355099 954 IRELE(rip);
f9057e3d 955 out_log_dealloc:
21b699c8 956 xfs_log_unmount(mp);
d4f3512b
DC
957 out_fail_wait:
958 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
959 xfs_wait_buftarg(mp->m_logdev_targp);
960 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 961 out_free_perag:
ff4f038c 962 xfs_free_perag(mp);
0650b554
DC
963 out_free_dir:
964 xfs_da_unmount(mp);
f9057e3d 965 out_remove_uuid:
27174203 966 xfs_uuid_unmount(mp);
a31b1d3d
BF
967 out_remove_sysfs:
968 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 969 out:
1da177e4
LT
970 return error;
971}
972
973/*
1da177e4
LT
974 * This flushes out the inodes,dquots and the superblock, unmounts the
975 * log and makes sure that incore structures are freed.
976 */
41b5c2e7
CH
977void
978xfs_unmountfs(
979 struct xfs_mount *mp)
1da177e4 980{
41b5c2e7
CH
981 __uint64_t resblks;
982 int error;
1da177e4 983
579b62fa
BF
984 cancel_delayed_work_sync(&mp->m_eofblocks_work);
985
7d095257 986 xfs_qm_unmount_quotas(mp);
b93b6e43 987 xfs_rtunmount_inodes(mp);
77508ec8
CH
988 IRELE(mp->m_rootip);
989
641c56fb
DC
990 /*
991 * We can potentially deadlock here if we have an inode cluster
9da096fd 992 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
993 * the transaction is still sitting in a iclog. The stale inodes
994 * on that buffer will have their flush locks held until the
995 * transaction hits the disk and the callbacks run. the inode
996 * flush takes the flush lock unconditionally and with nothing to
997 * push out the iclog we will never get that unlocked. hence we
998 * need to force the log first.
999 */
a14a348b 1000 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e
DC
1001
1002 /*
211e4d43
CH
1003 * Flush all pending changes from the AIL.
1004 */
1005 xfs_ail_push_all_sync(mp->m_ail);
1006
1007 /*
1008 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1009 * inodes and none should be pinned or locked, but use synchronous
1010 * reclaim just to be sure. We can stop background inode reclaim
1011 * here as well if it is still running.
c854363e 1012 */
7e18530b 1013 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1014 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1015
7d095257 1016 xfs_qm_unmount(mp);
a357a121 1017
84e1e99f
DC
1018 /*
1019 * Unreserve any blocks we have so that when we unmount we don't account
1020 * the reserved free space as used. This is really only necessary for
1021 * lazy superblock counting because it trusts the incore superblock
9da096fd 1022 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1023 *
1024 * We don't bother correcting this elsewhere for lazy superblock
1025 * counting because on mount of an unclean filesystem we reconstruct the
1026 * correct counter value and this is irrelevant.
1027 *
1028 * For non-lazy counter filesystems, this doesn't matter at all because
1029 * we only every apply deltas to the superblock and hence the incore
1030 * value does not matter....
1031 */
1032 resblks = 0;
714082bc
DC
1033 error = xfs_reserve_blocks(mp, &resblks, NULL);
1034 if (error)
0b932ccc 1035 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1036 "Freespace may not be correct on next mount.");
1037
adab0f67 1038 error = xfs_log_sbcount(mp);
e5720eec 1039 if (error)
0b932ccc 1040 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1041 "Freespace may not be correct on next mount.");
87c7bec7 1042
21b699c8 1043 xfs_log_unmount(mp);
0650b554 1044 xfs_da_unmount(mp);
27174203 1045 xfs_uuid_unmount(mp);
1da177e4 1046
1550d0b0 1047#if defined(DEBUG)
0ce4cfd4 1048 xfs_errortag_clearall(mp, 0);
1da177e4 1049#endif
ff4f038c 1050 xfs_free_perag(mp);
a31b1d3d
BF
1051
1052 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1053}
1054
91ee575f
BF
1055/*
1056 * Determine whether modifications can proceed. The caller specifies the minimum
1057 * freeze level for which modifications should not be allowed. This allows
1058 * certain operations to proceed while the freeze sequence is in progress, if
1059 * necessary.
1060 */
1061bool
1062xfs_fs_writable(
1063 struct xfs_mount *mp,
1064 int level)
92821e2b 1065{
91ee575f
BF
1066 ASSERT(level > SB_UNFROZEN);
1067 if ((mp->m_super->s_writers.frozen >= level) ||
1068 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1069 return false;
1070
1071 return true;
92821e2b
DC
1072}
1073
1074/*
b2ce3974
AE
1075 * xfs_log_sbcount
1076 *
adab0f67 1077 * Sync the superblock counters to disk.
b2ce3974 1078 *
91ee575f
BF
1079 * Note this code can be called during the process of freezing, so we use the
1080 * transaction allocator that does not block when the transaction subsystem is
1081 * in its frozen state.
92821e2b
DC
1082 */
1083int
adab0f67 1084xfs_log_sbcount(xfs_mount_t *mp)
92821e2b 1085{
91ee575f
BF
1086 /* allow this to proceed during the freeze sequence... */
1087 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1088 return 0;
1089
d4d90b57 1090 xfs_icsb_sync_counters(mp, 0);
92821e2b
DC
1091
1092 /*
1093 * we don't need to do this if we are updating the superblock
1094 * counters on every modification.
1095 */
1096 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1097 return 0;
1098
61e63ecb 1099 return xfs_sync_sb(mp, true);
92821e2b
DC
1100}
1101
1da177e4 1102/*
99e738b7 1103 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1da177e4
LT
1104 * a delta to a specified field in the in-core superblock. Simply
1105 * switch on the field indicated and apply the delta to that field.
1106 * Fields are not allowed to dip below zero, so if the delta would
1107 * do this do not apply it and return EINVAL.
1108 *
3685c2a1 1109 * The m_sb_lock must be held when this routine is called.
1da177e4 1110 */
d96f8f89 1111STATIC int
20f4ebf2
DC
1112xfs_mod_incore_sb_unlocked(
1113 xfs_mount_t *mp,
1114 xfs_sb_field_t field,
1115 int64_t delta,
1116 int rsvd)
1da177e4
LT
1117{
1118 int scounter; /* short counter for 32 bit fields */
1119 long long lcounter; /* long counter for 64 bit fields */
1120 long long res_used, rem;
1121
1122 /*
1123 * With the in-core superblock spin lock held, switch
1124 * on the indicated field. Apply the delta to the
1125 * proper field. If the fields value would dip below
1126 * 0, then do not apply the delta and return EINVAL.
1127 */
1128 switch (field) {
1129 case XFS_SBS_ICOUNT:
1130 lcounter = (long long)mp->m_sb.sb_icount;
1131 lcounter += delta;
1132 if (lcounter < 0) {
1133 ASSERT(0);
2451337d 1134 return -EINVAL;
1da177e4
LT
1135 }
1136 mp->m_sb.sb_icount = lcounter;
014c2544 1137 return 0;
1da177e4
LT
1138 case XFS_SBS_IFREE:
1139 lcounter = (long long)mp->m_sb.sb_ifree;
1140 lcounter += delta;
1141 if (lcounter < 0) {
1142 ASSERT(0);
2451337d 1143 return -EINVAL;
1da177e4
LT
1144 }
1145 mp->m_sb.sb_ifree = lcounter;
014c2544 1146 return 0;
1da177e4 1147 case XFS_SBS_FDBLOCKS:
4be536de
DC
1148 lcounter = (long long)
1149 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1da177e4
LT
1150 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1151
1152 if (delta > 0) { /* Putting blocks back */
1153 if (res_used > delta) {
1154 mp->m_resblks_avail += delta;
1155 } else {
1156 rem = delta - res_used;
1157 mp->m_resblks_avail = mp->m_resblks;
1158 lcounter += rem;
1159 }
1160 } else { /* Taking blocks away */
1da177e4 1161 lcounter += delta;
8babd8a2
DC
1162 if (lcounter >= 0) {
1163 mp->m_sb.sb_fdblocks = lcounter +
1164 XFS_ALLOC_SET_ASIDE(mp);
1165 return 0;
1166 }
1da177e4 1167
8babd8a2
DC
1168 /*
1169 * We are out of blocks, use any available reserved
1170 * blocks if were allowed to.
1171 */
1172 if (!rsvd)
2451337d 1173 return -ENOSPC;
1da177e4 1174
8babd8a2
DC
1175 lcounter = (long long)mp->m_resblks_avail + delta;
1176 if (lcounter >= 0) {
1177 mp->m_resblks_avail = lcounter;
1178 return 0;
1da177e4 1179 }
8babd8a2
DC
1180 printk_once(KERN_WARNING
1181 "Filesystem \"%s\": reserve blocks depleted! "
1182 "Consider increasing reserve pool size.",
1183 mp->m_fsname);
2451337d 1184 return -ENOSPC;
1da177e4
LT
1185 }
1186
4be536de 1187 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
014c2544 1188 return 0;
1da177e4
LT
1189 case XFS_SBS_FREXTENTS:
1190 lcounter = (long long)mp->m_sb.sb_frextents;
1191 lcounter += delta;
1192 if (lcounter < 0) {
2451337d 1193 return -ENOSPC;
1da177e4
LT
1194 }
1195 mp->m_sb.sb_frextents = lcounter;
014c2544 1196 return 0;
1da177e4
LT
1197 case XFS_SBS_DBLOCKS:
1198 lcounter = (long long)mp->m_sb.sb_dblocks;
1199 lcounter += delta;
1200 if (lcounter < 0) {
1201 ASSERT(0);
2451337d 1202 return -EINVAL;
1da177e4
LT
1203 }
1204 mp->m_sb.sb_dblocks = lcounter;
014c2544 1205 return 0;
1da177e4
LT
1206 case XFS_SBS_AGCOUNT:
1207 scounter = mp->m_sb.sb_agcount;
1208 scounter += delta;
1209 if (scounter < 0) {
1210 ASSERT(0);
2451337d 1211 return -EINVAL;
1da177e4
LT
1212 }
1213 mp->m_sb.sb_agcount = scounter;
014c2544 1214 return 0;
1da177e4
LT
1215 case XFS_SBS_IMAX_PCT:
1216 scounter = mp->m_sb.sb_imax_pct;
1217 scounter += delta;
1218 if (scounter < 0) {
1219 ASSERT(0);
2451337d 1220 return -EINVAL;
1da177e4
LT
1221 }
1222 mp->m_sb.sb_imax_pct = scounter;
014c2544 1223 return 0;
1da177e4
LT
1224 case XFS_SBS_REXTSIZE:
1225 scounter = mp->m_sb.sb_rextsize;
1226 scounter += delta;
1227 if (scounter < 0) {
1228 ASSERT(0);
2451337d 1229 return -EINVAL;
1da177e4
LT
1230 }
1231 mp->m_sb.sb_rextsize = scounter;
014c2544 1232 return 0;
1da177e4
LT
1233 case XFS_SBS_RBMBLOCKS:
1234 scounter = mp->m_sb.sb_rbmblocks;
1235 scounter += delta;
1236 if (scounter < 0) {
1237 ASSERT(0);
2451337d 1238 return -EINVAL;
1da177e4
LT
1239 }
1240 mp->m_sb.sb_rbmblocks = scounter;
014c2544 1241 return 0;
1da177e4
LT
1242 case XFS_SBS_RBLOCKS:
1243 lcounter = (long long)mp->m_sb.sb_rblocks;
1244 lcounter += delta;
1245 if (lcounter < 0) {
1246 ASSERT(0);
2451337d 1247 return -EINVAL;
1da177e4
LT
1248 }
1249 mp->m_sb.sb_rblocks = lcounter;
014c2544 1250 return 0;
1da177e4
LT
1251 case XFS_SBS_REXTENTS:
1252 lcounter = (long long)mp->m_sb.sb_rextents;
1253 lcounter += delta;
1254 if (lcounter < 0) {
1255 ASSERT(0);
2451337d 1256 return -EINVAL;
1da177e4
LT
1257 }
1258 mp->m_sb.sb_rextents = lcounter;
014c2544 1259 return 0;
1da177e4
LT
1260 case XFS_SBS_REXTSLOG:
1261 scounter = mp->m_sb.sb_rextslog;
1262 scounter += delta;
1263 if (scounter < 0) {
1264 ASSERT(0);
2451337d 1265 return -EINVAL;
1da177e4
LT
1266 }
1267 mp->m_sb.sb_rextslog = scounter;
014c2544 1268 return 0;
1da177e4
LT
1269 default:
1270 ASSERT(0);
2451337d 1271 return -EINVAL;
1da177e4
LT
1272 }
1273}
1274
1275/*
1276 * xfs_mod_incore_sb() is used to change a field in the in-core
1277 * superblock structure by the specified delta. This modification
3685c2a1 1278 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1da177e4
LT
1279 * routine to do the work.
1280 */
1281int
20f4ebf2 1282xfs_mod_incore_sb(
96540c78
CH
1283 struct xfs_mount *mp,
1284 xfs_sb_field_t field,
1285 int64_t delta,
1286 int rsvd)
1da177e4 1287{
96540c78 1288 int status;
1da177e4 1289
8d280b98 1290#ifdef HAVE_PERCPU_SB
96540c78 1291 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
8d280b98 1292#endif
96540c78
CH
1293 spin_lock(&mp->m_sb_lock);
1294 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1295 spin_unlock(&mp->m_sb_lock);
8d280b98 1296
014c2544 1297 return status;
1da177e4
LT
1298}
1299
1300/*
1b040712 1301 * Change more than one field in the in-core superblock structure at a time.
1da177e4 1302 *
1b040712
CH
1303 * The fields and changes to those fields are specified in the array of
1304 * xfs_mod_sb structures passed in. Either all of the specified deltas
1305 * will be applied or none of them will. If any modified field dips below 0,
1306 * then all modifications will be backed out and EINVAL will be returned.
1307 *
1308 * Note that this function may not be used for the superblock values that
1309 * are tracked with the in-memory per-cpu counters - a direct call to
1310 * xfs_icsb_modify_counters is required for these.
1da177e4
LT
1311 */
1312int
1b040712
CH
1313xfs_mod_incore_sb_batch(
1314 struct xfs_mount *mp,
1315 xfs_mod_sb_t *msb,
1316 uint nmsb,
1317 int rsvd)
1da177e4 1318{
45c51b99 1319 xfs_mod_sb_t *msbp;
1b040712 1320 int error = 0;
1da177e4
LT
1321
1322 /*
1b040712
CH
1323 * Loop through the array of mod structures and apply each individually.
1324 * If any fail, then back out all those which have already been applied.
1325 * Do all of this within the scope of the m_sb_lock so that all of the
1326 * changes will be atomic.
1da177e4 1327 */
3685c2a1 1328 spin_lock(&mp->m_sb_lock);
45c51b99 1329 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1b040712
CH
1330 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1331 msbp->msb_field > XFS_SBS_FDBLOCKS);
8d280b98 1332
1b040712
CH
1333 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1334 msbp->msb_delta, rsvd);
1335 if (error)
1336 goto unwind;
1da177e4 1337 }
1b040712
CH
1338 spin_unlock(&mp->m_sb_lock);
1339 return 0;
1da177e4 1340
1b040712
CH
1341unwind:
1342 while (--msbp >= msb) {
1343 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1344 -msbp->msb_delta, rsvd);
1345 ASSERT(error == 0);
1da177e4 1346 }
3685c2a1 1347 spin_unlock(&mp->m_sb_lock);
1b040712 1348 return error;
1da177e4
LT
1349}
1350
1351/*
1352 * xfs_getsb() is called to obtain the buffer for the superblock.
1353 * The buffer is returned locked and read in from disk.
1354 * The buffer should be released with a call to xfs_brelse().
1355 *
1356 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1357 * the superblock buffer if it can be locked without sleeping.
1358 * If it can't then we'll return NULL.
1359 */
0c842ad4 1360struct xfs_buf *
1da177e4 1361xfs_getsb(
0c842ad4
CH
1362 struct xfs_mount *mp,
1363 int flags)
1da177e4 1364{
0c842ad4 1365 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1366
0c842ad4
CH
1367 if (!xfs_buf_trylock(bp)) {
1368 if (flags & XBF_TRYLOCK)
1da177e4 1369 return NULL;
0c842ad4 1370 xfs_buf_lock(bp);
1da177e4 1371 }
0c842ad4 1372
72790aa1 1373 xfs_buf_hold(bp);
1da177e4 1374 ASSERT(XFS_BUF_ISDONE(bp));
014c2544 1375 return bp;
1da177e4
LT
1376}
1377
1378/*
1379 * Used to free the superblock along various error paths.
1380 */
1381void
1382xfs_freesb(
26af6552 1383 struct xfs_mount *mp)
1da177e4 1384{
26af6552 1385 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1386
26af6552 1387 xfs_buf_lock(bp);
1da177e4 1388 mp->m_sb_bp = NULL;
26af6552 1389 xfs_buf_relse(bp);
1da177e4
LT
1390}
1391
dda35b8f
CH
1392/*
1393 * If the underlying (data/log/rt) device is readonly, there are some
1394 * operations that cannot proceed.
1395 */
1396int
1397xfs_dev_is_read_only(
1398 struct xfs_mount *mp,
1399 char *message)
1400{
1401 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1402 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1403 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1404 xfs_notice(mp, "%s required on read-only device.", message);
1405 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1406 return -EROFS;
dda35b8f
CH
1407 }
1408 return 0;
1409}
8d280b98
DC
1410
1411#ifdef HAVE_PERCPU_SB
1412/*
1413 * Per-cpu incore superblock counters
1414 *
1415 * Simple concept, difficult implementation
1416 *
1417 * Basically, replace the incore superblock counters with a distributed per cpu
1418 * counter for contended fields (e.g. free block count).
1419 *
1420 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1421 * hence needs to be accurately read when we are running low on space. Hence
1422 * there is a method to enable and disable the per-cpu counters based on how
1423 * much "stuff" is available in them.
1424 *
1425 * Basically, a counter is enabled if there is enough free resource to justify
1426 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1427 * ENOSPC), then we disable the counters to synchronise all callers and
1428 * re-distribute the available resources.
1429 *
1430 * If, once we redistributed the available resources, we still get a failure,
1431 * we disable the per-cpu counter and go through the slow path.
1432 *
1433 * The slow path is the current xfs_mod_incore_sb() function. This means that
9da096fd 1434 * when we disable a per-cpu counter, we need to drain its resources back to
8d280b98
DC
1435 * the global superblock. We do this after disabling the counter to prevent
1436 * more threads from queueing up on the counter.
1437 *
1438 * Essentially, this means that we still need a lock in the fast path to enable
1439 * synchronisation between the global counters and the per-cpu counters. This
1440 * is not a problem because the lock will be local to a CPU almost all the time
1441 * and have little contention except when we get to ENOSPC conditions.
1442 *
1443 * Basically, this lock becomes a barrier that enables us to lock out the fast
1444 * path while we do things like enabling and disabling counters and
1445 * synchronising the counters.
1446 *
1447 * Locking rules:
1448 *
3685c2a1 1449 * 1. m_sb_lock before picking up per-cpu locks
8d280b98 1450 * 2. per-cpu locks always picked up via for_each_online_cpu() order
3685c2a1 1451 * 3. accurate counter sync requires m_sb_lock + per cpu locks
8d280b98 1452 * 4. modifying per-cpu counters requires holding per-cpu lock
3685c2a1
ES
1453 * 5. modifying global counters requires holding m_sb_lock
1454 * 6. enabling or disabling a counter requires holding the m_sb_lock
8d280b98
DC
1455 * and _none_ of the per-cpu locks.
1456 *
1457 * Disabled counters are only ever re-enabled by a balance operation
1458 * that results in more free resources per CPU than a given threshold.
1459 * To ensure counters don't remain disabled, they are rebalanced when
1460 * the global resource goes above a higher threshold (i.e. some hysteresis
1461 * is present to prevent thrashing).
e8234a68
DC
1462 */
1463
5a67e4c5 1464#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
1465/*
1466 * hot-plug CPU notifier support.
8d280b98 1467 *
5a67e4c5
CS
1468 * We need a notifier per filesystem as we need to be able to identify
1469 * the filesystem to balance the counters out. This is achieved by
1470 * having a notifier block embedded in the xfs_mount_t and doing pointer
1471 * magic to get the mount pointer from the notifier block address.
8d280b98 1472 */
e8234a68
DC
1473STATIC int
1474xfs_icsb_cpu_notify(
1475 struct notifier_block *nfb,
1476 unsigned long action,
1477 void *hcpu)
1478{
1479 xfs_icsb_cnts_t *cntp;
1480 xfs_mount_t *mp;
e8234a68
DC
1481
1482 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1483 cntp = (xfs_icsb_cnts_t *)
1484 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1485 switch (action) {
1486 case CPU_UP_PREPARE:
8bb78442 1487 case CPU_UP_PREPARE_FROZEN:
e8234a68
DC
1488 /* Easy Case - initialize the area and locks, and
1489 * then rebalance when online does everything else for us. */
01e1b69c 1490 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68
DC
1491 break;
1492 case CPU_ONLINE:
8bb78442 1493 case CPU_ONLINE_FROZEN:
03135cf7 1494 xfs_icsb_lock(mp);
45af6c6d
CH
1495 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1496 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1497 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
03135cf7 1498 xfs_icsb_unlock(mp);
e8234a68
DC
1499 break;
1500 case CPU_DEAD:
8bb78442 1501 case CPU_DEAD_FROZEN:
e8234a68
DC
1502 /* Disable all the counters, then fold the dead cpu's
1503 * count into the total on the global superblock and
1504 * re-enable the counters. */
03135cf7 1505 xfs_icsb_lock(mp);
3685c2a1 1506 spin_lock(&mp->m_sb_lock);
e8234a68
DC
1507 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1508 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1509 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1510
1511 mp->m_sb.sb_icount += cntp->icsb_icount;
1512 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1513 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1514
01e1b69c 1515 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68 1516
45af6c6d
CH
1517 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1518 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1519 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
3685c2a1 1520 spin_unlock(&mp->m_sb_lock);
03135cf7 1521 xfs_icsb_unlock(mp);
e8234a68
DC
1522 break;
1523 }
1524
1525 return NOTIFY_OK;
1526}
5a67e4c5 1527#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 1528
8d280b98
DC
1529int
1530xfs_icsb_init_counters(
1531 xfs_mount_t *mp)
1532{
1533 xfs_icsb_cnts_t *cntp;
1534 int i;
1535
1536 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1537 if (mp->m_sb_cnts == NULL)
1538 return -ENOMEM;
1539
1540 for_each_online_cpu(i) {
1541 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 1542 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
8d280b98 1543 }
20b64285
DC
1544
1545 mutex_init(&mp->m_icsb_mutex);
1546
8d280b98
DC
1547 /*
1548 * start with all counters disabled so that the
1549 * initial balance kicks us off correctly
1550 */
1551 mp->m_icsb_counters = -1;
46677e67
RW
1552
1553#ifdef CONFIG_HOTPLUG_CPU
1554 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1555 mp->m_icsb_notifier.priority = 0;
1556 register_hotcpu_notifier(&mp->m_icsb_notifier);
1557#endif /* CONFIG_HOTPLUG_CPU */
1558
8d280b98
DC
1559 return 0;
1560}
1561
5478eead
LM
1562void
1563xfs_icsb_reinit_counters(
1564 xfs_mount_t *mp)
1565{
1566 xfs_icsb_lock(mp);
1567 /*
1568 * start with all counters disabled so that the
1569 * initial balance kicks us off correctly
1570 */
1571 mp->m_icsb_counters = -1;
45af6c6d
CH
1572 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1573 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1574 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
5478eead
LM
1575 xfs_icsb_unlock(mp);
1576}
1577
c962fb79 1578void
8d280b98
DC
1579xfs_icsb_destroy_counters(
1580 xfs_mount_t *mp)
1581{
e8234a68 1582 if (mp->m_sb_cnts) {
5a67e4c5 1583 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
8d280b98 1584 free_percpu(mp->m_sb_cnts);
e8234a68 1585 }
03135cf7 1586 mutex_destroy(&mp->m_icsb_mutex);
8d280b98
DC
1587}
1588
b8f82a4a 1589STATIC void
01e1b69c
DC
1590xfs_icsb_lock_cntr(
1591 xfs_icsb_cnts_t *icsbp)
1592{
1593 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1594 ndelay(1000);
1595 }
1596}
1597
b8f82a4a 1598STATIC void
01e1b69c
DC
1599xfs_icsb_unlock_cntr(
1600 xfs_icsb_cnts_t *icsbp)
1601{
1602 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1603}
1604
8d280b98 1605
b8f82a4a 1606STATIC void
8d280b98
DC
1607xfs_icsb_lock_all_counters(
1608 xfs_mount_t *mp)
1609{
1610 xfs_icsb_cnts_t *cntp;
1611 int i;
1612
1613 for_each_online_cpu(i) {
1614 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 1615 xfs_icsb_lock_cntr(cntp);
8d280b98
DC
1616 }
1617}
1618
b8f82a4a 1619STATIC void
8d280b98
DC
1620xfs_icsb_unlock_all_counters(
1621 xfs_mount_t *mp)
1622{
1623 xfs_icsb_cnts_t *cntp;
1624 int i;
1625
1626 for_each_online_cpu(i) {
1627 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 1628 xfs_icsb_unlock_cntr(cntp);
8d280b98
DC
1629 }
1630}
1631
1632STATIC void
1633xfs_icsb_count(
1634 xfs_mount_t *mp,
1635 xfs_icsb_cnts_t *cnt,
1636 int flags)
1637{
1638 xfs_icsb_cnts_t *cntp;
1639 int i;
1640
1641 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1642
1643 if (!(flags & XFS_ICSB_LAZY_COUNT))
1644 xfs_icsb_lock_all_counters(mp);
1645
1646 for_each_online_cpu(i) {
1647 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1648 cnt->icsb_icount += cntp->icsb_icount;
1649 cnt->icsb_ifree += cntp->icsb_ifree;
1650 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1651 }
1652
1653 if (!(flags & XFS_ICSB_LAZY_COUNT))
1654 xfs_icsb_unlock_all_counters(mp);
1655}
1656
1657STATIC int
1658xfs_icsb_counter_disabled(
1659 xfs_mount_t *mp,
1660 xfs_sb_field_t field)
1661{
1662 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1663 return test_bit(field, &mp->m_icsb_counters);
1664}
1665
36fbe6e6 1666STATIC void
8d280b98
DC
1667xfs_icsb_disable_counter(
1668 xfs_mount_t *mp,
1669 xfs_sb_field_t field)
1670{
1671 xfs_icsb_cnts_t cnt;
1672
1673 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1674
20b64285
DC
1675 /*
1676 * If we are already disabled, then there is nothing to do
1677 * here. We check before locking all the counters to avoid
1678 * the expensive lock operation when being called in the
1679 * slow path and the counter is already disabled. This is
1680 * safe because the only time we set or clear this state is under
1681 * the m_icsb_mutex.
1682 */
1683 if (xfs_icsb_counter_disabled(mp, field))
36fbe6e6 1684 return;
20b64285 1685
8d280b98
DC
1686 xfs_icsb_lock_all_counters(mp);
1687 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1688 /* drain back to superblock */
1689
ce46193b 1690 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
8d280b98
DC
1691 switch(field) {
1692 case XFS_SBS_ICOUNT:
1693 mp->m_sb.sb_icount = cnt.icsb_icount;
1694 break;
1695 case XFS_SBS_IFREE:
1696 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1697 break;
1698 case XFS_SBS_FDBLOCKS:
1699 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1700 break;
1701 default:
1702 BUG();
1703 }
1704 }
1705
1706 xfs_icsb_unlock_all_counters(mp);
8d280b98
DC
1707}
1708
1709STATIC void
1710xfs_icsb_enable_counter(
1711 xfs_mount_t *mp,
1712 xfs_sb_field_t field,
1713 uint64_t count,
1714 uint64_t resid)
1715{
1716 xfs_icsb_cnts_t *cntp;
1717 int i;
1718
1719 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1720
1721 xfs_icsb_lock_all_counters(mp);
1722 for_each_online_cpu(i) {
1723 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1724 switch (field) {
1725 case XFS_SBS_ICOUNT:
1726 cntp->icsb_icount = count + resid;
1727 break;
1728 case XFS_SBS_IFREE:
1729 cntp->icsb_ifree = count + resid;
1730 break;
1731 case XFS_SBS_FDBLOCKS:
1732 cntp->icsb_fdblocks = count + resid;
1733 break;
1734 default:
1735 BUG();
1736 break;
1737 }
1738 resid = 0;
1739 }
1740 clear_bit(field, &mp->m_icsb_counters);
1741 xfs_icsb_unlock_all_counters(mp);
1742}
1743
dbcabad1 1744void
d4d90b57 1745xfs_icsb_sync_counters_locked(
8d280b98
DC
1746 xfs_mount_t *mp,
1747 int flags)
1748{
1749 xfs_icsb_cnts_t cnt;
8d280b98 1750
8d280b98
DC
1751 xfs_icsb_count(mp, &cnt, flags);
1752
8d280b98
DC
1753 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1754 mp->m_sb.sb_icount = cnt.icsb_icount;
1755 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1756 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1757 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1758 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
8d280b98
DC
1759}
1760
1761/*
1762 * Accurate update of per-cpu counters to incore superblock
1763 */
d4d90b57 1764void
8d280b98 1765xfs_icsb_sync_counters(
d4d90b57
CH
1766 xfs_mount_t *mp,
1767 int flags)
8d280b98 1768{
d4d90b57
CH
1769 spin_lock(&mp->m_sb_lock);
1770 xfs_icsb_sync_counters_locked(mp, flags);
1771 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
1772}
1773
1774/*
1775 * Balance and enable/disable counters as necessary.
1776 *
20b64285
DC
1777 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1778 * chosen to be the same number as single on disk allocation chunk per CPU, and
1779 * free blocks is something far enough zero that we aren't going thrash when we
1780 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1781 * prevent looping endlessly when xfs_alloc_space asks for more than will
1782 * be distributed to a single CPU but each CPU has enough blocks to be
1783 * reenabled.
1784 *
1785 * Note that we can be called when counters are already disabled.
1786 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1787 * prevent locking every per-cpu counter needlessly.
8d280b98 1788 */
20b64285
DC
1789
1790#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
4be536de 1791#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
20b64285 1792 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
8d280b98 1793STATIC void
45af6c6d 1794xfs_icsb_balance_counter_locked(
8d280b98
DC
1795 xfs_mount_t *mp,
1796 xfs_sb_field_t field,
20b64285 1797 int min_per_cpu)
8d280b98 1798{
6fdf8ccc 1799 uint64_t count, resid;
8d280b98 1800 int weight = num_online_cpus();
20b64285 1801 uint64_t min = (uint64_t)min_per_cpu;
8d280b98 1802
8d280b98
DC
1803 /* disable counter and sync counter */
1804 xfs_icsb_disable_counter(mp, field);
1805
1806 /* update counters - first CPU gets residual*/
1807 switch (field) {
1808 case XFS_SBS_ICOUNT:
1809 count = mp->m_sb.sb_icount;
1810 resid = do_div(count, weight);
20b64285 1811 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 1812 return;
8d280b98
DC
1813 break;
1814 case XFS_SBS_IFREE:
1815 count = mp->m_sb.sb_ifree;
1816 resid = do_div(count, weight);
20b64285 1817 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 1818 return;
8d280b98
DC
1819 break;
1820 case XFS_SBS_FDBLOCKS:
1821 count = mp->m_sb.sb_fdblocks;
1822 resid = do_div(count, weight);
20b64285 1823 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
45af6c6d 1824 return;
8d280b98
DC
1825 break;
1826 default:
1827 BUG();
6fdf8ccc 1828 count = resid = 0; /* quiet, gcc */
8d280b98
DC
1829 break;
1830 }
1831
1832 xfs_icsb_enable_counter(mp, field, count, resid);
45af6c6d
CH
1833}
1834
1835STATIC void
1836xfs_icsb_balance_counter(
1837 xfs_mount_t *mp,
1838 xfs_sb_field_t fields,
1839 int min_per_cpu)
1840{
1841 spin_lock(&mp->m_sb_lock);
1842 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1843 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
1844}
1845
1b040712 1846int
20b64285 1847xfs_icsb_modify_counters(
8d280b98
DC
1848 xfs_mount_t *mp,
1849 xfs_sb_field_t field,
20f4ebf2 1850 int64_t delta,
20b64285 1851 int rsvd)
8d280b98
DC
1852{
1853 xfs_icsb_cnts_t *icsbp;
1854 long long lcounter; /* long counter for 64 bit fields */
7a9e02d6 1855 int ret = 0;
8d280b98 1856
20b64285 1857 might_sleep();
8d280b98 1858again:
7a9e02d6
CL
1859 preempt_disable();
1860 icsbp = this_cpu_ptr(mp->m_sb_cnts);
20b64285
DC
1861
1862 /*
1863 * if the counter is disabled, go to slow path
1864 */
8d280b98
DC
1865 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1866 goto slow_path;
20b64285
DC
1867 xfs_icsb_lock_cntr(icsbp);
1868 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1869 xfs_icsb_unlock_cntr(icsbp);
1870 goto slow_path;
1871 }
8d280b98
DC
1872
1873 switch (field) {
1874 case XFS_SBS_ICOUNT:
1875 lcounter = icsbp->icsb_icount;
1876 lcounter += delta;
1877 if (unlikely(lcounter < 0))
20b64285 1878 goto balance_counter;
8d280b98
DC
1879 icsbp->icsb_icount = lcounter;
1880 break;
1881
1882 case XFS_SBS_IFREE:
1883 lcounter = icsbp->icsb_ifree;
1884 lcounter += delta;
1885 if (unlikely(lcounter < 0))
20b64285 1886 goto balance_counter;
8d280b98
DC
1887 icsbp->icsb_ifree = lcounter;
1888 break;
1889
1890 case XFS_SBS_FDBLOCKS:
1891 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1892
4be536de 1893 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
1894 lcounter += delta;
1895 if (unlikely(lcounter < 0))
20b64285 1896 goto balance_counter;
4be536de 1897 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
1898 break;
1899 default:
1900 BUG();
1901 break;
1902 }
01e1b69c 1903 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 1904 preempt_enable();
8d280b98
DC
1905 return 0;
1906
8d280b98 1907slow_path:
7a9e02d6 1908 preempt_enable();
8d280b98 1909
20b64285
DC
1910 /*
1911 * serialise with a mutex so we don't burn lots of cpu on
1912 * the superblock lock. We still need to hold the superblock
1913 * lock, however, when we modify the global structures.
1914 */
03135cf7 1915 xfs_icsb_lock(mp);
20b64285
DC
1916
1917 /*
1918 * Now running atomically.
1919 *
1920 * If the counter is enabled, someone has beaten us to rebalancing.
1921 * Drop the lock and try again in the fast path....
1922 */
1923 if (!(xfs_icsb_counter_disabled(mp, field))) {
03135cf7 1924 xfs_icsb_unlock(mp);
8d280b98 1925 goto again;
8d280b98
DC
1926 }
1927
20b64285
DC
1928 /*
1929 * The counter is currently disabled. Because we are
1930 * running atomically here, we know a rebalance cannot
1931 * be in progress. Hence we can go straight to operating
1932 * on the global superblock. We do not call xfs_mod_incore_sb()
3685c2a1 1933 * here even though we need to get the m_sb_lock. Doing so
20b64285 1934 * will cause us to re-enter this function and deadlock.
3685c2a1 1935 * Hence we get the m_sb_lock ourselves and then call
20b64285
DC
1936 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1937 * directly on the global counters.
1938 */
3685c2a1 1939 spin_lock(&mp->m_sb_lock);
8d280b98 1940 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
3685c2a1 1941 spin_unlock(&mp->m_sb_lock);
8d280b98 1942
20b64285
DC
1943 /*
1944 * Now that we've modified the global superblock, we
1945 * may be able to re-enable the distributed counters
1946 * (e.g. lots of space just got freed). After that
1947 * we are done.
1948 */
2451337d 1949 if (ret != -ENOSPC)
45af6c6d 1950 xfs_icsb_balance_counter(mp, field, 0);
03135cf7 1951 xfs_icsb_unlock(mp);
8d280b98 1952 return ret;
8d280b98 1953
20b64285
DC
1954balance_counter:
1955 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 1956 preempt_enable();
8d280b98 1957
20b64285
DC
1958 /*
1959 * We may have multiple threads here if multiple per-cpu
1960 * counters run dry at the same time. This will mean we can
1961 * do more balances than strictly necessary but it is not
1962 * the common slowpath case.
1963 */
03135cf7 1964 xfs_icsb_lock(mp);
20b64285
DC
1965
1966 /*
1967 * running atomically.
1968 *
1969 * This will leave the counter in the correct state for future
1970 * accesses. After the rebalance, we simply try again and our retry
1971 * will either succeed through the fast path or slow path without
1972 * another balance operation being required.
1973 */
45af6c6d 1974 xfs_icsb_balance_counter(mp, field, delta);
03135cf7 1975 xfs_icsb_unlock(mp);
20b64285 1976 goto again;
8d280b98 1977}
20b64285 1978
8d280b98 1979#endif