MIPS: Fix LLVM build issue.
[linux-2.6-block.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
57062787 27#include "xfs_da_format.h"
9a2cc41c 28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
239880ef 31#include "xfs_log.h"
1da177e4 32#include "xfs_log_priv.h"
1da177e4 33#include "xfs_log_recover.h"
a4fbe6ab 34#include "xfs_inode_item.h"
1da177e4
LT
35#include "xfs_extfree_item.h"
36#include "xfs_trans_priv.h"
a4fbe6ab
DC
37#include "xfs_alloc.h"
38#include "xfs_ialloc.h"
1da177e4 39#include "xfs_quota.h"
0e446be4 40#include "xfs_cksum.h"
0b1b213f 41#include "xfs_trace.h"
33479e05 42#include "xfs_icache.h"
a4fbe6ab 43#include "xfs_bmap_btree.h"
a4fbe6ab 44#include "xfs_error.h"
2b9ab5ab 45#include "xfs_dir2.h"
1da177e4 46
fc06c6d0
DC
47#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
48
9a8d2fdb
MT
49STATIC int
50xlog_find_zeroed(
51 struct xlog *,
52 xfs_daddr_t *);
53STATIC int
54xlog_clear_stale_blocks(
55 struct xlog *,
56 xfs_lsn_t);
1da177e4 57#if defined(DEBUG)
9a8d2fdb
MT
58STATIC void
59xlog_recover_check_summary(
60 struct xlog *);
1da177e4
LT
61#else
62#define xlog_recover_check_summary(log)
1da177e4
LT
63#endif
64
d5689eaa
CH
65/*
66 * This structure is used during recovery to record the buf log items which
67 * have been canceled and should not be replayed.
68 */
69struct xfs_buf_cancel {
70 xfs_daddr_t bc_blkno;
71 uint bc_len;
72 int bc_refcount;
73 struct list_head bc_list;
74};
75
1da177e4
LT
76/*
77 * Sector aligned buffer routines for buffer create/read/write/access
78 */
79
ff30a622
AE
80/*
81 * Verify the given count of basic blocks is valid number of blocks
82 * to specify for an operation involving the given XFS log buffer.
83 * Returns nonzero if the count is valid, 0 otherwise.
84 */
85
86static inline int
87xlog_buf_bbcount_valid(
9a8d2fdb 88 struct xlog *log,
ff30a622
AE
89 int bbcount)
90{
91 return bbcount > 0 && bbcount <= log->l_logBBsize;
92}
93
36adecff
AE
94/*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
5d77c0dc 99STATIC xfs_buf_t *
1da177e4 100xlog_get_bp(
9a8d2fdb 101 struct xlog *log,
3228149c 102 int nbblks)
1da177e4 103{
c8da0faf
CH
104 struct xfs_buf *bp;
105
ff30a622 106 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
108 nbblks);
109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
110 return NULL;
111 }
1da177e4 112
36adecff
AE
113 /*
114 * We do log I/O in units of log sectors (a power-of-2
115 * multiple of the basic block size), so we round up the
25985edc 116 * requested size to accommodate the basic blocks required
36adecff
AE
117 * for complete log sectors.
118 *
119 * In addition, the buffer may be used for a non-sector-
120 * aligned block offset, in which case an I/O of the
121 * requested size could extend beyond the end of the
122 * buffer. If the requested size is only 1 basic block it
123 * will never straddle a sector boundary, so this won't be
124 * an issue. Nor will this be a problem if the log I/O is
125 * done in basic blocks (sector size 1). But otherwise we
126 * extend the buffer by one extra log sector to ensure
25985edc 127 * there's space to accommodate this possibility.
36adecff 128 */
69ce58f0
AE
129 if (nbblks > 1 && log->l_sectBBsize > 1)
130 nbblks += log->l_sectBBsize;
131 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 132
e70b73f8 133 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
134 if (bp)
135 xfs_buf_unlock(bp);
136 return bp;
1da177e4
LT
137}
138
5d77c0dc 139STATIC void
1da177e4
LT
140xlog_put_bp(
141 xfs_buf_t *bp)
142{
143 xfs_buf_free(bp);
144}
145
48389ef1
AE
146/*
147 * Return the address of the start of the given block number's data
148 * in a log buffer. The buffer covers a log sector-aligned region.
149 */
b2a922cd 150STATIC char *
076e6acb 151xlog_align(
9a8d2fdb 152 struct xlog *log,
076e6acb
CH
153 xfs_daddr_t blk_no,
154 int nbblks,
9a8d2fdb 155 struct xfs_buf *bp)
076e6acb 156{
fdc07f44 157 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 158
4e94b71b 159 ASSERT(offset + nbblks <= bp->b_length);
62926044 160 return bp->b_addr + BBTOB(offset);
076e6acb
CH
161}
162
1da177e4
LT
163
164/*
165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
166 */
076e6acb
CH
167STATIC int
168xlog_bread_noalign(
9a8d2fdb 169 struct xlog *log,
1da177e4
LT
170 xfs_daddr_t blk_no,
171 int nbblks,
9a8d2fdb 172 struct xfs_buf *bp)
1da177e4
LT
173{
174 int error;
175
ff30a622 176 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 177 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
178 nbblks);
179 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 180 return -EFSCORRUPTED;
3228149c
DC
181 }
182
69ce58f0
AE
183 blk_no = round_down(blk_no, log->l_sectBBsize);
184 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
185
186 ASSERT(nbblks > 0);
4e94b71b 187 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
188
189 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 XFS_BUF_READ(bp);
aa0e8833 191 bp->b_io_length = nbblks;
0e95f19a 192 bp->b_error = 0;
1da177e4 193
595bff75
DC
194 error = xfs_buf_submit_wait(bp);
195 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
901796af 196 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
197 return error;
198}
199
076e6acb
CH
200STATIC int
201xlog_bread(
9a8d2fdb 202 struct xlog *log,
076e6acb
CH
203 xfs_daddr_t blk_no,
204 int nbblks,
9a8d2fdb 205 struct xfs_buf *bp,
b2a922cd 206 char **offset)
076e6acb
CH
207{
208 int error;
209
210 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
211 if (error)
212 return error;
213
214 *offset = xlog_align(log, blk_no, nbblks, bp);
215 return 0;
216}
217
44396476
DC
218/*
219 * Read at an offset into the buffer. Returns with the buffer in it's original
220 * state regardless of the result of the read.
221 */
222STATIC int
223xlog_bread_offset(
9a8d2fdb 224 struct xlog *log,
44396476
DC
225 xfs_daddr_t blk_no, /* block to read from */
226 int nbblks, /* blocks to read */
9a8d2fdb 227 struct xfs_buf *bp,
b2a922cd 228 char *offset)
44396476 229{
b2a922cd 230 char *orig_offset = bp->b_addr;
4e94b71b 231 int orig_len = BBTOB(bp->b_length);
44396476
DC
232 int error, error2;
233
02fe03d9 234 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
235 if (error)
236 return error;
237
238 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
239
240 /* must reset buffer pointer even on error */
02fe03d9 241 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
242 if (error)
243 return error;
244 return error2;
245}
246
1da177e4
LT
247/*
248 * Write out the buffer at the given block for the given number of blocks.
249 * The buffer is kept locked across the write and is returned locked.
250 * This can only be used for synchronous log writes.
251 */
ba0f32d4 252STATIC int
1da177e4 253xlog_bwrite(
9a8d2fdb 254 struct xlog *log,
1da177e4
LT
255 xfs_daddr_t blk_no,
256 int nbblks,
9a8d2fdb 257 struct xfs_buf *bp)
1da177e4
LT
258{
259 int error;
260
ff30a622 261 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 262 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
263 nbblks);
264 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 265 return -EFSCORRUPTED;
3228149c
DC
266 }
267
69ce58f0
AE
268 blk_no = round_down(blk_no, log->l_sectBBsize);
269 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
270
271 ASSERT(nbblks > 0);
4e94b71b 272 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
273
274 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
275 XFS_BUF_ZEROFLAGS(bp);
72790aa1 276 xfs_buf_hold(bp);
0c842ad4 277 xfs_buf_lock(bp);
aa0e8833 278 bp->b_io_length = nbblks;
0e95f19a 279 bp->b_error = 0;
1da177e4 280
c2b006c1 281 error = xfs_bwrite(bp);
901796af
CH
282 if (error)
283 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 284 xfs_buf_relse(bp);
1da177e4
LT
285 return error;
286}
287
1da177e4
LT
288#ifdef DEBUG
289/*
290 * dump debug superblock and log record information
291 */
292STATIC void
293xlog_header_check_dump(
294 xfs_mount_t *mp,
295 xlog_rec_header_t *head)
296{
08e96e1a 297 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 298 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 299 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 300 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
301}
302#else
303#define xlog_header_check_dump(mp, head)
304#endif
305
306/*
307 * check log record header for recovery
308 */
309STATIC int
310xlog_header_check_recover(
311 xfs_mount_t *mp,
312 xlog_rec_header_t *head)
313{
69ef921b 314 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
315
316 /*
317 * IRIX doesn't write the h_fmt field and leaves it zeroed
318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
319 * a dirty log created in IRIX.
320 */
69ef921b 321 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
322 xfs_warn(mp,
323 "dirty log written in incompatible format - can't recover");
1da177e4
LT
324 xlog_header_check_dump(mp, head);
325 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
326 XFS_ERRLEVEL_HIGH, mp);
2451337d 327 return -EFSCORRUPTED;
1da177e4 328 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
329 xfs_warn(mp,
330 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
331 xlog_header_check_dump(mp, head);
332 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
333 XFS_ERRLEVEL_HIGH, mp);
2451337d 334 return -EFSCORRUPTED;
1da177e4
LT
335 }
336 return 0;
337}
338
339/*
340 * read the head block of the log and check the header
341 */
342STATIC int
343xlog_header_check_mount(
344 xfs_mount_t *mp,
345 xlog_rec_header_t *head)
346{
69ef921b 347 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
348
349 if (uuid_is_nil(&head->h_fs_uuid)) {
350 /*
351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
352 * h_fs_uuid is nil, we assume this log was last mounted
353 * by IRIX and continue.
354 */
a0fa2b67 355 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 356 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 357 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
358 xlog_header_check_dump(mp, head);
359 XFS_ERROR_REPORT("xlog_header_check_mount",
360 XFS_ERRLEVEL_HIGH, mp);
2451337d 361 return -EFSCORRUPTED;
1da177e4
LT
362 }
363 return 0;
364}
365
366STATIC void
367xlog_recover_iodone(
368 struct xfs_buf *bp)
369{
5a52c2a5 370 if (bp->b_error) {
1da177e4
LT
371 /*
372 * We're not going to bother about retrying
373 * this during recovery. One strike!
374 */
595bff75
DC
375 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
376 xfs_buf_ioerror_alert(bp, __func__);
377 xfs_force_shutdown(bp->b_target->bt_mount,
378 SHUTDOWN_META_IO_ERROR);
379 }
1da177e4 380 }
cb669ca5 381 bp->b_iodone = NULL;
e8aaba9a 382 xfs_buf_ioend(bp);
1da177e4
LT
383}
384
385/*
386 * This routine finds (to an approximation) the first block in the physical
387 * log which contains the given cycle. It uses a binary search algorithm.
388 * Note that the algorithm can not be perfect because the disk will not
389 * necessarily be perfect.
390 */
a8272ce0 391STATIC int
1da177e4 392xlog_find_cycle_start(
9a8d2fdb
MT
393 struct xlog *log,
394 struct xfs_buf *bp,
1da177e4
LT
395 xfs_daddr_t first_blk,
396 xfs_daddr_t *last_blk,
397 uint cycle)
398{
b2a922cd 399 char *offset;
1da177e4 400 xfs_daddr_t mid_blk;
e3bb2e30 401 xfs_daddr_t end_blk;
1da177e4
LT
402 uint mid_cycle;
403 int error;
404
e3bb2e30
AE
405 end_blk = *last_blk;
406 mid_blk = BLK_AVG(first_blk, end_blk);
407 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
408 error = xlog_bread(log, mid_blk, 1, bp, &offset);
409 if (error)
1da177e4 410 return error;
03bea6fe 411 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
412 if (mid_cycle == cycle)
413 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
414 else
415 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
416 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 417 }
e3bb2e30
AE
418 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
419 (mid_blk == end_blk && mid_blk-1 == first_blk));
420
421 *last_blk = end_blk;
1da177e4
LT
422
423 return 0;
424}
425
426/*
3f943d85
AE
427 * Check that a range of blocks does not contain stop_on_cycle_no.
428 * Fill in *new_blk with the block offset where such a block is
429 * found, or with -1 (an invalid block number) if there is no such
430 * block in the range. The scan needs to occur from front to back
431 * and the pointer into the region must be updated since a later
432 * routine will need to perform another test.
1da177e4
LT
433 */
434STATIC int
435xlog_find_verify_cycle(
9a8d2fdb 436 struct xlog *log,
1da177e4
LT
437 xfs_daddr_t start_blk,
438 int nbblks,
439 uint stop_on_cycle_no,
440 xfs_daddr_t *new_blk)
441{
442 xfs_daddr_t i, j;
443 uint cycle;
444 xfs_buf_t *bp;
445 xfs_daddr_t bufblks;
b2a922cd 446 char *buf = NULL;
1da177e4
LT
447 int error = 0;
448
6881a229
AE
449 /*
450 * Greedily allocate a buffer big enough to handle the full
451 * range of basic blocks we'll be examining. If that fails,
452 * try a smaller size. We need to be able to read at least
453 * a log sector, or we're out of luck.
454 */
1da177e4 455 bufblks = 1 << ffs(nbblks);
81158e0c
DC
456 while (bufblks > log->l_logBBsize)
457 bufblks >>= 1;
1da177e4 458 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 459 bufblks >>= 1;
69ce58f0 460 if (bufblks < log->l_sectBBsize)
2451337d 461 return -ENOMEM;
1da177e4
LT
462 }
463
464 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
465 int bcount;
466
467 bcount = min(bufblks, (start_blk + nbblks - i));
468
076e6acb
CH
469 error = xlog_bread(log, i, bcount, bp, &buf);
470 if (error)
1da177e4
LT
471 goto out;
472
1da177e4 473 for (j = 0; j < bcount; j++) {
03bea6fe 474 cycle = xlog_get_cycle(buf);
1da177e4
LT
475 if (cycle == stop_on_cycle_no) {
476 *new_blk = i+j;
477 goto out;
478 }
479
480 buf += BBSIZE;
481 }
482 }
483
484 *new_blk = -1;
485
486out:
487 xlog_put_bp(bp);
488 return error;
489}
490
491/*
492 * Potentially backup over partial log record write.
493 *
494 * In the typical case, last_blk is the number of the block directly after
495 * a good log record. Therefore, we subtract one to get the block number
496 * of the last block in the given buffer. extra_bblks contains the number
497 * of blocks we would have read on a previous read. This happens when the
498 * last log record is split over the end of the physical log.
499 *
500 * extra_bblks is the number of blocks potentially verified on a previous
501 * call to this routine.
502 */
503STATIC int
504xlog_find_verify_log_record(
9a8d2fdb 505 struct xlog *log,
1da177e4
LT
506 xfs_daddr_t start_blk,
507 xfs_daddr_t *last_blk,
508 int extra_bblks)
509{
510 xfs_daddr_t i;
511 xfs_buf_t *bp;
b2a922cd 512 char *offset = NULL;
1da177e4
LT
513 xlog_rec_header_t *head = NULL;
514 int error = 0;
515 int smallmem = 0;
516 int num_blks = *last_blk - start_blk;
517 int xhdrs;
518
519 ASSERT(start_blk != 0 || *last_blk != start_blk);
520
521 if (!(bp = xlog_get_bp(log, num_blks))) {
522 if (!(bp = xlog_get_bp(log, 1)))
2451337d 523 return -ENOMEM;
1da177e4
LT
524 smallmem = 1;
525 } else {
076e6acb
CH
526 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
527 if (error)
1da177e4 528 goto out;
1da177e4
LT
529 offset += ((num_blks - 1) << BBSHIFT);
530 }
531
532 for (i = (*last_blk) - 1; i >= 0; i--) {
533 if (i < start_blk) {
534 /* valid log record not found */
a0fa2b67
DC
535 xfs_warn(log->l_mp,
536 "Log inconsistent (didn't find previous header)");
1da177e4 537 ASSERT(0);
2451337d 538 error = -EIO;
1da177e4
LT
539 goto out;
540 }
541
542 if (smallmem) {
076e6acb
CH
543 error = xlog_bread(log, i, 1, bp, &offset);
544 if (error)
1da177e4 545 goto out;
1da177e4
LT
546 }
547
548 head = (xlog_rec_header_t *)offset;
549
69ef921b 550 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
551 break;
552
553 if (!smallmem)
554 offset -= BBSIZE;
555 }
556
557 /*
558 * We hit the beginning of the physical log & still no header. Return
559 * to caller. If caller can handle a return of -1, then this routine
560 * will be called again for the end of the physical log.
561 */
562 if (i == -1) {
2451337d 563 error = 1;
1da177e4
LT
564 goto out;
565 }
566
567 /*
568 * We have the final block of the good log (the first block
569 * of the log record _before_ the head. So we check the uuid.
570 */
571 if ((error = xlog_header_check_mount(log->l_mp, head)))
572 goto out;
573
574 /*
575 * We may have found a log record header before we expected one.
576 * last_blk will be the 1st block # with a given cycle #. We may end
577 * up reading an entire log record. In this case, we don't want to
578 * reset last_blk. Only when last_blk points in the middle of a log
579 * record do we update last_blk.
580 */
62118709 581 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 582 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
583
584 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
585 if (h_size % XLOG_HEADER_CYCLE_SIZE)
586 xhdrs++;
587 } else {
588 xhdrs = 1;
589 }
590
b53e675d
CH
591 if (*last_blk - i + extra_bblks !=
592 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
593 *last_blk = i;
594
595out:
596 xlog_put_bp(bp);
597 return error;
598}
599
600/*
601 * Head is defined to be the point of the log where the next log write
0a94da24 602 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
603 * eliminated when calculating the head. We aren't guaranteed that previous
604 * LR have complete transactions. We only know that a cycle number of
605 * current cycle number -1 won't be present in the log if we start writing
606 * from our current block number.
607 *
608 * last_blk contains the block number of the first block with a given
609 * cycle number.
610 *
611 * Return: zero if normal, non-zero if error.
612 */
ba0f32d4 613STATIC int
1da177e4 614xlog_find_head(
9a8d2fdb 615 struct xlog *log,
1da177e4
LT
616 xfs_daddr_t *return_head_blk)
617{
618 xfs_buf_t *bp;
b2a922cd 619 char *offset;
1da177e4
LT
620 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
621 int num_scan_bblks;
622 uint first_half_cycle, last_half_cycle;
623 uint stop_on_cycle;
624 int error, log_bbnum = log->l_logBBsize;
625
626 /* Is the end of the log device zeroed? */
2451337d
DC
627 error = xlog_find_zeroed(log, &first_blk);
628 if (error < 0) {
629 xfs_warn(log->l_mp, "empty log check failed");
630 return error;
631 }
632 if (error == 1) {
1da177e4
LT
633 *return_head_blk = first_blk;
634
635 /* Is the whole lot zeroed? */
636 if (!first_blk) {
637 /* Linux XFS shouldn't generate totally zeroed logs -
638 * mkfs etc write a dummy unmount record to a fresh
639 * log so we can store the uuid in there
640 */
a0fa2b67 641 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
642 }
643
644 return 0;
1da177e4
LT
645 }
646
647 first_blk = 0; /* get cycle # of 1st block */
648 bp = xlog_get_bp(log, 1);
649 if (!bp)
2451337d 650 return -ENOMEM;
076e6acb
CH
651
652 error = xlog_bread(log, 0, 1, bp, &offset);
653 if (error)
1da177e4 654 goto bp_err;
076e6acb 655
03bea6fe 656 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
657
658 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
659 error = xlog_bread(log, last_blk, 1, bp, &offset);
660 if (error)
1da177e4 661 goto bp_err;
076e6acb 662
03bea6fe 663 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
664 ASSERT(last_half_cycle != 0);
665
666 /*
667 * If the 1st half cycle number is equal to the last half cycle number,
668 * then the entire log is stamped with the same cycle number. In this
669 * case, head_blk can't be set to zero (which makes sense). The below
670 * math doesn't work out properly with head_blk equal to zero. Instead,
671 * we set it to log_bbnum which is an invalid block number, but this
672 * value makes the math correct. If head_blk doesn't changed through
673 * all the tests below, *head_blk is set to zero at the very end rather
674 * than log_bbnum. In a sense, log_bbnum and zero are the same block
675 * in a circular file.
676 */
677 if (first_half_cycle == last_half_cycle) {
678 /*
679 * In this case we believe that the entire log should have
680 * cycle number last_half_cycle. We need to scan backwards
681 * from the end verifying that there are no holes still
682 * containing last_half_cycle - 1. If we find such a hole,
683 * then the start of that hole will be the new head. The
684 * simple case looks like
685 * x | x ... | x - 1 | x
686 * Another case that fits this picture would be
687 * x | x + 1 | x ... | x
c41564b5 688 * In this case the head really is somewhere at the end of the
1da177e4
LT
689 * log, as one of the latest writes at the beginning was
690 * incomplete.
691 * One more case is
692 * x | x + 1 | x ... | x - 1 | x
693 * This is really the combination of the above two cases, and
694 * the head has to end up at the start of the x-1 hole at the
695 * end of the log.
696 *
697 * In the 256k log case, we will read from the beginning to the
698 * end of the log and search for cycle numbers equal to x-1.
699 * We don't worry about the x+1 blocks that we encounter,
700 * because we know that they cannot be the head since the log
701 * started with x.
702 */
703 head_blk = log_bbnum;
704 stop_on_cycle = last_half_cycle - 1;
705 } else {
706 /*
707 * In this case we want to find the first block with cycle
708 * number matching last_half_cycle. We expect the log to be
709 * some variation on
3f943d85 710 * x + 1 ... | x ... | x
1da177e4
LT
711 * The first block with cycle number x (last_half_cycle) will
712 * be where the new head belongs. First we do a binary search
713 * for the first occurrence of last_half_cycle. The binary
714 * search may not be totally accurate, so then we scan back
715 * from there looking for occurrences of last_half_cycle before
716 * us. If that backwards scan wraps around the beginning of
717 * the log, then we look for occurrences of last_half_cycle - 1
718 * at the end of the log. The cases we're looking for look
719 * like
3f943d85
AE
720 * v binary search stopped here
721 * x + 1 ... | x | x + 1 | x ... | x
722 * ^ but we want to locate this spot
1da177e4 723 * or
1da177e4 724 * <---------> less than scan distance
3f943d85
AE
725 * x + 1 ... | x ... | x - 1 | x
726 * ^ we want to locate this spot
1da177e4
LT
727 */
728 stop_on_cycle = last_half_cycle;
729 if ((error = xlog_find_cycle_start(log, bp, first_blk,
730 &head_blk, last_half_cycle)))
731 goto bp_err;
732 }
733
734 /*
735 * Now validate the answer. Scan back some number of maximum possible
736 * blocks and make sure each one has the expected cycle number. The
737 * maximum is determined by the total possible amount of buffering
738 * in the in-core log. The following number can be made tighter if
739 * we actually look at the block size of the filesystem.
740 */
741 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
742 if (head_blk >= num_scan_bblks) {
743 /*
744 * We are guaranteed that the entire check can be performed
745 * in one buffer.
746 */
747 start_blk = head_blk - num_scan_bblks;
748 if ((error = xlog_find_verify_cycle(log,
749 start_blk, num_scan_bblks,
750 stop_on_cycle, &new_blk)))
751 goto bp_err;
752 if (new_blk != -1)
753 head_blk = new_blk;
754 } else { /* need to read 2 parts of log */
755 /*
756 * We are going to scan backwards in the log in two parts.
757 * First we scan the physical end of the log. In this part
758 * of the log, we are looking for blocks with cycle number
759 * last_half_cycle - 1.
760 * If we find one, then we know that the log starts there, as
761 * we've found a hole that didn't get written in going around
762 * the end of the physical log. The simple case for this is
763 * x + 1 ... | x ... | x - 1 | x
764 * <---------> less than scan distance
765 * If all of the blocks at the end of the log have cycle number
766 * last_half_cycle, then we check the blocks at the start of
767 * the log looking for occurrences of last_half_cycle. If we
768 * find one, then our current estimate for the location of the
769 * first occurrence of last_half_cycle is wrong and we move
770 * back to the hole we've found. This case looks like
771 * x + 1 ... | x | x + 1 | x ...
772 * ^ binary search stopped here
773 * Another case we need to handle that only occurs in 256k
774 * logs is
775 * x + 1 ... | x ... | x+1 | x ...
776 * ^ binary search stops here
777 * In a 256k log, the scan at the end of the log will see the
778 * x + 1 blocks. We need to skip past those since that is
779 * certainly not the head of the log. By searching for
780 * last_half_cycle-1 we accomplish that.
781 */
1da177e4 782 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
783 (xfs_daddr_t) num_scan_bblks >= head_blk);
784 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
785 if ((error = xlog_find_verify_cycle(log, start_blk,
786 num_scan_bblks - (int)head_blk,
787 (stop_on_cycle - 1), &new_blk)))
788 goto bp_err;
789 if (new_blk != -1) {
790 head_blk = new_blk;
9db127ed 791 goto validate_head;
1da177e4
LT
792 }
793
794 /*
795 * Scan beginning of log now. The last part of the physical
796 * log is good. This scan needs to verify that it doesn't find
797 * the last_half_cycle.
798 */
799 start_blk = 0;
800 ASSERT(head_blk <= INT_MAX);
801 if ((error = xlog_find_verify_cycle(log,
802 start_blk, (int)head_blk,
803 stop_on_cycle, &new_blk)))
804 goto bp_err;
805 if (new_blk != -1)
806 head_blk = new_blk;
807 }
808
9db127ed 809validate_head:
1da177e4
LT
810 /*
811 * Now we need to make sure head_blk is not pointing to a block in
812 * the middle of a log record.
813 */
814 num_scan_bblks = XLOG_REC_SHIFT(log);
815 if (head_blk >= num_scan_bblks) {
816 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
817
818 /* start ptr at last block ptr before head_blk */
2451337d
DC
819 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
820 if (error == 1)
821 error = -EIO;
822 if (error)
1da177e4
LT
823 goto bp_err;
824 } else {
825 start_blk = 0;
826 ASSERT(head_blk <= INT_MAX);
2451337d
DC
827 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
828 if (error < 0)
829 goto bp_err;
830 if (error == 1) {
1da177e4 831 /* We hit the beginning of the log during our search */
3f943d85 832 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
833 new_blk = log_bbnum;
834 ASSERT(start_blk <= INT_MAX &&
835 (xfs_daddr_t) log_bbnum-start_blk >= 0);
836 ASSERT(head_blk <= INT_MAX);
2451337d
DC
837 error = xlog_find_verify_log_record(log, start_blk,
838 &new_blk, (int)head_blk);
839 if (error == 1)
840 error = -EIO;
841 if (error)
1da177e4
LT
842 goto bp_err;
843 if (new_blk != log_bbnum)
844 head_blk = new_blk;
845 } else if (error)
846 goto bp_err;
847 }
848
849 xlog_put_bp(bp);
850 if (head_blk == log_bbnum)
851 *return_head_blk = 0;
852 else
853 *return_head_blk = head_blk;
854 /*
855 * When returning here, we have a good block number. Bad block
856 * means that during a previous crash, we didn't have a clean break
857 * from cycle number N to cycle number N-1. In this case, we need
858 * to find the first block with cycle number N-1.
859 */
860 return 0;
861
862 bp_err:
863 xlog_put_bp(bp);
864
865 if (error)
a0fa2b67 866 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
867 return error;
868}
869
870/*
871 * Find the sync block number or the tail of the log.
872 *
873 * This will be the block number of the last record to have its
874 * associated buffers synced to disk. Every log record header has
875 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
876 * to get a sync block number. The only concern is to figure out which
877 * log record header to believe.
878 *
879 * The following algorithm uses the log record header with the largest
880 * lsn. The entire log record does not need to be valid. We only care
881 * that the header is valid.
882 *
883 * We could speed up search by using current head_blk buffer, but it is not
884 * available.
885 */
5d77c0dc 886STATIC int
1da177e4 887xlog_find_tail(
9a8d2fdb 888 struct xlog *log,
1da177e4 889 xfs_daddr_t *head_blk,
65be6054 890 xfs_daddr_t *tail_blk)
1da177e4
LT
891{
892 xlog_rec_header_t *rhead;
893 xlog_op_header_t *op_head;
b2a922cd 894 char *offset = NULL;
1da177e4
LT
895 xfs_buf_t *bp;
896 int error, i, found;
897 xfs_daddr_t umount_data_blk;
898 xfs_daddr_t after_umount_blk;
899 xfs_lsn_t tail_lsn;
900 int hblks;
901
902 found = 0;
903
904 /*
905 * Find previous log record
906 */
907 if ((error = xlog_find_head(log, head_blk)))
908 return error;
909
910 bp = xlog_get_bp(log, 1);
911 if (!bp)
2451337d 912 return -ENOMEM;
1da177e4 913 if (*head_blk == 0) { /* special case */
076e6acb
CH
914 error = xlog_bread(log, 0, 1, bp, &offset);
915 if (error)
9db127ed 916 goto done;
076e6acb 917
03bea6fe 918 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
919 *tail_blk = 0;
920 /* leave all other log inited values alone */
9db127ed 921 goto done;
1da177e4
LT
922 }
923 }
924
925 /*
926 * Search backwards looking for log record header block
927 */
928 ASSERT(*head_blk < INT_MAX);
929 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
930 error = xlog_bread(log, i, 1, bp, &offset);
931 if (error)
9db127ed 932 goto done;
076e6acb 933
69ef921b 934 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
935 found = 1;
936 break;
937 }
938 }
939 /*
940 * If we haven't found the log record header block, start looking
941 * again from the end of the physical log. XXXmiken: There should be
942 * a check here to make sure we didn't search more than N blocks in
943 * the previous code.
944 */
945 if (!found) {
946 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
947 error = xlog_bread(log, i, 1, bp, &offset);
948 if (error)
9db127ed 949 goto done;
076e6acb 950
69ef921b
CH
951 if (*(__be32 *)offset ==
952 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
953 found = 2;
954 break;
955 }
956 }
957 }
958 if (!found) {
a0fa2b67 959 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
050a1952 960 xlog_put_bp(bp);
1da177e4 961 ASSERT(0);
2451337d 962 return -EIO;
1da177e4
LT
963 }
964
965 /* find blk_no of tail of log */
966 rhead = (xlog_rec_header_t *)offset;
b53e675d 967 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
968
969 /*
970 * Reset log values according to the state of the log when we
971 * crashed. In the case where head_blk == 0, we bump curr_cycle
972 * one because the next write starts a new cycle rather than
973 * continuing the cycle of the last good log record. At this
974 * point we have guaranteed that all partial log records have been
975 * accounted for. Therefore, we know that the last good log record
976 * written was complete and ended exactly on the end boundary
977 * of the physical log.
978 */
979 log->l_prev_block = i;
980 log->l_curr_block = (int)*head_blk;
b53e675d 981 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
982 if (found == 2)
983 log->l_curr_cycle++;
1c3cb9ec 984 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 985 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 986 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 987 BBTOB(log->l_curr_block));
28496968 988 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 989 BBTOB(log->l_curr_block));
1da177e4
LT
990
991 /*
992 * Look for unmount record. If we find it, then we know there
993 * was a clean unmount. Since 'i' could be the last block in
994 * the physical log, we convert to a log block before comparing
995 * to the head_blk.
996 *
997 * Save the current tail lsn to use to pass to
998 * xlog_clear_stale_blocks() below. We won't want to clear the
999 * unmount record if there is one, so we pass the lsn of the
1000 * unmount record rather than the block after it.
1001 */
62118709 1002 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1003 int h_size = be32_to_cpu(rhead->h_size);
1004 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1005
1006 if ((h_version & XLOG_VERSION_2) &&
1007 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1008 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1009 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1010 hblks++;
1011 } else {
1012 hblks = 1;
1013 }
1014 } else {
1015 hblks = 1;
1016 }
1017 after_umount_blk = (i + hblks + (int)
b53e675d 1018 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1019 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1020 if (*head_blk == after_umount_blk &&
b53e675d 1021 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1022 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1023 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1024 if (error)
9db127ed 1025 goto done;
076e6acb 1026
1da177e4
LT
1027 op_head = (xlog_op_header_t *)offset;
1028 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1029 /*
1030 * Set tail and last sync so that newly written
1031 * log records will point recovery to after the
1032 * current unmount record.
1033 */
1c3cb9ec
DC
1034 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1035 log->l_curr_cycle, after_umount_blk);
1036 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1037 log->l_curr_cycle, after_umount_blk);
1da177e4 1038 *tail_blk = after_umount_blk;
92821e2b
DC
1039
1040 /*
1041 * Note that the unmount was clean. If the unmount
1042 * was not clean, we need to know this to rebuild the
1043 * superblock counters from the perag headers if we
1044 * have a filesystem using non-persistent counters.
1045 */
1046 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1047 }
1048 }
1049
1050 /*
1051 * Make sure that there are no blocks in front of the head
1052 * with the same cycle number as the head. This can happen
1053 * because we allow multiple outstanding log writes concurrently,
1054 * and the later writes might make it out before earlier ones.
1055 *
1056 * We use the lsn from before modifying it so that we'll never
1057 * overwrite the unmount record after a clean unmount.
1058 *
1059 * Do this only if we are going to recover the filesystem
1060 *
1061 * NOTE: This used to say "if (!readonly)"
1062 * However on Linux, we can & do recover a read-only filesystem.
1063 * We only skip recovery if NORECOVERY is specified on mount,
1064 * in which case we would not be here.
1065 *
1066 * But... if the -device- itself is readonly, just skip this.
1067 * We can't recover this device anyway, so it won't matter.
1068 */
9db127ed 1069 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1070 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1071
9db127ed 1072done:
1da177e4
LT
1073 xlog_put_bp(bp);
1074
1075 if (error)
a0fa2b67 1076 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1077 return error;
1078}
1079
1080/*
1081 * Is the log zeroed at all?
1082 *
1083 * The last binary search should be changed to perform an X block read
1084 * once X becomes small enough. You can then search linearly through
1085 * the X blocks. This will cut down on the number of reads we need to do.
1086 *
1087 * If the log is partially zeroed, this routine will pass back the blkno
1088 * of the first block with cycle number 0. It won't have a complete LR
1089 * preceding it.
1090 *
1091 * Return:
1092 * 0 => the log is completely written to
2451337d
DC
1093 * 1 => use *blk_no as the first block of the log
1094 * <0 => error has occurred
1da177e4 1095 */
a8272ce0 1096STATIC int
1da177e4 1097xlog_find_zeroed(
9a8d2fdb 1098 struct xlog *log,
1da177e4
LT
1099 xfs_daddr_t *blk_no)
1100{
1101 xfs_buf_t *bp;
b2a922cd 1102 char *offset;
1da177e4
LT
1103 uint first_cycle, last_cycle;
1104 xfs_daddr_t new_blk, last_blk, start_blk;
1105 xfs_daddr_t num_scan_bblks;
1106 int error, log_bbnum = log->l_logBBsize;
1107
6fdf8ccc
NS
1108 *blk_no = 0;
1109
1da177e4
LT
1110 /* check totally zeroed log */
1111 bp = xlog_get_bp(log, 1);
1112 if (!bp)
2451337d 1113 return -ENOMEM;
076e6acb
CH
1114 error = xlog_bread(log, 0, 1, bp, &offset);
1115 if (error)
1da177e4 1116 goto bp_err;
076e6acb 1117
03bea6fe 1118 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1119 if (first_cycle == 0) { /* completely zeroed log */
1120 *blk_no = 0;
1121 xlog_put_bp(bp);
2451337d 1122 return 1;
1da177e4
LT
1123 }
1124
1125 /* check partially zeroed log */
076e6acb
CH
1126 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1127 if (error)
1da177e4 1128 goto bp_err;
076e6acb 1129
03bea6fe 1130 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1131 if (last_cycle != 0) { /* log completely written to */
1132 xlog_put_bp(bp);
1133 return 0;
1134 } else if (first_cycle != 1) {
1135 /*
1136 * If the cycle of the last block is zero, the cycle of
1137 * the first block must be 1. If it's not, maybe we're
1138 * not looking at a log... Bail out.
1139 */
a0fa2b67
DC
1140 xfs_warn(log->l_mp,
1141 "Log inconsistent or not a log (last==0, first!=1)");
2451337d 1142 error = -EINVAL;
5d0a6549 1143 goto bp_err;
1da177e4
LT
1144 }
1145
1146 /* we have a partially zeroed log */
1147 last_blk = log_bbnum-1;
1148 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1149 goto bp_err;
1150
1151 /*
1152 * Validate the answer. Because there is no way to guarantee that
1153 * the entire log is made up of log records which are the same size,
1154 * we scan over the defined maximum blocks. At this point, the maximum
1155 * is not chosen to mean anything special. XXXmiken
1156 */
1157 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1158 ASSERT(num_scan_bblks <= INT_MAX);
1159
1160 if (last_blk < num_scan_bblks)
1161 num_scan_bblks = last_blk;
1162 start_blk = last_blk - num_scan_bblks;
1163
1164 /*
1165 * We search for any instances of cycle number 0 that occur before
1166 * our current estimate of the head. What we're trying to detect is
1167 * 1 ... | 0 | 1 | 0...
1168 * ^ binary search ends here
1169 */
1170 if ((error = xlog_find_verify_cycle(log, start_blk,
1171 (int)num_scan_bblks, 0, &new_blk)))
1172 goto bp_err;
1173 if (new_blk != -1)
1174 last_blk = new_blk;
1175
1176 /*
1177 * Potentially backup over partial log record write. We don't need
1178 * to search the end of the log because we know it is zero.
1179 */
2451337d
DC
1180 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1181 if (error == 1)
1182 error = -EIO;
1183 if (error)
1184 goto bp_err;
1da177e4
LT
1185
1186 *blk_no = last_blk;
1187bp_err:
1188 xlog_put_bp(bp);
1189 if (error)
1190 return error;
2451337d 1191 return 1;
1da177e4
LT
1192}
1193
1194/*
1195 * These are simple subroutines used by xlog_clear_stale_blocks() below
1196 * to initialize a buffer full of empty log record headers and write
1197 * them into the log.
1198 */
1199STATIC void
1200xlog_add_record(
9a8d2fdb 1201 struct xlog *log,
b2a922cd 1202 char *buf,
1da177e4
LT
1203 int cycle,
1204 int block,
1205 int tail_cycle,
1206 int tail_block)
1207{
1208 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1209
1210 memset(buf, 0, BBSIZE);
b53e675d
CH
1211 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1212 recp->h_cycle = cpu_to_be32(cycle);
1213 recp->h_version = cpu_to_be32(
62118709 1214 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1215 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1216 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1217 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1218 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1219}
1220
1221STATIC int
1222xlog_write_log_records(
9a8d2fdb 1223 struct xlog *log,
1da177e4
LT
1224 int cycle,
1225 int start_block,
1226 int blocks,
1227 int tail_cycle,
1228 int tail_block)
1229{
b2a922cd 1230 char *offset;
1da177e4
LT
1231 xfs_buf_t *bp;
1232 int balign, ealign;
69ce58f0 1233 int sectbb = log->l_sectBBsize;
1da177e4
LT
1234 int end_block = start_block + blocks;
1235 int bufblks;
1236 int error = 0;
1237 int i, j = 0;
1238
6881a229
AE
1239 /*
1240 * Greedily allocate a buffer big enough to handle the full
1241 * range of basic blocks to be written. If that fails, try
1242 * a smaller size. We need to be able to write at least a
1243 * log sector, or we're out of luck.
1244 */
1da177e4 1245 bufblks = 1 << ffs(blocks);
81158e0c
DC
1246 while (bufblks > log->l_logBBsize)
1247 bufblks >>= 1;
1da177e4
LT
1248 while (!(bp = xlog_get_bp(log, bufblks))) {
1249 bufblks >>= 1;
69ce58f0 1250 if (bufblks < sectbb)
2451337d 1251 return -ENOMEM;
1da177e4
LT
1252 }
1253
1254 /* We may need to do a read at the start to fill in part of
1255 * the buffer in the starting sector not covered by the first
1256 * write below.
1257 */
5c17f533 1258 balign = round_down(start_block, sectbb);
1da177e4 1259 if (balign != start_block) {
076e6acb
CH
1260 error = xlog_bread_noalign(log, start_block, 1, bp);
1261 if (error)
1262 goto out_put_bp;
1263
1da177e4
LT
1264 j = start_block - balign;
1265 }
1266
1267 for (i = start_block; i < end_block; i += bufblks) {
1268 int bcount, endcount;
1269
1270 bcount = min(bufblks, end_block - start_block);
1271 endcount = bcount - j;
1272
1273 /* We may need to do a read at the end to fill in part of
1274 * the buffer in the final sector not covered by the write.
1275 * If this is the same sector as the above read, skip it.
1276 */
5c17f533 1277 ealign = round_down(end_block, sectbb);
1da177e4 1278 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1279 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1280 error = xlog_bread_offset(log, ealign, sectbb,
1281 bp, offset);
076e6acb
CH
1282 if (error)
1283 break;
1284
1da177e4
LT
1285 }
1286
1287 offset = xlog_align(log, start_block, endcount, bp);
1288 for (; j < endcount; j++) {
1289 xlog_add_record(log, offset, cycle, i+j,
1290 tail_cycle, tail_block);
1291 offset += BBSIZE;
1292 }
1293 error = xlog_bwrite(log, start_block, endcount, bp);
1294 if (error)
1295 break;
1296 start_block += endcount;
1297 j = 0;
1298 }
076e6acb
CH
1299
1300 out_put_bp:
1da177e4
LT
1301 xlog_put_bp(bp);
1302 return error;
1303}
1304
1305/*
1306 * This routine is called to blow away any incomplete log writes out
1307 * in front of the log head. We do this so that we won't become confused
1308 * if we come up, write only a little bit more, and then crash again.
1309 * If we leave the partial log records out there, this situation could
1310 * cause us to think those partial writes are valid blocks since they
1311 * have the current cycle number. We get rid of them by overwriting them
1312 * with empty log records with the old cycle number rather than the
1313 * current one.
1314 *
1315 * The tail lsn is passed in rather than taken from
1316 * the log so that we will not write over the unmount record after a
1317 * clean unmount in a 512 block log. Doing so would leave the log without
1318 * any valid log records in it until a new one was written. If we crashed
1319 * during that time we would not be able to recover.
1320 */
1321STATIC int
1322xlog_clear_stale_blocks(
9a8d2fdb 1323 struct xlog *log,
1da177e4
LT
1324 xfs_lsn_t tail_lsn)
1325{
1326 int tail_cycle, head_cycle;
1327 int tail_block, head_block;
1328 int tail_distance, max_distance;
1329 int distance;
1330 int error;
1331
1332 tail_cycle = CYCLE_LSN(tail_lsn);
1333 tail_block = BLOCK_LSN(tail_lsn);
1334 head_cycle = log->l_curr_cycle;
1335 head_block = log->l_curr_block;
1336
1337 /*
1338 * Figure out the distance between the new head of the log
1339 * and the tail. We want to write over any blocks beyond the
1340 * head that we may have written just before the crash, but
1341 * we don't want to overwrite the tail of the log.
1342 */
1343 if (head_cycle == tail_cycle) {
1344 /*
1345 * The tail is behind the head in the physical log,
1346 * so the distance from the head to the tail is the
1347 * distance from the head to the end of the log plus
1348 * the distance from the beginning of the log to the
1349 * tail.
1350 */
1351 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1352 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1353 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1354 return -EFSCORRUPTED;
1da177e4
LT
1355 }
1356 tail_distance = tail_block + (log->l_logBBsize - head_block);
1357 } else {
1358 /*
1359 * The head is behind the tail in the physical log,
1360 * so the distance from the head to the tail is just
1361 * the tail block minus the head block.
1362 */
1363 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1364 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1365 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1366 return -EFSCORRUPTED;
1da177e4
LT
1367 }
1368 tail_distance = tail_block - head_block;
1369 }
1370
1371 /*
1372 * If the head is right up against the tail, we can't clear
1373 * anything.
1374 */
1375 if (tail_distance <= 0) {
1376 ASSERT(tail_distance == 0);
1377 return 0;
1378 }
1379
1380 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1381 /*
1382 * Take the smaller of the maximum amount of outstanding I/O
1383 * we could have and the distance to the tail to clear out.
1384 * We take the smaller so that we don't overwrite the tail and
1385 * we don't waste all day writing from the head to the tail
1386 * for no reason.
1387 */
1388 max_distance = MIN(max_distance, tail_distance);
1389
1390 if ((head_block + max_distance) <= log->l_logBBsize) {
1391 /*
1392 * We can stomp all the blocks we need to without
1393 * wrapping around the end of the log. Just do it
1394 * in a single write. Use the cycle number of the
1395 * current cycle minus one so that the log will look like:
1396 * n ... | n - 1 ...
1397 */
1398 error = xlog_write_log_records(log, (head_cycle - 1),
1399 head_block, max_distance, tail_cycle,
1400 tail_block);
1401 if (error)
1402 return error;
1403 } else {
1404 /*
1405 * We need to wrap around the end of the physical log in
1406 * order to clear all the blocks. Do it in two separate
1407 * I/Os. The first write should be from the head to the
1408 * end of the physical log, and it should use the current
1409 * cycle number minus one just like above.
1410 */
1411 distance = log->l_logBBsize - head_block;
1412 error = xlog_write_log_records(log, (head_cycle - 1),
1413 head_block, distance, tail_cycle,
1414 tail_block);
1415
1416 if (error)
1417 return error;
1418
1419 /*
1420 * Now write the blocks at the start of the physical log.
1421 * This writes the remainder of the blocks we want to clear.
1422 * It uses the current cycle number since we're now on the
1423 * same cycle as the head so that we get:
1424 * n ... n ... | n - 1 ...
1425 * ^^^^^ blocks we're writing
1426 */
1427 distance = max_distance - (log->l_logBBsize - head_block);
1428 error = xlog_write_log_records(log, head_cycle, 0, distance,
1429 tail_cycle, tail_block);
1430 if (error)
1431 return error;
1432 }
1433
1434 return 0;
1435}
1436
1437/******************************************************************************
1438 *
1439 * Log recover routines
1440 *
1441 ******************************************************************************
1442 */
1443
f0a76953 1444/*
a775ad77
DC
1445 * Sort the log items in the transaction.
1446 *
1447 * The ordering constraints are defined by the inode allocation and unlink
1448 * behaviour. The rules are:
1449 *
1450 * 1. Every item is only logged once in a given transaction. Hence it
1451 * represents the last logged state of the item. Hence ordering is
1452 * dependent on the order in which operations need to be performed so
1453 * required initial conditions are always met.
1454 *
1455 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1456 * there's nothing to replay from them so we can simply cull them
1457 * from the transaction. However, we can't do that until after we've
1458 * replayed all the other items because they may be dependent on the
1459 * cancelled buffer and replaying the cancelled buffer can remove it
1460 * form the cancelled buffer table. Hence they have tobe done last.
1461 *
1462 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1463 * read the buffer and replay changes into it. For filesystems using the
1464 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1465 * treated the same as inode allocation buffers as they create and
1466 * initialise the buffers directly.
a775ad77
DC
1467 *
1468 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1469 * This ensures that inodes are completely flushed to the inode buffer
1470 * in a "free" state before we remove the unlinked inode list pointer.
1471 *
1472 * Hence the ordering needs to be inode allocation buffers first, inode items
1473 * second, inode unlink buffers third and cancelled buffers last.
1474 *
1475 * But there's a problem with that - we can't tell an inode allocation buffer
1476 * apart from a regular buffer, so we can't separate them. We can, however,
1477 * tell an inode unlink buffer from the others, and so we can separate them out
1478 * from all the other buffers and move them to last.
1479 *
1480 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1481 * - buffer_list for all buffers except cancelled/inode unlink buffers
1482 * - item_list for all non-buffer items
1483 * - inode_buffer_list for inode unlink buffers
1484 * - cancel_list for the cancelled buffers
1485 *
1486 * Note that we add objects to the tail of the lists so that first-to-last
1487 * ordering is preserved within the lists. Adding objects to the head of the
1488 * list means when we traverse from the head we walk them in last-to-first
1489 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1490 * but for all other items there may be specific ordering that we need to
1491 * preserve.
f0a76953 1492 */
1da177e4
LT
1493STATIC int
1494xlog_recover_reorder_trans(
ad223e60
MT
1495 struct xlog *log,
1496 struct xlog_recover *trans,
9abbc539 1497 int pass)
1da177e4 1498{
f0a76953 1499 xlog_recover_item_t *item, *n;
2a84108f 1500 int error = 0;
f0a76953 1501 LIST_HEAD(sort_list);
a775ad77
DC
1502 LIST_HEAD(cancel_list);
1503 LIST_HEAD(buffer_list);
1504 LIST_HEAD(inode_buffer_list);
1505 LIST_HEAD(inode_list);
f0a76953
DC
1506
1507 list_splice_init(&trans->r_itemq, &sort_list);
1508 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1509 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1510
f0a76953 1511 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1512 case XFS_LI_ICREATE:
1513 list_move_tail(&item->ri_list, &buffer_list);
1514 break;
1da177e4 1515 case XFS_LI_BUF:
a775ad77 1516 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1517 trace_xfs_log_recover_item_reorder_head(log,
1518 trans, item, pass);
a775ad77 1519 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1520 break;
1521 }
a775ad77
DC
1522 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1523 list_move(&item->ri_list, &inode_buffer_list);
1524 break;
1525 }
1526 list_move_tail(&item->ri_list, &buffer_list);
1527 break;
1da177e4 1528 case XFS_LI_INODE:
1da177e4
LT
1529 case XFS_LI_DQUOT:
1530 case XFS_LI_QUOTAOFF:
1531 case XFS_LI_EFD:
1532 case XFS_LI_EFI:
9abbc539
DC
1533 trace_xfs_log_recover_item_reorder_tail(log,
1534 trans, item, pass);
a775ad77 1535 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1536 break;
1537 default:
a0fa2b67
DC
1538 xfs_warn(log->l_mp,
1539 "%s: unrecognized type of log operation",
1540 __func__);
1da177e4 1541 ASSERT(0);
2a84108f
MT
1542 /*
1543 * return the remaining items back to the transaction
1544 * item list so they can be freed in caller.
1545 */
1546 if (!list_empty(&sort_list))
1547 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1548 error = -EIO;
2a84108f 1549 goto out;
1da177e4 1550 }
f0a76953 1551 }
2a84108f 1552out:
f0a76953 1553 ASSERT(list_empty(&sort_list));
a775ad77
DC
1554 if (!list_empty(&buffer_list))
1555 list_splice(&buffer_list, &trans->r_itemq);
1556 if (!list_empty(&inode_list))
1557 list_splice_tail(&inode_list, &trans->r_itemq);
1558 if (!list_empty(&inode_buffer_list))
1559 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1560 if (!list_empty(&cancel_list))
1561 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1562 return error;
1da177e4
LT
1563}
1564
1565/*
1566 * Build up the table of buf cancel records so that we don't replay
1567 * cancelled data in the second pass. For buffer records that are
1568 * not cancel records, there is nothing to do here so we just return.
1569 *
1570 * If we get a cancel record which is already in the table, this indicates
1571 * that the buffer was cancelled multiple times. In order to ensure
1572 * that during pass 2 we keep the record in the table until we reach its
1573 * last occurrence in the log, we keep a reference count in the cancel
1574 * record in the table to tell us how many times we expect to see this
1575 * record during the second pass.
1576 */
c9f71f5f
CH
1577STATIC int
1578xlog_recover_buffer_pass1(
ad223e60
MT
1579 struct xlog *log,
1580 struct xlog_recover_item *item)
1da177e4 1581{
c9f71f5f 1582 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1583 struct list_head *bucket;
1584 struct xfs_buf_cancel *bcp;
1da177e4
LT
1585
1586 /*
1587 * If this isn't a cancel buffer item, then just return.
1588 */
e2714bf8 1589 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1590 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1591 return 0;
9abbc539 1592 }
1da177e4
LT
1593
1594 /*
d5689eaa
CH
1595 * Insert an xfs_buf_cancel record into the hash table of them.
1596 * If there is already an identical record, bump its reference count.
1da177e4 1597 */
d5689eaa
CH
1598 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1599 list_for_each_entry(bcp, bucket, bc_list) {
1600 if (bcp->bc_blkno == buf_f->blf_blkno &&
1601 bcp->bc_len == buf_f->blf_len) {
1602 bcp->bc_refcount++;
9abbc539 1603 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1604 return 0;
1da177e4 1605 }
d5689eaa
CH
1606 }
1607
1608 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1609 bcp->bc_blkno = buf_f->blf_blkno;
1610 bcp->bc_len = buf_f->blf_len;
1da177e4 1611 bcp->bc_refcount = 1;
d5689eaa
CH
1612 list_add_tail(&bcp->bc_list, bucket);
1613
9abbc539 1614 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1615 return 0;
1da177e4
LT
1616}
1617
1618/*
1619 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
1620 * entry in the buffer cancel record table. If it is, return the cancel
1621 * buffer structure to the caller.
1da177e4 1622 */
84a5b730
DC
1623STATIC struct xfs_buf_cancel *
1624xlog_peek_buffer_cancelled(
ad223e60 1625 struct xlog *log,
1da177e4
LT
1626 xfs_daddr_t blkno,
1627 uint len,
1628 ushort flags)
1629{
d5689eaa
CH
1630 struct list_head *bucket;
1631 struct xfs_buf_cancel *bcp;
1da177e4 1632
84a5b730
DC
1633 if (!log->l_buf_cancel_table) {
1634 /* empty table means no cancelled buffers in the log */
c1155410 1635 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 1636 return NULL;
1da177e4
LT
1637 }
1638
d5689eaa
CH
1639 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1640 list_for_each_entry(bcp, bucket, bc_list) {
1641 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 1642 return bcp;
1da177e4 1643 }
d5689eaa 1644
1da177e4 1645 /*
d5689eaa
CH
1646 * We didn't find a corresponding entry in the table, so return 0 so
1647 * that the buffer is NOT cancelled.
1da177e4 1648 */
c1155410 1649 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
1650 return NULL;
1651}
1652
1653/*
1654 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1655 * otherwise return 0. If the buffer is actually a buffer cancel item
1656 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1657 * table and remove it from the table if this is the last reference.
1658 *
1659 * We remove the cancel record from the table when we encounter its last
1660 * occurrence in the log so that if the same buffer is re-used again after its
1661 * last cancellation we actually replay the changes made at that point.
1662 */
1663STATIC int
1664xlog_check_buffer_cancelled(
1665 struct xlog *log,
1666 xfs_daddr_t blkno,
1667 uint len,
1668 ushort flags)
1669{
1670 struct xfs_buf_cancel *bcp;
1671
1672 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1673 if (!bcp)
1674 return 0;
d5689eaa 1675
d5689eaa
CH
1676 /*
1677 * We've go a match, so return 1 so that the recovery of this buffer
1678 * is cancelled. If this buffer is actually a buffer cancel log
1679 * item, then decrement the refcount on the one in the table and
1680 * remove it if this is the last reference.
1681 */
1682 if (flags & XFS_BLF_CANCEL) {
1683 if (--bcp->bc_refcount == 0) {
1684 list_del(&bcp->bc_list);
1685 kmem_free(bcp);
1686 }
1687 }
1688 return 1;
1da177e4
LT
1689}
1690
1da177e4 1691/*
e2714bf8
CH
1692 * Perform recovery for a buffer full of inodes. In these buffers, the only
1693 * data which should be recovered is that which corresponds to the
1694 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1695 * data for the inodes is always logged through the inodes themselves rather
1696 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1697 *
e2714bf8
CH
1698 * The only time when buffers full of inodes are fully recovered is when the
1699 * buffer is full of newly allocated inodes. In this case the buffer will
1700 * not be marked as an inode buffer and so will be sent to
1701 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1702 */
1703STATIC int
1704xlog_recover_do_inode_buffer(
e2714bf8 1705 struct xfs_mount *mp,
1da177e4 1706 xlog_recover_item_t *item,
e2714bf8 1707 struct xfs_buf *bp,
1da177e4
LT
1708 xfs_buf_log_format_t *buf_f)
1709{
1710 int i;
e2714bf8
CH
1711 int item_index = 0;
1712 int bit = 0;
1713 int nbits = 0;
1714 int reg_buf_offset = 0;
1715 int reg_buf_bytes = 0;
1da177e4
LT
1716 int next_unlinked_offset;
1717 int inodes_per_buf;
1718 xfs_agino_t *logged_nextp;
1719 xfs_agino_t *buffer_nextp;
1da177e4 1720
9abbc539 1721 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1722
1723 /*
1724 * Post recovery validation only works properly on CRC enabled
1725 * filesystems.
1726 */
1727 if (xfs_sb_version_hascrc(&mp->m_sb))
1728 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1729
aa0e8833 1730 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1731 for (i = 0; i < inodes_per_buf; i++) {
1732 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1733 offsetof(xfs_dinode_t, di_next_unlinked);
1734
1735 while (next_unlinked_offset >=
1736 (reg_buf_offset + reg_buf_bytes)) {
1737 /*
1738 * The next di_next_unlinked field is beyond
1739 * the current logged region. Find the next
1740 * logged region that contains or is beyond
1741 * the current di_next_unlinked field.
1742 */
1743 bit += nbits;
e2714bf8
CH
1744 bit = xfs_next_bit(buf_f->blf_data_map,
1745 buf_f->blf_map_size, bit);
1da177e4
LT
1746
1747 /*
1748 * If there are no more logged regions in the
1749 * buffer, then we're done.
1750 */
e2714bf8 1751 if (bit == -1)
1da177e4 1752 return 0;
1da177e4 1753
e2714bf8
CH
1754 nbits = xfs_contig_bits(buf_f->blf_data_map,
1755 buf_f->blf_map_size, bit);
1da177e4 1756 ASSERT(nbits > 0);
c1155410
DC
1757 reg_buf_offset = bit << XFS_BLF_SHIFT;
1758 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1759 item_index++;
1760 }
1761
1762 /*
1763 * If the current logged region starts after the current
1764 * di_next_unlinked field, then move on to the next
1765 * di_next_unlinked field.
1766 */
e2714bf8 1767 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1768 continue;
1da177e4
LT
1769
1770 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1771 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1772 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1773 BBTOB(bp->b_io_length));
1da177e4
LT
1774
1775 /*
1776 * The current logged region contains a copy of the
1777 * current di_next_unlinked field. Extract its value
1778 * and copy it to the buffer copy.
1779 */
4e0d5f92
CH
1780 logged_nextp = item->ri_buf[item_index].i_addr +
1781 next_unlinked_offset - reg_buf_offset;
1da177e4 1782 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1783 xfs_alert(mp,
1784 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1785 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1786 item, bp);
1787 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1788 XFS_ERRLEVEL_LOW, mp);
2451337d 1789 return -EFSCORRUPTED;
1da177e4
LT
1790 }
1791
88ee2df7 1792 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
87c199c2 1793 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1794
1795 /*
1796 * If necessary, recalculate the CRC in the on-disk inode. We
1797 * have to leave the inode in a consistent state for whoever
1798 * reads it next....
1799 */
88ee2df7 1800 xfs_dinode_calc_crc(mp,
0a32c26e
DC
1801 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1802
1da177e4
LT
1803 }
1804
1805 return 0;
1806}
1807
50d5c8d8
DC
1808/*
1809 * V5 filesystems know the age of the buffer on disk being recovered. We can
1810 * have newer objects on disk than we are replaying, and so for these cases we
1811 * don't want to replay the current change as that will make the buffer contents
1812 * temporarily invalid on disk.
1813 *
1814 * The magic number might not match the buffer type we are going to recover
1815 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1816 * extract the LSN of the existing object in the buffer based on it's current
1817 * magic number. If we don't recognise the magic number in the buffer, then
1818 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1819 * so can recover the buffer.
566055d3
DC
1820 *
1821 * Note: we cannot rely solely on magic number matches to determine that the
1822 * buffer has a valid LSN - we also need to verify that it belongs to this
1823 * filesystem, so we need to extract the object's LSN and compare it to that
1824 * which we read from the superblock. If the UUIDs don't match, then we've got a
1825 * stale metadata block from an old filesystem instance that we need to recover
1826 * over the top of.
50d5c8d8
DC
1827 */
1828static xfs_lsn_t
1829xlog_recover_get_buf_lsn(
1830 struct xfs_mount *mp,
1831 struct xfs_buf *bp)
1832{
1833 __uint32_t magic32;
1834 __uint16_t magic16;
1835 __uint16_t magicda;
1836 void *blk = bp->b_addr;
566055d3
DC
1837 uuid_t *uuid;
1838 xfs_lsn_t lsn = -1;
50d5c8d8
DC
1839
1840 /* v4 filesystems always recover immediately */
1841 if (!xfs_sb_version_hascrc(&mp->m_sb))
1842 goto recover_immediately;
1843
1844 magic32 = be32_to_cpu(*(__be32 *)blk);
1845 switch (magic32) {
1846 case XFS_ABTB_CRC_MAGIC:
1847 case XFS_ABTC_CRC_MAGIC:
1848 case XFS_ABTB_MAGIC:
1849 case XFS_ABTC_MAGIC:
1850 case XFS_IBT_CRC_MAGIC:
566055d3
DC
1851 case XFS_IBT_MAGIC: {
1852 struct xfs_btree_block *btb = blk;
1853
1854 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
1855 uuid = &btb->bb_u.s.bb_uuid;
1856 break;
1857 }
50d5c8d8 1858 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
1859 case XFS_BMAP_MAGIC: {
1860 struct xfs_btree_block *btb = blk;
1861
1862 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
1863 uuid = &btb->bb_u.l.bb_uuid;
1864 break;
1865 }
50d5c8d8 1866 case XFS_AGF_MAGIC:
566055d3
DC
1867 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
1868 uuid = &((struct xfs_agf *)blk)->agf_uuid;
1869 break;
50d5c8d8 1870 case XFS_AGFL_MAGIC:
566055d3
DC
1871 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
1872 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
1873 break;
50d5c8d8 1874 case XFS_AGI_MAGIC:
566055d3
DC
1875 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
1876 uuid = &((struct xfs_agi *)blk)->agi_uuid;
1877 break;
50d5c8d8 1878 case XFS_SYMLINK_MAGIC:
566055d3
DC
1879 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
1880 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
1881 break;
50d5c8d8
DC
1882 case XFS_DIR3_BLOCK_MAGIC:
1883 case XFS_DIR3_DATA_MAGIC:
1884 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
1885 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
1886 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
1887 break;
50d5c8d8 1888 case XFS_ATTR3_RMT_MAGIC:
e3c32ee9
DC
1889 /*
1890 * Remote attr blocks are written synchronously, rather than
1891 * being logged. That means they do not contain a valid LSN
1892 * (i.e. transactionally ordered) in them, and hence any time we
1893 * see a buffer to replay over the top of a remote attribute
1894 * block we should simply do so.
1895 */
1896 goto recover_immediately;
50d5c8d8 1897 case XFS_SB_MAGIC:
566055d3
DC
1898 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
1899 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
1900 break;
50d5c8d8
DC
1901 default:
1902 break;
1903 }
1904
566055d3
DC
1905 if (lsn != (xfs_lsn_t)-1) {
1906 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1907 goto recover_immediately;
1908 return lsn;
1909 }
1910
50d5c8d8
DC
1911 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
1912 switch (magicda) {
1913 case XFS_DIR3_LEAF1_MAGIC:
1914 case XFS_DIR3_LEAFN_MAGIC:
1915 case XFS_DA3_NODE_MAGIC:
566055d3
DC
1916 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
1917 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
1918 break;
50d5c8d8
DC
1919 default:
1920 break;
1921 }
1922
566055d3
DC
1923 if (lsn != (xfs_lsn_t)-1) {
1924 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1925 goto recover_immediately;
1926 return lsn;
1927 }
1928
50d5c8d8
DC
1929 /*
1930 * We do individual object checks on dquot and inode buffers as they
1931 * have their own individual LSN records. Also, we could have a stale
1932 * buffer here, so we have to at least recognise these buffer types.
1933 *
1934 * A notd complexity here is inode unlinked list processing - it logs
1935 * the inode directly in the buffer, but we don't know which inodes have
1936 * been modified, and there is no global buffer LSN. Hence we need to
1937 * recover all inode buffer types immediately. This problem will be
1938 * fixed by logical logging of the unlinked list modifications.
1939 */
1940 magic16 = be16_to_cpu(*(__be16 *)blk);
1941 switch (magic16) {
1942 case XFS_DQUOT_MAGIC:
1943 case XFS_DINODE_MAGIC:
1944 goto recover_immediately;
1945 default:
1946 break;
1947 }
1948
1949 /* unknown buffer contents, recover immediately */
1950
1951recover_immediately:
1952 return (xfs_lsn_t)-1;
1953
1954}
1955
1da177e4 1956/*
d75afeb3
DC
1957 * Validate the recovered buffer is of the correct type and attach the
1958 * appropriate buffer operations to them for writeback. Magic numbers are in a
1959 * few places:
1960 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1961 * the first 32 bits of the buffer (most blocks),
1962 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 1963 */
d75afeb3 1964static void
50d5c8d8 1965xlog_recover_validate_buf_type(
9abbc539 1966 struct xfs_mount *mp,
e2714bf8 1967 struct xfs_buf *bp,
1da177e4
LT
1968 xfs_buf_log_format_t *buf_f)
1969{
d75afeb3
DC
1970 struct xfs_da_blkinfo *info = bp->b_addr;
1971 __uint32_t magic32;
1972 __uint16_t magic16;
1973 __uint16_t magicda;
1974
67dc288c
DC
1975 /*
1976 * We can only do post recovery validation on items on CRC enabled
1977 * fielsystems as we need to know when the buffer was written to be able
1978 * to determine if we should have replayed the item. If we replay old
1979 * metadata over a newer buffer, then it will enter a temporarily
1980 * inconsistent state resulting in verification failures. Hence for now
1981 * just avoid the verification stage for non-crc filesystems
1982 */
1983 if (!xfs_sb_version_hascrc(&mp->m_sb))
1984 return;
1985
d75afeb3
DC
1986 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1987 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1988 magicda = be16_to_cpu(info->magic);
61fe135c
DC
1989 switch (xfs_blft_from_flags(buf_f)) {
1990 case XFS_BLFT_BTREE_BUF:
d75afeb3 1991 switch (magic32) {
ee1a47ab
CH
1992 case XFS_ABTB_CRC_MAGIC:
1993 case XFS_ABTC_CRC_MAGIC:
1994 case XFS_ABTB_MAGIC:
1995 case XFS_ABTC_MAGIC:
1996 bp->b_ops = &xfs_allocbt_buf_ops;
1997 break;
1998 case XFS_IBT_CRC_MAGIC:
aafc3c24 1999 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2000 case XFS_IBT_MAGIC:
aafc3c24 2001 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2002 bp->b_ops = &xfs_inobt_buf_ops;
2003 break;
2004 case XFS_BMAP_CRC_MAGIC:
2005 case XFS_BMAP_MAGIC:
2006 bp->b_ops = &xfs_bmbt_buf_ops;
2007 break;
2008 default:
2009 xfs_warn(mp, "Bad btree block magic!");
2010 ASSERT(0);
2011 break;
2012 }
2013 break;
61fe135c 2014 case XFS_BLFT_AGF_BUF:
d75afeb3 2015 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2016 xfs_warn(mp, "Bad AGF block magic!");
2017 ASSERT(0);
2018 break;
2019 }
2020 bp->b_ops = &xfs_agf_buf_ops;
2021 break;
61fe135c 2022 case XFS_BLFT_AGFL_BUF:
d75afeb3 2023 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2024 xfs_warn(mp, "Bad AGFL block magic!");
2025 ASSERT(0);
2026 break;
2027 }
2028 bp->b_ops = &xfs_agfl_buf_ops;
2029 break;
61fe135c 2030 case XFS_BLFT_AGI_BUF:
d75afeb3 2031 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2032 xfs_warn(mp, "Bad AGI block magic!");
2033 ASSERT(0);
2034 break;
2035 }
2036 bp->b_ops = &xfs_agi_buf_ops;
2037 break;
61fe135c
DC
2038 case XFS_BLFT_UDQUOT_BUF:
2039 case XFS_BLFT_PDQUOT_BUF:
2040 case XFS_BLFT_GDQUOT_BUF:
123887e8 2041#ifdef CONFIG_XFS_QUOTA
d75afeb3 2042 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2043 xfs_warn(mp, "Bad DQUOT block magic!");
2044 ASSERT(0);
2045 break;
2046 }
2047 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2048#else
2049 xfs_alert(mp,
2050 "Trying to recover dquots without QUOTA support built in!");
2051 ASSERT(0);
2052#endif
3fe58f30 2053 break;
61fe135c 2054 case XFS_BLFT_DINO_BUF:
d75afeb3 2055 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2056 xfs_warn(mp, "Bad INODE block magic!");
2057 ASSERT(0);
2058 break;
2059 }
2060 bp->b_ops = &xfs_inode_buf_ops;
2061 break;
61fe135c 2062 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2063 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2064 xfs_warn(mp, "Bad symlink block magic!");
2065 ASSERT(0);
2066 break;
2067 }
2068 bp->b_ops = &xfs_symlink_buf_ops;
2069 break;
61fe135c 2070 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2071 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2072 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2073 xfs_warn(mp, "Bad dir block magic!");
2074 ASSERT(0);
2075 break;
2076 }
2077 bp->b_ops = &xfs_dir3_block_buf_ops;
2078 break;
61fe135c 2079 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2080 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2081 magic32 != XFS_DIR3_DATA_MAGIC) {
2082 xfs_warn(mp, "Bad dir data magic!");
2083 ASSERT(0);
2084 break;
2085 }
2086 bp->b_ops = &xfs_dir3_data_buf_ops;
2087 break;
61fe135c 2088 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2089 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2090 magic32 != XFS_DIR3_FREE_MAGIC) {
2091 xfs_warn(mp, "Bad dir3 free magic!");
2092 ASSERT(0);
2093 break;
2094 }
2095 bp->b_ops = &xfs_dir3_free_buf_ops;
2096 break;
61fe135c 2097 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2098 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2099 magicda != XFS_DIR3_LEAF1_MAGIC) {
2100 xfs_warn(mp, "Bad dir leaf1 magic!");
2101 ASSERT(0);
2102 break;
2103 }
2104 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2105 break;
61fe135c 2106 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2107 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2108 magicda != XFS_DIR3_LEAFN_MAGIC) {
2109 xfs_warn(mp, "Bad dir leafn magic!");
2110 ASSERT(0);
2111 break;
2112 }
2113 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2114 break;
61fe135c 2115 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2116 if (magicda != XFS_DA_NODE_MAGIC &&
2117 magicda != XFS_DA3_NODE_MAGIC) {
2118 xfs_warn(mp, "Bad da node magic!");
2119 ASSERT(0);
2120 break;
2121 }
2122 bp->b_ops = &xfs_da3_node_buf_ops;
2123 break;
61fe135c 2124 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2125 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2126 magicda != XFS_ATTR3_LEAF_MAGIC) {
2127 xfs_warn(mp, "Bad attr leaf magic!");
2128 ASSERT(0);
2129 break;
2130 }
2131 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2132 break;
61fe135c 2133 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2134 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2135 xfs_warn(mp, "Bad attr remote magic!");
2136 ASSERT(0);
2137 break;
2138 }
2139 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2140 break;
04a1e6c5
DC
2141 case XFS_BLFT_SB_BUF:
2142 if (magic32 != XFS_SB_MAGIC) {
2143 xfs_warn(mp, "Bad SB block magic!");
2144 ASSERT(0);
2145 break;
2146 }
2147 bp->b_ops = &xfs_sb_buf_ops;
2148 break;
ee1a47ab 2149 default:
61fe135c
DC
2150 xfs_warn(mp, "Unknown buffer type %d!",
2151 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2152 break;
2153 }
1da177e4
LT
2154}
2155
d75afeb3
DC
2156/*
2157 * Perform a 'normal' buffer recovery. Each logged region of the
2158 * buffer should be copied over the corresponding region in the
2159 * given buffer. The bitmap in the buf log format structure indicates
2160 * where to place the logged data.
2161 */
2162STATIC void
2163xlog_recover_do_reg_buffer(
2164 struct xfs_mount *mp,
2165 xlog_recover_item_t *item,
2166 struct xfs_buf *bp,
2167 xfs_buf_log_format_t *buf_f)
2168{
2169 int i;
2170 int bit;
2171 int nbits;
2172 int error;
2173
2174 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2175
2176 bit = 0;
2177 i = 1; /* 0 is the buf format structure */
2178 while (1) {
2179 bit = xfs_next_bit(buf_f->blf_data_map,
2180 buf_f->blf_map_size, bit);
2181 if (bit == -1)
2182 break;
2183 nbits = xfs_contig_bits(buf_f->blf_data_map,
2184 buf_f->blf_map_size, bit);
2185 ASSERT(nbits > 0);
2186 ASSERT(item->ri_buf[i].i_addr != NULL);
2187 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2188 ASSERT(BBTOB(bp->b_io_length) >=
2189 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2190
709da6a6
DC
2191 /*
2192 * The dirty regions logged in the buffer, even though
2193 * contiguous, may span multiple chunks. This is because the
2194 * dirty region may span a physical page boundary in a buffer
2195 * and hence be split into two separate vectors for writing into
2196 * the log. Hence we need to trim nbits back to the length of
2197 * the current region being copied out of the log.
2198 */
2199 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2200 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2201
d75afeb3
DC
2202 /*
2203 * Do a sanity check if this is a dquot buffer. Just checking
2204 * the first dquot in the buffer should do. XXXThis is
2205 * probably a good thing to do for other buf types also.
2206 */
2207 error = 0;
2208 if (buf_f->blf_flags &
2209 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2210 if (item->ri_buf[i].i_addr == NULL) {
2211 xfs_alert(mp,
2212 "XFS: NULL dquot in %s.", __func__);
2213 goto next;
2214 }
2215 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2216 xfs_alert(mp,
2217 "XFS: dquot too small (%d) in %s.",
2218 item->ri_buf[i].i_len, __func__);
2219 goto next;
2220 }
9aede1d8 2221 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
d75afeb3
DC
2222 -1, 0, XFS_QMOPT_DOWARN,
2223 "dquot_buf_recover");
2224 if (error)
2225 goto next;
2226 }
2227
2228 memcpy(xfs_buf_offset(bp,
2229 (uint)bit << XFS_BLF_SHIFT), /* dest */
2230 item->ri_buf[i].i_addr, /* source */
2231 nbits<<XFS_BLF_SHIFT); /* length */
2232 next:
2233 i++;
2234 bit += nbits;
2235 }
2236
2237 /* Shouldn't be any more regions */
2238 ASSERT(i == item->ri_total);
2239
67dc288c 2240 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2241}
2242
1da177e4
LT
2243/*
2244 * Perform a dquot buffer recovery.
8ba701ee 2245 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2246 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2247 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2248 *
2249 * Return false if the buffer was tossed and true if we recovered the buffer to
2250 * indicate to the caller if the buffer needs writing.
1da177e4 2251 */
ad3714b8 2252STATIC bool
1da177e4 2253xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2254 struct xfs_mount *mp,
2255 struct xlog *log,
2256 struct xlog_recover_item *item,
2257 struct xfs_buf *bp,
2258 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2259{
2260 uint type;
2261
9abbc539
DC
2262 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2263
1da177e4
LT
2264 /*
2265 * Filesystems are required to send in quota flags at mount time.
2266 */
ad3714b8
DC
2267 if (!mp->m_qflags)
2268 return false;
1da177e4
LT
2269
2270 type = 0;
c1155410 2271 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2272 type |= XFS_DQ_USER;
c1155410 2273 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2274 type |= XFS_DQ_PROJ;
c1155410 2275 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2276 type |= XFS_DQ_GROUP;
2277 /*
2278 * This type of quotas was turned off, so ignore this buffer
2279 */
2280 if (log->l_quotaoffs_flag & type)
ad3714b8 2281 return false;
1da177e4 2282
9abbc539 2283 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
ad3714b8 2284 return true;
1da177e4
LT
2285}
2286
2287/*
2288 * This routine replays a modification made to a buffer at runtime.
2289 * There are actually two types of buffer, regular and inode, which
2290 * are handled differently. Inode buffers are handled differently
2291 * in that we only recover a specific set of data from them, namely
2292 * the inode di_next_unlinked fields. This is because all other inode
2293 * data is actually logged via inode records and any data we replay
2294 * here which overlaps that may be stale.
2295 *
2296 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2297 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2298 * of the buffer in the log should not be replayed at recovery time.
2299 * This is so that if the blocks covered by the buffer are reused for
2300 * file data before we crash we don't end up replaying old, freed
2301 * meta-data into a user's file.
2302 *
2303 * To handle the cancellation of buffer log items, we make two passes
2304 * over the log during recovery. During the first we build a table of
2305 * those buffers which have been cancelled, and during the second we
2306 * only replay those buffers which do not have corresponding cancel
34be5ff3 2307 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2308 * for more details on the implementation of the table of cancel records.
2309 */
2310STATIC int
c9f71f5f 2311xlog_recover_buffer_pass2(
9a8d2fdb
MT
2312 struct xlog *log,
2313 struct list_head *buffer_list,
50d5c8d8
DC
2314 struct xlog_recover_item *item,
2315 xfs_lsn_t current_lsn)
1da177e4 2316{
4e0d5f92 2317 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2318 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2319 xfs_buf_t *bp;
2320 int error;
6ad112bf 2321 uint buf_flags;
50d5c8d8 2322 xfs_lsn_t lsn;
1da177e4 2323
c9f71f5f
CH
2324 /*
2325 * In this pass we only want to recover all the buffers which have
2326 * not been cancelled and are not cancellation buffers themselves.
2327 */
2328 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2329 buf_f->blf_len, buf_f->blf_flags)) {
2330 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2331 return 0;
1da177e4 2332 }
c9f71f5f 2333
9abbc539 2334 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2335
a8acad70 2336 buf_flags = 0;
611c9946
DC
2337 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2338 buf_flags |= XBF_UNMAPPED;
6ad112bf 2339
e2714bf8 2340 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2341 buf_flags, NULL);
ac4d6888 2342 if (!bp)
2451337d 2343 return -ENOMEM;
e5702805 2344 error = bp->b_error;
5a52c2a5 2345 if (error) {
901796af 2346 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2347 goto out_release;
1da177e4
LT
2348 }
2349
50d5c8d8 2350 /*
67dc288c 2351 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2352 * the lsn of the transaction we are replaying.
67dc288c
DC
2353 *
2354 * Note that we have to be extremely careful of readahead here.
2355 * Readahead does not attach verfiers to the buffers so if we don't
2356 * actually do any replay after readahead because of the LSN we found
2357 * in the buffer if more recent than that current transaction then we
2358 * need to attach the verifier directly. Failure to do so can lead to
2359 * future recovery actions (e.g. EFI and unlinked list recovery) can
2360 * operate on the buffers and they won't get the verifier attached. This
2361 * can lead to blocks on disk having the correct content but a stale
2362 * CRC.
2363 *
2364 * It is safe to assume these clean buffers are currently up to date.
2365 * If the buffer is dirtied by a later transaction being replayed, then
2366 * the verifier will be reset to match whatever recover turns that
2367 * buffer into.
50d5c8d8
DC
2368 */
2369 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c
DC
2370 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2371 xlog_recover_validate_buf_type(mp, bp, buf_f);
50d5c8d8 2372 goto out_release;
67dc288c 2373 }
50d5c8d8 2374
e2714bf8 2375 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2376 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2377 if (error)
2378 goto out_release;
e2714bf8 2379 } else if (buf_f->blf_flags &
c1155410 2380 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2381 bool dirty;
2382
2383 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2384 if (!dirty)
2385 goto out_release;
1da177e4 2386 } else {
9abbc539 2387 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4 2388 }
1da177e4
LT
2389
2390 /*
2391 * Perform delayed write on the buffer. Asynchronous writes will be
2392 * slower when taking into account all the buffers to be flushed.
2393 *
2394 * Also make sure that only inode buffers with good sizes stay in
2395 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2396 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2397 * buffers in the log can be a different size if the log was generated
2398 * by an older kernel using unclustered inode buffers or a newer kernel
2399 * running with a different inode cluster size. Regardless, if the
0f49efd8
JL
2400 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2401 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2402 * the buffer out of the buffer cache so that the buffer won't
2403 * overlap with future reads of those inodes.
2404 */
2405 if (XFS_DINODE_MAGIC ==
b53e675d 2406 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2407 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
0f49efd8 2408 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2409 xfs_buf_stale(bp);
c2b006c1 2410 error = xfs_bwrite(bp);
1da177e4 2411 } else {
ebad861b 2412 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2413 bp->b_iodone = xlog_recover_iodone;
43ff2122 2414 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2415 }
2416
50d5c8d8 2417out_release:
c2b006c1
CH
2418 xfs_buf_relse(bp);
2419 return error;
1da177e4
LT
2420}
2421
638f4416
DC
2422/*
2423 * Inode fork owner changes
2424 *
2425 * If we have been told that we have to reparent the inode fork, it's because an
2426 * extent swap operation on a CRC enabled filesystem has been done and we are
2427 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2428 * owners of it.
2429 *
2430 * The complexity here is that we don't have an inode context to work with, so
2431 * after we've replayed the inode we need to instantiate one. This is where the
2432 * fun begins.
2433 *
2434 * We are in the middle of log recovery, so we can't run transactions. That
2435 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2436 * that will result in the corresponding iput() running the inode through
2437 * xfs_inactive(). If we've just replayed an inode core that changes the link
2438 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2439 * transactions (bad!).
2440 *
2441 * So, to avoid this, we instantiate an inode directly from the inode core we've
2442 * just recovered. We have the buffer still locked, and all we really need to
2443 * instantiate is the inode core and the forks being modified. We can do this
2444 * manually, then run the inode btree owner change, and then tear down the
2445 * xfs_inode without having to run any transactions at all.
2446 *
2447 * Also, because we don't have a transaction context available here but need to
2448 * gather all the buffers we modify for writeback so we pass the buffer_list
2449 * instead for the operation to use.
2450 */
2451
2452STATIC int
2453xfs_recover_inode_owner_change(
2454 struct xfs_mount *mp,
2455 struct xfs_dinode *dip,
2456 struct xfs_inode_log_format *in_f,
2457 struct list_head *buffer_list)
2458{
2459 struct xfs_inode *ip;
2460 int error;
2461
2462 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2463
2464 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2465 if (!ip)
2451337d 2466 return -ENOMEM;
638f4416
DC
2467
2468 /* instantiate the inode */
2469 xfs_dinode_from_disk(&ip->i_d, dip);
2470 ASSERT(ip->i_d.di_version >= 3);
2471
2472 error = xfs_iformat_fork(ip, dip);
2473 if (error)
2474 goto out_free_ip;
2475
2476
2477 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2478 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2479 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2480 ip->i_ino, buffer_list);
2481 if (error)
2482 goto out_free_ip;
2483 }
2484
2485 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2486 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2487 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2488 ip->i_ino, buffer_list);
2489 if (error)
2490 goto out_free_ip;
2491 }
2492
2493out_free_ip:
2494 xfs_inode_free(ip);
2495 return error;
2496}
2497
1da177e4 2498STATIC int
c9f71f5f 2499xlog_recover_inode_pass2(
9a8d2fdb
MT
2500 struct xlog *log,
2501 struct list_head *buffer_list,
50d5c8d8
DC
2502 struct xlog_recover_item *item,
2503 xfs_lsn_t current_lsn)
1da177e4
LT
2504{
2505 xfs_inode_log_format_t *in_f;
c9f71f5f 2506 xfs_mount_t *mp = log->l_mp;
1da177e4 2507 xfs_buf_t *bp;
1da177e4 2508 xfs_dinode_t *dip;
1da177e4 2509 int len;
b2a922cd
CH
2510 char *src;
2511 char *dest;
1da177e4
LT
2512 int error;
2513 int attr_index;
2514 uint fields;
347d1c01 2515 xfs_icdinode_t *dicp;
93848a99 2516 uint isize;
6d192a9b 2517 int need_free = 0;
1da177e4 2518
6d192a9b 2519 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2520 in_f = item->ri_buf[0].i_addr;
6d192a9b 2521 } else {
4e0d5f92 2522 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2523 need_free = 1;
2524 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2525 if (error)
2526 goto error;
2527 }
1da177e4
LT
2528
2529 /*
2530 * Inode buffers can be freed, look out for it,
2531 * and do not replay the inode.
2532 */
a1941895
CH
2533 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2534 in_f->ilf_len, 0)) {
6d192a9b 2535 error = 0;
9abbc539 2536 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2537 goto error;
2538 }
9abbc539 2539 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2540
c3f8fc73 2541 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2542 &xfs_inode_buf_ops);
ac4d6888 2543 if (!bp) {
2451337d 2544 error = -ENOMEM;
ac4d6888
CS
2545 goto error;
2546 }
e5702805 2547 error = bp->b_error;
5a52c2a5 2548 if (error) {
901796af 2549 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2550 goto out_release;
1da177e4 2551 }
1da177e4 2552 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
88ee2df7 2553 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2554
2555 /*
2556 * Make sure the place we're flushing out to really looks
2557 * like an inode!
2558 */
69ef921b 2559 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2560 xfs_alert(mp,
2561 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2562 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2563 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2564 XFS_ERRLEVEL_LOW, mp);
2451337d 2565 error = -EFSCORRUPTED;
638f4416 2566 goto out_release;
1da177e4 2567 }
4e0d5f92 2568 dicp = item->ri_buf[1].i_addr;
1da177e4 2569 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2570 xfs_alert(mp,
2571 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2572 __func__, item, in_f->ilf_ino);
c9f71f5f 2573 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2574 XFS_ERRLEVEL_LOW, mp);
2451337d 2575 error = -EFSCORRUPTED;
638f4416 2576 goto out_release;
1da177e4
LT
2577 }
2578
50d5c8d8
DC
2579 /*
2580 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2581 * than the lsn of the transaction we are replaying. Note: we still
2582 * need to replay an owner change even though the inode is more recent
2583 * than the transaction as there is no guarantee that all the btree
2584 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2585 */
2586 if (dip->di_version >= 3) {
2587 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2588
2589 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2590 trace_xfs_log_recover_inode_skip(log, in_f);
2591 error = 0;
638f4416 2592 goto out_owner_change;
50d5c8d8
DC
2593 }
2594 }
2595
e60896d8
DC
2596 /*
2597 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2598 * are transactional and if ordering is necessary we can determine that
2599 * more accurately by the LSN field in the V3 inode core. Don't trust
2600 * the inode versions we might be changing them here - use the
2601 * superblock flag to determine whether we need to look at di_flushiter
2602 * to skip replay when the on disk inode is newer than the log one
2603 */
2604 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2605 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2606 /*
2607 * Deal with the wrap case, DI_MAX_FLUSH is less
2608 * than smaller numbers
2609 */
81591fe2 2610 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2611 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2612 /* do nothing */
2613 } else {
9abbc539 2614 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 2615 error = 0;
638f4416 2616 goto out_release;
1da177e4
LT
2617 }
2618 }
e60896d8 2619
1da177e4
LT
2620 /* Take the opportunity to reset the flush iteration count */
2621 dicp->di_flushiter = 0;
2622
abbede1b 2623 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2624 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2625 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2626 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4 2627 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2628 xfs_alert(mp,
2629 "%s: Bad regular inode log record, rec ptr 0x%p, "
2630 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2631 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 2632 error = -EFSCORRUPTED;
638f4416 2633 goto out_release;
1da177e4 2634 }
abbede1b 2635 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2636 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2637 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2638 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2639 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4 2640 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2641 xfs_alert(mp,
2642 "%s: Bad dir inode log record, rec ptr 0x%p, "
2643 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2644 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 2645 error = -EFSCORRUPTED;
638f4416 2646 goto out_release;
1da177e4
LT
2647 }
2648 }
2649 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2650 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4 2651 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2652 xfs_alert(mp,
2653 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2654 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2655 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2656 dicp->di_nextents + dicp->di_anextents,
2657 dicp->di_nblocks);
2451337d 2658 error = -EFSCORRUPTED;
638f4416 2659 goto out_release;
1da177e4
LT
2660 }
2661 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2662 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4 2663 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2664 xfs_alert(mp,
2665 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2666 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2667 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2451337d 2668 error = -EFSCORRUPTED;
638f4416 2669 goto out_release;
1da177e4 2670 }
93848a99
CH
2671 isize = xfs_icdinode_size(dicp->di_version);
2672 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2673 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4 2674 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2675 xfs_alert(mp,
2676 "%s: Bad inode log record length %d, rec ptr 0x%p",
2677 __func__, item->ri_buf[1].i_len, item);
2451337d 2678 error = -EFSCORRUPTED;
638f4416 2679 goto out_release;
1da177e4
LT
2680 }
2681
2682 /* The core is in in-core format */
93848a99 2683 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2684
2685 /* the rest is in on-disk format */
93848a99
CH
2686 if (item->ri_buf[1].i_len > isize) {
2687 memcpy((char *)dip + isize,
2688 item->ri_buf[1].i_addr + isize,
2689 item->ri_buf[1].i_len - isize);
1da177e4
LT
2690 }
2691
2692 fields = in_f->ilf_fields;
2693 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2694 case XFS_ILOG_DEV:
81591fe2 2695 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2696 break;
2697 case XFS_ILOG_UUID:
81591fe2
CH
2698 memcpy(XFS_DFORK_DPTR(dip),
2699 &in_f->ilf_u.ilfu_uuid,
2700 sizeof(uuid_t));
1da177e4
LT
2701 break;
2702 }
2703
2704 if (in_f->ilf_size == 2)
638f4416 2705 goto out_owner_change;
1da177e4
LT
2706 len = item->ri_buf[2].i_len;
2707 src = item->ri_buf[2].i_addr;
2708 ASSERT(in_f->ilf_size <= 4);
2709 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2710 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2711 (len == in_f->ilf_dsize));
2712
2713 switch (fields & XFS_ILOG_DFORK) {
2714 case XFS_ILOG_DDATA:
2715 case XFS_ILOG_DEXT:
81591fe2 2716 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2717 break;
2718
2719 case XFS_ILOG_DBROOT:
7cc95a82 2720 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2721 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2722 XFS_DFORK_DSIZE(dip, mp));
2723 break;
2724
2725 default:
2726 /*
2727 * There are no data fork flags set.
2728 */
2729 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2730 break;
2731 }
2732
2733 /*
2734 * If we logged any attribute data, recover it. There may or
2735 * may not have been any other non-core data logged in this
2736 * transaction.
2737 */
2738 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2739 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2740 attr_index = 3;
2741 } else {
2742 attr_index = 2;
2743 }
2744 len = item->ri_buf[attr_index].i_len;
2745 src = item->ri_buf[attr_index].i_addr;
2746 ASSERT(len == in_f->ilf_asize);
2747
2748 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2749 case XFS_ILOG_ADATA:
2750 case XFS_ILOG_AEXT:
2751 dest = XFS_DFORK_APTR(dip);
2752 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2753 memcpy(dest, src, len);
2754 break;
2755
2756 case XFS_ILOG_ABROOT:
2757 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2758 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2759 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2760 XFS_DFORK_ASIZE(dip, mp));
2761 break;
2762
2763 default:
a0fa2b67 2764 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 2765 ASSERT(0);
2451337d 2766 error = -EIO;
638f4416 2767 goto out_release;
1da177e4
LT
2768 }
2769 }
2770
638f4416
DC
2771out_owner_change:
2772 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2773 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2774 buffer_list);
93848a99
CH
2775 /* re-generate the checksum. */
2776 xfs_dinode_calc_crc(log->l_mp, dip);
2777
ebad861b 2778 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2779 bp->b_iodone = xlog_recover_iodone;
43ff2122 2780 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
2781
2782out_release:
61551f1e 2783 xfs_buf_relse(bp);
6d192a9b
TS
2784error:
2785 if (need_free)
f0e2d93c 2786 kmem_free(in_f);
b474c7ae 2787 return error;
1da177e4
LT
2788}
2789
2790/*
9a8d2fdb 2791 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2792 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2793 * of that type.
2794 */
2795STATIC int
c9f71f5f 2796xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2797 struct xlog *log,
2798 struct xlog_recover_item *item)
1da177e4 2799{
c9f71f5f 2800 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2801 ASSERT(qoff_f);
2802
2803 /*
2804 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2805 * group/project quotaoff or both.
1da177e4
LT
2806 */
2807 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2808 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2809 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2810 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2811 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2812 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2813
d99831ff 2814 return 0;
1da177e4
LT
2815}
2816
2817/*
2818 * Recover a dquot record
2819 */
2820STATIC int
c9f71f5f 2821xlog_recover_dquot_pass2(
9a8d2fdb
MT
2822 struct xlog *log,
2823 struct list_head *buffer_list,
50d5c8d8
DC
2824 struct xlog_recover_item *item,
2825 xfs_lsn_t current_lsn)
1da177e4 2826{
c9f71f5f 2827 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2828 xfs_buf_t *bp;
2829 struct xfs_disk_dquot *ddq, *recddq;
2830 int error;
2831 xfs_dq_logformat_t *dq_f;
2832 uint type;
2833
1da177e4
LT
2834
2835 /*
2836 * Filesystems are required to send in quota flags at mount time.
2837 */
2838 if (mp->m_qflags == 0)
d99831ff 2839 return 0;
1da177e4 2840
4e0d5f92
CH
2841 recddq = item->ri_buf[1].i_addr;
2842 if (recddq == NULL) {
a0fa2b67 2843 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 2844 return -EIO;
0c5e1ce8 2845 }
8ec6dba2 2846 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2847 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 2848 item->ri_buf[1].i_len, __func__);
2451337d 2849 return -EIO;
0c5e1ce8
CH
2850 }
2851
1da177e4
LT
2852 /*
2853 * This type of quotas was turned off, so ignore this record.
2854 */
b53e675d 2855 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2856 ASSERT(type);
2857 if (log->l_quotaoffs_flag & type)
d99831ff 2858 return 0;
1da177e4
LT
2859
2860 /*
2861 * At this point we know that quota was _not_ turned off.
2862 * Since the mount flags are not indicating to us otherwise, this
2863 * must mean that quota is on, and the dquot needs to be replayed.
2864 * Remember that we may not have fully recovered the superblock yet,
2865 * so we can't do the usual trick of looking at the SB quota bits.
2866 *
2867 * The other possibility, of course, is that the quota subsystem was
2868 * removed since the last mount - ENOSYS.
2869 */
4e0d5f92 2870 dq_f = item->ri_buf[0].i_addr;
1da177e4 2871 ASSERT(dq_f);
9aede1d8 2872 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
a0fa2b67
DC
2873 "xlog_recover_dquot_pass2 (log copy)");
2874 if (error)
2451337d 2875 return -EIO;
1da177e4
LT
2876 ASSERT(dq_f->qlf_len == 1);
2877
ad3714b8
DC
2878 /*
2879 * At this point we are assuming that the dquots have been allocated
2880 * and hence the buffer has valid dquots stamped in it. It should,
2881 * therefore, pass verifier validation. If the dquot is bad, then the
2882 * we'll return an error here, so we don't need to specifically check
2883 * the dquot in the buffer after the verifier has run.
2884 */
7ca790a5 2885 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 2886 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 2887 &xfs_dquot_buf_ops);
7ca790a5 2888 if (error)
1da177e4 2889 return error;
7ca790a5 2890
1da177e4 2891 ASSERT(bp);
88ee2df7 2892 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
1da177e4 2893
50d5c8d8
DC
2894 /*
2895 * If the dquot has an LSN in it, recover the dquot only if it's less
2896 * than the lsn of the transaction we are replaying.
2897 */
2898 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2899 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
2900 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
2901
2902 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2903 goto out_release;
2904 }
2905 }
2906
1da177e4 2907 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
2908 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2909 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2910 XFS_DQUOT_CRC_OFF);
2911 }
1da177e4
LT
2912
2913 ASSERT(dq_f->qlf_size == 2);
ebad861b 2914 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2915 bp->b_iodone = xlog_recover_iodone;
43ff2122 2916 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 2917
50d5c8d8
DC
2918out_release:
2919 xfs_buf_relse(bp);
2920 return 0;
1da177e4
LT
2921}
2922
2923/*
2924 * This routine is called to create an in-core extent free intent
2925 * item from the efi format structure which was logged on disk.
2926 * It allocates an in-core efi, copies the extents from the format
2927 * structure into it, and adds the efi to the AIL with the given
2928 * LSN.
2929 */
6d192a9b 2930STATIC int
c9f71f5f 2931xlog_recover_efi_pass2(
9a8d2fdb
MT
2932 struct xlog *log,
2933 struct xlog_recover_item *item,
2934 xfs_lsn_t lsn)
1da177e4 2935{
6d192a9b 2936 int error;
c9f71f5f 2937 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2938 xfs_efi_log_item_t *efip;
2939 xfs_efi_log_format_t *efi_formatp;
1da177e4 2940
4e0d5f92 2941 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2942
1da177e4 2943 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2944 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2945 &(efip->efi_format)))) {
2946 xfs_efi_item_free(efip);
2947 return error;
2948 }
b199c8a4 2949 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2950
a9c21c1b 2951 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2952 /*
783a2f65 2953 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2954 */
e6059949 2955 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2956 return 0;
1da177e4
LT
2957}
2958
2959
2960/*
2961 * This routine is called when an efd format structure is found in
2962 * a committed transaction in the log. It's purpose is to cancel
2963 * the corresponding efi if it was still in the log. To do this
2964 * it searches the AIL for the efi with an id equal to that in the
2965 * efd format structure. If we find it, we remove the efi from the
2966 * AIL and free it.
2967 */
c9f71f5f
CH
2968STATIC int
2969xlog_recover_efd_pass2(
9a8d2fdb
MT
2970 struct xlog *log,
2971 struct xlog_recover_item *item)
1da177e4 2972{
1da177e4
LT
2973 xfs_efd_log_format_t *efd_formatp;
2974 xfs_efi_log_item_t *efip = NULL;
2975 xfs_log_item_t *lip;
1da177e4 2976 __uint64_t efi_id;
27d8d5fe 2977 struct xfs_ail_cursor cur;
783a2f65 2978 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2979
4e0d5f92 2980 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2981 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2982 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2983 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2984 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2985 efi_id = efd_formatp->efd_efi_id;
2986
2987 /*
2988 * Search for the efi with the id in the efd format structure
2989 * in the AIL.
2990 */
a9c21c1b
DC
2991 spin_lock(&ailp->xa_lock);
2992 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2993 while (lip != NULL) {
2994 if (lip->li_type == XFS_LI_EFI) {
2995 efip = (xfs_efi_log_item_t *)lip;
2996 if (efip->efi_format.efi_id == efi_id) {
2997 /*
783a2f65 2998 * xfs_trans_ail_delete() drops the
1da177e4
LT
2999 * AIL lock.
3000 */
04913fdd
DC
3001 xfs_trans_ail_delete(ailp, lip,
3002 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 3003 xfs_efi_item_free(efip);
a9c21c1b 3004 spin_lock(&ailp->xa_lock);
27d8d5fe 3005 break;
1da177e4
LT
3006 }
3007 }
a9c21c1b 3008 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3009 }
e4a1e29c 3010 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3011 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3012
3013 return 0;
1da177e4
LT
3014}
3015
28c8e41a
DC
3016/*
3017 * This routine is called when an inode create format structure is found in a
3018 * committed transaction in the log. It's purpose is to initialise the inodes
3019 * being allocated on disk. This requires us to get inode cluster buffers that
3020 * match the range to be intialised, stamped with inode templates and written
3021 * by delayed write so that subsequent modifications will hit the cached buffer
3022 * and only need writing out at the end of recovery.
3023 */
3024STATIC int
3025xlog_recover_do_icreate_pass2(
3026 struct xlog *log,
3027 struct list_head *buffer_list,
3028 xlog_recover_item_t *item)
3029{
3030 struct xfs_mount *mp = log->l_mp;
3031 struct xfs_icreate_log *icl;
3032 xfs_agnumber_t agno;
3033 xfs_agblock_t agbno;
3034 unsigned int count;
3035 unsigned int isize;
3036 xfs_agblock_t length;
3037
3038 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3039 if (icl->icl_type != XFS_LI_ICREATE) {
3040 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3041 return -EINVAL;
28c8e41a
DC
3042 }
3043
3044 if (icl->icl_size != 1) {
3045 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3046 return -EINVAL;
28c8e41a
DC
3047 }
3048
3049 agno = be32_to_cpu(icl->icl_ag);
3050 if (agno >= mp->m_sb.sb_agcount) {
3051 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3052 return -EINVAL;
28c8e41a
DC
3053 }
3054 agbno = be32_to_cpu(icl->icl_agbno);
3055 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3056 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3057 return -EINVAL;
28c8e41a
DC
3058 }
3059 isize = be32_to_cpu(icl->icl_isize);
3060 if (isize != mp->m_sb.sb_inodesize) {
3061 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3062 return -EINVAL;
28c8e41a
DC
3063 }
3064 count = be32_to_cpu(icl->icl_count);
3065 if (!count) {
3066 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3067 return -EINVAL;
28c8e41a
DC
3068 }
3069 length = be32_to_cpu(icl->icl_length);
3070 if (!length || length >= mp->m_sb.sb_agblocks) {
3071 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3072 return -EINVAL;
28c8e41a
DC
3073 }
3074
7f43c907
BF
3075 /*
3076 * The inode chunk is either full or sparse and we only support
3077 * m_ialloc_min_blks sized sparse allocations at this time.
3078 */
3079 if (length != mp->m_ialloc_blks &&
3080 length != mp->m_ialloc_min_blks) {
3081 xfs_warn(log->l_mp,
3082 "%s: unsupported chunk length", __FUNCTION__);
3083 return -EINVAL;
3084 }
3085
3086 /* verify inode count is consistent with extent length */
3087 if ((count >> mp->m_sb.sb_inopblog) != length) {
3088 xfs_warn(log->l_mp,
3089 "%s: inconsistent inode count and chunk length",
3090 __FUNCTION__);
2451337d 3091 return -EINVAL;
28c8e41a
DC
3092 }
3093
3094 /*
3095 * Inode buffers can be freed. Do not replay the inode initialisation as
3096 * we could be overwriting something written after this inode buffer was
3097 * cancelled.
3098 *
3099 * XXX: we need to iterate all buffers and only init those that are not
3100 * cancelled. I think that a more fine grained factoring of
3101 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3102 * done easily.
3103 */
3104 if (xlog_check_buffer_cancelled(log,
3105 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3106 return 0;
3107
463958af
BF
3108 xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, length,
3109 be32_to_cpu(icl->icl_gen));
28c8e41a
DC
3110 return 0;
3111}
3112
00574da1
ZYW
3113STATIC void
3114xlog_recover_buffer_ra_pass2(
3115 struct xlog *log,
3116 struct xlog_recover_item *item)
3117{
3118 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3119 struct xfs_mount *mp = log->l_mp;
3120
84a5b730 3121 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3122 buf_f->blf_len, buf_f->blf_flags)) {
3123 return;
3124 }
3125
3126 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3127 buf_f->blf_len, NULL);
3128}
3129
3130STATIC void
3131xlog_recover_inode_ra_pass2(
3132 struct xlog *log,
3133 struct xlog_recover_item *item)
3134{
3135 struct xfs_inode_log_format ilf_buf;
3136 struct xfs_inode_log_format *ilfp;
3137 struct xfs_mount *mp = log->l_mp;
3138 int error;
3139
3140 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3141 ilfp = item->ri_buf[0].i_addr;
3142 } else {
3143 ilfp = &ilf_buf;
3144 memset(ilfp, 0, sizeof(*ilfp));
3145 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3146 if (error)
3147 return;
3148 }
3149
84a5b730 3150 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3151 return;
3152
3153 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3154 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3155}
3156
3157STATIC void
3158xlog_recover_dquot_ra_pass2(
3159 struct xlog *log,
3160 struct xlog_recover_item *item)
3161{
3162 struct xfs_mount *mp = log->l_mp;
3163 struct xfs_disk_dquot *recddq;
3164 struct xfs_dq_logformat *dq_f;
3165 uint type;
3166
3167
3168 if (mp->m_qflags == 0)
3169 return;
3170
3171 recddq = item->ri_buf[1].i_addr;
3172 if (recddq == NULL)
3173 return;
3174 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3175 return;
3176
3177 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3178 ASSERT(type);
3179 if (log->l_quotaoffs_flag & type)
3180 return;
3181
3182 dq_f = item->ri_buf[0].i_addr;
3183 ASSERT(dq_f);
3184 ASSERT(dq_f->qlf_len == 1);
3185
3186 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
0f0d3345 3187 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
00574da1
ZYW
3188}
3189
3190STATIC void
3191xlog_recover_ra_pass2(
3192 struct xlog *log,
3193 struct xlog_recover_item *item)
3194{
3195 switch (ITEM_TYPE(item)) {
3196 case XFS_LI_BUF:
3197 xlog_recover_buffer_ra_pass2(log, item);
3198 break;
3199 case XFS_LI_INODE:
3200 xlog_recover_inode_ra_pass2(log, item);
3201 break;
3202 case XFS_LI_DQUOT:
3203 xlog_recover_dquot_ra_pass2(log, item);
3204 break;
3205 case XFS_LI_EFI:
3206 case XFS_LI_EFD:
3207 case XFS_LI_QUOTAOFF:
3208 default:
3209 break;
3210 }
3211}
3212
d0450948 3213STATIC int
c9f71f5f 3214xlog_recover_commit_pass1(
ad223e60
MT
3215 struct xlog *log,
3216 struct xlog_recover *trans,
3217 struct xlog_recover_item *item)
d0450948 3218{
c9f71f5f 3219 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3220
3221 switch (ITEM_TYPE(item)) {
3222 case XFS_LI_BUF:
c9f71f5f
CH
3223 return xlog_recover_buffer_pass1(log, item);
3224 case XFS_LI_QUOTAOFF:
3225 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3226 case XFS_LI_INODE:
d0450948 3227 case XFS_LI_EFI:
d0450948 3228 case XFS_LI_EFD:
c9f71f5f 3229 case XFS_LI_DQUOT:
28c8e41a 3230 case XFS_LI_ICREATE:
c9f71f5f 3231 /* nothing to do in pass 1 */
d0450948 3232 return 0;
c9f71f5f 3233 default:
a0fa2b67
DC
3234 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3235 __func__, ITEM_TYPE(item));
c9f71f5f 3236 ASSERT(0);
2451337d 3237 return -EIO;
c9f71f5f
CH
3238 }
3239}
3240
3241STATIC int
3242xlog_recover_commit_pass2(
ad223e60
MT
3243 struct xlog *log,
3244 struct xlog_recover *trans,
3245 struct list_head *buffer_list,
3246 struct xlog_recover_item *item)
c9f71f5f
CH
3247{
3248 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3249
3250 switch (ITEM_TYPE(item)) {
3251 case XFS_LI_BUF:
50d5c8d8
DC
3252 return xlog_recover_buffer_pass2(log, buffer_list, item,
3253 trans->r_lsn);
c9f71f5f 3254 case XFS_LI_INODE:
50d5c8d8
DC
3255 return xlog_recover_inode_pass2(log, buffer_list, item,
3256 trans->r_lsn);
c9f71f5f
CH
3257 case XFS_LI_EFI:
3258 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3259 case XFS_LI_EFD:
3260 return xlog_recover_efd_pass2(log, item);
d0450948 3261 case XFS_LI_DQUOT:
50d5c8d8
DC
3262 return xlog_recover_dquot_pass2(log, buffer_list, item,
3263 trans->r_lsn);
28c8e41a
DC
3264 case XFS_LI_ICREATE:
3265 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3266 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3267 /* nothing to do in pass2 */
3268 return 0;
d0450948 3269 default:
a0fa2b67
DC
3270 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3271 __func__, ITEM_TYPE(item));
d0450948 3272 ASSERT(0);
2451337d 3273 return -EIO;
d0450948
CH
3274 }
3275}
3276
00574da1
ZYW
3277STATIC int
3278xlog_recover_items_pass2(
3279 struct xlog *log,
3280 struct xlog_recover *trans,
3281 struct list_head *buffer_list,
3282 struct list_head *item_list)
3283{
3284 struct xlog_recover_item *item;
3285 int error = 0;
3286
3287 list_for_each_entry(item, item_list, ri_list) {
3288 error = xlog_recover_commit_pass2(log, trans,
3289 buffer_list, item);
3290 if (error)
3291 return error;
3292 }
3293
3294 return error;
3295}
3296
d0450948
CH
3297/*
3298 * Perform the transaction.
3299 *
3300 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3301 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3302 */
1da177e4
LT
3303STATIC int
3304xlog_recover_commit_trans(
ad223e60 3305 struct xlog *log,
d0450948 3306 struct xlog_recover *trans,
1da177e4
LT
3307 int pass)
3308{
00574da1
ZYW
3309 int error = 0;
3310 int error2;
3311 int items_queued = 0;
3312 struct xlog_recover_item *item;
3313 struct xlog_recover_item *next;
3314 LIST_HEAD (buffer_list);
3315 LIST_HEAD (ra_list);
3316 LIST_HEAD (done_list);
3317
3318 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3319
f0a76953 3320 hlist_del(&trans->r_list);
d0450948
CH
3321
3322 error = xlog_recover_reorder_trans(log, trans, pass);
3323 if (error)
1da177e4 3324 return error;
d0450948 3325
00574da1 3326 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3327 switch (pass) {
3328 case XLOG_RECOVER_PASS1:
c9f71f5f 3329 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3330 break;
3331 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3332 xlog_recover_ra_pass2(log, item);
3333 list_move_tail(&item->ri_list, &ra_list);
3334 items_queued++;
3335 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3336 error = xlog_recover_items_pass2(log, trans,
3337 &buffer_list, &ra_list);
3338 list_splice_tail_init(&ra_list, &done_list);
3339 items_queued = 0;
3340 }
3341
43ff2122
CH
3342 break;
3343 default:
3344 ASSERT(0);
3345 }
3346
d0450948 3347 if (error)
43ff2122 3348 goto out;
d0450948
CH
3349 }
3350
00574da1
ZYW
3351out:
3352 if (!list_empty(&ra_list)) {
3353 if (!error)
3354 error = xlog_recover_items_pass2(log, trans,
3355 &buffer_list, &ra_list);
3356 list_splice_tail_init(&ra_list, &done_list);
3357 }
3358
3359 if (!list_empty(&done_list))
3360 list_splice_init(&done_list, &trans->r_itemq);
3361
43ff2122
CH
3362 error2 = xfs_buf_delwri_submit(&buffer_list);
3363 return error ? error : error2;
1da177e4
LT
3364}
3365
76560669
DC
3366STATIC void
3367xlog_recover_add_item(
3368 struct list_head *head)
3369{
3370 xlog_recover_item_t *item;
3371
3372 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3373 INIT_LIST_HEAD(&item->ri_list);
3374 list_add_tail(&item->ri_list, head);
3375}
3376
1da177e4 3377STATIC int
76560669
DC
3378xlog_recover_add_to_cont_trans(
3379 struct xlog *log,
3380 struct xlog_recover *trans,
b2a922cd 3381 char *dp,
76560669 3382 int len)
1da177e4 3383{
76560669 3384 xlog_recover_item_t *item;
b2a922cd 3385 char *ptr, *old_ptr;
76560669
DC
3386 int old_len;
3387
3388 if (list_empty(&trans->r_itemq)) {
3389 /* finish copying rest of trans header */
3390 xlog_recover_add_item(&trans->r_itemq);
b2a922cd 3391 ptr = (char *)&trans->r_theader +
76560669
DC
3392 sizeof(xfs_trans_header_t) - len;
3393 memcpy(ptr, dp, len);
3394 return 0;
3395 }
3396 /* take the tail entry */
3397 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3398
3399 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3400 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3401
3402 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3403 memcpy(&ptr[old_len], dp, len);
3404 item->ri_buf[item->ri_cnt-1].i_len += len;
3405 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3406 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
3407 return 0;
3408}
3409
76560669
DC
3410/*
3411 * The next region to add is the start of a new region. It could be
3412 * a whole region or it could be the first part of a new region. Because
3413 * of this, the assumption here is that the type and size fields of all
3414 * format structures fit into the first 32 bits of the structure.
3415 *
3416 * This works because all regions must be 32 bit aligned. Therefore, we
3417 * either have both fields or we have neither field. In the case we have
3418 * neither field, the data part of the region is zero length. We only have
3419 * a log_op_header and can throw away the header since a new one will appear
3420 * later. If we have at least 4 bytes, then we can determine how many regions
3421 * will appear in the current log item.
3422 */
3423STATIC int
3424xlog_recover_add_to_trans(
3425 struct xlog *log,
3426 struct xlog_recover *trans,
b2a922cd 3427 char *dp,
76560669
DC
3428 int len)
3429{
3430 xfs_inode_log_format_t *in_f; /* any will do */
3431 xlog_recover_item_t *item;
b2a922cd 3432 char *ptr;
76560669
DC
3433
3434 if (!len)
3435 return 0;
3436 if (list_empty(&trans->r_itemq)) {
3437 /* we need to catch log corruptions here */
3438 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3439 xfs_warn(log->l_mp, "%s: bad header magic number",
3440 __func__);
3441 ASSERT(0);
3442 return -EIO;
3443 }
3444 if (len == sizeof(xfs_trans_header_t))
3445 xlog_recover_add_item(&trans->r_itemq);
3446 memcpy(&trans->r_theader, dp, len);
3447 return 0;
3448 }
3449
3450 ptr = kmem_alloc(len, KM_SLEEP);
3451 memcpy(ptr, dp, len);
3452 in_f = (xfs_inode_log_format_t *)ptr;
3453
3454 /* take the tail entry */
3455 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3456 if (item->ri_total != 0 &&
3457 item->ri_total == item->ri_cnt) {
3458 /* tail item is in use, get a new one */
3459 xlog_recover_add_item(&trans->r_itemq);
3460 item = list_entry(trans->r_itemq.prev,
3461 xlog_recover_item_t, ri_list);
3462 }
3463
3464 if (item->ri_total == 0) { /* first region to be added */
3465 if (in_f->ilf_size == 0 ||
3466 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3467 xfs_warn(log->l_mp,
3468 "bad number of regions (%d) in inode log format",
3469 in_f->ilf_size);
3470 ASSERT(0);
3471 kmem_free(ptr);
3472 return -EIO;
3473 }
3474
3475 item->ri_total = in_f->ilf_size;
3476 item->ri_buf =
3477 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3478 KM_SLEEP);
3479 }
3480 ASSERT(item->ri_total > item->ri_cnt);
3481 /* Description region is ri_buf[0] */
3482 item->ri_buf[item->ri_cnt].i_addr = ptr;
3483 item->ri_buf[item->ri_cnt].i_len = len;
3484 item->ri_cnt++;
3485 trace_xfs_log_recover_item_add(log, trans, item, 0);
3486 return 0;
3487}
b818cca1 3488
76560669
DC
3489/*
3490 * Free up any resources allocated by the transaction
3491 *
3492 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3493 */
3494STATIC void
3495xlog_recover_free_trans(
3496 struct xlog_recover *trans)
3497{
3498 xlog_recover_item_t *item, *n;
3499 int i;
3500
3501 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3502 /* Free the regions in the item. */
3503 list_del(&item->ri_list);
3504 for (i = 0; i < item->ri_cnt; i++)
3505 kmem_free(item->ri_buf[i].i_addr);
3506 /* Free the item itself */
3507 kmem_free(item->ri_buf);
3508 kmem_free(item);
3509 }
3510 /* Free the transaction recover structure */
3511 kmem_free(trans);
3512}
3513
e9131e50
DC
3514/*
3515 * On error or completion, trans is freed.
3516 */
1da177e4 3517STATIC int
eeb11688
DC
3518xlog_recovery_process_trans(
3519 struct xlog *log,
3520 struct xlog_recover *trans,
b2a922cd 3521 char *dp,
eeb11688
DC
3522 unsigned int len,
3523 unsigned int flags,
3524 int pass)
1da177e4 3525{
e9131e50
DC
3526 int error = 0;
3527 bool freeit = false;
eeb11688
DC
3528
3529 /* mask off ophdr transaction container flags */
3530 flags &= ~XLOG_END_TRANS;
3531 if (flags & XLOG_WAS_CONT_TRANS)
3532 flags &= ~XLOG_CONTINUE_TRANS;
3533
88b863db
DC
3534 /*
3535 * Callees must not free the trans structure. We'll decide if we need to
3536 * free it or not based on the operation being done and it's result.
3537 */
eeb11688
DC
3538 switch (flags) {
3539 /* expected flag values */
3540 case 0:
3541 case XLOG_CONTINUE_TRANS:
3542 error = xlog_recover_add_to_trans(log, trans, dp, len);
3543 break;
3544 case XLOG_WAS_CONT_TRANS:
3545 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3546 break;
3547 case XLOG_COMMIT_TRANS:
3548 error = xlog_recover_commit_trans(log, trans, pass);
88b863db
DC
3549 /* success or fail, we are now done with this transaction. */
3550 freeit = true;
eeb11688
DC
3551 break;
3552
3553 /* unexpected flag values */
3554 case XLOG_UNMOUNT_TRANS:
e9131e50 3555 /* just skip trans */
eeb11688 3556 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
e9131e50 3557 freeit = true;
eeb11688
DC
3558 break;
3559 case XLOG_START_TRANS:
eeb11688
DC
3560 default:
3561 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
3562 ASSERT(0);
e9131e50 3563 error = -EIO;
eeb11688
DC
3564 break;
3565 }
e9131e50
DC
3566 if (error || freeit)
3567 xlog_recover_free_trans(trans);
eeb11688
DC
3568 return error;
3569}
3570
b818cca1
DC
3571/*
3572 * Lookup the transaction recovery structure associated with the ID in the
3573 * current ophdr. If the transaction doesn't exist and the start flag is set in
3574 * the ophdr, then allocate a new transaction for future ID matches to find.
3575 * Either way, return what we found during the lookup - an existing transaction
3576 * or nothing.
3577 */
eeb11688
DC
3578STATIC struct xlog_recover *
3579xlog_recover_ophdr_to_trans(
3580 struct hlist_head rhash[],
3581 struct xlog_rec_header *rhead,
3582 struct xlog_op_header *ohead)
3583{
3584 struct xlog_recover *trans;
3585 xlog_tid_t tid;
3586 struct hlist_head *rhp;
3587
3588 tid = be32_to_cpu(ohead->oh_tid);
3589 rhp = &rhash[XLOG_RHASH(tid)];
b818cca1
DC
3590 hlist_for_each_entry(trans, rhp, r_list) {
3591 if (trans->r_log_tid == tid)
3592 return trans;
3593 }
eeb11688
DC
3594
3595 /*
b818cca1
DC
3596 * skip over non-start transaction headers - we could be
3597 * processing slack space before the next transaction starts
3598 */
3599 if (!(ohead->oh_flags & XLOG_START_TRANS))
3600 return NULL;
3601
3602 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
3603
3604 /*
3605 * This is a new transaction so allocate a new recovery container to
3606 * hold the recovery ops that will follow.
3607 */
3608 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
3609 trans->r_log_tid = tid;
3610 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
3611 INIT_LIST_HEAD(&trans->r_itemq);
3612 INIT_HLIST_NODE(&trans->r_list);
3613 hlist_add_head(&trans->r_list, rhp);
3614
3615 /*
3616 * Nothing more to do for this ophdr. Items to be added to this new
3617 * transaction will be in subsequent ophdr containers.
eeb11688 3618 */
eeb11688
DC
3619 return NULL;
3620}
3621
3622STATIC int
3623xlog_recover_process_ophdr(
3624 struct xlog *log,
3625 struct hlist_head rhash[],
3626 struct xlog_rec_header *rhead,
3627 struct xlog_op_header *ohead,
b2a922cd
CH
3628 char *dp,
3629 char *end,
eeb11688
DC
3630 int pass)
3631{
3632 struct xlog_recover *trans;
eeb11688
DC
3633 unsigned int len;
3634
3635 /* Do we understand who wrote this op? */
3636 if (ohead->oh_clientid != XFS_TRANSACTION &&
3637 ohead->oh_clientid != XFS_LOG) {
3638 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3639 __func__, ohead->oh_clientid);
3640 ASSERT(0);
3641 return -EIO;
3642 }
3643
3644 /*
3645 * Check the ophdr contains all the data it is supposed to contain.
3646 */
3647 len = be32_to_cpu(ohead->oh_len);
3648 if (dp + len > end) {
3649 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
3650 WARN_ON(1);
3651 return -EIO;
3652 }
3653
3654 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
3655 if (!trans) {
3656 /* nothing to do, so skip over this ophdr */
3657 return 0;
3658 }
3659
e9131e50
DC
3660 return xlog_recovery_process_trans(log, trans, dp, len,
3661 ohead->oh_flags, pass);
1da177e4
LT
3662}
3663
3664/*
3665 * There are two valid states of the r_state field. 0 indicates that the
3666 * transaction structure is in a normal state. We have either seen the
3667 * start of the transaction or the last operation we added was not a partial
3668 * operation. If the last operation we added to the transaction was a
3669 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3670 *
3671 * NOTE: skip LRs with 0 data length.
3672 */
3673STATIC int
3674xlog_recover_process_data(
9a8d2fdb 3675 struct xlog *log,
f0a76953 3676 struct hlist_head rhash[],
9a8d2fdb 3677 struct xlog_rec_header *rhead,
b2a922cd 3678 char *dp,
1da177e4
LT
3679 int pass)
3680{
eeb11688 3681 struct xlog_op_header *ohead;
b2a922cd 3682 char *end;
1da177e4 3683 int num_logops;
1da177e4 3684 int error;
1da177e4 3685
eeb11688 3686 end = dp + be32_to_cpu(rhead->h_len);
b53e675d 3687 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3688
3689 /* check the log format matches our own - else we can't recover */
3690 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 3691 return -EIO;
1da177e4 3692
eeb11688
DC
3693 while ((dp < end) && num_logops) {
3694
3695 ohead = (struct xlog_op_header *)dp;
3696 dp += sizeof(*ohead);
3697 ASSERT(dp <= end);
3698
3699 /* errors will abort recovery */
3700 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
3701 dp, end, pass);
3702 if (error)
3703 return error;
3704
67fcb7bf 3705 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3706 num_logops--;
3707 }
3708 return 0;
3709}
3710
3711/*
3712 * Process an extent free intent item that was recovered from
3713 * the log. We need to free the extents that it describes.
3714 */
3c1e2bbe 3715STATIC int
1da177e4
LT
3716xlog_recover_process_efi(
3717 xfs_mount_t *mp,
3718 xfs_efi_log_item_t *efip)
3719{
3720 xfs_efd_log_item_t *efdp;
3721 xfs_trans_t *tp;
3722 int i;
3c1e2bbe 3723 int error = 0;
1da177e4
LT
3724 xfs_extent_t *extp;
3725 xfs_fsblock_t startblock_fsb;
3726
b199c8a4 3727 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3728
3729 /*
3730 * First check the validity of the extents described by the
3731 * EFI. If any are bad, then assume that all are bad and
3732 * just toss the EFI.
3733 */
3734 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3735 extp = &(efip->efi_format.efi_extents[i]);
3736 startblock_fsb = XFS_BB_TO_FSB(mp,
3737 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3738 if ((startblock_fsb == 0) ||
3739 (extp->ext_len == 0) ||
3740 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3741 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3742 /*
3743 * This will pull the EFI from the AIL and
3744 * free the memory associated with it.
3745 */
666d644c 3746 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3747 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2451337d 3748 return -EIO;
1da177e4
LT
3749 }
3750 }
3751
3752 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 3753 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
3754 if (error)
3755 goto abort_error;
1da177e4
LT
3756 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3757
3758 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3759 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3760 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3761 if (error)
3762 goto abort_error;
1da177e4
LT
3763 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3764 extp->ext_len);
3765 }
3766
b199c8a4 3767 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
70393313 3768 error = xfs_trans_commit(tp);
3c1e2bbe 3769 return error;
fc6149d8
DC
3770
3771abort_error:
4906e215 3772 xfs_trans_cancel(tp);
fc6149d8 3773 return error;
1da177e4
LT
3774}
3775
1da177e4
LT
3776/*
3777 * When this is called, all of the EFIs which did not have
3778 * corresponding EFDs should be in the AIL. What we do now
3779 * is free the extents associated with each one.
3780 *
3781 * Since we process the EFIs in normal transactions, they
3782 * will be removed at some point after the commit. This prevents
3783 * us from just walking down the list processing each one.
3784 * We'll use a flag in the EFI to skip those that we've already
3785 * processed and use the AIL iteration mechanism's generation
3786 * count to try to speed this up at least a bit.
3787 *
3788 * When we start, we know that the EFIs are the only things in
3789 * the AIL. As we process them, however, other items are added
3790 * to the AIL. Since everything added to the AIL must come after
3791 * everything already in the AIL, we stop processing as soon as
3792 * we see something other than an EFI in the AIL.
3793 */
3c1e2bbe 3794STATIC int
1da177e4 3795xlog_recover_process_efis(
9a8d2fdb 3796 struct xlog *log)
1da177e4
LT
3797{
3798 xfs_log_item_t *lip;
3799 xfs_efi_log_item_t *efip;
3c1e2bbe 3800 int error = 0;
27d8d5fe 3801 struct xfs_ail_cursor cur;
a9c21c1b 3802 struct xfs_ail *ailp;
1da177e4 3803
a9c21c1b
DC
3804 ailp = log->l_ailp;
3805 spin_lock(&ailp->xa_lock);
3806 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3807 while (lip != NULL) {
3808 /*
3809 * We're done when we see something other than an EFI.
27d8d5fe 3810 * There should be no EFIs left in the AIL now.
1da177e4
LT
3811 */
3812 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3813#ifdef DEBUG
a9c21c1b 3814 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3815 ASSERT(lip->li_type != XFS_LI_EFI);
3816#endif
1da177e4
LT
3817 break;
3818 }
3819
3820 /*
3821 * Skip EFIs that we've already processed.
3822 */
3823 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3824 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3825 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3826 continue;
3827 }
3828
a9c21c1b
DC
3829 spin_unlock(&ailp->xa_lock);
3830 error = xlog_recover_process_efi(log->l_mp, efip);
3831 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3832 if (error)
3833 goto out;
a9c21c1b 3834 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3835 }
27d8d5fe 3836out:
e4a1e29c 3837 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3838 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3839 return error;
1da177e4
LT
3840}
3841
3842/*
3843 * This routine performs a transaction to null out a bad inode pointer
3844 * in an agi unlinked inode hash bucket.
3845 */
3846STATIC void
3847xlog_recover_clear_agi_bucket(
3848 xfs_mount_t *mp,
3849 xfs_agnumber_t agno,
3850 int bucket)
3851{
3852 xfs_trans_t *tp;
3853 xfs_agi_t *agi;
3854 xfs_buf_t *agibp;
3855 int offset;
3856 int error;
3857
3858 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 3859 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
3860 if (error)
3861 goto out_abort;
1da177e4 3862
5e1be0fb
CH
3863 error = xfs_read_agi(mp, tp, agno, &agibp);
3864 if (error)
e5720eec 3865 goto out_abort;
1da177e4 3866
5e1be0fb 3867 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3868 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3869 offset = offsetof(xfs_agi_t, agi_unlinked) +
3870 (sizeof(xfs_agino_t) * bucket);
3871 xfs_trans_log_buf(tp, agibp, offset,
3872 (offset + sizeof(xfs_agino_t) - 1));
3873
70393313 3874 error = xfs_trans_commit(tp);
e5720eec
DC
3875 if (error)
3876 goto out_error;
3877 return;
3878
3879out_abort:
4906e215 3880 xfs_trans_cancel(tp);
e5720eec 3881out_error:
a0fa2b67 3882 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3883 return;
1da177e4
LT
3884}
3885
23fac50f
CH
3886STATIC xfs_agino_t
3887xlog_recover_process_one_iunlink(
3888 struct xfs_mount *mp,
3889 xfs_agnumber_t agno,
3890 xfs_agino_t agino,
3891 int bucket)
3892{
3893 struct xfs_buf *ibp;
3894 struct xfs_dinode *dip;
3895 struct xfs_inode *ip;
3896 xfs_ino_t ino;
3897 int error;
3898
3899 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3900 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3901 if (error)
3902 goto fail;
3903
3904 /*
3905 * Get the on disk inode to find the next inode in the bucket.
3906 */
475ee413 3907 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3908 if (error)
0e446673 3909 goto fail_iput;
23fac50f 3910
23fac50f 3911 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3912 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3913
3914 /* setup for the next pass */
3915 agino = be32_to_cpu(dip->di_next_unlinked);
3916 xfs_buf_relse(ibp);
3917
3918 /*
3919 * Prevent any DMAPI event from being sent when the reference on
3920 * the inode is dropped.
3921 */
3922 ip->i_d.di_dmevmask = 0;
3923
0e446673 3924 IRELE(ip);
23fac50f
CH
3925 return agino;
3926
0e446673
CH
3927 fail_iput:
3928 IRELE(ip);
23fac50f
CH
3929 fail:
3930 /*
3931 * We can't read in the inode this bucket points to, or this inode
3932 * is messed up. Just ditch this bucket of inodes. We will lose
3933 * some inodes and space, but at least we won't hang.
3934 *
3935 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3936 * clear the inode pointer in the bucket.
3937 */
3938 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3939 return NULLAGINO;
3940}
3941
1da177e4
LT
3942/*
3943 * xlog_iunlink_recover
3944 *
3945 * This is called during recovery to process any inodes which
3946 * we unlinked but not freed when the system crashed. These
3947 * inodes will be on the lists in the AGI blocks. What we do
3948 * here is scan all the AGIs and fully truncate and free any
3949 * inodes found on the lists. Each inode is removed from the
3950 * lists when it has been fully truncated and is freed. The
3951 * freeing of the inode and its removal from the list must be
3952 * atomic.
3953 */
d96f8f89 3954STATIC void
1da177e4 3955xlog_recover_process_iunlinks(
9a8d2fdb 3956 struct xlog *log)
1da177e4
LT
3957{
3958 xfs_mount_t *mp;
3959 xfs_agnumber_t agno;
3960 xfs_agi_t *agi;
3961 xfs_buf_t *agibp;
1da177e4 3962 xfs_agino_t agino;
1da177e4
LT
3963 int bucket;
3964 int error;
3965 uint mp_dmevmask;
3966
3967 mp = log->l_mp;
3968
3969 /*
3970 * Prevent any DMAPI event from being sent while in this function.
3971 */
3972 mp_dmevmask = mp->m_dmevmask;
3973 mp->m_dmevmask = 0;
3974
3975 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3976 /*
3977 * Find the agi for this ag.
3978 */
5e1be0fb
CH
3979 error = xfs_read_agi(mp, NULL, agno, &agibp);
3980 if (error) {
3981 /*
3982 * AGI is b0rked. Don't process it.
3983 *
3984 * We should probably mark the filesystem as corrupt
3985 * after we've recovered all the ag's we can....
3986 */
3987 continue;
1da177e4 3988 }
d97d32ed
JK
3989 /*
3990 * Unlock the buffer so that it can be acquired in the normal
3991 * course of the transaction to truncate and free each inode.
3992 * Because we are not racing with anyone else here for the AGI
3993 * buffer, we don't even need to hold it locked to read the
3994 * initial unlinked bucket entries out of the buffer. We keep
3995 * buffer reference though, so that it stays pinned in memory
3996 * while we need the buffer.
3997 */
1da177e4 3998 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3999 xfs_buf_unlock(agibp);
1da177e4
LT
4000
4001 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 4002 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 4003 while (agino != NULLAGINO) {
23fac50f
CH
4004 agino = xlog_recover_process_one_iunlink(mp,
4005 agno, agino, bucket);
1da177e4
LT
4006 }
4007 }
d97d32ed 4008 xfs_buf_rele(agibp);
1da177e4
LT
4009 }
4010
4011 mp->m_dmevmask = mp_dmevmask;
4012}
4013
1da177e4 4014/*
0e446be4
CH
4015 * Upack the log buffer data and crc check it. If the check fails, issue a
4016 * warning if and only if the CRC in the header is non-zero. This makes the
4017 * check an advisory warning, and the zero CRC check will prevent failure
4018 * warnings from being emitted when upgrading the kernel from one that does not
4019 * add CRCs by default.
4020 *
4021 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4022 * corruption failure
1da177e4 4023 */
0e446be4
CH
4024STATIC int
4025xlog_unpack_data_crc(
4026 struct xlog_rec_header *rhead,
b2a922cd 4027 char *dp,
0e446be4 4028 struct xlog *log)
1da177e4 4029{
f9668a09 4030 __le32 crc;
0e446be4
CH
4031
4032 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4033 if (crc != rhead->h_crc) {
4034 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4035 xfs_alert(log->l_mp,
08e96e1a 4036 "log record CRC mismatch: found 0x%x, expected 0x%x.",
f9668a09
DC
4037 le32_to_cpu(rhead->h_crc),
4038 le32_to_cpu(crc));
0e446be4 4039 xfs_hex_dump(dp, 32);
1da177e4
LT
4040 }
4041
0e446be4
CH
4042 /*
4043 * If we've detected a log record corruption, then we can't
4044 * recover past this point. Abort recovery if we are enforcing
4045 * CRC protection by punting an error back up the stack.
4046 */
4047 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
2451337d 4048 return -EFSCORRUPTED;
1da177e4 4049 }
0e446be4
CH
4050
4051 return 0;
1da177e4
LT
4052}
4053
0e446be4 4054STATIC int
1da177e4 4055xlog_unpack_data(
9a8d2fdb 4056 struct xlog_rec_header *rhead,
b2a922cd 4057 char *dp,
9a8d2fdb 4058 struct xlog *log)
1da177e4
LT
4059{
4060 int i, j, k;
0e446be4
CH
4061 int error;
4062
4063 error = xlog_unpack_data_crc(rhead, dp, log);
4064 if (error)
4065 return error;
1da177e4 4066
b53e675d 4067 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 4068 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 4069 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
4070 dp += BBSIZE;
4071 }
4072
62118709 4073 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 4074 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 4075 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4076 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4077 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4078 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4079 dp += BBSIZE;
4080 }
4081 }
0e446be4
CH
4082
4083 return 0;
1da177e4
LT
4084}
4085
4086STATIC int
4087xlog_valid_rec_header(
9a8d2fdb
MT
4088 struct xlog *log,
4089 struct xlog_rec_header *rhead,
1da177e4
LT
4090 xfs_daddr_t blkno)
4091{
4092 int hlen;
4093
69ef921b 4094 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4095 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4096 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4097 return -EFSCORRUPTED;
1da177e4
LT
4098 }
4099 if (unlikely(
4100 (!rhead->h_version ||
b53e675d 4101 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4102 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4103 __func__, be32_to_cpu(rhead->h_version));
2451337d 4104 return -EIO;
1da177e4
LT
4105 }
4106
4107 /* LR body must have data or it wouldn't have been written */
b53e675d 4108 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4109 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4110 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4111 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4112 return -EFSCORRUPTED;
1da177e4
LT
4113 }
4114 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4115 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4116 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4117 return -EFSCORRUPTED;
1da177e4
LT
4118 }
4119 return 0;
4120}
4121
4122/*
4123 * Read the log from tail to head and process the log records found.
4124 * Handle the two cases where the tail and head are in the same cycle
4125 * and where the active portion of the log wraps around the end of
4126 * the physical log separately. The pass parameter is passed through
4127 * to the routines called to process the data and is not looked at
4128 * here.
4129 */
4130STATIC int
4131xlog_do_recovery_pass(
9a8d2fdb 4132 struct xlog *log,
1da177e4
LT
4133 xfs_daddr_t head_blk,
4134 xfs_daddr_t tail_blk,
4135 int pass)
4136{
4137 xlog_rec_header_t *rhead;
4138 xfs_daddr_t blk_no;
b2a922cd 4139 char *offset;
1da177e4
LT
4140 xfs_buf_t *hbp, *dbp;
4141 int error = 0, h_size;
4142 int bblks, split_bblks;
4143 int hblks, split_hblks, wrapped_hblks;
f0a76953 4144 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4145
4146 ASSERT(head_blk != tail_blk);
4147
4148 /*
4149 * Read the header of the tail block and get the iclog buffer size from
4150 * h_size. Use this to tell how many sectors make up the log header.
4151 */
62118709 4152 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4153 /*
4154 * When using variable length iclogs, read first sector of
4155 * iclog header and extract the header size from it. Get a
4156 * new hbp that is the correct size.
4157 */
4158 hbp = xlog_get_bp(log, 1);
4159 if (!hbp)
2451337d 4160 return -ENOMEM;
076e6acb
CH
4161
4162 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4163 if (error)
1da177e4 4164 goto bread_err1;
076e6acb 4165
1da177e4
LT
4166 rhead = (xlog_rec_header_t *)offset;
4167 error = xlog_valid_rec_header(log, rhead, tail_blk);
4168 if (error)
4169 goto bread_err1;
b53e675d
CH
4170 h_size = be32_to_cpu(rhead->h_size);
4171 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4172 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4173 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4174 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4175 hblks++;
4176 xlog_put_bp(hbp);
4177 hbp = xlog_get_bp(log, hblks);
4178 } else {
4179 hblks = 1;
4180 }
4181 } else {
69ce58f0 4182 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4183 hblks = 1;
4184 hbp = xlog_get_bp(log, 1);
4185 h_size = XLOG_BIG_RECORD_BSIZE;
4186 }
4187
4188 if (!hbp)
2451337d 4189 return -ENOMEM;
1da177e4
LT
4190 dbp = xlog_get_bp(log, BTOBB(h_size));
4191 if (!dbp) {
4192 xlog_put_bp(hbp);
2451337d 4193 return -ENOMEM;
1da177e4
LT
4194 }
4195
4196 memset(rhash, 0, sizeof(rhash));
970fd3f0
ES
4197 blk_no = tail_blk;
4198 if (tail_blk > head_blk) {
1da177e4
LT
4199 /*
4200 * Perform recovery around the end of the physical log.
4201 * When the head is not on the same cycle number as the tail,
970fd3f0 4202 * we can't do a sequential recovery.
1da177e4 4203 */
1da177e4
LT
4204 while (blk_no < log->l_logBBsize) {
4205 /*
4206 * Check for header wrapping around physical end-of-log
4207 */
62926044 4208 offset = hbp->b_addr;
1da177e4
LT
4209 split_hblks = 0;
4210 wrapped_hblks = 0;
4211 if (blk_no + hblks <= log->l_logBBsize) {
4212 /* Read header in one read */
076e6acb
CH
4213 error = xlog_bread(log, blk_no, hblks, hbp,
4214 &offset);
1da177e4
LT
4215 if (error)
4216 goto bread_err2;
1da177e4
LT
4217 } else {
4218 /* This LR is split across physical log end */
4219 if (blk_no != log->l_logBBsize) {
4220 /* some data before physical log end */
4221 ASSERT(blk_no <= INT_MAX);
4222 split_hblks = log->l_logBBsize - (int)blk_no;
4223 ASSERT(split_hblks > 0);
076e6acb
CH
4224 error = xlog_bread(log, blk_no,
4225 split_hblks, hbp,
4226 &offset);
4227 if (error)
1da177e4 4228 goto bread_err2;
1da177e4 4229 }
076e6acb 4230
1da177e4
LT
4231 /*
4232 * Note: this black magic still works with
4233 * large sector sizes (non-512) only because:
4234 * - we increased the buffer size originally
4235 * by 1 sector giving us enough extra space
4236 * for the second read;
4237 * - the log start is guaranteed to be sector
4238 * aligned;
4239 * - we read the log end (LR header start)
4240 * _first_, then the log start (LR header end)
4241 * - order is important.
4242 */
234f56ac 4243 wrapped_hblks = hblks - split_hblks;
44396476
DC
4244 error = xlog_bread_offset(log, 0,
4245 wrapped_hblks, hbp,
4246 offset + BBTOB(split_hblks));
1da177e4
LT
4247 if (error)
4248 goto bread_err2;
1da177e4
LT
4249 }
4250 rhead = (xlog_rec_header_t *)offset;
4251 error = xlog_valid_rec_header(log, rhead,
4252 split_hblks ? blk_no : 0);
4253 if (error)
4254 goto bread_err2;
4255
b53e675d 4256 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4257 blk_no += hblks;
4258
4259 /* Read in data for log record */
4260 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4261 error = xlog_bread(log, blk_no, bblks, dbp,
4262 &offset);
1da177e4
LT
4263 if (error)
4264 goto bread_err2;
1da177e4
LT
4265 } else {
4266 /* This log record is split across the
4267 * physical end of log */
62926044 4268 offset = dbp->b_addr;
1da177e4
LT
4269 split_bblks = 0;
4270 if (blk_no != log->l_logBBsize) {
4271 /* some data is before the physical
4272 * end of log */
4273 ASSERT(!wrapped_hblks);
4274 ASSERT(blk_no <= INT_MAX);
4275 split_bblks =
4276 log->l_logBBsize - (int)blk_no;
4277 ASSERT(split_bblks > 0);
076e6acb
CH
4278 error = xlog_bread(log, blk_no,
4279 split_bblks, dbp,
4280 &offset);
4281 if (error)
1da177e4 4282 goto bread_err2;
1da177e4 4283 }
076e6acb 4284
1da177e4
LT
4285 /*
4286 * Note: this black magic still works with
4287 * large sector sizes (non-512) only because:
4288 * - we increased the buffer size originally
4289 * by 1 sector giving us enough extra space
4290 * for the second read;
4291 * - the log start is guaranteed to be sector
4292 * aligned;
4293 * - we read the log end (LR header start)
4294 * _first_, then the log start (LR header end)
4295 * - order is important.
4296 */
44396476 4297 error = xlog_bread_offset(log, 0,
009507b0 4298 bblks - split_bblks, dbp,
44396476 4299 offset + BBTOB(split_bblks));
076e6acb
CH
4300 if (error)
4301 goto bread_err2;
1da177e4 4302 }
0e446be4
CH
4303
4304 error = xlog_unpack_data(rhead, offset, log);
4305 if (error)
4306 goto bread_err2;
4307
4308 error = xlog_recover_process_data(log, rhash,
4309 rhead, offset, pass);
4310 if (error)
1da177e4
LT
4311 goto bread_err2;
4312 blk_no += bblks;
4313 }
4314
4315 ASSERT(blk_no >= log->l_logBBsize);
4316 blk_no -= log->l_logBBsize;
970fd3f0 4317 }
1da177e4 4318
970fd3f0
ES
4319 /* read first part of physical log */
4320 while (blk_no < head_blk) {
4321 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4322 if (error)
4323 goto bread_err2;
076e6acb 4324
970fd3f0
ES
4325 rhead = (xlog_rec_header_t *)offset;
4326 error = xlog_valid_rec_header(log, rhead, blk_no);
4327 if (error)
4328 goto bread_err2;
076e6acb 4329
970fd3f0
ES
4330 /* blocks in data section */
4331 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4332 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4333 &offset);
4334 if (error)
4335 goto bread_err2;
076e6acb 4336
970fd3f0
ES
4337 error = xlog_unpack_data(rhead, offset, log);
4338 if (error)
4339 goto bread_err2;
0e446be4 4340
970fd3f0
ES
4341 error = xlog_recover_process_data(log, rhash,
4342 rhead, offset, pass);
4343 if (error)
4344 goto bread_err2;
4345 blk_no += bblks + hblks;
1da177e4
LT
4346 }
4347
4348 bread_err2:
4349 xlog_put_bp(dbp);
4350 bread_err1:
4351 xlog_put_bp(hbp);
4352 return error;
4353}
4354
4355/*
4356 * Do the recovery of the log. We actually do this in two phases.
4357 * The two passes are necessary in order to implement the function
4358 * of cancelling a record written into the log. The first pass
4359 * determines those things which have been cancelled, and the
4360 * second pass replays log items normally except for those which
4361 * have been cancelled. The handling of the replay and cancellations
4362 * takes place in the log item type specific routines.
4363 *
4364 * The table of items which have cancel records in the log is allocated
4365 * and freed at this level, since only here do we know when all of
4366 * the log recovery has been completed.
4367 */
4368STATIC int
4369xlog_do_log_recovery(
9a8d2fdb 4370 struct xlog *log,
1da177e4
LT
4371 xfs_daddr_t head_blk,
4372 xfs_daddr_t tail_blk)
4373{
d5689eaa 4374 int error, i;
1da177e4
LT
4375
4376 ASSERT(head_blk != tail_blk);
4377
4378 /*
4379 * First do a pass to find all of the cancelled buf log items.
4380 * Store them in the buf_cancel_table for use in the second pass.
4381 */
d5689eaa
CH
4382 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4383 sizeof(struct list_head),
1da177e4 4384 KM_SLEEP);
d5689eaa
CH
4385 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4386 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4387
1da177e4
LT
4388 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4389 XLOG_RECOVER_PASS1);
4390 if (error != 0) {
f0e2d93c 4391 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4392 log->l_buf_cancel_table = NULL;
4393 return error;
4394 }
4395 /*
4396 * Then do a second pass to actually recover the items in the log.
4397 * When it is complete free the table of buf cancel items.
4398 */
4399 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4400 XLOG_RECOVER_PASS2);
4401#ifdef DEBUG
6d192a9b 4402 if (!error) {
1da177e4
LT
4403 int i;
4404
4405 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4406 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4407 }
4408#endif /* DEBUG */
4409
f0e2d93c 4410 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4411 log->l_buf_cancel_table = NULL;
4412
4413 return error;
4414}
4415
4416/*
4417 * Do the actual recovery
4418 */
4419STATIC int
4420xlog_do_recover(
9a8d2fdb 4421 struct xlog *log,
1da177e4
LT
4422 xfs_daddr_t head_blk,
4423 xfs_daddr_t tail_blk)
4424{
4425 int error;
4426 xfs_buf_t *bp;
4427 xfs_sb_t *sbp;
4428
4429 /*
4430 * First replay the images in the log.
4431 */
4432 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4433 if (error)
1da177e4 4434 return error;
1da177e4
LT
4435
4436 /*
4437 * If IO errors happened during recovery, bail out.
4438 */
4439 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
2451337d 4440 return -EIO;
1da177e4
LT
4441 }
4442
4443 /*
4444 * We now update the tail_lsn since much of the recovery has completed
4445 * and there may be space available to use. If there were no extent
4446 * or iunlinks, we can free up the entire log and set the tail_lsn to
4447 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4448 * lsn of the last known good LR on disk. If there are extent frees
4449 * or iunlinks they will have some entries in the AIL; so we look at
4450 * the AIL to determine how to set the tail_lsn.
4451 */
4452 xlog_assign_tail_lsn(log->l_mp);
4453
4454 /*
4455 * Now that we've finished replaying all buffer and inode
98021821 4456 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4457 */
4458 bp = xfs_getsb(log->l_mp, 0);
4459 XFS_BUF_UNDONE(bp);
bebf963f 4460 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4461 XFS_BUF_READ(bp);
bebf963f 4462 XFS_BUF_UNASYNC(bp);
1813dd64 4463 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3 4464
595bff75 4465 error = xfs_buf_submit_wait(bp);
d64e31a2 4466 if (error) {
595bff75
DC
4467 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
4468 xfs_buf_ioerror_alert(bp, __func__);
4469 ASSERT(0);
4470 }
1da177e4
LT
4471 xfs_buf_relse(bp);
4472 return error;
4473 }
4474
4475 /* Convert superblock from on-disk format */
4476 sbp = &log->l_mp->m_sb;
98021821 4477 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4478 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4479 ASSERT(xfs_sb_good_version(sbp));
5681ca40
DC
4480 xfs_reinit_percpu_counters(log->l_mp);
4481
1da177e4
LT
4482 xfs_buf_relse(bp);
4483
5478eead 4484
1da177e4
LT
4485 xlog_recover_check_summary(log);
4486
4487 /* Normal transactions can now occur */
4488 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4489 return 0;
4490}
4491
4492/*
4493 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4494 *
4495 * Return error or zero.
4496 */
4497int
4498xlog_recover(
9a8d2fdb 4499 struct xlog *log)
1da177e4
LT
4500{
4501 xfs_daddr_t head_blk, tail_blk;
4502 int error;
4503
4504 /* find the tail of the log */
65be6054 4505 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
4506 return error;
4507
4508 if (tail_blk != head_blk) {
4509 /* There used to be a comment here:
4510 *
4511 * disallow recovery on read-only mounts. note -- mount
4512 * checks for ENOSPC and turns it into an intelligent
4513 * error message.
4514 * ...but this is no longer true. Now, unless you specify
4515 * NORECOVERY (in which case this function would never be
4516 * called), we just go ahead and recover. We do this all
4517 * under the vfs layer, so we can get away with it unless
4518 * the device itself is read-only, in which case we fail.
4519 */
3a02ee18 4520 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4521 return error;
4522 }
4523
e721f504
DC
4524 /*
4525 * Version 5 superblock log feature mask validation. We know the
4526 * log is dirty so check if there are any unknown log features
4527 * in what we need to recover. If there are unknown features
4528 * (e.g. unsupported transactions, then simply reject the
4529 * attempt at recovery before touching anything.
4530 */
4531 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4532 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4533 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4534 xfs_warn(log->l_mp,
4535"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4536"The log can not be fully and/or safely recovered by this kernel.\n"
4537"Please recover the log on a kernel that supports the unknown features.",
4538 (log->l_mp->m_sb.sb_features_log_incompat &
4539 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
2451337d 4540 return -EINVAL;
e721f504
DC
4541 }
4542
2e227178
BF
4543 /*
4544 * Delay log recovery if the debug hook is set. This is debug
4545 * instrumention to coordinate simulation of I/O failures with
4546 * log recovery.
4547 */
4548 if (xfs_globals.log_recovery_delay) {
4549 xfs_notice(log->l_mp,
4550 "Delaying log recovery for %d seconds.",
4551 xfs_globals.log_recovery_delay);
4552 msleep(xfs_globals.log_recovery_delay * 1000);
4553 }
4554
a0fa2b67
DC
4555 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4556 log->l_mp->m_logname ? log->l_mp->m_logname
4557 : "internal");
1da177e4
LT
4558
4559 error = xlog_do_recover(log, head_blk, tail_blk);
4560 log->l_flags |= XLOG_RECOVERY_NEEDED;
4561 }
4562 return error;
4563}
4564
4565/*
4566 * In the first part of recovery we replay inodes and buffers and build
4567 * up the list of extent free items which need to be processed. Here
4568 * we process the extent free items and clean up the on disk unlinked
4569 * inode lists. This is separated from the first part of recovery so
4570 * that the root and real-time bitmap inodes can be read in from disk in
4571 * between the two stages. This is necessary so that we can free space
4572 * in the real-time portion of the file system.
4573 */
4574int
4575xlog_recover_finish(
9a8d2fdb 4576 struct xlog *log)
1da177e4
LT
4577{
4578 /*
4579 * Now we're ready to do the transactions needed for the
4580 * rest of recovery. Start with completing all the extent
4581 * free intent records and then process the unlinked inode
4582 * lists. At this point, we essentially run in normal mode
4583 * except that we're still performing recovery actions
4584 * rather than accepting new requests.
4585 */
4586 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4587 int error;
4588 error = xlog_recover_process_efis(log);
4589 if (error) {
a0fa2b67 4590 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4591 return error;
4592 }
1da177e4
LT
4593 /*
4594 * Sync the log to get all the EFIs out of the AIL.
4595 * This isn't absolutely necessary, but it helps in
4596 * case the unlink transactions would have problems
4597 * pushing the EFIs out of the way.
4598 */
a14a348b 4599 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4600
4249023a 4601 xlog_recover_process_iunlinks(log);
1da177e4
LT
4602
4603 xlog_recover_check_summary(log);
4604
a0fa2b67
DC
4605 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4606 log->l_mp->m_logname ? log->l_mp->m_logname
4607 : "internal");
1da177e4
LT
4608 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4609 } else {
a0fa2b67 4610 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4611 }
4612 return 0;
4613}
4614
4615
4616#if defined(DEBUG)
4617/*
4618 * Read all of the agf and agi counters and check that they
4619 * are consistent with the superblock counters.
4620 */
4621void
4622xlog_recover_check_summary(
9a8d2fdb 4623 struct xlog *log)
1da177e4
LT
4624{
4625 xfs_mount_t *mp;
4626 xfs_agf_t *agfp;
1da177e4
LT
4627 xfs_buf_t *agfbp;
4628 xfs_buf_t *agibp;
1da177e4
LT
4629 xfs_agnumber_t agno;
4630 __uint64_t freeblks;
4631 __uint64_t itotal;
4632 __uint64_t ifree;
5e1be0fb 4633 int error;
1da177e4
LT
4634
4635 mp = log->l_mp;
4636
4637 freeblks = 0LL;
4638 itotal = 0LL;
4639 ifree = 0LL;
4640 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
4641 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4642 if (error) {
a0fa2b67
DC
4643 xfs_alert(mp, "%s agf read failed agno %d error %d",
4644 __func__, agno, error);
4805621a
FCH
4645 } else {
4646 agfp = XFS_BUF_TO_AGF(agfbp);
4647 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4648 be32_to_cpu(agfp->agf_flcount);
4649 xfs_buf_relse(agfbp);
1da177e4 4650 }
1da177e4 4651
5e1be0fb 4652 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4653 if (error) {
4654 xfs_alert(mp, "%s agi read failed agno %d error %d",
4655 __func__, agno, error);
4656 } else {
5e1be0fb 4657 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4658
5e1be0fb
CH
4659 itotal += be32_to_cpu(agi->agi_count);
4660 ifree += be32_to_cpu(agi->agi_freecount);
4661 xfs_buf_relse(agibp);
4662 }
1da177e4 4663 }
1da177e4
LT
4664}
4665#endif /* DEBUG */