xfs: remove xfs_iunlock_map_shared
[linux-2.6-block.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_sb.h"
a844f451 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
57062787
DC
27#include "xfs_da_format.h"
28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
c24b5dfa 33#include "xfs_bmap_util.h"
1da177e4 34#include "xfs_error.h"
2b9ab5ab 35#include "xfs_dir2.h"
c24b5dfa 36#include "xfs_dir2_priv.h"
ddcd856d 37#include "xfs_ioctl.h"
dda35b8f 38#include "xfs_trace.h"
239880ef 39#include "xfs_log.h"
a4fbe6ab 40#include "xfs_dinode.h"
1da177e4 41
a27bb332 42#include <linux/aio.h>
1da177e4 43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
1da177e4 46
f0f37e2f 47static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 48
487f84f3
DC
49/*
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 */
53static inline void
54xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
57{
58 if (type & XFS_IOLOCK_EXCL)
59 mutex_lock(&VFS_I(ip)->i_mutex);
60 xfs_ilock(ip, type);
61}
62
63static inline void
64xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
67{
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
70 mutex_unlock(&VFS_I(ip)->i_mutex);
71}
72
73static inline void
74xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
77{
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
80 mutex_unlock(&VFS_I(ip)->i_mutex);
81}
82
dda35b8f
CH
83/*
84 * xfs_iozero
85 *
86 * xfs_iozero clears the specified range of buffer supplied,
87 * and marks all the affected blocks as valid and modified. If
88 * an affected block is not allocated, it will be allocated. If
89 * an affected block is not completely overwritten, and is not
90 * valid before the operation, it will be read from disk before
91 * being partially zeroed.
92 */
ef9d8733 93int
dda35b8f
CH
94xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98{
99 struct page *page;
100 struct address_space *mapping;
101 int status;
102
103 mapping = VFS_I(ip)->i_mapping;
104 do {
105 unsigned offset, bytes;
106 void *fsdata;
107
108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 bytes = PAGE_CACHE_SIZE - offset;
110 if (bytes > count)
111 bytes = count;
112
113 status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 AOP_FLAG_UNINTERRUPTIBLE,
115 &page, &fsdata);
116 if (status)
117 break;
118
119 zero_user(page, offset, bytes);
120
121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 page, fsdata);
123 WARN_ON(status <= 0); /* can't return less than zero! */
124 pos += bytes;
125 count -= bytes;
126 status = 0;
127 } while (count);
128
129 return (-status);
130}
131
1da2f2db
CH
132/*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138STATIC int
139xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144{
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159}
160
fd3200be
CH
161STATIC int
162xfs_file_fsync(
163 struct file *file,
02c24a82
JB
164 loff_t start,
165 loff_t end,
fd3200be
CH
166 int datasync)
167{
7ea80859
CH
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
a27a263b 170 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
171 int error = 0;
172 int log_flushed = 0;
b1037058 173 xfs_lsn_t lsn = 0;
fd3200be 174
cca28fb8 175 trace_xfs_file_fsync(ip);
fd3200be 176
02c24a82
JB
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
a27a263b 181 if (XFS_FORCED_SHUTDOWN(mp))
fd3200be
CH
182 return -XFS_ERROR(EIO);
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
a27a263b
CH
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
fd3200be 200 /*
8a9c9980
CH
201 * All metadata updates are logged, which means that we just have
202 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
203 */
204 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
205 if (xfs_ipincount(ip)) {
206 if (!datasync ||
207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 lsn = ip->i_itemp->ili_last_lsn;
209 }
8a9c9980 210 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 211
8a9c9980 212 if (lsn)
b1037058
CH
213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214
a27a263b
CH
215 /*
216 * If we only have a single device, and the log force about was
217 * a no-op we might have to flush the data device cache here.
218 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 * an already allocated file and thus do not have any metadata to
220 * commit.
221 */
222 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 mp->m_logdev_targp == mp->m_ddev_targp &&
224 !XFS_IS_REALTIME_INODE(ip) &&
225 !log_flushed)
226 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be
CH
227
228 return -error;
229}
230
00258e36
CH
231STATIC ssize_t
232xfs_file_aio_read(
dda35b8f
CH
233 struct kiocb *iocb,
234 const struct iovec *iovp,
00258e36
CH
235 unsigned long nr_segs,
236 loff_t pos)
dda35b8f
CH
237{
238 struct file *file = iocb->ki_filp;
239 struct inode *inode = file->f_mapping->host;
00258e36
CH
240 struct xfs_inode *ip = XFS_I(inode);
241 struct xfs_mount *mp = ip->i_mount;
dda35b8f
CH
242 size_t size = 0;
243 ssize_t ret = 0;
00258e36 244 int ioflags = 0;
dda35b8f 245 xfs_fsize_t n;
dda35b8f 246
dda35b8f
CH
247 XFS_STATS_INC(xs_read_calls);
248
00258e36
CH
249 BUG_ON(iocb->ki_pos != pos);
250
251 if (unlikely(file->f_flags & O_DIRECT))
252 ioflags |= IO_ISDIRECT;
253 if (file->f_mode & FMODE_NOCMTIME)
254 ioflags |= IO_INVIS;
255
52764329
DC
256 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
257 if (ret < 0)
258 return ret;
dda35b8f
CH
259
260 if (unlikely(ioflags & IO_ISDIRECT)) {
261 xfs_buftarg_t *target =
262 XFS_IS_REALTIME_INODE(ip) ?
263 mp->m_rtdev_targp : mp->m_ddev_targp;
fb595814
DC
264 if ((pos & target->bt_smask) || (size & target->bt_smask)) {
265 if (pos == i_size_read(inode))
00258e36 266 return 0;
dda35b8f
CH
267 return -XFS_ERROR(EINVAL);
268 }
269 }
270
fb595814 271 n = mp->m_super->s_maxbytes - pos;
00258e36 272 if (n <= 0 || size == 0)
dda35b8f
CH
273 return 0;
274
275 if (n < size)
276 size = n;
277
278 if (XFS_FORCED_SHUTDOWN(mp))
279 return -EIO;
280
0c38a251
DC
281 /*
282 * Locking is a bit tricky here. If we take an exclusive lock
283 * for direct IO, we effectively serialise all new concurrent
284 * read IO to this file and block it behind IO that is currently in
285 * progress because IO in progress holds the IO lock shared. We only
286 * need to hold the lock exclusive to blow away the page cache, so
287 * only take lock exclusively if the page cache needs invalidation.
288 * This allows the normal direct IO case of no page cache pages to
289 * proceeed concurrently without serialisation.
290 */
291 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
292 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
293 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
294 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
295
00258e36 296 if (inode->i_mapping->nrpages) {
fb595814
DC
297 ret = -filemap_write_and_wait_range(
298 VFS_I(ip)->i_mapping,
299 pos, -1);
487f84f3
DC
300 if (ret) {
301 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
302 return ret;
303 }
fb595814 304 truncate_pagecache_range(VFS_I(ip), pos, -1);
00258e36 305 }
487f84f3 306 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 307 }
dda35b8f 308
fb595814 309 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 310
fb595814 311 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
dda35b8f
CH
312 if (ret > 0)
313 XFS_STATS_ADD(xs_read_bytes, ret);
314
487f84f3 315 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
316 return ret;
317}
318
00258e36
CH
319STATIC ssize_t
320xfs_file_splice_read(
dda35b8f
CH
321 struct file *infilp,
322 loff_t *ppos,
323 struct pipe_inode_info *pipe,
324 size_t count,
00258e36 325 unsigned int flags)
dda35b8f 326{
00258e36 327 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 328 int ioflags = 0;
dda35b8f
CH
329 ssize_t ret;
330
331 XFS_STATS_INC(xs_read_calls);
00258e36
CH
332
333 if (infilp->f_mode & FMODE_NOCMTIME)
334 ioflags |= IO_INVIS;
335
dda35b8f
CH
336 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
337 return -EIO;
338
487f84f3 339 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 340
dda35b8f
CH
341 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
342
343 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
344 if (ret > 0)
345 XFS_STATS_ADD(xs_read_bytes, ret);
346
487f84f3 347 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
348 return ret;
349}
350
487f84f3
DC
351/*
352 * xfs_file_splice_write() does not use xfs_rw_ilock() because
353 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
354 * couuld cause lock inversions between the aio_write path and the splice path
355 * if someone is doing concurrent splice(2) based writes and write(2) based
356 * writes to the same inode. The only real way to fix this is to re-implement
357 * the generic code here with correct locking orders.
358 */
00258e36
CH
359STATIC ssize_t
360xfs_file_splice_write(
dda35b8f
CH
361 struct pipe_inode_info *pipe,
362 struct file *outfilp,
363 loff_t *ppos,
364 size_t count,
00258e36 365 unsigned int flags)
dda35b8f 366{
dda35b8f 367 struct inode *inode = outfilp->f_mapping->host;
00258e36 368 struct xfs_inode *ip = XFS_I(inode);
00258e36
CH
369 int ioflags = 0;
370 ssize_t ret;
dda35b8f
CH
371
372 XFS_STATS_INC(xs_write_calls);
00258e36
CH
373
374 if (outfilp->f_mode & FMODE_NOCMTIME)
375 ioflags |= IO_INVIS;
376
dda35b8f
CH
377 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
378 return -EIO;
379
380 xfs_ilock(ip, XFS_IOLOCK_EXCL);
381
dda35b8f
CH
382 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
383
384 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
ce7ae151
CH
385 if (ret > 0)
386 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 387
dda35b8f
CH
388 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
389 return ret;
390}
391
392/*
193aec10
CH
393 * This routine is called to handle zeroing any space in the last block of the
394 * file that is beyond the EOF. We do this since the size is being increased
395 * without writing anything to that block and we don't want to read the
396 * garbage on the disk.
dda35b8f
CH
397 */
398STATIC int /* error (positive) */
399xfs_zero_last_block(
193aec10
CH
400 struct xfs_inode *ip,
401 xfs_fsize_t offset,
402 xfs_fsize_t isize)
dda35b8f 403{
193aec10
CH
404 struct xfs_mount *mp = ip->i_mount;
405 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
406 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
407 int zero_len;
408 int nimaps = 1;
409 int error = 0;
410 struct xfs_bmbt_irec imap;
dda35b8f 411
193aec10 412 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 413 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 414 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 415 if (error)
dda35b8f 416 return error;
193aec10 417
dda35b8f 418 ASSERT(nimaps > 0);
193aec10 419
dda35b8f
CH
420 /*
421 * If the block underlying isize is just a hole, then there
422 * is nothing to zero.
423 */
193aec10 424 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 425 return 0;
dda35b8f
CH
426
427 zero_len = mp->m_sb.sb_blocksize - zero_offset;
428 if (isize + zero_len > offset)
429 zero_len = offset - isize;
193aec10 430 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
431}
432
433/*
193aec10
CH
434 * Zero any on disk space between the current EOF and the new, larger EOF.
435 *
436 * This handles the normal case of zeroing the remainder of the last block in
437 * the file and the unusual case of zeroing blocks out beyond the size of the
438 * file. This second case only happens with fixed size extents and when the
439 * system crashes before the inode size was updated but after blocks were
440 * allocated.
441 *
442 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 443 */
dda35b8f
CH
444int /* error (positive) */
445xfs_zero_eof(
193aec10
CH
446 struct xfs_inode *ip,
447 xfs_off_t offset, /* starting I/O offset */
448 xfs_fsize_t isize) /* current inode size */
dda35b8f 449{
193aec10
CH
450 struct xfs_mount *mp = ip->i_mount;
451 xfs_fileoff_t start_zero_fsb;
452 xfs_fileoff_t end_zero_fsb;
453 xfs_fileoff_t zero_count_fsb;
454 xfs_fileoff_t last_fsb;
455 xfs_fileoff_t zero_off;
456 xfs_fsize_t zero_len;
457 int nimaps;
458 int error = 0;
459 struct xfs_bmbt_irec imap;
460
461 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
462 ASSERT(offset > isize);
463
464 /*
465 * First handle zeroing the block on which isize resides.
193aec10 466 *
dda35b8f
CH
467 * We only zero a part of that block so it is handled specially.
468 */
193aec10
CH
469 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
470 error = xfs_zero_last_block(ip, offset, isize);
471 if (error)
472 return error;
dda35b8f
CH
473 }
474
475 /*
193aec10
CH
476 * Calculate the range between the new size and the old where blocks
477 * needing to be zeroed may exist.
478 *
479 * To get the block where the last byte in the file currently resides,
480 * we need to subtract one from the size and truncate back to a block
481 * boundary. We subtract 1 in case the size is exactly on a block
482 * boundary.
dda35b8f
CH
483 */
484 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
485 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
486 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
487 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
488 if (last_fsb == end_zero_fsb) {
489 /*
490 * The size was only incremented on its last block.
491 * We took care of that above, so just return.
492 */
493 return 0;
494 }
495
496 ASSERT(start_zero_fsb <= end_zero_fsb);
497 while (start_zero_fsb <= end_zero_fsb) {
498 nimaps = 1;
499 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
500
501 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
502 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
503 &imap, &nimaps, 0);
193aec10
CH
504 xfs_iunlock(ip, XFS_ILOCK_EXCL);
505 if (error)
dda35b8f 506 return error;
193aec10 507
dda35b8f
CH
508 ASSERT(nimaps > 0);
509
510 if (imap.br_state == XFS_EXT_UNWRITTEN ||
511 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
512 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
513 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
514 continue;
515 }
516
517 /*
518 * There are blocks we need to zero.
dda35b8f 519 */
dda35b8f
CH
520 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
521 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
522
523 if ((zero_off + zero_len) > offset)
524 zero_len = offset - zero_off;
525
526 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
527 if (error)
528 return error;
dda35b8f
CH
529
530 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
531 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
532 }
533
534 return 0;
dda35b8f
CH
535}
536
4d8d1581
DC
537/*
538 * Common pre-write limit and setup checks.
539 *
5bf1f262
CH
540 * Called with the iolocked held either shared and exclusive according to
541 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
542 * if called for a direct write beyond i_size.
4d8d1581
DC
543 */
544STATIC ssize_t
545xfs_file_aio_write_checks(
546 struct file *file,
547 loff_t *pos,
548 size_t *count,
549 int *iolock)
550{
551 struct inode *inode = file->f_mapping->host;
552 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
553 int error = 0;
554
7271d243 555restart:
4d8d1581 556 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 557 if (error)
4d8d1581 558 return error;
4d8d1581 559
4d8d1581
DC
560 /*
561 * If the offset is beyond the size of the file, we need to zero any
562 * blocks that fall between the existing EOF and the start of this
2813d682 563 * write. If zeroing is needed and we are currently holding the
467f7899
CH
564 * iolock shared, we need to update it to exclusive which implies
565 * having to redo all checks before.
4d8d1581 566 */
2813d682 567 if (*pos > i_size_read(inode)) {
7271d243 568 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 569 xfs_rw_iunlock(ip, *iolock);
7271d243 570 *iolock = XFS_IOLOCK_EXCL;
467f7899 571 xfs_rw_ilock(ip, *iolock);
7271d243
DC
572 goto restart;
573 }
ce7ae151 574 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
575 if (error)
576 return error;
7271d243 577 }
4d8d1581 578
8a9c9980
CH
579 /*
580 * Updating the timestamps will grab the ilock again from
581 * xfs_fs_dirty_inode, so we have to call it after dropping the
582 * lock above. Eventually we should look into a way to avoid
583 * the pointless lock roundtrip.
584 */
c3b2da31
JB
585 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
586 error = file_update_time(file);
587 if (error)
588 return error;
589 }
8a9c9980 590
4d8d1581
DC
591 /*
592 * If we're writing the file then make sure to clear the setuid and
593 * setgid bits if the process is not being run by root. This keeps
594 * people from modifying setuid and setgid binaries.
595 */
596 return file_remove_suid(file);
4d8d1581
DC
597}
598
f0d26e86
DC
599/*
600 * xfs_file_dio_aio_write - handle direct IO writes
601 *
602 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 603 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
604 * follow locking changes and looping.
605 *
eda77982
DC
606 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
607 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
608 * pages are flushed out.
609 *
610 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
611 * allowing them to be done in parallel with reads and other direct IO writes.
612 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
613 * needs to do sub-block zeroing and that requires serialisation against other
614 * direct IOs to the same block. In this case we need to serialise the
615 * submission of the unaligned IOs so that we don't get racing block zeroing in
616 * the dio layer. To avoid the problem with aio, we also need to wait for
617 * outstanding IOs to complete so that unwritten extent conversion is completed
618 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 619 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 620 *
f0d26e86
DC
621 * Returns with locks held indicated by @iolock and errors indicated by
622 * negative return values.
623 */
624STATIC ssize_t
625xfs_file_dio_aio_write(
626 struct kiocb *iocb,
627 const struct iovec *iovp,
628 unsigned long nr_segs,
629 loff_t pos,
d0606464 630 size_t ocount)
f0d26e86
DC
631{
632 struct file *file = iocb->ki_filp;
633 struct address_space *mapping = file->f_mapping;
634 struct inode *inode = mapping->host;
635 struct xfs_inode *ip = XFS_I(inode);
636 struct xfs_mount *mp = ip->i_mount;
637 ssize_t ret = 0;
f0d26e86 638 size_t count = ocount;
eda77982 639 int unaligned_io = 0;
d0606464 640 int iolock;
f0d26e86
DC
641 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
642 mp->m_rtdev_targp : mp->m_ddev_targp;
643
f0d26e86
DC
644 if ((pos & target->bt_smask) || (count & target->bt_smask))
645 return -XFS_ERROR(EINVAL);
646
eda77982
DC
647 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
648 unaligned_io = 1;
649
7271d243
DC
650 /*
651 * We don't need to take an exclusive lock unless there page cache needs
652 * to be invalidated or unaligned IO is being executed. We don't need to
653 * consider the EOF extension case here because
654 * xfs_file_aio_write_checks() will relock the inode as necessary for
655 * EOF zeroing cases and fill out the new inode size as appropriate.
656 */
657 if (unaligned_io || mapping->nrpages)
d0606464 658 iolock = XFS_IOLOCK_EXCL;
f0d26e86 659 else
d0606464
CH
660 iolock = XFS_IOLOCK_SHARED;
661 xfs_rw_ilock(ip, iolock);
c58cb165
CH
662
663 /*
664 * Recheck if there are cached pages that need invalidate after we got
665 * the iolock to protect against other threads adding new pages while
666 * we were waiting for the iolock.
667 */
d0606464
CH
668 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
669 xfs_rw_iunlock(ip, iolock);
670 iolock = XFS_IOLOCK_EXCL;
671 xfs_rw_ilock(ip, iolock);
c58cb165 672 }
f0d26e86 673
d0606464 674 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 675 if (ret)
d0606464 676 goto out;
f0d26e86
DC
677
678 if (mapping->nrpages) {
fb595814
DC
679 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
680 pos, -1);
f0d26e86 681 if (ret)
d0606464 682 goto out;
fb595814 683 truncate_pagecache_range(VFS_I(ip), pos, -1);
f0d26e86
DC
684 }
685
eda77982
DC
686 /*
687 * If we are doing unaligned IO, wait for all other IO to drain,
688 * otherwise demote the lock if we had to flush cached pages
689 */
690 if (unaligned_io)
4a06fd26 691 inode_dio_wait(inode);
d0606464 692 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 693 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 694 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
695 }
696
697 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
698 ret = generic_file_direct_write(iocb, iovp,
699 &nr_segs, pos, &iocb->ki_pos, count, ocount);
700
d0606464
CH
701out:
702 xfs_rw_iunlock(ip, iolock);
703
f0d26e86
DC
704 /* No fallback to buffered IO on errors for XFS. */
705 ASSERT(ret < 0 || ret == count);
706 return ret;
707}
708
00258e36 709STATIC ssize_t
637bbc75 710xfs_file_buffered_aio_write(
dda35b8f
CH
711 struct kiocb *iocb,
712 const struct iovec *iovp,
00258e36 713 unsigned long nr_segs,
637bbc75 714 loff_t pos,
d0606464 715 size_t ocount)
dda35b8f
CH
716{
717 struct file *file = iocb->ki_filp;
718 struct address_space *mapping = file->f_mapping;
719 struct inode *inode = mapping->host;
00258e36 720 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
721 ssize_t ret;
722 int enospc = 0;
d0606464 723 int iolock = XFS_IOLOCK_EXCL;
637bbc75 724 size_t count = ocount;
dda35b8f 725
d0606464 726 xfs_rw_ilock(ip, iolock);
dda35b8f 727
d0606464 728 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 729 if (ret)
d0606464 730 goto out;
dda35b8f
CH
731
732 /* We can write back this queue in page reclaim */
733 current->backing_dev_info = mapping->backing_dev_info;
734
dda35b8f 735write_retry:
637bbc75
DC
736 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
737 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
9aa05000
DC
738 pos, &iocb->ki_pos, count, 0);
739
637bbc75 740 /*
9aa05000
DC
741 * If we just got an ENOSPC, try to write back all dirty inodes to
742 * convert delalloc space to free up some of the excess reserved
743 * metadata space.
637bbc75
DC
744 */
745 if (ret == -ENOSPC && !enospc) {
637bbc75 746 enospc = 1;
9aa05000
DC
747 xfs_flush_inodes(ip->i_mount);
748 goto write_retry;
dda35b8f 749 }
d0606464 750
dda35b8f 751 current->backing_dev_info = NULL;
d0606464
CH
752out:
753 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
754 return ret;
755}
756
757STATIC ssize_t
758xfs_file_aio_write(
759 struct kiocb *iocb,
760 const struct iovec *iovp,
761 unsigned long nr_segs,
762 loff_t pos)
763{
764 struct file *file = iocb->ki_filp;
765 struct address_space *mapping = file->f_mapping;
766 struct inode *inode = mapping->host;
767 struct xfs_inode *ip = XFS_I(inode);
768 ssize_t ret;
637bbc75
DC
769 size_t ocount = 0;
770
771 XFS_STATS_INC(xs_write_calls);
772
773 BUG_ON(iocb->ki_pos != pos);
774
775 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
776 if (ret)
777 return ret;
778
779 if (ocount == 0)
780 return 0;
781
d9457dc0
JK
782 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
783 ret = -EIO;
784 goto out;
785 }
637bbc75
DC
786
787 if (unlikely(file->f_flags & O_DIRECT))
d0606464 788 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
637bbc75
DC
789 else
790 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
d0606464 791 ocount);
dda35b8f 792
d0606464
CH
793 if (ret > 0) {
794 ssize_t err;
dda35b8f 795
d0606464 796 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 797
d0606464
CH
798 /* Handle various SYNC-type writes */
799 err = generic_write_sync(file, pos, ret);
800 if (err < 0)
801 ret = err;
dda35b8f
CH
802 }
803
d9457dc0 804out:
a363f0c2 805 return ret;
dda35b8f
CH
806}
807
2fe17c10
CH
808STATIC long
809xfs_file_fallocate(
83aee9e4
CH
810 struct file *file,
811 int mode,
812 loff_t offset,
813 loff_t len)
2fe17c10 814{
83aee9e4
CH
815 struct inode *inode = file_inode(file);
816 struct xfs_inode *ip = XFS_I(inode);
817 struct xfs_trans *tp;
818 long error;
819 loff_t new_size = 0;
2fe17c10 820
83aee9e4
CH
821 if (!S_ISREG(inode->i_mode))
822 return -EINVAL;
2fe17c10
CH
823 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
824 return -EOPNOTSUPP;
825
2fe17c10 826 xfs_ilock(ip, XFS_IOLOCK_EXCL);
83aee9e4
CH
827 if (mode & FALLOC_FL_PUNCH_HOLE) {
828 error = xfs_free_file_space(ip, offset, len);
829 if (error)
830 goto out_unlock;
831 } else {
832 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
833 offset + len > i_size_read(inode)) {
834 new_size = offset + len;
835 error = -inode_newsize_ok(inode, new_size);
836 if (error)
837 goto out_unlock;
838 }
2fe17c10 839
83aee9e4
CH
840 error = xfs_alloc_file_space(ip, offset, len,
841 XFS_BMAPI_PREALLOC);
2fe17c10
CH
842 if (error)
843 goto out_unlock;
844 }
845
83aee9e4
CH
846 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
847 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
848 if (error) {
849 xfs_trans_cancel(tp, 0);
850 goto out_unlock;
851 }
852
853 xfs_ilock(ip, XFS_ILOCK_EXCL);
854 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
855 ip->i_d.di_mode &= ~S_ISUID;
856 if (ip->i_d.di_mode & S_IXGRP)
857 ip->i_d.di_mode &= ~S_ISGID;
82878897 858
83aee9e4
CH
859 if (!(mode & FALLOC_FL_PUNCH_HOLE))
860 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
861
862 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
863 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
864
865 if (file->f_flags & O_DSYNC)
866 xfs_trans_set_sync(tp);
867 error = xfs_trans_commit(tp, 0);
2fe17c10
CH
868 if (error)
869 goto out_unlock;
870
871 /* Change file size if needed */
872 if (new_size) {
873 struct iattr iattr;
874
875 iattr.ia_valid = ATTR_SIZE;
876 iattr.ia_size = new_size;
83aee9e4 877 error = xfs_setattr_size(ip, &iattr);
2fe17c10
CH
878 }
879
880out_unlock:
881 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
83aee9e4 882 return -error;
2fe17c10
CH
883}
884
885
1da177e4 886STATIC int
3562fd45 887xfs_file_open(
1da177e4 888 struct inode *inode,
f999a5bf 889 struct file *file)
1da177e4 890{
f999a5bf 891 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 892 return -EFBIG;
f999a5bf
CH
893 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
894 return -EIO;
895 return 0;
896}
897
898STATIC int
899xfs_dir_open(
900 struct inode *inode,
901 struct file *file)
902{
903 struct xfs_inode *ip = XFS_I(inode);
904 int mode;
905 int error;
906
907 error = xfs_file_open(inode, file);
908 if (error)
909 return error;
910
911 /*
912 * If there are any blocks, read-ahead block 0 as we're almost
913 * certain to have the next operation be a read there.
914 */
915 mode = xfs_ilock_map_shared(ip);
916 if (ip->i_d.di_nextents > 0)
33363fee 917 xfs_dir3_data_readahead(NULL, ip, 0, -1);
f999a5bf
CH
918 xfs_iunlock(ip, mode);
919 return 0;
1da177e4
LT
920}
921
1da177e4 922STATIC int
3562fd45 923xfs_file_release(
1da177e4
LT
924 struct inode *inode,
925 struct file *filp)
926{
739bfb2a 927 return -xfs_release(XFS_I(inode));
1da177e4
LT
928}
929
1da177e4 930STATIC int
3562fd45 931xfs_file_readdir(
b8227554
AV
932 struct file *file,
933 struct dir_context *ctx)
1da177e4 934{
b8227554 935 struct inode *inode = file_inode(file);
739bfb2a 936 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
937 int error;
938 size_t bufsize;
939
940 /*
941 * The Linux API doesn't pass down the total size of the buffer
942 * we read into down to the filesystem. With the filldir concept
943 * it's not needed for correct information, but the XFS dir2 leaf
944 * code wants an estimate of the buffer size to calculate it's
945 * readahead window and size the buffers used for mapping to
946 * physical blocks.
947 *
948 * Try to give it an estimate that's good enough, maybe at some
949 * point we can change the ->readdir prototype to include the
a9cc799e 950 * buffer size. For now we use the current glibc buffer size.
051e7cd4 951 */
a9cc799e 952 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 953
b8227554 954 error = xfs_readdir(ip, ctx, bufsize);
051e7cd4
CH
955 if (error)
956 return -error;
957 return 0;
1da177e4
LT
958}
959
1da177e4 960STATIC int
3562fd45 961xfs_file_mmap(
1da177e4
LT
962 struct file *filp,
963 struct vm_area_struct *vma)
964{
3562fd45 965 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 966
fbc1462b 967 file_accessed(filp);
1da177e4
LT
968 return 0;
969}
970
4f57dbc6
DC
971/*
972 * mmap()d file has taken write protection fault and is being made
973 * writable. We can set the page state up correctly for a writable
974 * page, which means we can do correct delalloc accounting (ENOSPC
975 * checking!) and unwritten extent mapping.
976 */
977STATIC int
978xfs_vm_page_mkwrite(
979 struct vm_area_struct *vma,
c2ec175c 980 struct vm_fault *vmf)
4f57dbc6 981{
c2ec175c 982 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
983}
984
d126d43f
JL
985/*
986 * This type is designed to indicate the type of offset we would like
987 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
988 */
989enum {
990 HOLE_OFF = 0,
991 DATA_OFF,
992};
993
994/*
995 * Lookup the desired type of offset from the given page.
996 *
997 * On success, return true and the offset argument will point to the
998 * start of the region that was found. Otherwise this function will
999 * return false and keep the offset argument unchanged.
1000 */
1001STATIC bool
1002xfs_lookup_buffer_offset(
1003 struct page *page,
1004 loff_t *offset,
1005 unsigned int type)
1006{
1007 loff_t lastoff = page_offset(page);
1008 bool found = false;
1009 struct buffer_head *bh, *head;
1010
1011 bh = head = page_buffers(page);
1012 do {
1013 /*
1014 * Unwritten extents that have data in the page
1015 * cache covering them can be identified by the
1016 * BH_Unwritten state flag. Pages with multiple
1017 * buffers might have a mix of holes, data and
1018 * unwritten extents - any buffer with valid
1019 * data in it should have BH_Uptodate flag set
1020 * on it.
1021 */
1022 if (buffer_unwritten(bh) ||
1023 buffer_uptodate(bh)) {
1024 if (type == DATA_OFF)
1025 found = true;
1026 } else {
1027 if (type == HOLE_OFF)
1028 found = true;
1029 }
1030
1031 if (found) {
1032 *offset = lastoff;
1033 break;
1034 }
1035 lastoff += bh->b_size;
1036 } while ((bh = bh->b_this_page) != head);
1037
1038 return found;
1039}
1040
1041/*
1042 * This routine is called to find out and return a data or hole offset
1043 * from the page cache for unwritten extents according to the desired
1044 * type for xfs_seek_data() or xfs_seek_hole().
1045 *
1046 * The argument offset is used to tell where we start to search from the
1047 * page cache. Map is used to figure out the end points of the range to
1048 * lookup pages.
1049 *
1050 * Return true if the desired type of offset was found, and the argument
1051 * offset is filled with that address. Otherwise, return false and keep
1052 * offset unchanged.
1053 */
1054STATIC bool
1055xfs_find_get_desired_pgoff(
1056 struct inode *inode,
1057 struct xfs_bmbt_irec *map,
1058 unsigned int type,
1059 loff_t *offset)
1060{
1061 struct xfs_inode *ip = XFS_I(inode);
1062 struct xfs_mount *mp = ip->i_mount;
1063 struct pagevec pvec;
1064 pgoff_t index;
1065 pgoff_t end;
1066 loff_t endoff;
1067 loff_t startoff = *offset;
1068 loff_t lastoff = startoff;
1069 bool found = false;
1070
1071 pagevec_init(&pvec, 0);
1072
1073 index = startoff >> PAGE_CACHE_SHIFT;
1074 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1075 end = endoff >> PAGE_CACHE_SHIFT;
1076 do {
1077 int want;
1078 unsigned nr_pages;
1079 unsigned int i;
1080
1081 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1082 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1083 want);
1084 /*
1085 * No page mapped into given range. If we are searching holes
1086 * and if this is the first time we got into the loop, it means
1087 * that the given offset is landed in a hole, return it.
1088 *
1089 * If we have already stepped through some block buffers to find
1090 * holes but they all contains data. In this case, the last
1091 * offset is already updated and pointed to the end of the last
1092 * mapped page, if it does not reach the endpoint to search,
1093 * that means there should be a hole between them.
1094 */
1095 if (nr_pages == 0) {
1096 /* Data search found nothing */
1097 if (type == DATA_OFF)
1098 break;
1099
1100 ASSERT(type == HOLE_OFF);
1101 if (lastoff == startoff || lastoff < endoff) {
1102 found = true;
1103 *offset = lastoff;
1104 }
1105 break;
1106 }
1107
1108 /*
1109 * At lease we found one page. If this is the first time we
1110 * step into the loop, and if the first page index offset is
1111 * greater than the given search offset, a hole was found.
1112 */
1113 if (type == HOLE_OFF && lastoff == startoff &&
1114 lastoff < page_offset(pvec.pages[0])) {
1115 found = true;
1116 break;
1117 }
1118
1119 for (i = 0; i < nr_pages; i++) {
1120 struct page *page = pvec.pages[i];
1121 loff_t b_offset;
1122
1123 /*
1124 * At this point, the page may be truncated or
1125 * invalidated (changing page->mapping to NULL),
1126 * or even swizzled back from swapper_space to tmpfs
1127 * file mapping. However, page->index will not change
1128 * because we have a reference on the page.
1129 *
1130 * Searching done if the page index is out of range.
1131 * If the current offset is not reaches the end of
1132 * the specified search range, there should be a hole
1133 * between them.
1134 */
1135 if (page->index > end) {
1136 if (type == HOLE_OFF && lastoff < endoff) {
1137 *offset = lastoff;
1138 found = true;
1139 }
1140 goto out;
1141 }
1142
1143 lock_page(page);
1144 /*
1145 * Page truncated or invalidated(page->mapping == NULL).
1146 * We can freely skip it and proceed to check the next
1147 * page.
1148 */
1149 if (unlikely(page->mapping != inode->i_mapping)) {
1150 unlock_page(page);
1151 continue;
1152 }
1153
1154 if (!page_has_buffers(page)) {
1155 unlock_page(page);
1156 continue;
1157 }
1158
1159 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1160 if (found) {
1161 /*
1162 * The found offset may be less than the start
1163 * point to search if this is the first time to
1164 * come here.
1165 */
1166 *offset = max_t(loff_t, startoff, b_offset);
1167 unlock_page(page);
1168 goto out;
1169 }
1170
1171 /*
1172 * We either searching data but nothing was found, or
1173 * searching hole but found a data buffer. In either
1174 * case, probably the next page contains the desired
1175 * things, update the last offset to it so.
1176 */
1177 lastoff = page_offset(page) + PAGE_SIZE;
1178 unlock_page(page);
1179 }
1180
1181 /*
1182 * The number of returned pages less than our desired, search
1183 * done. In this case, nothing was found for searching data,
1184 * but we found a hole behind the last offset.
1185 */
1186 if (nr_pages < want) {
1187 if (type == HOLE_OFF) {
1188 *offset = lastoff;
1189 found = true;
1190 }
1191 break;
1192 }
1193
1194 index = pvec.pages[i - 1]->index + 1;
1195 pagevec_release(&pvec);
1196 } while (index <= end);
1197
1198out:
1199 pagevec_release(&pvec);
1200 return found;
1201}
1202
3fe3e6b1
JL
1203STATIC loff_t
1204xfs_seek_data(
1205 struct file *file,
834ab122 1206 loff_t start)
3fe3e6b1
JL
1207{
1208 struct inode *inode = file->f_mapping->host;
1209 struct xfs_inode *ip = XFS_I(inode);
1210 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1211 loff_t uninitialized_var(offset);
1212 xfs_fsize_t isize;
1213 xfs_fileoff_t fsbno;
1214 xfs_filblks_t end;
1215 uint lock;
1216 int error;
1217
1218 lock = xfs_ilock_map_shared(ip);
1219
1220 isize = i_size_read(inode);
1221 if (start >= isize) {
1222 error = ENXIO;
1223 goto out_unlock;
1224 }
1225
3fe3e6b1
JL
1226 /*
1227 * Try to read extents from the first block indicated
1228 * by fsbno to the end block of the file.
1229 */
52f1acc8 1230 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1231 end = XFS_B_TO_FSB(mp, isize);
52f1acc8
JL
1232 for (;;) {
1233 struct xfs_bmbt_irec map[2];
1234 int nmap = 2;
1235 unsigned int i;
3fe3e6b1 1236
52f1acc8
JL
1237 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1238 XFS_BMAPI_ENTIRE);
1239 if (error)
1240 goto out_unlock;
3fe3e6b1 1241
52f1acc8
JL
1242 /* No extents at given offset, must be beyond EOF */
1243 if (nmap == 0) {
1244 error = ENXIO;
1245 goto out_unlock;
1246 }
1247
1248 for (i = 0; i < nmap; i++) {
1249 offset = max_t(loff_t, start,
1250 XFS_FSB_TO_B(mp, map[i].br_startoff));
1251
1252 /* Landed in a data extent */
1253 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1254 (map[i].br_state == XFS_EXT_NORM &&
1255 !isnullstartblock(map[i].br_startblock)))
1256 goto out;
1257
1258 /*
1259 * Landed in an unwritten extent, try to search data
1260 * from page cache.
1261 */
1262 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1263 if (xfs_find_get_desired_pgoff(inode, &map[i],
1264 DATA_OFF, &offset))
1265 goto out;
1266 }
1267 }
1268
1269 /*
1270 * map[0] is hole or its an unwritten extent but
1271 * without data in page cache. Probably means that
1272 * we are reading after EOF if nothing in map[1].
1273 */
3fe3e6b1
JL
1274 if (nmap == 1) {
1275 error = ENXIO;
1276 goto out_unlock;
1277 }
1278
52f1acc8
JL
1279 ASSERT(i > 1);
1280
1281 /*
1282 * Nothing was found, proceed to the next round of search
1283 * if reading offset not beyond or hit EOF.
1284 */
1285 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1286 start = XFS_FSB_TO_B(mp, fsbno);
1287 if (start >= isize) {
1288 error = ENXIO;
1289 goto out_unlock;
1290 }
3fe3e6b1
JL
1291 }
1292
52f1acc8 1293out:
46a1c2c7 1294 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1295
1296out_unlock:
01f4f327 1297 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1298
1299 if (error)
1300 return -error;
1301 return offset;
1302}
1303
1304STATIC loff_t
1305xfs_seek_hole(
1306 struct file *file,
834ab122 1307 loff_t start)
3fe3e6b1
JL
1308{
1309 struct inode *inode = file->f_mapping->host;
1310 struct xfs_inode *ip = XFS_I(inode);
1311 struct xfs_mount *mp = ip->i_mount;
1312 loff_t uninitialized_var(offset);
3fe3e6b1
JL
1313 xfs_fsize_t isize;
1314 xfs_fileoff_t fsbno;
b686d1f7 1315 xfs_filblks_t end;
3fe3e6b1
JL
1316 uint lock;
1317 int error;
1318
1319 if (XFS_FORCED_SHUTDOWN(mp))
1320 return -XFS_ERROR(EIO);
1321
1322 lock = xfs_ilock_map_shared(ip);
1323
1324 isize = i_size_read(inode);
1325 if (start >= isize) {
1326 error = ENXIO;
1327 goto out_unlock;
1328 }
1329
1330 fsbno = XFS_B_TO_FSBT(mp, start);
b686d1f7
JL
1331 end = XFS_B_TO_FSB(mp, isize);
1332
1333 for (;;) {
1334 struct xfs_bmbt_irec map[2];
1335 int nmap = 2;
1336 unsigned int i;
1337
1338 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1339 XFS_BMAPI_ENTIRE);
1340 if (error)
1341 goto out_unlock;
1342
1343 /* No extents at given offset, must be beyond EOF */
1344 if (nmap == 0) {
1345 error = ENXIO;
1346 goto out_unlock;
1347 }
1348
1349 for (i = 0; i < nmap; i++) {
1350 offset = max_t(loff_t, start,
1351 XFS_FSB_TO_B(mp, map[i].br_startoff));
1352
1353 /* Landed in a hole */
1354 if (map[i].br_startblock == HOLESTARTBLOCK)
1355 goto out;
1356
1357 /*
1358 * Landed in an unwritten extent, try to search hole
1359 * from page cache.
1360 */
1361 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1362 if (xfs_find_get_desired_pgoff(inode, &map[i],
1363 HOLE_OFF, &offset))
1364 goto out;
1365 }
1366 }
3fe3e6b1 1367
3fe3e6b1 1368 /*
b686d1f7
JL
1369 * map[0] contains data or its unwritten but contains
1370 * data in page cache, probably means that we are
1371 * reading after EOF. We should fix offset to point
1372 * to the end of the file(i.e., there is an implicit
1373 * hole at the end of any file).
3fe3e6b1 1374 */
b686d1f7
JL
1375 if (nmap == 1) {
1376 offset = isize;
1377 break;
1378 }
1379
1380 ASSERT(i > 1);
1381
1382 /*
1383 * Both mappings contains data, proceed to the next round of
1384 * search if the current reading offset not beyond or hit EOF.
1385 */
1386 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1387 start = XFS_FSB_TO_B(mp, fsbno);
1388 if (start >= isize) {
1389 offset = isize;
1390 break;
1391 }
3fe3e6b1
JL
1392 }
1393
b686d1f7
JL
1394out:
1395 /*
1396 * At this point, we must have found a hole. However, the returned
1397 * offset may be bigger than the file size as it may be aligned to
1398 * page boundary for unwritten extents, we need to deal with this
1399 * situation in particular.
1400 */
1401 offset = min_t(loff_t, offset, isize);
46a1c2c7 1402 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1403
1404out_unlock:
01f4f327 1405 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1406
1407 if (error)
1408 return -error;
1409 return offset;
1410}
1411
1412STATIC loff_t
1413xfs_file_llseek(
1414 struct file *file,
1415 loff_t offset,
1416 int origin)
1417{
1418 switch (origin) {
1419 case SEEK_END:
1420 case SEEK_CUR:
1421 case SEEK_SET:
1422 return generic_file_llseek(file, offset, origin);
1423 case SEEK_DATA:
834ab122 1424 return xfs_seek_data(file, offset);
3fe3e6b1 1425 case SEEK_HOLE:
834ab122 1426 return xfs_seek_hole(file, offset);
3fe3e6b1
JL
1427 default:
1428 return -EINVAL;
1429 }
1430}
1431
4b6f5d20 1432const struct file_operations xfs_file_operations = {
3fe3e6b1 1433 .llseek = xfs_file_llseek,
1da177e4 1434 .read = do_sync_read,
bb3f724e 1435 .write = do_sync_write,
3562fd45
NS
1436 .aio_read = xfs_file_aio_read,
1437 .aio_write = xfs_file_aio_write,
1b895840
NS
1438 .splice_read = xfs_file_splice_read,
1439 .splice_write = xfs_file_splice_write,
3562fd45 1440 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1441#ifdef CONFIG_COMPAT
3562fd45 1442 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1443#endif
3562fd45
NS
1444 .mmap = xfs_file_mmap,
1445 .open = xfs_file_open,
1446 .release = xfs_file_release,
1447 .fsync = xfs_file_fsync,
2fe17c10 1448 .fallocate = xfs_file_fallocate,
1da177e4
LT
1449};
1450
4b6f5d20 1451const struct file_operations xfs_dir_file_operations = {
f999a5bf 1452 .open = xfs_dir_open,
1da177e4 1453 .read = generic_read_dir,
b8227554 1454 .iterate = xfs_file_readdir,
59af1584 1455 .llseek = generic_file_llseek,
3562fd45 1456 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1457#ifdef CONFIG_COMPAT
3562fd45 1458 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1459#endif
1da2f2db 1460 .fsync = xfs_dir_fsync,
1da177e4
LT
1461};
1462
f0f37e2f 1463static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1464 .fault = filemap_fault,
4f57dbc6 1465 .page_mkwrite = xfs_vm_page_mkwrite,
0b173bc4 1466 .remap_pages = generic_file_remap_pages,
6fac0cb4 1467};