Merge tag 'ceph-for-4.9-rc2' of git://github.com/ceph/ceph-client
[linux-2.6-block.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
68a9f5e7 40#include "xfs_iomap.h"
0613f16c 41#include "xfs_reflink.h"
1da177e4
LT
42
43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
66114cad 46#include <linux/backing-dev.h>
1da177e4 47
f0f37e2f 48static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 49
487f84f3
DC
50/*
51 * Locking primitives for read and write IO paths to ensure we consistently use
52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53 */
54static inline void
55xfs_rw_ilock(
56 struct xfs_inode *ip,
57 int type)
58{
59 if (type & XFS_IOLOCK_EXCL)
5955102c 60 inode_lock(VFS_I(ip));
487f84f3
DC
61 xfs_ilock(ip, type);
62}
63
64static inline void
65xfs_rw_iunlock(
66 struct xfs_inode *ip,
67 int type)
68{
69 xfs_iunlock(ip, type);
70 if (type & XFS_IOLOCK_EXCL)
5955102c 71 inode_unlock(VFS_I(ip));
487f84f3
DC
72}
73
74static inline void
75xfs_rw_ilock_demote(
76 struct xfs_inode *ip,
77 int type)
78{
79 xfs_ilock_demote(ip, type);
80 if (type & XFS_IOLOCK_EXCL)
5955102c 81 inode_unlock(VFS_I(ip));
487f84f3
DC
82}
83
dda35b8f 84/*
68a9f5e7
CH
85 * Clear the specified ranges to zero through either the pagecache or DAX.
86 * Holes and unwritten extents will be left as-is as they already are zeroed.
dda35b8f 87 */
ef9d8733 88int
7bb41db3 89xfs_zero_range(
68a9f5e7 90 struct xfs_inode *ip,
7bb41db3
CH
91 xfs_off_t pos,
92 xfs_off_t count,
93 bool *did_zero)
dda35b8f 94{
459f0fbc 95 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
dda35b8f
CH
96}
97
8add71ca
CH
98int
99xfs_update_prealloc_flags(
100 struct xfs_inode *ip,
101 enum xfs_prealloc_flags flags)
102{
103 struct xfs_trans *tp;
104 int error;
105
253f4911
CH
106 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
107 0, 0, 0, &tp);
108 if (error)
8add71ca 109 return error;
8add71ca
CH
110
111 xfs_ilock(ip, XFS_ILOCK_EXCL);
112 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
113
114 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
115 VFS_I(ip)->i_mode &= ~S_ISUID;
116 if (VFS_I(ip)->i_mode & S_IXGRP)
117 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
119 }
120
121 if (flags & XFS_PREALLOC_SET)
122 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
123 if (flags & XFS_PREALLOC_CLEAR)
124 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
125
126 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
127 if (flags & XFS_PREALLOC_SYNC)
128 xfs_trans_set_sync(tp);
70393313 129 return xfs_trans_commit(tp);
8add71ca
CH
130}
131
1da2f2db
CH
132/*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138STATIC int
139xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144{
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
2451337d 158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
159}
160
fd3200be
CH
161STATIC int
162xfs_file_fsync(
163 struct file *file,
02c24a82
JB
164 loff_t start,
165 loff_t end,
fd3200be
CH
166 int datasync)
167{
7ea80859
CH
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
a27a263b 170 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
171 int error = 0;
172 int log_flushed = 0;
b1037058 173 xfs_lsn_t lsn = 0;
fd3200be 174
cca28fb8 175 trace_xfs_file_fsync(ip);
fd3200be 176
02c24a82
JB
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
a27a263b 181 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 182 return -EIO;
fd3200be
CH
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
a27a263b
CH
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
fd3200be 200 /*
fc0561ce
DC
201 * All metadata updates are logged, which means that we just have to
202 * flush the log up to the latest LSN that touched the inode. If we have
203 * concurrent fsync/fdatasync() calls, we need them to all block on the
204 * log force before we clear the ili_fsync_fields field. This ensures
205 * that we don't get a racing sync operation that does not wait for the
206 * metadata to hit the journal before returning. If we race with
207 * clearing the ili_fsync_fields, then all that will happen is the log
208 * force will do nothing as the lsn will already be on disk. We can't
209 * race with setting ili_fsync_fields because that is done under
210 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
211 * until after the ili_fsync_fields is cleared.
fd3200be
CH
212 */
213 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
214 if (xfs_ipincount(ip)) {
215 if (!datasync ||
fc0561ce 216 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
217 lsn = ip->i_itemp->ili_last_lsn;
218 }
fd3200be 219
fc0561ce 220 if (lsn) {
b1037058 221 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
222 ip->i_itemp->ili_fsync_fields = 0;
223 }
224 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 225
a27a263b
CH
226 /*
227 * If we only have a single device, and the log force about was
228 * a no-op we might have to flush the data device cache here.
229 * This can only happen for fdatasync/O_DSYNC if we were overwriting
230 * an already allocated file and thus do not have any metadata to
231 * commit.
232 */
233 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
234 mp->m_logdev_targp == mp->m_ddev_targp &&
235 !XFS_IS_REALTIME_INODE(ip) &&
236 !log_flushed)
237 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 238
2451337d 239 return error;
fd3200be
CH
240}
241
00258e36 242STATIC ssize_t
bbc5a740 243xfs_file_dio_aio_read(
dda35b8f 244 struct kiocb *iocb,
b4f5d2c6 245 struct iov_iter *to)
dda35b8f 246{
bbc5a740
CH
247 struct address_space *mapping = iocb->ki_filp->f_mapping;
248 struct inode *inode = mapping->host;
00258e36 249 struct xfs_inode *ip = XFS_I(inode);
f1285ff0 250 loff_t isize = i_size_read(inode);
bbc5a740 251 size_t count = iov_iter_count(to);
f1285ff0 252 struct iov_iter data;
bbc5a740 253 struct xfs_buftarg *target;
dda35b8f 254 ssize_t ret = 0;
dda35b8f 255
bbc5a740 256 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 257
f1285ff0
CH
258 if (!count)
259 return 0; /* skip atime */
dda35b8f 260
bbc5a740
CH
261 if (XFS_IS_REALTIME_INODE(ip))
262 target = ip->i_mount->m_rtdev_targp;
263 else
264 target = ip->i_mount->m_ddev_targp;
dda35b8f 265
16d4d435
CH
266 /* DIO must be aligned to device logical sector size */
267 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
268 if (iocb->ki_pos == isize)
269 return 0;
270 return -EINVAL;
dda35b8f 271 }
dda35b8f 272
a447d7cd
CH
273 file_accessed(iocb->ki_filp);
274
0c38a251 275 /*
3d751af2
BF
276 * Locking is a bit tricky here. If we take an exclusive lock for direct
277 * IO, we effectively serialise all new concurrent read IO to this file
278 * and block it behind IO that is currently in progress because IO in
279 * progress holds the IO lock shared. We only need to hold the lock
280 * exclusive to blow away the page cache, so only take lock exclusively
281 * if the page cache needs invalidation. This allows the normal direct
282 * IO case of no page cache pages to proceeed concurrently without
283 * serialisation.
0c38a251
DC
284 */
285 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
bbc5a740 286 if (mapping->nrpages) {
0c38a251 287 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
288 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
289
3d751af2
BF
290 /*
291 * The generic dio code only flushes the range of the particular
292 * I/O. Because we take an exclusive lock here, this whole
293 * sequence is considerably more expensive for us. This has a
294 * noticeable performance impact for any file with cached pages,
295 * even when outside of the range of the particular I/O.
296 *
297 * Hence, amortize the cost of the lock against a full file
298 * flush and reduce the chances of repeated iolock cycles going
299 * forward.
300 */
bbc5a740
CH
301 if (mapping->nrpages) {
302 ret = filemap_write_and_wait(mapping);
487f84f3
DC
303 if (ret) {
304 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
305 return ret;
306 }
85e584da
CM
307
308 /*
309 * Invalidate whole pages. This can return an error if
310 * we fail to invalidate a page, but this should never
311 * happen on XFS. Warn if it does fail.
312 */
bbc5a740 313 ret = invalidate_inode_pages2(mapping);
85e584da
CM
314 WARN_ON_ONCE(ret);
315 ret = 0;
00258e36 316 }
487f84f3 317 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 318 }
dda35b8f 319
f1285ff0 320 data = *to;
16d4d435
CH
321 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
322 xfs_get_blocks_direct, NULL, NULL, 0);
c3a69024 323 if (ret >= 0) {
16d4d435
CH
324 iocb->ki_pos += ret;
325 iov_iter_advance(to, ret);
fa8d972d 326 }
16d4d435 327 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f 328
16d4d435
CH
329 return ret;
330}
331
f021bd07 332static noinline ssize_t
16d4d435
CH
333xfs_file_dax_read(
334 struct kiocb *iocb,
335 struct iov_iter *to)
336{
6c31f495 337 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
338 size_t count = iov_iter_count(to);
339 ssize_t ret = 0;
340
341 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
342
343 if (!count)
344 return 0; /* skip atime */
345
346 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
6c31f495 347 ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
bbc5a740
CH
348 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
349
f1285ff0 350 file_accessed(iocb->ki_filp);
bbc5a740
CH
351 return ret;
352}
353
354STATIC ssize_t
355xfs_file_buffered_aio_read(
356 struct kiocb *iocb,
357 struct iov_iter *to)
358{
359 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
360 ssize_t ret;
361
362 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 363
bbc5a740 364 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b4f5d2c6 365 ret = generic_file_read_iter(iocb, to);
bbc5a740
CH
366 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
367
368 return ret;
369}
370
371STATIC ssize_t
372xfs_file_read_iter(
373 struct kiocb *iocb,
374 struct iov_iter *to)
375{
16d4d435
CH
376 struct inode *inode = file_inode(iocb->ki_filp);
377 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
378 ssize_t ret = 0;
379
380 XFS_STATS_INC(mp, xs_read_calls);
381
382 if (XFS_FORCED_SHUTDOWN(mp))
383 return -EIO;
384
16d4d435
CH
385 if (IS_DAX(inode))
386 ret = xfs_file_dax_read(iocb, to);
387 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 388 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 389 else
bbc5a740 390 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 391
dda35b8f 392 if (ret > 0)
ff6d6af2 393 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
394 return ret;
395}
396
dda35b8f 397/*
193aec10
CH
398 * Zero any on disk space between the current EOF and the new, larger EOF.
399 *
400 * This handles the normal case of zeroing the remainder of the last block in
401 * the file and the unusual case of zeroing blocks out beyond the size of the
402 * file. This second case only happens with fixed size extents and when the
403 * system crashes before the inode size was updated but after blocks were
404 * allocated.
405 *
406 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 407 */
dda35b8f
CH
408int /* error (positive) */
409xfs_zero_eof(
193aec10
CH
410 struct xfs_inode *ip,
411 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
412 xfs_fsize_t isize, /* current inode size */
413 bool *did_zeroing)
dda35b8f 414{
193aec10 415 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
416 ASSERT(offset > isize);
417
0a50f162 418 trace_xfs_zero_eof(ip, isize, offset - isize);
570b6211 419 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
dda35b8f
CH
420}
421
4d8d1581
DC
422/*
423 * Common pre-write limit and setup checks.
424 *
5bf1f262
CH
425 * Called with the iolocked held either shared and exclusive according to
426 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
427 * if called for a direct write beyond i_size.
4d8d1581
DC
428 */
429STATIC ssize_t
430xfs_file_aio_write_checks(
99733fa3
AV
431 struct kiocb *iocb,
432 struct iov_iter *from,
4d8d1581
DC
433 int *iolock)
434{
99733fa3 435 struct file *file = iocb->ki_filp;
4d8d1581
DC
436 struct inode *inode = file->f_mapping->host;
437 struct xfs_inode *ip = XFS_I(inode);
3309dd04 438 ssize_t error = 0;
99733fa3 439 size_t count = iov_iter_count(from);
3136e8bb 440 bool drained_dio = false;
4d8d1581 441
7271d243 442restart:
3309dd04
AV
443 error = generic_write_checks(iocb, from);
444 if (error <= 0)
4d8d1581 445 return error;
4d8d1581 446
21c3ea18 447 error = xfs_break_layouts(inode, iolock, true);
781355c6
CH
448 if (error)
449 return error;
450
a6de82ca
JK
451 /* For changing security info in file_remove_privs() we need i_mutex */
452 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
453 xfs_rw_iunlock(ip, *iolock);
454 *iolock = XFS_IOLOCK_EXCL;
455 xfs_rw_ilock(ip, *iolock);
456 goto restart;
457 }
4d8d1581
DC
458 /*
459 * If the offset is beyond the size of the file, we need to zero any
460 * blocks that fall between the existing EOF and the start of this
2813d682 461 * write. If zeroing is needed and we are currently holding the
467f7899
CH
462 * iolock shared, we need to update it to exclusive which implies
463 * having to redo all checks before.
b9d59846
DC
464 *
465 * We need to serialise against EOF updates that occur in IO
466 * completions here. We want to make sure that nobody is changing the
467 * size while we do this check until we have placed an IO barrier (i.e.
468 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
469 * The spinlock effectively forms a memory barrier once we have the
470 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
471 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 472 */
b9d59846 473 spin_lock(&ip->i_flags_lock);
99733fa3 474 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
475 bool zero = false;
476
b9d59846 477 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
478 if (!drained_dio) {
479 if (*iolock == XFS_IOLOCK_SHARED) {
480 xfs_rw_iunlock(ip, *iolock);
481 *iolock = XFS_IOLOCK_EXCL;
482 xfs_rw_ilock(ip, *iolock);
483 iov_iter_reexpand(from, count);
484 }
40c63fbc
DC
485 /*
486 * We now have an IO submission barrier in place, but
487 * AIO can do EOF updates during IO completion and hence
488 * we now need to wait for all of them to drain. Non-AIO
489 * DIO will have drained before we are given the
490 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
491 * no-op.
492 */
493 inode_dio_wait(inode);
3136e8bb 494 drained_dio = true;
7271d243
DC
495 goto restart;
496 }
99733fa3 497 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
498 if (error)
499 return error;
b9d59846
DC
500 } else
501 spin_unlock(&ip->i_flags_lock);
4d8d1581 502
8a9c9980
CH
503 /*
504 * Updating the timestamps will grab the ilock again from
505 * xfs_fs_dirty_inode, so we have to call it after dropping the
506 * lock above. Eventually we should look into a way to avoid
507 * the pointless lock roundtrip.
508 */
c3b2da31
JB
509 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
510 error = file_update_time(file);
511 if (error)
512 return error;
513 }
8a9c9980 514
4d8d1581
DC
515 /*
516 * If we're writing the file then make sure to clear the setuid and
517 * setgid bits if the process is not being run by root. This keeps
518 * people from modifying setuid and setgid binaries.
519 */
a6de82ca
JK
520 if (!IS_NOSEC(inode))
521 return file_remove_privs(file);
522 return 0;
4d8d1581
DC
523}
524
f0d26e86
DC
525/*
526 * xfs_file_dio_aio_write - handle direct IO writes
527 *
528 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 529 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
530 * follow locking changes and looping.
531 *
eda77982
DC
532 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
533 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
534 * pages are flushed out.
535 *
536 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
537 * allowing them to be done in parallel with reads and other direct IO writes.
538 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
539 * needs to do sub-block zeroing and that requires serialisation against other
540 * direct IOs to the same block. In this case we need to serialise the
541 * submission of the unaligned IOs so that we don't get racing block zeroing in
542 * the dio layer. To avoid the problem with aio, we also need to wait for
543 * outstanding IOs to complete so that unwritten extent conversion is completed
544 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 545 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 546 *
f0d26e86
DC
547 * Returns with locks held indicated by @iolock and errors indicated by
548 * negative return values.
549 */
550STATIC ssize_t
551xfs_file_dio_aio_write(
552 struct kiocb *iocb,
b3188919 553 struct iov_iter *from)
f0d26e86
DC
554{
555 struct file *file = iocb->ki_filp;
556 struct address_space *mapping = file->f_mapping;
557 struct inode *inode = mapping->host;
558 struct xfs_inode *ip = XFS_I(inode);
559 struct xfs_mount *mp = ip->i_mount;
560 ssize_t ret = 0;
eda77982 561 int unaligned_io = 0;
d0606464 562 int iolock;
b3188919 563 size_t count = iov_iter_count(from);
0cefb29e
DC
564 loff_t end;
565 struct iov_iter data;
f0d26e86
DC
566 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
567 mp->m_rtdev_targp : mp->m_ddev_targp;
568
7c71ee78 569 /* DIO must be aligned to device logical sector size */
16d4d435 570 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 571 return -EINVAL;
f0d26e86 572
7c71ee78 573 /* "unaligned" here means not aligned to a filesystem block */
13712713
CH
574 if ((iocb->ki_pos & mp->m_blockmask) ||
575 ((iocb->ki_pos + count) & mp->m_blockmask))
eda77982
DC
576 unaligned_io = 1;
577
7271d243
DC
578 /*
579 * We don't need to take an exclusive lock unless there page cache needs
580 * to be invalidated or unaligned IO is being executed. We don't need to
581 * consider the EOF extension case here because
582 * xfs_file_aio_write_checks() will relock the inode as necessary for
583 * EOF zeroing cases and fill out the new inode size as appropriate.
584 */
585 if (unaligned_io || mapping->nrpages)
d0606464 586 iolock = XFS_IOLOCK_EXCL;
f0d26e86 587 else
d0606464
CH
588 iolock = XFS_IOLOCK_SHARED;
589 xfs_rw_ilock(ip, iolock);
c58cb165
CH
590
591 /*
592 * Recheck if there are cached pages that need invalidate after we got
593 * the iolock to protect against other threads adding new pages while
594 * we were waiting for the iolock.
595 */
d0606464
CH
596 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
597 xfs_rw_iunlock(ip, iolock);
598 iolock = XFS_IOLOCK_EXCL;
599 xfs_rw_ilock(ip, iolock);
c58cb165 600 }
f0d26e86 601
99733fa3 602 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 603 if (ret)
d0606464 604 goto out;
99733fa3 605 count = iov_iter_count(from);
13712713 606 end = iocb->ki_pos + count - 1;
f0d26e86 607
3d751af2 608 /*
bbc5a740 609 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
3d751af2 610 */
f0d26e86 611 if (mapping->nrpages) {
3d751af2 612 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
f0d26e86 613 if (ret)
d0606464 614 goto out;
834ffca6 615 /*
3d751af2
BF
616 * Invalidate whole pages. This can return an error if we fail
617 * to invalidate a page, but this should never happen on XFS.
618 * Warn if it does fail.
834ffca6 619 */
3d751af2 620 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
834ffca6
DC
621 WARN_ON_ONCE(ret);
622 ret = 0;
f0d26e86
DC
623 }
624
eda77982
DC
625 /*
626 * If we are doing unaligned IO, wait for all other IO to drain,
627 * otherwise demote the lock if we had to flush cached pages
628 */
629 if (unaligned_io)
4a06fd26 630 inode_dio_wait(inode);
d0606464 631 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 632 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 633 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
634 }
635
3176c3e0 636 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
f0d26e86 637
0613f16c
DW
638 /* If this is a block-aligned directio CoW, remap immediately. */
639 if (xfs_is_reflink_inode(ip) && !unaligned_io) {
640 ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
641 if (ret)
642 goto out;
643 }
644
0cefb29e 645 data = *from;
16d4d435
CH
646 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
647 xfs_get_blocks_direct, xfs_end_io_direct_write,
648 NULL, DIO_ASYNC_EXTEND);
0cefb29e
DC
649
650 /* see generic_file_direct_write() for why this is necessary */
651 if (mapping->nrpages) {
652 invalidate_inode_pages2_range(mapping,
13712713 653 iocb->ki_pos >> PAGE_SHIFT,
09cbfeaf 654 end >> PAGE_SHIFT);
0cefb29e
DC
655 }
656
657 if (ret > 0) {
13712713 658 iocb->ki_pos += ret;
0cefb29e 659 iov_iter_advance(from, ret);
0cefb29e 660 }
d0606464
CH
661out:
662 xfs_rw_iunlock(ip, iolock);
663
6b698ede 664 /*
16d4d435
CH
665 * No fallback to buffered IO on errors for XFS, direct IO will either
666 * complete fully or fail.
6b698ede 667 */
16d4d435
CH
668 ASSERT(ret < 0 || ret == count);
669 return ret;
670}
671
f021bd07 672static noinline ssize_t
16d4d435
CH
673xfs_file_dax_write(
674 struct kiocb *iocb,
675 struct iov_iter *from)
676{
6c31f495 677 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 678 struct xfs_inode *ip = XFS_I(inode);
17879e8f 679 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
680 ssize_t ret, error = 0;
681 size_t count;
682 loff_t pos;
16d4d435 683
16d4d435 684 xfs_rw_ilock(ip, iolock);
16d4d435
CH
685 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
686 if (ret)
687 goto out;
688
6c31f495
CH
689 pos = iocb->ki_pos;
690 count = iov_iter_count(from);
8b2180b3 691
6c31f495 692 trace_xfs_file_dax_write(ip, count, pos);
16d4d435 693
6c31f495
CH
694 ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
695 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
696 i_size_write(inode, iocb->ki_pos);
697 error = xfs_setfilesize(ip, pos, ret);
16d4d435
CH
698 }
699
16d4d435
CH
700out:
701 xfs_rw_iunlock(ip, iolock);
6c31f495 702 return error ? error : ret;
f0d26e86
DC
703}
704
00258e36 705STATIC ssize_t
637bbc75 706xfs_file_buffered_aio_write(
dda35b8f 707 struct kiocb *iocb,
b3188919 708 struct iov_iter *from)
dda35b8f
CH
709{
710 struct file *file = iocb->ki_filp;
711 struct address_space *mapping = file->f_mapping;
712 struct inode *inode = mapping->host;
00258e36 713 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
714 ssize_t ret;
715 int enospc = 0;
d0606464 716 int iolock = XFS_IOLOCK_EXCL;
dda35b8f 717
d0606464 718 xfs_rw_ilock(ip, iolock);
dda35b8f 719
99733fa3 720 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 721 if (ret)
d0606464 722 goto out;
dda35b8f
CH
723
724 /* We can write back this queue in page reclaim */
de1414a6 725 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 726
dda35b8f 727write_retry:
3176c3e0 728 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 729 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 730 if (likely(ret >= 0))
99733fa3 731 iocb->ki_pos += ret;
dc06f398 732
637bbc75 733 /*
dc06f398
BF
734 * If we hit a space limit, try to free up some lingering preallocated
735 * space before returning an error. In the case of ENOSPC, first try to
736 * write back all dirty inodes to free up some of the excess reserved
737 * metadata space. This reduces the chances that the eofblocks scan
738 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
739 * also behaves as a filter to prevent too many eofblocks scans from
740 * running at the same time.
637bbc75 741 */
dc06f398
BF
742 if (ret == -EDQUOT && !enospc) {
743 enospc = xfs_inode_free_quota_eofblocks(ip);
744 if (enospc)
745 goto write_retry;
83104d44
DW
746 enospc = xfs_inode_free_quota_cowblocks(ip);
747 if (enospc)
748 goto write_retry;
dc06f398
BF
749 } else if (ret == -ENOSPC && !enospc) {
750 struct xfs_eofblocks eofb = {0};
751
637bbc75 752 enospc = 1;
9aa05000 753 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
754 eofb.eof_scan_owner = ip->i_ino; /* for locking */
755 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
756 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 757 goto write_retry;
dda35b8f 758 }
d0606464 759
dda35b8f 760 current->backing_dev_info = NULL;
d0606464
CH
761out:
762 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
763 return ret;
764}
765
766STATIC ssize_t
bf97f3bc 767xfs_file_write_iter(
637bbc75 768 struct kiocb *iocb,
bf97f3bc 769 struct iov_iter *from)
637bbc75
DC
770{
771 struct file *file = iocb->ki_filp;
772 struct address_space *mapping = file->f_mapping;
773 struct inode *inode = mapping->host;
774 struct xfs_inode *ip = XFS_I(inode);
775 ssize_t ret;
bf97f3bc 776 size_t ocount = iov_iter_count(from);
637bbc75 777
ff6d6af2 778 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 779
637bbc75
DC
780 if (ocount == 0)
781 return 0;
782
bf97f3bc
AV
783 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
784 return -EIO;
637bbc75 785
16d4d435
CH
786 if (IS_DAX(inode))
787 ret = xfs_file_dax_write(iocb, from);
0613f16c
DW
788 else if (iocb->ki_flags & IOCB_DIRECT) {
789 /*
790 * Allow a directio write to fall back to a buffered
791 * write *only* in the case that we're doing a reflink
792 * CoW. In all other directio scenarios we do not
793 * allow an operation to fall back to buffered mode.
794 */
bf97f3bc 795 ret = xfs_file_dio_aio_write(iocb, from);
0613f16c
DW
796 if (ret == -EREMCHG)
797 goto buffered;
798 } else {
799buffered:
bf97f3bc 800 ret = xfs_file_buffered_aio_write(iocb, from);
0613f16c 801 }
dda35b8f 802
d0606464 803 if (ret > 0) {
ff6d6af2 804 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 805
d0606464 806 /* Handle various SYNC-type writes */
e2592217 807 ret = generic_write_sync(iocb, ret);
dda35b8f 808 }
a363f0c2 809 return ret;
dda35b8f
CH
810}
811
a904b1ca
NJ
812#define XFS_FALLOC_FL_SUPPORTED \
813 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
814 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 815 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 816
2fe17c10
CH
817STATIC long
818xfs_file_fallocate(
83aee9e4
CH
819 struct file *file,
820 int mode,
821 loff_t offset,
822 loff_t len)
2fe17c10 823{
83aee9e4
CH
824 struct inode *inode = file_inode(file);
825 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 826 long error;
8add71ca 827 enum xfs_prealloc_flags flags = 0;
781355c6 828 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 829 loff_t new_size = 0;
a904b1ca 830 bool do_file_insert = 0;
2fe17c10 831
83aee9e4
CH
832 if (!S_ISREG(inode->i_mode))
833 return -EINVAL;
a904b1ca 834 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
835 return -EOPNOTSUPP;
836
781355c6 837 xfs_ilock(ip, iolock);
21c3ea18 838 error = xfs_break_layouts(inode, &iolock, false);
781355c6
CH
839 if (error)
840 goto out_unlock;
841
e8e9ad42
DC
842 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
843 iolock |= XFS_MMAPLOCK_EXCL;
844
83aee9e4
CH
845 if (mode & FALLOC_FL_PUNCH_HOLE) {
846 error = xfs_free_file_space(ip, offset, len);
847 if (error)
848 goto out_unlock;
e1d8fb88
NJ
849 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
850 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
851
852 if (offset & blksize_mask || len & blksize_mask) {
2451337d 853 error = -EINVAL;
e1d8fb88
NJ
854 goto out_unlock;
855 }
856
23fffa92
LC
857 /*
858 * There is no need to overlap collapse range with EOF,
859 * in which case it is effectively a truncate operation
860 */
861 if (offset + len >= i_size_read(inode)) {
2451337d 862 error = -EINVAL;
23fffa92
LC
863 goto out_unlock;
864 }
865
e1d8fb88
NJ
866 new_size = i_size_read(inode) - len;
867
868 error = xfs_collapse_file_space(ip, offset, len);
869 if (error)
870 goto out_unlock;
a904b1ca
NJ
871 } else if (mode & FALLOC_FL_INSERT_RANGE) {
872 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
873
874 new_size = i_size_read(inode) + len;
875 if (offset & blksize_mask || len & blksize_mask) {
876 error = -EINVAL;
877 goto out_unlock;
878 }
879
880 /* check the new inode size does not wrap through zero */
881 if (new_size > inode->i_sb->s_maxbytes) {
882 error = -EFBIG;
883 goto out_unlock;
884 }
885
886 /* Offset should be less than i_size */
887 if (offset >= i_size_read(inode)) {
888 error = -EINVAL;
889 goto out_unlock;
890 }
891 do_file_insert = 1;
83aee9e4 892 } else {
8add71ca
CH
893 flags |= XFS_PREALLOC_SET;
894
83aee9e4
CH
895 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
896 offset + len > i_size_read(inode)) {
897 new_size = offset + len;
2451337d 898 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
899 if (error)
900 goto out_unlock;
901 }
2fe17c10 902
376ba313
LC
903 if (mode & FALLOC_FL_ZERO_RANGE)
904 error = xfs_zero_file_space(ip, offset, len);
98cc2db5
DW
905 else {
906 if (mode & FALLOC_FL_UNSHARE_RANGE) {
907 error = xfs_reflink_unshare(ip, offset, len);
908 if (error)
909 goto out_unlock;
910 }
376ba313
LC
911 error = xfs_alloc_file_space(ip, offset, len,
912 XFS_BMAPI_PREALLOC);
98cc2db5 913 }
2fe17c10
CH
914 if (error)
915 goto out_unlock;
916 }
917
83aee9e4 918 if (file->f_flags & O_DSYNC)
8add71ca
CH
919 flags |= XFS_PREALLOC_SYNC;
920
921 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
922 if (error)
923 goto out_unlock;
924
925 /* Change file size if needed */
926 if (new_size) {
927 struct iattr iattr;
928
929 iattr.ia_valid = ATTR_SIZE;
930 iattr.ia_size = new_size;
69bca807 931 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
a904b1ca
NJ
932 if (error)
933 goto out_unlock;
2fe17c10
CH
934 }
935
a904b1ca
NJ
936 /*
937 * Perform hole insertion now that the file size has been
938 * updated so that if we crash during the operation we don't
939 * leave shifted extents past EOF and hence losing access to
940 * the data that is contained within them.
941 */
942 if (do_file_insert)
943 error = xfs_insert_file_space(ip, offset, len);
944
2fe17c10 945out_unlock:
781355c6 946 xfs_iunlock(ip, iolock);
2451337d 947 return error;
2fe17c10
CH
948}
949
9fe26045
DW
950/*
951 * Flush all file writes out to disk.
952 */
953static int
954xfs_file_wait_for_io(
955 struct inode *inode,
956 loff_t offset,
957 size_t len)
958{
959 loff_t rounding;
960 loff_t ioffset;
961 loff_t iendoffset;
962 loff_t bs;
963 int ret;
964
965 bs = inode->i_sb->s_blocksize;
966 inode_dio_wait(inode);
967
968 rounding = max_t(xfs_off_t, bs, PAGE_SIZE);
969 ioffset = round_down(offset, rounding);
970 iendoffset = round_up(offset + len, rounding) - 1;
971 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
972 iendoffset);
973 return ret;
974}
975
976/* Hook up to the VFS reflink function */
977STATIC int
978xfs_file_share_range(
979 struct file *file_in,
980 loff_t pos_in,
981 struct file *file_out,
982 loff_t pos_out,
cc714660
DW
983 u64 len,
984 bool is_dedupe)
9fe26045
DW
985{
986 struct inode *inode_in;
987 struct inode *inode_out;
988 ssize_t ret;
989 loff_t bs;
990 loff_t isize;
991 int same_inode;
992 loff_t blen;
cc714660 993 unsigned int flags = 0;
9fe26045
DW
994
995 inode_in = file_inode(file_in);
996 inode_out = file_inode(file_out);
997 bs = inode_out->i_sb->s_blocksize;
998
999 /* Don't touch certain kinds of inodes */
1000 if (IS_IMMUTABLE(inode_out))
1001 return -EPERM;
1002 if (IS_SWAPFILE(inode_in) ||
1003 IS_SWAPFILE(inode_out))
1004 return -ETXTBSY;
1005
1006 /* Reflink only works within this filesystem. */
1007 if (inode_in->i_sb != inode_out->i_sb)
1008 return -EXDEV;
1009 same_inode = (inode_in->i_ino == inode_out->i_ino);
1010
1011 /* Don't reflink dirs, pipes, sockets... */
1012 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
1013 return -EISDIR;
1014 if (S_ISFIFO(inode_in->i_mode) || S_ISFIFO(inode_out->i_mode))
1015 return -EINVAL;
1016 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
1017 return -EINVAL;
1018
4f435ebe
DW
1019 /* Don't share DAX file data for now. */
1020 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1021 return -EINVAL;
1022
9fe26045
DW
1023 /* Are we going all the way to the end? */
1024 isize = i_size_read(inode_in);
1025 if (isize == 0)
1026 return 0;
1027 if (len == 0)
1028 len = isize - pos_in;
1029
1030 /* Ensure offsets don't wrap and the input is inside i_size */
1031 if (pos_in + len < pos_in || pos_out + len < pos_out ||
1032 pos_in + len > isize)
1033 return -EINVAL;
1034
cc714660
DW
1035 /* Don't allow dedupe past EOF in the dest file */
1036 if (is_dedupe) {
1037 loff_t disize;
1038
1039 disize = i_size_read(inode_out);
1040 if (pos_out >= disize || pos_out + len > disize)
1041 return -EINVAL;
1042 }
1043
9fe26045
DW
1044 /* If we're linking to EOF, continue to the block boundary. */
1045 if (pos_in + len == isize)
1046 blen = ALIGN(isize, bs) - pos_in;
1047 else
1048 blen = len;
1049
1050 /* Only reflink if we're aligned to block boundaries */
1051 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_in + blen, bs) ||
1052 !IS_ALIGNED(pos_out, bs) || !IS_ALIGNED(pos_out + blen, bs))
1053 return -EINVAL;
1054
1055 /* Don't allow overlapped reflink within the same file */
1056 if (same_inode && pos_out + blen > pos_in && pos_out < pos_in + blen)
1057 return -EINVAL;
1058
1059 /* Wait for the completion of any pending IOs on srcfile */
1060 ret = xfs_file_wait_for_io(inode_in, pos_in, len);
1061 if (ret)
93fed470 1062 goto out;
9fe26045
DW
1063 ret = xfs_file_wait_for_io(inode_out, pos_out, len);
1064 if (ret)
93fed470 1065 goto out;
9fe26045 1066
cc714660
DW
1067 if (is_dedupe)
1068 flags |= XFS_REFLINK_DEDUPE;
9fe26045 1069 ret = xfs_reflink_remap_range(XFS_I(inode_in), pos_in, XFS_I(inode_out),
cc714660 1070 pos_out, len, flags);
9fe26045 1071 if (ret < 0)
93fed470 1072 goto out;
9fe26045 1073
93fed470 1074out:
9fe26045
DW
1075 return ret;
1076}
1077
1078STATIC ssize_t
1079xfs_file_copy_range(
1080 struct file *file_in,
1081 loff_t pos_in,
1082 struct file *file_out,
1083 loff_t pos_out,
1084 size_t len,
1085 unsigned int flags)
1086{
1087 int error;
1088
1089 error = xfs_file_share_range(file_in, pos_in, file_out, pos_out,
cc714660 1090 len, false);
9fe26045
DW
1091 if (error)
1092 return error;
1093 return len;
1094}
1095
1096STATIC int
1097xfs_file_clone_range(
1098 struct file *file_in,
1099 loff_t pos_in,
1100 struct file *file_out,
1101 loff_t pos_out,
1102 u64 len)
1103{
1104 return xfs_file_share_range(file_in, pos_in, file_out, pos_out,
cc714660
DW
1105 len, false);
1106}
1107
1108#define XFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
1109STATIC ssize_t
1110xfs_file_dedupe_range(
1111 struct file *src_file,
1112 u64 loff,
1113 u64 len,
1114 struct file *dst_file,
1115 u64 dst_loff)
1116{
1117 int error;
1118
1119 /*
1120 * Limit the total length we will dedupe for each operation.
1121 * This is intended to bound the total time spent in this
1122 * ioctl to something sane.
1123 */
1124 if (len > XFS_MAX_DEDUPE_LEN)
1125 len = XFS_MAX_DEDUPE_LEN;
1126
1127 error = xfs_file_share_range(src_file, loff, dst_file, dst_loff,
1128 len, true);
1129 if (error)
1130 return error;
1131 return len;
9fe26045 1132}
2fe17c10 1133
1da177e4 1134STATIC int
3562fd45 1135xfs_file_open(
1da177e4 1136 struct inode *inode,
f999a5bf 1137 struct file *file)
1da177e4 1138{
f999a5bf 1139 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1140 return -EFBIG;
f999a5bf
CH
1141 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1142 return -EIO;
1143 return 0;
1144}
1145
1146STATIC int
1147xfs_dir_open(
1148 struct inode *inode,
1149 struct file *file)
1150{
1151 struct xfs_inode *ip = XFS_I(inode);
1152 int mode;
1153 int error;
1154
1155 error = xfs_file_open(inode, file);
1156 if (error)
1157 return error;
1158
1159 /*
1160 * If there are any blocks, read-ahead block 0 as we're almost
1161 * certain to have the next operation be a read there.
1162 */
309ecac8 1163 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 1164 if (ip->i_d.di_nextents > 0)
9df2dd0b 1165 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
1166 xfs_iunlock(ip, mode);
1167 return 0;
1da177e4
LT
1168}
1169
1da177e4 1170STATIC int
3562fd45 1171xfs_file_release(
1da177e4
LT
1172 struct inode *inode,
1173 struct file *filp)
1174{
2451337d 1175 return xfs_release(XFS_I(inode));
1da177e4
LT
1176}
1177
1da177e4 1178STATIC int
3562fd45 1179xfs_file_readdir(
b8227554
AV
1180 struct file *file,
1181 struct dir_context *ctx)
1da177e4 1182{
b8227554 1183 struct inode *inode = file_inode(file);
739bfb2a 1184 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1185 size_t bufsize;
1186
1187 /*
1188 * The Linux API doesn't pass down the total size of the buffer
1189 * we read into down to the filesystem. With the filldir concept
1190 * it's not needed for correct information, but the XFS dir2 leaf
1191 * code wants an estimate of the buffer size to calculate it's
1192 * readahead window and size the buffers used for mapping to
1193 * physical blocks.
1194 *
1195 * Try to give it an estimate that's good enough, maybe at some
1196 * point we can change the ->readdir prototype to include the
a9cc799e 1197 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1198 */
a9cc799e 1199 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1200
8300475e 1201 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
1202}
1203
d126d43f
JL
1204/*
1205 * This type is designed to indicate the type of offset we would like
49c69591 1206 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1207 */
1208enum {
1209 HOLE_OFF = 0,
1210 DATA_OFF,
1211};
1212
1213/*
1214 * Lookup the desired type of offset from the given page.
1215 *
1216 * On success, return true and the offset argument will point to the
1217 * start of the region that was found. Otherwise this function will
1218 * return false and keep the offset argument unchanged.
1219 */
1220STATIC bool
1221xfs_lookup_buffer_offset(
1222 struct page *page,
1223 loff_t *offset,
1224 unsigned int type)
1225{
1226 loff_t lastoff = page_offset(page);
1227 bool found = false;
1228 struct buffer_head *bh, *head;
1229
1230 bh = head = page_buffers(page);
1231 do {
1232 /*
1233 * Unwritten extents that have data in the page
1234 * cache covering them can be identified by the
1235 * BH_Unwritten state flag. Pages with multiple
1236 * buffers might have a mix of holes, data and
1237 * unwritten extents - any buffer with valid
1238 * data in it should have BH_Uptodate flag set
1239 * on it.
1240 */
1241 if (buffer_unwritten(bh) ||
1242 buffer_uptodate(bh)) {
1243 if (type == DATA_OFF)
1244 found = true;
1245 } else {
1246 if (type == HOLE_OFF)
1247 found = true;
1248 }
1249
1250 if (found) {
1251 *offset = lastoff;
1252 break;
1253 }
1254 lastoff += bh->b_size;
1255 } while ((bh = bh->b_this_page) != head);
1256
1257 return found;
1258}
1259
1260/*
1261 * This routine is called to find out and return a data or hole offset
1262 * from the page cache for unwritten extents according to the desired
49c69591 1263 * type for xfs_seek_hole_data().
d126d43f
JL
1264 *
1265 * The argument offset is used to tell where we start to search from the
1266 * page cache. Map is used to figure out the end points of the range to
1267 * lookup pages.
1268 *
1269 * Return true if the desired type of offset was found, and the argument
1270 * offset is filled with that address. Otherwise, return false and keep
1271 * offset unchanged.
1272 */
1273STATIC bool
1274xfs_find_get_desired_pgoff(
1275 struct inode *inode,
1276 struct xfs_bmbt_irec *map,
1277 unsigned int type,
1278 loff_t *offset)
1279{
1280 struct xfs_inode *ip = XFS_I(inode);
1281 struct xfs_mount *mp = ip->i_mount;
1282 struct pagevec pvec;
1283 pgoff_t index;
1284 pgoff_t end;
1285 loff_t endoff;
1286 loff_t startoff = *offset;
1287 loff_t lastoff = startoff;
1288 bool found = false;
1289
1290 pagevec_init(&pvec, 0);
1291
09cbfeaf 1292 index = startoff >> PAGE_SHIFT;
d126d43f 1293 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
09cbfeaf 1294 end = endoff >> PAGE_SHIFT;
d126d43f
JL
1295 do {
1296 int want;
1297 unsigned nr_pages;
1298 unsigned int i;
1299
1300 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1301 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1302 want);
1303 /*
1304 * No page mapped into given range. If we are searching holes
1305 * and if this is the first time we got into the loop, it means
1306 * that the given offset is landed in a hole, return it.
1307 *
1308 * If we have already stepped through some block buffers to find
1309 * holes but they all contains data. In this case, the last
1310 * offset is already updated and pointed to the end of the last
1311 * mapped page, if it does not reach the endpoint to search,
1312 * that means there should be a hole between them.
1313 */
1314 if (nr_pages == 0) {
1315 /* Data search found nothing */
1316 if (type == DATA_OFF)
1317 break;
1318
1319 ASSERT(type == HOLE_OFF);
1320 if (lastoff == startoff || lastoff < endoff) {
1321 found = true;
1322 *offset = lastoff;
1323 }
1324 break;
1325 }
1326
1327 /*
1328 * At lease we found one page. If this is the first time we
1329 * step into the loop, and if the first page index offset is
1330 * greater than the given search offset, a hole was found.
1331 */
1332 if (type == HOLE_OFF && lastoff == startoff &&
1333 lastoff < page_offset(pvec.pages[0])) {
1334 found = true;
1335 break;
1336 }
1337
1338 for (i = 0; i < nr_pages; i++) {
1339 struct page *page = pvec.pages[i];
1340 loff_t b_offset;
1341
1342 /*
1343 * At this point, the page may be truncated or
1344 * invalidated (changing page->mapping to NULL),
1345 * or even swizzled back from swapper_space to tmpfs
1346 * file mapping. However, page->index will not change
1347 * because we have a reference on the page.
1348 *
1349 * Searching done if the page index is out of range.
1350 * If the current offset is not reaches the end of
1351 * the specified search range, there should be a hole
1352 * between them.
1353 */
1354 if (page->index > end) {
1355 if (type == HOLE_OFF && lastoff < endoff) {
1356 *offset = lastoff;
1357 found = true;
1358 }
1359 goto out;
1360 }
1361
1362 lock_page(page);
1363 /*
1364 * Page truncated or invalidated(page->mapping == NULL).
1365 * We can freely skip it and proceed to check the next
1366 * page.
1367 */
1368 if (unlikely(page->mapping != inode->i_mapping)) {
1369 unlock_page(page);
1370 continue;
1371 }
1372
1373 if (!page_has_buffers(page)) {
1374 unlock_page(page);
1375 continue;
1376 }
1377
1378 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1379 if (found) {
1380 /*
1381 * The found offset may be less than the start
1382 * point to search if this is the first time to
1383 * come here.
1384 */
1385 *offset = max_t(loff_t, startoff, b_offset);
1386 unlock_page(page);
1387 goto out;
1388 }
1389
1390 /*
1391 * We either searching data but nothing was found, or
1392 * searching hole but found a data buffer. In either
1393 * case, probably the next page contains the desired
1394 * things, update the last offset to it so.
1395 */
1396 lastoff = page_offset(page) + PAGE_SIZE;
1397 unlock_page(page);
1398 }
1399
1400 /*
1401 * The number of returned pages less than our desired, search
1402 * done. In this case, nothing was found for searching data,
1403 * but we found a hole behind the last offset.
1404 */
1405 if (nr_pages < want) {
1406 if (type == HOLE_OFF) {
1407 *offset = lastoff;
1408 found = true;
1409 }
1410 break;
1411 }
1412
1413 index = pvec.pages[i - 1]->index + 1;
1414 pagevec_release(&pvec);
1415 } while (index <= end);
1416
1417out:
1418 pagevec_release(&pvec);
1419 return found;
1420}
1421
8aa7d37e
ES
1422/*
1423 * caller must lock inode with xfs_ilock_data_map_shared,
1424 * can we craft an appropriate ASSERT?
1425 *
1426 * end is because the VFS-level lseek interface is defined such that any
1427 * offset past i_size shall return -ENXIO, but we use this for quota code
1428 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1429 */
1430loff_t
1431__xfs_seek_hole_data(
1432 struct inode *inode,
49c69591 1433 loff_t start,
8aa7d37e 1434 loff_t end,
49c69591 1435 int whence)
3fe3e6b1 1436{
3fe3e6b1
JL
1437 struct xfs_inode *ip = XFS_I(inode);
1438 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1 1439 loff_t uninitialized_var(offset);
3fe3e6b1 1440 xfs_fileoff_t fsbno;
8aa7d37e 1441 xfs_filblks_t lastbno;
3fe3e6b1
JL
1442 int error;
1443
8aa7d37e 1444 if (start >= end) {
2451337d 1445 error = -ENXIO;
8aa7d37e 1446 goto out_error;
3fe3e6b1
JL
1447 }
1448
3fe3e6b1
JL
1449 /*
1450 * Try to read extents from the first block indicated
1451 * by fsbno to the end block of the file.
1452 */
52f1acc8 1453 fsbno = XFS_B_TO_FSBT(mp, start);
8aa7d37e 1454 lastbno = XFS_B_TO_FSB(mp, end);
49c69591 1455
52f1acc8
JL
1456 for (;;) {
1457 struct xfs_bmbt_irec map[2];
1458 int nmap = 2;
1459 unsigned int i;
3fe3e6b1 1460
8aa7d37e 1461 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
52f1acc8
JL
1462 XFS_BMAPI_ENTIRE);
1463 if (error)
8aa7d37e 1464 goto out_error;
3fe3e6b1 1465
52f1acc8
JL
1466 /* No extents at given offset, must be beyond EOF */
1467 if (nmap == 0) {
2451337d 1468 error = -ENXIO;
8aa7d37e 1469 goto out_error;
52f1acc8
JL
1470 }
1471
1472 for (i = 0; i < nmap; i++) {
1473 offset = max_t(loff_t, start,
1474 XFS_FSB_TO_B(mp, map[i].br_startoff));
1475
49c69591
ES
1476 /* Landed in the hole we wanted? */
1477 if (whence == SEEK_HOLE &&
1478 map[i].br_startblock == HOLESTARTBLOCK)
1479 goto out;
1480
1481 /* Landed in the data extent we wanted? */
1482 if (whence == SEEK_DATA &&
1483 (map[i].br_startblock == DELAYSTARTBLOCK ||
1484 (map[i].br_state == XFS_EXT_NORM &&
1485 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1486 goto out;
1487
1488 /*
49c69591
ES
1489 * Landed in an unwritten extent, try to search
1490 * for hole or data from page cache.
52f1acc8
JL
1491 */
1492 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1493 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1494 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1495 &offset))
52f1acc8
JL
1496 goto out;
1497 }
1498 }
1499
1500 /*
49c69591
ES
1501 * We only received one extent out of the two requested. This
1502 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1503 */
3fe3e6b1 1504 if (nmap == 1) {
49c69591
ES
1505 /*
1506 * If we were looking for a hole, set offset to
1507 * the end of the file (i.e., there is an implicit
1508 * hole at the end of any file).
1509 */
1510 if (whence == SEEK_HOLE) {
8aa7d37e 1511 offset = end;
49c69591
ES
1512 break;
1513 }
1514 /*
1515 * If we were looking for data, it's nowhere to be found
1516 */
1517 ASSERT(whence == SEEK_DATA);
2451337d 1518 error = -ENXIO;
8aa7d37e 1519 goto out_error;
3fe3e6b1
JL
1520 }
1521
52f1acc8
JL
1522 ASSERT(i > 1);
1523
1524 /*
1525 * Nothing was found, proceed to the next round of search
49c69591 1526 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1527 */
1528 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1529 start = XFS_FSB_TO_B(mp, fsbno);
8aa7d37e 1530 if (start >= end) {
49c69591 1531 if (whence == SEEK_HOLE) {
8aa7d37e 1532 offset = end;
49c69591
ES
1533 break;
1534 }
1535 ASSERT(whence == SEEK_DATA);
2451337d 1536 error = -ENXIO;
8aa7d37e 1537 goto out_error;
52f1acc8 1538 }
3fe3e6b1
JL
1539 }
1540
b686d1f7
JL
1541out:
1542 /*
49c69591 1543 * If at this point we have found the hole we wanted, the returned
b686d1f7 1544 * offset may be bigger than the file size as it may be aligned to
49c69591 1545 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1546 * situation in particular.
1547 */
49c69591 1548 if (whence == SEEK_HOLE)
8aa7d37e
ES
1549 offset = min_t(loff_t, offset, end);
1550
1551 return offset;
1552
1553out_error:
1554 return error;
1555}
1556
1557STATIC loff_t
1558xfs_seek_hole_data(
1559 struct file *file,
1560 loff_t start,
1561 int whence)
1562{
1563 struct inode *inode = file->f_mapping->host;
1564 struct xfs_inode *ip = XFS_I(inode);
1565 struct xfs_mount *mp = ip->i_mount;
1566 uint lock;
1567 loff_t offset, end;
1568 int error = 0;
1569
1570 if (XFS_FORCED_SHUTDOWN(mp))
1571 return -EIO;
1572
1573 lock = xfs_ilock_data_map_shared(ip);
1574
1575 end = i_size_read(inode);
1576 offset = __xfs_seek_hole_data(inode, start, end, whence);
1577 if (offset < 0) {
1578 error = offset;
1579 goto out_unlock;
1580 }
1581
46a1c2c7 1582 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1583
1584out_unlock:
01f4f327 1585 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1586
1587 if (error)
2451337d 1588 return error;
3fe3e6b1
JL
1589 return offset;
1590}
1591
1592STATIC loff_t
1593xfs_file_llseek(
1594 struct file *file,
1595 loff_t offset,
59f9c004 1596 int whence)
3fe3e6b1 1597{
59f9c004 1598 switch (whence) {
3fe3e6b1
JL
1599 case SEEK_END:
1600 case SEEK_CUR:
1601 case SEEK_SET:
59f9c004 1602 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1603 case SEEK_HOLE:
49c69591 1604 case SEEK_DATA:
59f9c004 1605 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1606 default:
1607 return -EINVAL;
1608 }
1609}
1610
de0e8c20
DC
1611/*
1612 * Locking for serialisation of IO during page faults. This results in a lock
1613 * ordering of:
1614 *
1615 * mmap_sem (MM)
6b698ede 1616 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1617 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1618 * page_lock (MM)
1619 * i_lock (XFS - extent map serialisation)
de0e8c20 1620 */
de0e8c20 1621
075a924d
DC
1622/*
1623 * mmap()d file has taken write protection fault and is being made writable. We
1624 * can set the page state up correctly for a writable page, which means we can
1625 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1626 * mapping.
de0e8c20
DC
1627 */
1628STATIC int
075a924d 1629xfs_filemap_page_mkwrite(
de0e8c20
DC
1630 struct vm_area_struct *vma,
1631 struct vm_fault *vmf)
1632{
6b698ede 1633 struct inode *inode = file_inode(vma->vm_file);
ec56b1f1 1634 int ret;
de0e8c20 1635
6b698ede 1636 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1637
6b698ede 1638 sb_start_pagefault(inode->i_sb);
ec56b1f1 1639 file_update_time(vma->vm_file);
6b698ede 1640 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1641
6b698ede 1642 if (IS_DAX(inode)) {
6c31f495 1643 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
6b698ede 1644 } else {
68a9f5e7 1645 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
6b698ede
DC
1646 ret = block_page_mkwrite_return(ret);
1647 }
1648
1649 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1650 sb_end_pagefault(inode->i_sb);
1651
1652 return ret;
de0e8c20
DC
1653}
1654
075a924d 1655STATIC int
6b698ede 1656xfs_filemap_fault(
075a924d
DC
1657 struct vm_area_struct *vma,
1658 struct vm_fault *vmf)
1659{
b2442c5a 1660 struct inode *inode = file_inode(vma->vm_file);
6b698ede 1661 int ret;
ec56b1f1 1662
b2442c5a 1663 trace_xfs_filemap_fault(XFS_I(inode));
075a924d 1664
6b698ede 1665 /* DAX can shortcut the normal fault path on write faults! */
b2442c5a 1666 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
6b698ede 1667 return xfs_filemap_page_mkwrite(vma, vmf);
075a924d 1668
b2442c5a
DC
1669 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1670 if (IS_DAX(inode)) {
1671 /*
1672 * we do not want to trigger unwritten extent conversion on read
1673 * faults - that is unnecessary overhead and would also require
1674 * changes to xfs_get_blocks_direct() to map unwritten extent
1675 * ioend for conversion on read-only mappings.
1676 */
6c31f495 1677 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
b2442c5a
DC
1678 } else
1679 ret = filemap_fault(vma, vmf);
1680 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
075a924d 1681
6b698ede
DC
1682 return ret;
1683}
1684
13ad4fe3
DC
1685/*
1686 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1687 * both read and write faults. Hence we need to handle both cases. There is no
1688 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1689 * handle both cases here. @flags carries the information on the type of fault
1690 * occuring.
1691 */
acd76e74
MW
1692STATIC int
1693xfs_filemap_pmd_fault(
1694 struct vm_area_struct *vma,
1695 unsigned long addr,
1696 pmd_t *pmd,
1697 unsigned int flags)
1698{
1699 struct inode *inode = file_inode(vma->vm_file);
1700 struct xfs_inode *ip = XFS_I(inode);
1701 int ret;
1702
1703 if (!IS_DAX(inode))
1704 return VM_FAULT_FALLBACK;
1705
1706 trace_xfs_filemap_pmd_fault(ip);
1707
13ad4fe3
DC
1708 if (flags & FAULT_FLAG_WRITE) {
1709 sb_start_pagefault(inode->i_sb);
1710 file_update_time(vma->vm_file);
1711 }
1712
acd76e74 1713 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b524995 1714 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
acd76e74 1715 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acd76e74 1716
13ad4fe3
DC
1717 if (flags & FAULT_FLAG_WRITE)
1718 sb_end_pagefault(inode->i_sb);
acd76e74
MW
1719
1720 return ret;
1721}
1722
3af49285
DC
1723/*
1724 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1725 * updates on write faults. In reality, it's need to serialise against
5eb88dca
RZ
1726 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1727 * to ensure we serialise the fault barrier in place.
3af49285
DC
1728 */
1729static int
1730xfs_filemap_pfn_mkwrite(
1731 struct vm_area_struct *vma,
1732 struct vm_fault *vmf)
1733{
1734
1735 struct inode *inode = file_inode(vma->vm_file);
1736 struct xfs_inode *ip = XFS_I(inode);
1737 int ret = VM_FAULT_NOPAGE;
1738 loff_t size;
1739
1740 trace_xfs_filemap_pfn_mkwrite(ip);
1741
1742 sb_start_pagefault(inode->i_sb);
1743 file_update_time(vma->vm_file);
1744
1745 /* check if the faulting page hasn't raced with truncate */
1746 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1747 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1748 if (vmf->pgoff >= size)
1749 ret = VM_FAULT_SIGBUS;
5eb88dca
RZ
1750 else if (IS_DAX(inode))
1751 ret = dax_pfn_mkwrite(vma, vmf);
3af49285
DC
1752 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1753 sb_end_pagefault(inode->i_sb);
acd76e74 1754 return ret;
3af49285 1755
acd76e74
MW
1756}
1757
6b698ede
DC
1758static const struct vm_operations_struct xfs_file_vm_ops = {
1759 .fault = xfs_filemap_fault,
acd76e74 1760 .pmd_fault = xfs_filemap_pmd_fault,
6b698ede
DC
1761 .map_pages = filemap_map_pages,
1762 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1763 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1764};
1765
1766STATIC int
1767xfs_file_mmap(
1768 struct file *filp,
1769 struct vm_area_struct *vma)
1770{
1771 file_accessed(filp);
1772 vma->vm_ops = &xfs_file_vm_ops;
1773 if (IS_DAX(file_inode(filp)))
acd76e74 1774 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1775 return 0;
075a924d
DC
1776}
1777
4b6f5d20 1778const struct file_operations xfs_file_operations = {
3fe3e6b1 1779 .llseek = xfs_file_llseek,
b4f5d2c6 1780 .read_iter = xfs_file_read_iter,
bf97f3bc 1781 .write_iter = xfs_file_write_iter,
82c156f8 1782 .splice_read = generic_file_splice_read,
8d020765 1783 .splice_write = iter_file_splice_write,
3562fd45 1784 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1785#ifdef CONFIG_COMPAT
3562fd45 1786 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1787#endif
3562fd45
NS
1788 .mmap = xfs_file_mmap,
1789 .open = xfs_file_open,
1790 .release = xfs_file_release,
1791 .fsync = xfs_file_fsync,
dbe6ec81 1792 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1793 .fallocate = xfs_file_fallocate,
9fe26045
DW
1794 .copy_file_range = xfs_file_copy_range,
1795 .clone_file_range = xfs_file_clone_range,
cc714660 1796 .dedupe_file_range = xfs_file_dedupe_range,
1da177e4
LT
1797};
1798
4b6f5d20 1799const struct file_operations xfs_dir_file_operations = {
f999a5bf 1800 .open = xfs_dir_open,
1da177e4 1801 .read = generic_read_dir,
3b0a3c1a 1802 .iterate_shared = xfs_file_readdir,
59af1584 1803 .llseek = generic_file_llseek,
3562fd45 1804 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1805#ifdef CONFIG_COMPAT
3562fd45 1806 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1807#endif
1da2f2db 1808 .fsync = xfs_dir_fsync,
1da177e4 1809};