libceph: move r_reply_op_{len,result} into struct ceph_osd_req_op
[linux-2.6-block.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
5a0e3ad6 34#include <linux/gfp.h>
1da177e4 35#include <linux/mpage.h>
10ce4444 36#include <linux/pagevec.h>
1da177e4
LT
37#include <linux/writeback.h>
38
0b1b213f 39void
f51623b2
NS
40xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
f51623b2
NS
43 int *unwritten)
44{
45 struct buffer_head *bh, *head;
46
20cb52eb 47 *delalloc = *unwritten = 0;
f51623b2
NS
48
49 bh = head = page_buffers(page);
50 do {
20cb52eb 51 if (buffer_unwritten(bh))
f51623b2
NS
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56}
57
20a90f58 58struct block_device *
6214ed44 59xfs_find_bdev_for_inode(
046f1685 60 struct inode *inode)
6214ed44 61{
046f1685 62 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
63 struct xfs_mount *mp = ip->i_mount;
64
71ddabb9 65 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69}
70
f6d6d4fc
CH
71/*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
0829c360
CH
77STATIC void
78xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80{
f6d6d4fc
CH
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
7d04a335 85 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 86 }
583fa586 87
0829c360
CH
88 mempool_free(ioend, xfs_ioend_pool);
89}
90
fc0063c4
CH
91/*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95{
96 return ioend->io_offset + ioend->io_size >
97 XFS_I(ioend->io_inode)->i_d.di_size;
98}
99
281627df
CH
100STATIC int
101xfs_setfilesize_trans_alloc(
102 struct xfs_ioend *ioend)
103{
104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
105 struct xfs_trans *tp;
106 int error;
107
108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
3d3c8b52 110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
281627df 111 if (error) {
4906e215 112 xfs_trans_cancel(tp);
281627df
CH
113 return error;
114 }
115
116 ioend->io_append_trans = tp;
117
d9457dc0 118 /*
437a255a 119 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
120 * we released it.
121 */
bee9182d 122 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
123 /*
124 * We hand off the transaction to the completion thread now, so
125 * clear the flag here.
126 */
127 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
128 return 0;
129}
130
ba87ea69 131/*
2813d682 132 * Update on-disk file size now that data has been written to disk.
ba87ea69 133 */
281627df 134STATIC int
ba87ea69 135xfs_setfilesize(
2ba66237
CH
136 struct xfs_inode *ip,
137 struct xfs_trans *tp,
138 xfs_off_t offset,
139 size_t size)
ba87ea69 140{
ba87ea69 141 xfs_fsize_t isize;
ba87ea69 142
aa6bf01d 143 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 144 isize = xfs_new_eof(ip, offset + size);
281627df
CH
145 if (!isize) {
146 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 147 xfs_trans_cancel(tp);
281627df 148 return 0;
ba87ea69
LM
149 }
150
2ba66237 151 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
152
153 ip->i_d.di_size = isize;
154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
156
70393313 157 return xfs_trans_commit(tp);
77d7a0c2
DC
158}
159
2ba66237
CH
160STATIC int
161xfs_setfilesize_ioend(
162 struct xfs_ioend *ioend)
163{
164 struct xfs_inode *ip = XFS_I(ioend->io_inode);
165 struct xfs_trans *tp = ioend->io_append_trans;
166
167 /*
168 * The transaction may have been allocated in the I/O submission thread,
169 * thus we need to mark ourselves as being in a transaction manually.
170 * Similarly for freeze protection.
171 */
172 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 173 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 174
5cb13dcd
Z
175 /* we abort the update if there was an IO error */
176 if (ioend->io_error) {
177 xfs_trans_cancel(tp);
178 return ioend->io_error;
179 }
180
2ba66237
CH
181 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
182}
183
77d7a0c2 184/*
209fb87a 185 * Schedule IO completion handling on the final put of an ioend.
fc0063c4
CH
186 *
187 * If there is no work to do we might as well call it a day and free the
188 * ioend right now.
77d7a0c2
DC
189 */
190STATIC void
191xfs_finish_ioend(
209fb87a 192 struct xfs_ioend *ioend)
77d7a0c2
DC
193{
194 if (atomic_dec_and_test(&ioend->io_remaining)) {
aa6bf01d
CH
195 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
196
0d882a36 197 if (ioend->io_type == XFS_IO_UNWRITTEN)
aa6bf01d 198 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
2ba66237 199 else if (ioend->io_append_trans)
aa6bf01d 200 queue_work(mp->m_data_workqueue, &ioend->io_work);
fc0063c4
CH
201 else
202 xfs_destroy_ioend(ioend);
77d7a0c2 203 }
ba87ea69
LM
204}
205
0829c360 206/*
5ec4fabb 207 * IO write completion.
f6d6d4fc
CH
208 */
209STATIC void
5ec4fabb 210xfs_end_io(
77d7a0c2 211 struct work_struct *work)
0829c360 212{
77d7a0c2
DC
213 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
214 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 215 int error = 0;
ba87ea69 216
04f658ee 217 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
810627d9 218 ioend->io_error = -EIO;
04f658ee
CH
219 goto done;
220 }
04f658ee 221
5ec4fabb
CH
222 /*
223 * For unwritten extents we need to issue transactions to convert a
224 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
225 * Detecting and handling completion IO errors is done individually
226 * for each case as different cleanup operations need to be performed
227 * on error.
5ec4fabb 228 */
0d882a36 229 if (ioend->io_type == XFS_IO_UNWRITTEN) {
5cb13dcd
Z
230 if (ioend->io_error)
231 goto done;
437a255a
DC
232 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
233 ioend->io_size);
281627df 234 } else if (ioend->io_append_trans) {
2ba66237 235 error = xfs_setfilesize_ioend(ioend);
84803fb7 236 } else {
281627df 237 ASSERT(!xfs_ioend_is_append(ioend));
5ec4fabb 238 }
ba87ea69 239
04f658ee 240done:
437a255a 241 if (error)
2451337d 242 ioend->io_error = error;
aa6bf01d 243 xfs_destroy_ioend(ioend);
c626d174
DC
244}
245
0829c360
CH
246/*
247 * Allocate and initialise an IO completion structure.
248 * We need to track unwritten extent write completion here initially.
249 * We'll need to extend this for updating the ondisk inode size later
250 * (vs. incore size).
251 */
252STATIC xfs_ioend_t *
253xfs_alloc_ioend(
f6d6d4fc
CH
254 struct inode *inode,
255 unsigned int type)
0829c360
CH
256{
257 xfs_ioend_t *ioend;
258
259 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
260
261 /*
262 * Set the count to 1 initially, which will prevent an I/O
263 * completion callback from happening before we have started
264 * all the I/O from calling the completion routine too early.
265 */
266 atomic_set(&ioend->io_remaining, 1);
7d04a335 267 ioend->io_error = 0;
f6d6d4fc
CH
268 ioend->io_list = NULL;
269 ioend->io_type = type;
b677c210 270 ioend->io_inode = inode;
c1a073bd 271 ioend->io_buffer_head = NULL;
f6d6d4fc 272 ioend->io_buffer_tail = NULL;
0829c360
CH
273 ioend->io_offset = 0;
274 ioend->io_size = 0;
281627df 275 ioend->io_append_trans = NULL;
0829c360 276
5ec4fabb 277 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
278 return ioend;
279}
280
1da177e4
LT
281STATIC int
282xfs_map_blocks(
283 struct inode *inode,
284 loff_t offset,
207d0416 285 struct xfs_bmbt_irec *imap,
a206c817
CH
286 int type,
287 int nonblocking)
1da177e4 288{
a206c817
CH
289 struct xfs_inode *ip = XFS_I(inode);
290 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 291 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
292 xfs_fileoff_t offset_fsb, end_fsb;
293 int error = 0;
a206c817
CH
294 int bmapi_flags = XFS_BMAPI_ENTIRE;
295 int nimaps = 1;
296
297 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 298 return -EIO;
a206c817 299
0d882a36 300 if (type == XFS_IO_UNWRITTEN)
a206c817 301 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d
CH
302
303 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
304 if (nonblocking)
b474c7ae 305 return -EAGAIN;
8ff2957d 306 xfs_ilock(ip, XFS_ILOCK_SHARED);
a206c817
CH
307 }
308
8ff2957d
CH
309 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
310 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 311 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 312
d2c28191
DC
313 if (offset + count > mp->m_super->s_maxbytes)
314 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
315 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
316 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
317 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
318 imap, &nimaps, bmapi_flags);
8ff2957d 319 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 320
8ff2957d 321 if (error)
2451337d 322 return error;
a206c817 323
0d882a36 324 if (type == XFS_IO_DELALLOC &&
8ff2957d 325 (!nimaps || isnullstartblock(imap->br_startblock))) {
0799a3e8 326 error = xfs_iomap_write_allocate(ip, offset, imap);
a206c817
CH
327 if (!error)
328 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 329 return error;
a206c817
CH
330 }
331
8ff2957d 332#ifdef DEBUG
0d882a36 333 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
334 ASSERT(nimaps);
335 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
336 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
337 }
338#endif
339 if (nimaps)
340 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
341 return 0;
1da177e4
LT
342}
343
b8f82a4a 344STATIC int
558e6891 345xfs_imap_valid(
8699bb0a 346 struct inode *inode,
207d0416 347 struct xfs_bmbt_irec *imap,
558e6891 348 xfs_off_t offset)
1da177e4 349{
558e6891 350 offset >>= inode->i_blkbits;
8699bb0a 351
558e6891
CH
352 return offset >= imap->br_startoff &&
353 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
354}
355
f6d6d4fc
CH
356/*
357 * BIO completion handler for buffered IO.
358 */
782e3b3b 359STATIC void
f6d6d4fc 360xfs_end_bio(
4246a0b6 361 struct bio *bio)
f6d6d4fc
CH
362{
363 xfs_ioend_t *ioend = bio->bi_private;
364
77a78806
LT
365 if (!ioend->io_error)
366 ioend->io_error = bio->bi_error;
f6d6d4fc
CH
367
368 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
369 bio->bi_private = NULL;
370 bio->bi_end_io = NULL;
f6d6d4fc 371 bio_put(bio);
7d04a335 372
209fb87a 373 xfs_finish_ioend(ioend);
f6d6d4fc
CH
374}
375
376STATIC void
377xfs_submit_ioend_bio(
06342cf8
CH
378 struct writeback_control *wbc,
379 xfs_ioend_t *ioend,
380 struct bio *bio)
f6d6d4fc
CH
381{
382 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
383 bio->bi_private = ioend;
384 bio->bi_end_io = xfs_end_bio;
721a9602 385 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
f6d6d4fc
CH
386}
387
388STATIC struct bio *
389xfs_alloc_ioend_bio(
390 struct buffer_head *bh)
391{
b54ffb73 392 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
f6d6d4fc
CH
393
394 ASSERT(bio->bi_private == NULL);
4f024f37 395 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
f6d6d4fc 396 bio->bi_bdev = bh->b_bdev;
f6d6d4fc
CH
397 return bio;
398}
399
400STATIC void
401xfs_start_buffer_writeback(
402 struct buffer_head *bh)
403{
404 ASSERT(buffer_mapped(bh));
405 ASSERT(buffer_locked(bh));
406 ASSERT(!buffer_delay(bh));
407 ASSERT(!buffer_unwritten(bh));
408
409 mark_buffer_async_write(bh);
410 set_buffer_uptodate(bh);
411 clear_buffer_dirty(bh);
412}
413
414STATIC void
415xfs_start_page_writeback(
416 struct page *page,
f6d6d4fc
CH
417 int clear_dirty,
418 int buffers)
419{
420 ASSERT(PageLocked(page));
421 ASSERT(!PageWriteback(page));
0d085a52
DC
422
423 /*
424 * if the page was not fully cleaned, we need to ensure that the higher
425 * layers come back to it correctly. That means we need to keep the page
426 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
427 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
428 * write this page in this writeback sweep will be made.
429 */
430 if (clear_dirty) {
92132021 431 clear_page_dirty_for_io(page);
0d085a52
DC
432 set_page_writeback(page);
433 } else
434 set_page_writeback_keepwrite(page);
435
f6d6d4fc 436 unlock_page(page);
0d085a52 437
1f7decf6
FW
438 /* If no buffers on the page are to be written, finish it here */
439 if (!buffers)
f6d6d4fc 440 end_page_writeback(page);
f6d6d4fc
CH
441}
442
c7c1a7d8 443static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
444{
445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
446}
447
448/*
d88992f6
DC
449 * Submit all of the bios for all of the ioends we have saved up, covering the
450 * initial writepage page and also any probed pages.
451 *
452 * Because we may have multiple ioends spanning a page, we need to start
453 * writeback on all the buffers before we submit them for I/O. If we mark the
454 * buffers as we got, then we can end up with a page that only has buffers
455 * marked async write and I/O complete on can occur before we mark the other
456 * buffers async write.
457 *
458 * The end result of this is that we trip a bug in end_page_writeback() because
459 * we call it twice for the one page as the code in end_buffer_async_write()
460 * assumes that all buffers on the page are started at the same time.
461 *
462 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 463 * buffer_heads, and then submit them for I/O on the second pass.
7bf7f352
DC
464 *
465 * If @fail is non-zero, it means that we have a situation where some part of
466 * the submission process has failed after we have marked paged for writeback
467 * and unlocked them. In this situation, we need to fail the ioend chain rather
468 * than submit it to IO. This typically only happens on a filesystem shutdown.
f6d6d4fc
CH
469 */
470STATIC void
471xfs_submit_ioend(
06342cf8 472 struct writeback_control *wbc,
7bf7f352
DC
473 xfs_ioend_t *ioend,
474 int fail)
f6d6d4fc 475{
d88992f6 476 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
477 xfs_ioend_t *next;
478 struct buffer_head *bh;
479 struct bio *bio;
480 sector_t lastblock = 0;
481
d88992f6
DC
482 /* Pass 1 - start writeback */
483 do {
484 next = ioend->io_list;
221cb251 485 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
d88992f6 486 xfs_start_buffer_writeback(bh);
d88992f6
DC
487 } while ((ioend = next) != NULL);
488
489 /* Pass 2 - submit I/O */
490 ioend = head;
f6d6d4fc
CH
491 do {
492 next = ioend->io_list;
493 bio = NULL;
494
7bf7f352
DC
495 /*
496 * If we are failing the IO now, just mark the ioend with an
497 * error and finish it. This will run IO completion immediately
498 * as there is only one reference to the ioend at this point in
499 * time.
500 */
501 if (fail) {
2451337d 502 ioend->io_error = fail;
7bf7f352
DC
503 xfs_finish_ioend(ioend);
504 continue;
505 }
506
f6d6d4fc 507 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
508
509 if (!bio) {
510 retry:
511 bio = xfs_alloc_ioend_bio(bh);
512 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 513 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
514 goto retry;
515 }
516
c7c1a7d8 517 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 518 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
519 goto retry;
520 }
521
522 lastblock = bh->b_blocknr;
523 }
524 if (bio)
06342cf8 525 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 526 xfs_finish_ioend(ioend);
f6d6d4fc
CH
527 } while ((ioend = next) != NULL);
528}
529
530/*
531 * Cancel submission of all buffer_heads so far in this endio.
532 * Toss the endio too. Only ever called for the initial page
533 * in a writepage request, so only ever one page.
534 */
535STATIC void
536xfs_cancel_ioend(
537 xfs_ioend_t *ioend)
538{
539 xfs_ioend_t *next;
540 struct buffer_head *bh, *next_bh;
541
542 do {
543 next = ioend->io_list;
544 bh = ioend->io_buffer_head;
545 do {
546 next_bh = bh->b_private;
547 clear_buffer_async_write(bh);
07d08681
BF
548 /*
549 * The unwritten flag is cleared when added to the
550 * ioend. We're not submitting for I/O so mark the
551 * buffer unwritten again for next time around.
552 */
553 if (ioend->io_type == XFS_IO_UNWRITTEN)
554 set_buffer_unwritten(bh);
f6d6d4fc
CH
555 unlock_buffer(bh);
556 } while ((bh = next_bh) != NULL);
557
f6d6d4fc
CH
558 mempool_free(ioend, xfs_ioend_pool);
559 } while ((ioend = next) != NULL);
560}
561
562/*
563 * Test to see if we've been building up a completion structure for
564 * earlier buffers -- if so, we try to append to this ioend if we
565 * can, otherwise we finish off any current ioend and start another.
566 * Return true if we've finished the given ioend.
567 */
568STATIC void
569xfs_add_to_ioend(
570 struct inode *inode,
571 struct buffer_head *bh,
7336cea8 572 xfs_off_t offset,
f6d6d4fc
CH
573 unsigned int type,
574 xfs_ioend_t **result,
575 int need_ioend)
576{
577 xfs_ioend_t *ioend = *result;
578
579 if (!ioend || need_ioend || type != ioend->io_type) {
580 xfs_ioend_t *previous = *result;
f6d6d4fc 581
f6d6d4fc
CH
582 ioend = xfs_alloc_ioend(inode, type);
583 ioend->io_offset = offset;
584 ioend->io_buffer_head = bh;
585 ioend->io_buffer_tail = bh;
586 if (previous)
587 previous->io_list = ioend;
588 *result = ioend;
589 } else {
590 ioend->io_buffer_tail->b_private = bh;
591 ioend->io_buffer_tail = bh;
592 }
593
594 bh->b_private = NULL;
595 ioend->io_size += bh->b_size;
596}
597
87cbc49c
NS
598STATIC void
599xfs_map_buffer(
046f1685 600 struct inode *inode,
87cbc49c 601 struct buffer_head *bh,
207d0416 602 struct xfs_bmbt_irec *imap,
046f1685 603 xfs_off_t offset)
87cbc49c
NS
604{
605 sector_t bn;
8699bb0a 606 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
607 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
608 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 609
207d0416
CH
610 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
611 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 612
e513182d 613 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 614 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 615
046f1685 616 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
617
618 bh->b_blocknr = bn;
619 set_buffer_mapped(bh);
620}
621
1da177e4
LT
622STATIC void
623xfs_map_at_offset(
046f1685 624 struct inode *inode,
1da177e4 625 struct buffer_head *bh,
207d0416 626 struct xfs_bmbt_irec *imap,
046f1685 627 xfs_off_t offset)
1da177e4 628{
207d0416
CH
629 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
630 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 631
207d0416 632 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
633 set_buffer_mapped(bh);
634 clear_buffer_delay(bh);
f6d6d4fc 635 clear_buffer_unwritten(bh);
1da177e4
LT
636}
637
1da177e4 638/*
a49935f2
DC
639 * Test if a given page contains at least one buffer of a given @type.
640 * If @check_all_buffers is true, then we walk all the buffers in the page to
641 * try to find one of the type passed in. If it is not set, then the caller only
642 * needs to check the first buffer on the page for a match.
1da177e4 643 */
a49935f2 644STATIC bool
6ffc4db5 645xfs_check_page_type(
10ce4444 646 struct page *page,
a49935f2
DC
647 unsigned int type,
648 bool check_all_buffers)
1da177e4 649{
a49935f2
DC
650 struct buffer_head *bh;
651 struct buffer_head *head;
1da177e4 652
a49935f2
DC
653 if (PageWriteback(page))
654 return false;
655 if (!page->mapping)
656 return false;
657 if (!page_has_buffers(page))
658 return false;
1da177e4 659
a49935f2
DC
660 bh = head = page_buffers(page);
661 do {
662 if (buffer_unwritten(bh)) {
663 if (type == XFS_IO_UNWRITTEN)
664 return true;
665 } else if (buffer_delay(bh)) {
805eeb8e 666 if (type == XFS_IO_DELALLOC)
a49935f2
DC
667 return true;
668 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 669 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
670 return true;
671 }
1da177e4 672
a49935f2
DC
673 /* If we are only checking the first buffer, we are done now. */
674 if (!check_all_buffers)
675 break;
676 } while ((bh = bh->b_this_page) != head);
1da177e4 677
a49935f2 678 return false;
1da177e4
LT
679}
680
1da177e4
LT
681/*
682 * Allocate & map buffers for page given the extent map. Write it out.
683 * except for the original page of a writepage, this is called on
684 * delalloc/unwritten pages only, for the original page it is possible
685 * that the page has no mapping at all.
686 */
f6d6d4fc 687STATIC int
1da177e4
LT
688xfs_convert_page(
689 struct inode *inode,
690 struct page *page,
10ce4444 691 loff_t tindex,
207d0416 692 struct xfs_bmbt_irec *imap,
f6d6d4fc 693 xfs_ioend_t **ioendp,
2fa24f92 694 struct writeback_control *wbc)
1da177e4 695{
f6d6d4fc 696 struct buffer_head *bh, *head;
9260dc6b
CH
697 xfs_off_t end_offset;
698 unsigned long p_offset;
f6d6d4fc 699 unsigned int type;
24e17b5f 700 int len, page_dirty;
f6d6d4fc 701 int count = 0, done = 0, uptodate = 1;
9260dc6b 702 xfs_off_t offset = page_offset(page);
1da177e4 703
10ce4444
CH
704 if (page->index != tindex)
705 goto fail;
529ae9aa 706 if (!trylock_page(page))
10ce4444
CH
707 goto fail;
708 if (PageWriteback(page))
709 goto fail_unlock_page;
710 if (page->mapping != inode->i_mapping)
711 goto fail_unlock_page;
a49935f2 712 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
10ce4444
CH
713 goto fail_unlock_page;
714
24e17b5f
NS
715 /*
716 * page_dirty is initially a count of buffers on the page before
c41564b5 717 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
718 *
719 * Derivation:
720 *
721 * End offset is the highest offset that this page should represent.
722 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
723 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
724 * hence give us the correct page_dirty count. On any other page,
725 * it will be zero and in that case we need page_dirty to be the
726 * count of buffers on the page.
24e17b5f 727 */
9260dc6b
CH
728 end_offset = min_t(unsigned long long,
729 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
730 i_size_read(inode));
731
480d7467
DC
732 /*
733 * If the current map does not span the entire page we are about to try
734 * to write, then give up. The only way we can write a page that spans
735 * multiple mappings in a single writeback iteration is via the
736 * xfs_vm_writepage() function. Data integrity writeback requires the
737 * entire page to be written in a single attempt, otherwise the part of
738 * the page we don't write here doesn't get written as part of the data
739 * integrity sync.
740 *
741 * For normal writeback, we also don't attempt to write partial pages
742 * here as it simply means that write_cache_pages() will see it under
743 * writeback and ignore the page until some point in the future, at
744 * which time this will be the only page in the file that needs
745 * writeback. Hence for more optimal IO patterns, we should always
746 * avoid partial page writeback due to multiple mappings on a page here.
747 */
748 if (!xfs_imap_valid(inode, imap, end_offset))
749 goto fail_unlock_page;
750
24e17b5f 751 len = 1 << inode->i_blkbits;
9260dc6b
CH
752 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
753 PAGE_CACHE_SIZE);
754 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
755 page_dirty = p_offset / len;
24e17b5f 756
a49935f2
DC
757 /*
758 * The moment we find a buffer that doesn't match our current type
759 * specification or can't be written, abort the loop and start
760 * writeback. As per the above xfs_imap_valid() check, only
761 * xfs_vm_writepage() can handle partial page writeback fully - we are
762 * limited here to the buffers that are contiguous with the current
763 * ioend, and hence a buffer we can't write breaks that contiguity and
764 * we have to defer the rest of the IO to xfs_vm_writepage().
765 */
1da177e4
LT
766 bh = head = page_buffers(page);
767 do {
9260dc6b 768 if (offset >= end_offset)
1da177e4 769 break;
f6d6d4fc
CH
770 if (!buffer_uptodate(bh))
771 uptodate = 0;
772 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
773 done = 1;
a49935f2 774 break;
f6d6d4fc
CH
775 }
776
2fa24f92
CH
777 if (buffer_unwritten(bh) || buffer_delay(bh) ||
778 buffer_mapped(bh)) {
9260dc6b 779 if (buffer_unwritten(bh))
0d882a36 780 type = XFS_IO_UNWRITTEN;
2fa24f92 781 else if (buffer_delay(bh))
0d882a36 782 type = XFS_IO_DELALLOC;
2fa24f92 783 else
0d882a36 784 type = XFS_IO_OVERWRITE;
9260dc6b 785
a49935f2
DC
786 /*
787 * imap should always be valid because of the above
788 * partial page end_offset check on the imap.
789 */
790 ASSERT(xfs_imap_valid(inode, imap, offset));
9260dc6b 791
ecff71e6 792 lock_buffer(bh);
0d882a36 793 if (type != XFS_IO_OVERWRITE)
2fa24f92 794 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
795 xfs_add_to_ioend(inode, bh, offset, type,
796 ioendp, done);
797
9260dc6b
CH
798 page_dirty--;
799 count++;
800 } else {
2fa24f92 801 done = 1;
a49935f2 802 break;
1da177e4 803 }
7336cea8 804 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 805
f6d6d4fc
CH
806 if (uptodate && bh == head)
807 SetPageUptodate(page);
808
89f3b363 809 if (count) {
efceab1d
DC
810 if (--wbc->nr_to_write <= 0 &&
811 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 812 done = 1;
1da177e4 813 }
89f3b363 814 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
815
816 return done;
10ce4444
CH
817 fail_unlock_page:
818 unlock_page(page);
819 fail:
820 return 1;
1da177e4
LT
821}
822
823/*
824 * Convert & write out a cluster of pages in the same extent as defined
825 * by mp and following the start page.
826 */
827STATIC void
828xfs_cluster_write(
829 struct inode *inode,
830 pgoff_t tindex,
207d0416 831 struct xfs_bmbt_irec *imap,
f6d6d4fc 832 xfs_ioend_t **ioendp,
1da177e4 833 struct writeback_control *wbc,
1da177e4
LT
834 pgoff_t tlast)
835{
10ce4444
CH
836 struct pagevec pvec;
837 int done = 0, i;
1da177e4 838
10ce4444
CH
839 pagevec_init(&pvec, 0);
840 while (!done && tindex <= tlast) {
841 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
842
843 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 844 break;
10ce4444
CH
845
846 for (i = 0; i < pagevec_count(&pvec); i++) {
847 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
2fa24f92 848 imap, ioendp, wbc);
10ce4444
CH
849 if (done)
850 break;
851 }
852
853 pagevec_release(&pvec);
854 cond_resched();
1da177e4
LT
855 }
856}
857
3ed3a434
DC
858STATIC void
859xfs_vm_invalidatepage(
860 struct page *page,
d47992f8
LC
861 unsigned int offset,
862 unsigned int length)
3ed3a434 863{
34097dfe
LC
864 trace_xfs_invalidatepage(page->mapping->host, page, offset,
865 length);
866 block_invalidatepage(page, offset, length);
3ed3a434
DC
867}
868
869/*
870 * If the page has delalloc buffers on it, we need to punch them out before we
871 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
872 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
873 * is done on that same region - the delalloc extent is returned when none is
874 * supposed to be there.
875 *
876 * We prevent this by truncating away the delalloc regions on the page before
877 * invalidating it. Because they are delalloc, we can do this without needing a
878 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
879 * truncation without a transaction as there is no space left for block
880 * reservation (typically why we see a ENOSPC in writeback).
881 *
882 * This is not a performance critical path, so for now just do the punching a
883 * buffer head at a time.
884 */
885STATIC void
886xfs_aops_discard_page(
887 struct page *page)
888{
889 struct inode *inode = page->mapping->host;
890 struct xfs_inode *ip = XFS_I(inode);
891 struct buffer_head *bh, *head;
892 loff_t offset = page_offset(page);
3ed3a434 893
a49935f2 894 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
895 goto out_invalidate;
896
e8c3753c
DC
897 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
898 goto out_invalidate;
899
4f10700a 900 xfs_alert(ip->i_mount,
3ed3a434
DC
901 "page discard on page %p, inode 0x%llx, offset %llu.",
902 page, ip->i_ino, offset);
903
904 xfs_ilock(ip, XFS_ILOCK_EXCL);
905 bh = head = page_buffers(page);
906 do {
3ed3a434 907 int error;
c726de44 908 xfs_fileoff_t start_fsb;
3ed3a434
DC
909
910 if (!buffer_delay(bh))
911 goto next_buffer;
912
c726de44
DC
913 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
914 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
915 if (error) {
916 /* something screwed, just bail */
e8c3753c 917 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 918 xfs_alert(ip->i_mount,
3ed3a434 919 "page discard unable to remove delalloc mapping.");
e8c3753c 920 }
3ed3a434
DC
921 break;
922 }
923next_buffer:
c726de44 924 offset += 1 << inode->i_blkbits;
3ed3a434
DC
925
926 } while ((bh = bh->b_this_page) != head);
927
928 xfs_iunlock(ip, XFS_ILOCK_EXCL);
929out_invalidate:
d47992f8 930 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
3ed3a434
DC
931 return;
932}
933
1da177e4 934/*
89f3b363
CH
935 * Write out a dirty page.
936 *
937 * For delalloc space on the page we need to allocate space and flush it.
938 * For unwritten space on the page we need to start the conversion to
939 * regular allocated space.
89f3b363 940 * For any other dirty buffer heads on the page we should flush them.
1da177e4 941 */
1da177e4 942STATIC int
89f3b363
CH
943xfs_vm_writepage(
944 struct page *page,
945 struct writeback_control *wbc)
1da177e4 946{
89f3b363 947 struct inode *inode = page->mapping->host;
f6d6d4fc 948 struct buffer_head *bh, *head;
207d0416 949 struct xfs_bmbt_irec imap;
f6d6d4fc 950 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 951 loff_t offset;
f6d6d4fc 952 unsigned int type;
1da177e4 953 __uint64_t end_offset;
bd1556a1 954 pgoff_t end_index, last_index;
ed1e7b7e 955 ssize_t len;
a206c817 956 int err, imap_valid = 0, uptodate = 1;
89f3b363 957 int count = 0;
a206c817 958 int nonblocking = 0;
89f3b363 959
34097dfe 960 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 961
20cb52eb
CH
962 ASSERT(page_has_buffers(page));
963
89f3b363
CH
964 /*
965 * Refuse to write the page out if we are called from reclaim context.
966 *
d4f7a5cb
CH
967 * This avoids stack overflows when called from deeply used stacks in
968 * random callers for direct reclaim or memcg reclaim. We explicitly
969 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 970 *
94054fa3
MG
971 * This should never happen except in the case of a VM regression so
972 * warn about it.
89f3b363 973 */
94054fa3
MG
974 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
975 PF_MEMALLOC))
b5420f23 976 goto redirty;
1da177e4 977
89f3b363 978 /*
680a647b
CH
979 * Given that we do not allow direct reclaim to call us, we should
980 * never be called while in a filesystem transaction.
89f3b363 981 */
448011e2 982 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 983 goto redirty;
89f3b363 984
1da177e4
LT
985 /* Is this page beyond the end of the file? */
986 offset = i_size_read(inode);
987 end_index = offset >> PAGE_CACHE_SHIFT;
988 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
8695d27e
JL
989
990 /*
991 * The page index is less than the end_index, adjust the end_offset
992 * to the highest offset that this page should represent.
993 * -----------------------------------------------------
994 * | file mapping | <EOF> |
995 * -----------------------------------------------------
996 * | Page ... | Page N-2 | Page N-1 | Page N | |
997 * ^--------------------------------^----------|--------
998 * | desired writeback range | see else |
999 * ---------------------------------^------------------|
1000 */
1001 if (page->index < end_index)
1002 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
1003 else {
1004 /*
1005 * Check whether the page to write out is beyond or straddles
1006 * i_size or not.
1007 * -------------------------------------------------------
1008 * | file mapping | <EOF> |
1009 * -------------------------------------------------------
1010 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1011 * ^--------------------------------^-----------|---------
1012 * | | Straddles |
1013 * ---------------------------------^-----------|--------|
1014 */
6b7a03f0
CH
1015 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1016
1017 /*
ff9a28f6
JK
1018 * Skip the page if it is fully outside i_size, e.g. due to a
1019 * truncate operation that is in progress. We must redirty the
1020 * page so that reclaim stops reclaiming it. Otherwise
1021 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1022 *
1023 * Note that the end_index is unsigned long, it would overflow
1024 * if the given offset is greater than 16TB on 32-bit system
1025 * and if we do check the page is fully outside i_size or not
1026 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1027 * will be evaluated to 0. Hence this page will be redirtied
1028 * and be written out repeatedly which would result in an
1029 * infinite loop, the user program that perform this operation
1030 * will hang. Instead, we can verify this situation by checking
1031 * if the page to write is totally beyond the i_size or if it's
1032 * offset is just equal to the EOF.
6b7a03f0 1033 */
8695d27e
JL
1034 if (page->index > end_index ||
1035 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1036 goto redirty;
6b7a03f0
CH
1037
1038 /*
1039 * The page straddles i_size. It must be zeroed out on each
1040 * and every writepage invocation because it may be mmapped.
1041 * "A file is mapped in multiples of the page size. For a file
8695d27e 1042 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1043 * memory is zeroed when mapped, and writes to that region are
1044 * not written out to the file."
1045 */
1046 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
8695d27e
JL
1047
1048 /* Adjust the end_offset to the end of file */
1049 end_offset = offset;
1da177e4
LT
1050 }
1051
24e17b5f 1052 len = 1 << inode->i_blkbits;
24e17b5f 1053
24e17b5f 1054 bh = head = page_buffers(page);
f6d6d4fc 1055 offset = page_offset(page);
0d882a36 1056 type = XFS_IO_OVERWRITE;
a206c817 1057
dbcdde3e 1058 if (wbc->sync_mode == WB_SYNC_NONE)
a206c817 1059 nonblocking = 1;
f6d6d4fc 1060
1da177e4 1061 do {
6ac7248e
CH
1062 int new_ioend = 0;
1063
1da177e4
LT
1064 if (offset >= end_offset)
1065 break;
1066 if (!buffer_uptodate(bh))
1067 uptodate = 0;
1da177e4 1068
3d9b02e3 1069 /*
ece413f5
CH
1070 * set_page_dirty dirties all buffers in a page, independent
1071 * of their state. The dirty state however is entirely
1072 * meaningless for holes (!mapped && uptodate), so skip
1073 * buffers covering holes here.
3d9b02e3
ES
1074 */
1075 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1076 imap_valid = 0;
1077 continue;
1078 }
1079
aeea1b1f 1080 if (buffer_unwritten(bh)) {
0d882a36
AR
1081 if (type != XFS_IO_UNWRITTEN) {
1082 type = XFS_IO_UNWRITTEN;
aeea1b1f 1083 imap_valid = 0;
1da177e4 1084 }
aeea1b1f 1085 } else if (buffer_delay(bh)) {
0d882a36
AR
1086 if (type != XFS_IO_DELALLOC) {
1087 type = XFS_IO_DELALLOC;
aeea1b1f 1088 imap_valid = 0;
1da177e4 1089 }
89f3b363 1090 } else if (buffer_uptodate(bh)) {
0d882a36
AR
1091 if (type != XFS_IO_OVERWRITE) {
1092 type = XFS_IO_OVERWRITE;
85da94c6
CH
1093 imap_valid = 0;
1094 }
aeea1b1f 1095 } else {
7d0fa3ec 1096 if (PageUptodate(page))
aeea1b1f 1097 ASSERT(buffer_mapped(bh));
7d0fa3ec
AR
1098 /*
1099 * This buffer is not uptodate and will not be
1100 * written to disk. Ensure that we will put any
1101 * subsequent writeable buffers into a new
1102 * ioend.
1103 */
1104 imap_valid = 0;
aeea1b1f
CH
1105 continue;
1106 }
d5cb48aa 1107
aeea1b1f
CH
1108 if (imap_valid)
1109 imap_valid = xfs_imap_valid(inode, &imap, offset);
1110 if (!imap_valid) {
1111 /*
1112 * If we didn't have a valid mapping then we need to
1113 * put the new mapping into a separate ioend structure.
1114 * This ensures non-contiguous extents always have
1115 * separate ioends, which is particularly important
1116 * for unwritten extent conversion at I/O completion
1117 * time.
1118 */
1119 new_ioend = 1;
1120 err = xfs_map_blocks(inode, offset, &imap, type,
1121 nonblocking);
1122 if (err)
1123 goto error;
1124 imap_valid = xfs_imap_valid(inode, &imap, offset);
1125 }
1126 if (imap_valid) {
ecff71e6 1127 lock_buffer(bh);
0d882a36 1128 if (type != XFS_IO_OVERWRITE)
aeea1b1f
CH
1129 xfs_map_at_offset(inode, bh, &imap, offset);
1130 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1131 new_ioend);
1132 count++;
1da177e4 1133 }
f6d6d4fc
CH
1134
1135 if (!iohead)
1136 iohead = ioend;
1137
1138 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1139
1140 if (uptodate && bh == head)
1141 SetPageUptodate(page);
1142
89f3b363 1143 xfs_start_page_writeback(page, 1, count);
1da177e4 1144
7bf7f352
DC
1145 /* if there is no IO to be submitted for this page, we are done */
1146 if (!ioend)
1147 return 0;
1148
1149 ASSERT(iohead);
1150
1151 /*
1152 * Any errors from this point onwards need tobe reported through the IO
1153 * completion path as we have marked the initial page as under writeback
1154 * and unlocked it.
1155 */
1156 if (imap_valid) {
bd1556a1
CH
1157 xfs_off_t end_index;
1158
1159 end_index = imap.br_startoff + imap.br_blockcount;
1160
1161 /* to bytes */
1162 end_index <<= inode->i_blkbits;
1163
1164 /* to pages */
1165 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1166
1167 /* check against file size */
1168 if (end_index > last_index)
1169 end_index = last_index;
8699bb0a 1170
207d0416 1171 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
2fa24f92 1172 wbc, end_index);
1da177e4
LT
1173 }
1174
281627df 1175
7bf7f352
DC
1176 /*
1177 * Reserve log space if we might write beyond the on-disk inode size.
1178 */
1179 err = 0;
1180 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1181 err = xfs_setfilesize_trans_alloc(ioend);
1182
1183 xfs_submit_ioend(wbc, iohead, err);
f6d6d4fc 1184
89f3b363 1185 return 0;
1da177e4
LT
1186
1187error:
f6d6d4fc
CH
1188 if (iohead)
1189 xfs_cancel_ioend(iohead);
1da177e4 1190
b5420f23
CH
1191 if (err == -EAGAIN)
1192 goto redirty;
1193
20cb52eb 1194 xfs_aops_discard_page(page);
89f3b363
CH
1195 ClearPageUptodate(page);
1196 unlock_page(page);
1da177e4 1197 return err;
f51623b2 1198
b5420f23 1199redirty:
f51623b2
NS
1200 redirty_page_for_writepage(wbc, page);
1201 unlock_page(page);
1202 return 0;
f51623b2
NS
1203}
1204
7d4fb40a
NS
1205STATIC int
1206xfs_vm_writepages(
1207 struct address_space *mapping,
1208 struct writeback_control *wbc)
1209{
b3aea4ed 1210 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7f6d5b52
RZ
1211 if (dax_mapping(mapping))
1212 return dax_writeback_mapping_range(mapping,
1213 xfs_find_bdev_for_inode(mapping->host), wbc);
1214
7d4fb40a
NS
1215 return generic_writepages(mapping, wbc);
1216}
1217
f51623b2
NS
1218/*
1219 * Called to move a page into cleanable state - and from there
89f3b363 1220 * to be released. The page should already be clean. We always
f51623b2
NS
1221 * have buffer heads in this call.
1222 *
89f3b363 1223 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1224 */
1225STATIC int
238f4c54 1226xfs_vm_releasepage(
f51623b2
NS
1227 struct page *page,
1228 gfp_t gfp_mask)
1229{
20cb52eb 1230 int delalloc, unwritten;
f51623b2 1231
34097dfe 1232 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1233
20cb52eb 1234 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1235
448011e2 1236 if (WARN_ON_ONCE(delalloc))
f51623b2 1237 return 0;
448011e2 1238 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1239 return 0;
1240
f51623b2
NS
1241 return try_to_free_buffers(page);
1242}
1243
a719370b 1244/*
a06c277a
DC
1245 * When we map a DIO buffer, we may need to attach an ioend that describes the
1246 * type of write IO we are doing. This passes to the completion function the
1247 * operations it needs to perform. If the mapping is for an overwrite wholly
1248 * within the EOF then we don't need an ioend and so we don't allocate one.
1249 * This avoids the unnecessary overhead of allocating and freeing ioends for
1250 * workloads that don't require transactions on IO completion.
d5cc2e3f
DC
1251 *
1252 * If we get multiple mappings in a single IO, we might be mapping different
1253 * types. But because the direct IO can only have a single private pointer, we
1254 * need to ensure that:
1255 *
a06c277a
DC
1256 * a) i) the ioend spans the entire region of unwritten mappings; or
1257 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
d5cc2e3f
DC
1258 * b) if it contains unwritten extents, it is *permanently* marked as such
1259 *
1260 * We could do this by chaining ioends like buffered IO does, but we only
1261 * actually get one IO completion callback from the direct IO, and that spans
1262 * the entire IO regardless of how many mappings and IOs are needed to complete
1263 * the DIO. There is only going to be one reference to the ioend and its life
1264 * cycle is constrained by the DIO completion code. hence we don't need
1265 * reference counting here.
3e12dbbd
DC
1266 *
1267 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1268 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1269 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1270 * extending the file size. We won't know for sure until IO completion is run
1271 * and the actual max write offset is communicated to the IO completion
1272 * routine.
1273 *
1274 * For DAX page faults, we are preparing to never see unwritten extents here,
1275 * nor should we ever extend the inode size. Hence we will soon have nothing to
1276 * do here for this case, ensuring we don't have to provide an IO completion
1277 * callback to free an ioend that we don't actually need for a fault into the
1278 * page at offset (2^63 - 1FSB) bytes.
a719370b 1279 */
3e12dbbd 1280
a719370b
DC
1281static void
1282xfs_map_direct(
1283 struct inode *inode,
1284 struct buffer_head *bh_result,
1285 struct xfs_bmbt_irec *imap,
3e12dbbd
DC
1286 xfs_off_t offset,
1287 bool dax_fault)
a719370b 1288{
d5cc2e3f
DC
1289 struct xfs_ioend *ioend;
1290 xfs_off_t size = bh_result->b_size;
1291 int type;
1292
1293 if (ISUNWRITTEN(imap))
1294 type = XFS_IO_UNWRITTEN;
1295 else
1296 type = XFS_IO_OVERWRITE;
1297
1298 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1299
3e12dbbd
DC
1300 if (dax_fault) {
1301 ASSERT(type == XFS_IO_OVERWRITE);
1302 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1303 imap);
1304 return;
1305 }
3e12dbbd 1306
d5cc2e3f
DC
1307 if (bh_result->b_private) {
1308 ioend = bh_result->b_private;
1309 ASSERT(ioend->io_size > 0);
1310 ASSERT(offset >= ioend->io_offset);
1311 if (offset + size > ioend->io_offset + ioend->io_size)
1312 ioend->io_size = offset - ioend->io_offset + size;
1313
1314 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1315 ioend->io_type = XFS_IO_UNWRITTEN;
1316
1317 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1318 ioend->io_size, ioend->io_type,
1319 imap);
a06c277a 1320 } else if (type == XFS_IO_UNWRITTEN ||
3e12dbbd
DC
1321 offset + size > i_size_read(inode) ||
1322 offset + size < 0) {
d5cc2e3f
DC
1323 ioend = xfs_alloc_ioend(inode, type);
1324 ioend->io_offset = offset;
1325 ioend->io_size = size;
a06c277a 1326
d5cc2e3f 1327 bh_result->b_private = ioend;
a06c277a 1328 set_buffer_defer_completion(bh_result);
d5cc2e3f
DC
1329
1330 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1331 imap);
a06c277a
DC
1332 } else {
1333 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1334 imap);
a719370b
DC
1335 }
1336}
1337
1fdca9c2
DC
1338/*
1339 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1340 * is, so that we can avoid repeated get_blocks calls.
1341 *
1342 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1343 * for blocks beyond EOF must be marked new so that sub block regions can be
1344 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1345 * was just allocated or is unwritten, otherwise the callers would overwrite
1346 * existing data with zeros. Hence we have to split the mapping into a range up
1347 * to and including EOF, and a second mapping for beyond EOF.
1348 */
1349static void
1350xfs_map_trim_size(
1351 struct inode *inode,
1352 sector_t iblock,
1353 struct buffer_head *bh_result,
1354 struct xfs_bmbt_irec *imap,
1355 xfs_off_t offset,
1356 ssize_t size)
1357{
1358 xfs_off_t mapping_size;
1359
1360 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1361 mapping_size <<= inode->i_blkbits;
1362
1363 ASSERT(mapping_size > 0);
1364 if (mapping_size > size)
1365 mapping_size = size;
1366 if (offset < i_size_read(inode) &&
1367 offset + mapping_size >= i_size_read(inode)) {
1368 /* limit mapping to block that spans EOF */
1369 mapping_size = roundup_64(i_size_read(inode) - offset,
1370 1 << inode->i_blkbits);
1371 }
1372 if (mapping_size > LONG_MAX)
1373 mapping_size = LONG_MAX;
1374
1375 bh_result->b_size = mapping_size;
1376}
1377
1da177e4 1378STATIC int
c2536668 1379__xfs_get_blocks(
1da177e4
LT
1380 struct inode *inode,
1381 sector_t iblock,
1da177e4
LT
1382 struct buffer_head *bh_result,
1383 int create,
3e12dbbd
DC
1384 bool direct,
1385 bool dax_fault)
1da177e4 1386{
a206c817
CH
1387 struct xfs_inode *ip = XFS_I(inode);
1388 struct xfs_mount *mp = ip->i_mount;
1389 xfs_fileoff_t offset_fsb, end_fsb;
1390 int error = 0;
1391 int lockmode = 0;
207d0416 1392 struct xfs_bmbt_irec imap;
a206c817 1393 int nimaps = 1;
fdc7ed75
NS
1394 xfs_off_t offset;
1395 ssize_t size;
207d0416 1396 int new = 0;
a206c817
CH
1397
1398 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1399 return -EIO;
1da177e4 1400
fdc7ed75 1401 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1402 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1403 size = bh_result->b_size;
364f358a
LM
1404
1405 if (!create && direct && offset >= i_size_read(inode))
1406 return 0;
1407
507630b2
DC
1408 /*
1409 * Direct I/O is usually done on preallocated files, so try getting
1410 * a block mapping without an exclusive lock first. For buffered
1411 * writes we already have the exclusive iolock anyway, so avoiding
1412 * a lock roundtrip here by taking the ilock exclusive from the
1413 * beginning is a useful micro optimization.
1414 */
1415 if (create && !direct) {
a206c817
CH
1416 lockmode = XFS_ILOCK_EXCL;
1417 xfs_ilock(ip, lockmode);
1418 } else {
309ecac8 1419 lockmode = xfs_ilock_data_map_shared(ip);
a206c817 1420 }
f2bde9b8 1421
d2c28191
DC
1422 ASSERT(offset <= mp->m_super->s_maxbytes);
1423 if (offset + size > mp->m_super->s_maxbytes)
1424 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1425 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1426 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1427
5c8ed202
DC
1428 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1429 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1da177e4 1430 if (error)
a206c817
CH
1431 goto out_unlock;
1432
1ca19157 1433 /* for DAX, we convert unwritten extents directly */
a206c817
CH
1434 if (create &&
1435 (!nimaps ||
1436 (imap.br_startblock == HOLESTARTBLOCK ||
1ca19157
DC
1437 imap.br_startblock == DELAYSTARTBLOCK) ||
1438 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
aff3a9ed 1439 if (direct || xfs_get_extsz_hint(ip)) {
507630b2 1440 /*
009c6e87
BF
1441 * xfs_iomap_write_direct() expects the shared lock. It
1442 * is unlocked on return.
507630b2 1443 */
009c6e87
BF
1444 if (lockmode == XFS_ILOCK_EXCL)
1445 xfs_ilock_demote(ip, lockmode);
1446
a206c817
CH
1447 error = xfs_iomap_write_direct(ip, offset, size,
1448 &imap, nimaps);
507630b2 1449 if (error)
2451337d 1450 return error;
d3bc815a 1451 new = 1;
6b698ede 1452
a206c817 1453 } else {
507630b2
DC
1454 /*
1455 * Delalloc reservations do not require a transaction,
d3bc815a
DC
1456 * we can go on without dropping the lock here. If we
1457 * are allocating a new delalloc block, make sure that
1458 * we set the new flag so that we mark the buffer new so
1459 * that we know that it is newly allocated if the write
1460 * fails.
507630b2 1461 */
d3bc815a
DC
1462 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1463 new = 1;
a206c817 1464 error = xfs_iomap_write_delay(ip, offset, size, &imap);
507630b2
DC
1465 if (error)
1466 goto out_unlock;
1467
1468 xfs_iunlock(ip, lockmode);
a206c817 1469 }
d5cc2e3f
DC
1470 trace_xfs_get_blocks_alloc(ip, offset, size,
1471 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1472 : XFS_IO_DELALLOC, &imap);
a206c817 1473 } else if (nimaps) {
d5cc2e3f
DC
1474 trace_xfs_get_blocks_found(ip, offset, size,
1475 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1476 : XFS_IO_OVERWRITE, &imap);
507630b2 1477 xfs_iunlock(ip, lockmode);
a206c817
CH
1478 } else {
1479 trace_xfs_get_blocks_notfound(ip, offset, size);
1480 goto out_unlock;
1481 }
1da177e4 1482
1ca19157
DC
1483 if (IS_DAX(inode) && create) {
1484 ASSERT(!ISUNWRITTEN(&imap));
1485 /* zeroing is not needed at a higher layer */
1486 new = 0;
1487 }
1488
1fdca9c2
DC
1489 /* trim mapping down to size requested */
1490 if (direct || size > (1 << inode->i_blkbits))
1491 xfs_map_trim_size(inode, iblock, bh_result,
1492 &imap, offset, size);
1493
a719370b
DC
1494 /*
1495 * For unwritten extents do not report a disk address in the buffered
1496 * read case (treat as if we're reading into a hole).
1497 */
207d0416 1498 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1499 imap.br_startblock != DELAYSTARTBLOCK &&
1500 (create || !ISUNWRITTEN(&imap))) {
1501 xfs_map_buffer(inode, bh_result, &imap, offset);
1502 if (ISUNWRITTEN(&imap))
1da177e4 1503 set_buffer_unwritten(bh_result);
a719370b
DC
1504 /* direct IO needs special help */
1505 if (create && direct)
3e12dbbd
DC
1506 xfs_map_direct(inode, bh_result, &imap, offset,
1507 dax_fault);
1da177e4
LT
1508 }
1509
c2536668
NS
1510 /*
1511 * If this is a realtime file, data may be on a different device.
1512 * to that pointed to from the buffer_head b_bdev currently.
1513 */
046f1685 1514 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1515
c2536668 1516 /*
549054af
DC
1517 * If we previously allocated a block out beyond eof and we are now
1518 * coming back to use it then we will need to flag it as new even if it
1519 * has a disk address.
1520 *
1521 * With sub-block writes into unwritten extents we also need to mark
1522 * the buffer as new so that the unwritten parts of the buffer gets
1523 * correctly zeroed.
1da177e4
LT
1524 */
1525 if (create &&
1526 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1527 (offset >= i_size_read(inode)) ||
207d0416 1528 (new || ISUNWRITTEN(&imap))))
1da177e4 1529 set_buffer_new(bh_result);
1da177e4 1530
207d0416 1531 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1532 BUG_ON(direct);
1533 if (create) {
1534 set_buffer_uptodate(bh_result);
1535 set_buffer_mapped(bh_result);
1536 set_buffer_delay(bh_result);
1537 }
1538 }
1539
1da177e4 1540 return 0;
a206c817
CH
1541
1542out_unlock:
1543 xfs_iunlock(ip, lockmode);
2451337d 1544 return error;
1da177e4
LT
1545}
1546
1547int
c2536668 1548xfs_get_blocks(
1da177e4
LT
1549 struct inode *inode,
1550 sector_t iblock,
1551 struct buffer_head *bh_result,
1552 int create)
1553{
3e12dbbd 1554 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1da177e4
LT
1555}
1556
6b698ede 1557int
e4c573bb 1558xfs_get_blocks_direct(
1da177e4
LT
1559 struct inode *inode,
1560 sector_t iblock,
1da177e4
LT
1561 struct buffer_head *bh_result,
1562 int create)
1563{
3e12dbbd
DC
1564 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1565}
1566
1567int
1568xfs_get_blocks_dax_fault(
1569 struct inode *inode,
1570 sector_t iblock,
1571 struct buffer_head *bh_result,
1572 int create)
1573{
1574 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1da177e4
LT
1575}
1576
6b698ede
DC
1577static void
1578__xfs_end_io_direct_write(
1579 struct inode *inode,
1580 struct xfs_ioend *ioend,
209fb87a 1581 loff_t offset,
6b698ede 1582 ssize_t size)
f0973863 1583{
6b698ede 1584 struct xfs_mount *mp = XFS_I(inode)->i_mount;
a06c277a 1585
6b698ede 1586 if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
6dfa1b67 1587 goto out_end_io;
f0973863 1588
2813d682 1589 /*
d5cc2e3f
DC
1590 * dio completion end_io functions are only called on writes if more
1591 * than 0 bytes was written.
2813d682 1592 */
d5cc2e3f
DC
1593 ASSERT(size > 0);
1594
1595 /*
1596 * The ioend only maps whole blocks, while the IO may be sector aligned.
a06c277a
DC
1597 * Hence the ioend offset/size may not match the IO offset/size exactly.
1598 * Because we don't map overwrites within EOF into the ioend, the offset
1599 * may not match, but only if the endio spans EOF. Either way, write
1600 * the IO sizes into the ioend so that completion processing does the
1601 * right thing.
d5cc2e3f 1602 */
d5cc2e3f
DC
1603 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1604 ioend->io_size = size;
1605 ioend->io_offset = offset;
f0973863 1606
2813d682 1607 /*
6dfa1b67
DC
1608 * The ioend tells us whether we are doing unwritten extent conversion
1609 * or an append transaction that updates the on-disk file size. These
1610 * cases are the only cases where we should *potentially* be needing
a06c277a 1611 * to update the VFS inode size.
6dfa1b67
DC
1612 *
1613 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1614 * with the on-disk inode size being outside the in-core inode size. We
1615 * have no other method of updating EOF for AIO, so always do it here
1616 * if necessary.
b9d59846
DC
1617 *
1618 * We need to lock the test/set EOF update as we can be racing with
1619 * other IO completions here to update the EOF. Failing to serialise
1620 * here can result in EOF moving backwards and Bad Things Happen when
1621 * that occurs.
2813d682 1622 */
6b698ede 1623 spin_lock(&XFS_I(inode)->i_flags_lock);
2ba66237
CH
1624 if (offset + size > i_size_read(inode))
1625 i_size_write(inode, offset + size);
6b698ede 1626 spin_unlock(&XFS_I(inode)->i_flags_lock);
2813d682 1627
f0973863 1628 /*
6dfa1b67
DC
1629 * If we are doing an append IO that needs to update the EOF on disk,
1630 * do the transaction reserve now so we can use common end io
1631 * processing. Stashing the error (if there is one) in the ioend will
1632 * result in the ioend processing passing on the error if it is
1633 * possible as we can't return it from here.
f0973863 1634 */
a06c277a 1635 if (ioend->io_type == XFS_IO_OVERWRITE)
6dfa1b67 1636 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
209fb87a 1637
6dfa1b67
DC
1638out_end_io:
1639 xfs_end_io(&ioend->io_work);
1640 return;
f0973863
CH
1641}
1642
6b698ede
DC
1643/*
1644 * Complete a direct I/O write request.
1645 *
1646 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1647 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1648 * wholly within the EOF and so there is nothing for us to do. Note that in this
1649 * case the completion can be called in interrupt context, whereas if we have an
1650 * ioend we will always be called in task context (i.e. from a workqueue).
1651 */
1652STATIC void
1653xfs_end_io_direct_write(
1654 struct kiocb *iocb,
1655 loff_t offset,
1656 ssize_t size,
1657 void *private)
1658{
1659 struct inode *inode = file_inode(iocb->ki_filp);
1660 struct xfs_ioend *ioend = private;
1661
1662 trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1663 ioend ? ioend->io_type : 0, NULL);
1664
1665 if (!ioend) {
1666 ASSERT(offset + size <= i_size_read(inode));
1667 return;
1668 }
1669
1670 __xfs_end_io_direct_write(inode, ioend, offset, size);
1671}
1672
6e1ba0bc
DC
1673static inline ssize_t
1674xfs_vm_do_dio(
1675 struct inode *inode,
1676 struct kiocb *iocb,
1677 struct iov_iter *iter,
1678 loff_t offset,
1679 void (*endio)(struct kiocb *iocb,
1680 loff_t offset,
1681 ssize_t size,
1682 void *private),
1683 int flags)
1684{
1685 struct block_device *bdev;
1686
1687 if (IS_DAX(inode))
1688 return dax_do_io(iocb, inode, iter, offset,
1689 xfs_get_blocks_direct, endio, 0);
1690
1691 bdev = xfs_find_bdev_for_inode(inode);
1692 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1693 xfs_get_blocks_direct, endio, NULL, flags);
1694}
1695
1da177e4 1696STATIC ssize_t
e4c573bb 1697xfs_vm_direct_IO(
1da177e4 1698 struct kiocb *iocb,
d8d3d94b
AV
1699 struct iov_iter *iter,
1700 loff_t offset)
1da177e4 1701{
209fb87a 1702 struct inode *inode = iocb->ki_filp->f_mapping->host;
209fb87a 1703
6e1ba0bc
DC
1704 if (iov_iter_rw(iter) == WRITE)
1705 return xfs_vm_do_dio(inode, iocb, iter, offset,
1706 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1707 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1da177e4
LT
1708}
1709
d3bc815a
DC
1710/*
1711 * Punch out the delalloc blocks we have already allocated.
1712 *
1713 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1714 * as the page is still locked at this point.
1715 */
1716STATIC void
1717xfs_vm_kill_delalloc_range(
1718 struct inode *inode,
1719 loff_t start,
1720 loff_t end)
1721{
1722 struct xfs_inode *ip = XFS_I(inode);
1723 xfs_fileoff_t start_fsb;
1724 xfs_fileoff_t end_fsb;
1725 int error;
1726
1727 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1728 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1729 if (end_fsb <= start_fsb)
1730 return;
1731
1732 xfs_ilock(ip, XFS_ILOCK_EXCL);
1733 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1734 end_fsb - start_fsb);
1735 if (error) {
1736 /* something screwed, just bail */
1737 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1738 xfs_alert(ip->i_mount,
1739 "xfs_vm_write_failed: unable to clean up ino %lld",
1740 ip->i_ino);
1741 }
1742 }
1743 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1744}
1745
fa9b227e
CH
1746STATIC void
1747xfs_vm_write_failed(
d3bc815a
DC
1748 struct inode *inode,
1749 struct page *page,
1750 loff_t pos,
1751 unsigned len)
fa9b227e 1752{
58e59854 1753 loff_t block_offset;
d3bc815a
DC
1754 loff_t block_start;
1755 loff_t block_end;
1756 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1757 loff_t to = from + len;
1758 struct buffer_head *bh, *head;
fa9b227e 1759
58e59854
JL
1760 /*
1761 * The request pos offset might be 32 or 64 bit, this is all fine
1762 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1763 * platform, the high 32-bit will be masked off if we evaluate the
1764 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1765 * 0xfffff000 as an unsigned long, hence the result is incorrect
1766 * which could cause the following ASSERT failed in most cases.
1767 * In order to avoid this, we can evaluate the block_offset of the
1768 * start of the page by using shifts rather than masks the mismatch
1769 * problem.
1770 */
1771 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1772
d3bc815a 1773 ASSERT(block_offset + from == pos);
c726de44 1774
d3bc815a
DC
1775 head = page_buffers(page);
1776 block_start = 0;
1777 for (bh = head; bh != head || !block_start;
1778 bh = bh->b_this_page, block_start = block_end,
1779 block_offset += bh->b_size) {
1780 block_end = block_start + bh->b_size;
c726de44 1781
d3bc815a
DC
1782 /* skip buffers before the write */
1783 if (block_end <= from)
1784 continue;
1785
1786 /* if the buffer is after the write, we're done */
1787 if (block_start >= to)
1788 break;
1789
1790 if (!buffer_delay(bh))
1791 continue;
1792
1793 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1794 continue;
1795
1796 xfs_vm_kill_delalloc_range(inode, block_offset,
1797 block_offset + bh->b_size);
4ab9ed57
DC
1798
1799 /*
1800 * This buffer does not contain data anymore. make sure anyone
1801 * who finds it knows that for certain.
1802 */
1803 clear_buffer_delay(bh);
1804 clear_buffer_uptodate(bh);
1805 clear_buffer_mapped(bh);
1806 clear_buffer_new(bh);
1807 clear_buffer_dirty(bh);
fa9b227e 1808 }
d3bc815a 1809
fa9b227e
CH
1810}
1811
d3bc815a
DC
1812/*
1813 * This used to call block_write_begin(), but it unlocks and releases the page
1814 * on error, and we need that page to be able to punch stale delalloc blocks out
1815 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1816 * the appropriate point.
1817 */
f51623b2 1818STATIC int
d79689c7 1819xfs_vm_write_begin(
f51623b2 1820 struct file *file,
d79689c7
NP
1821 struct address_space *mapping,
1822 loff_t pos,
1823 unsigned len,
1824 unsigned flags,
1825 struct page **pagep,
1826 void **fsdata)
f51623b2 1827{
d3bc815a
DC
1828 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1829 struct page *page;
1830 int status;
155130a4 1831
d3bc815a
DC
1832 ASSERT(len <= PAGE_CACHE_SIZE);
1833
ad22c7a0 1834 page = grab_cache_page_write_begin(mapping, index, flags);
d3bc815a
DC
1835 if (!page)
1836 return -ENOMEM;
1837
1838 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1839 if (unlikely(status)) {
1840 struct inode *inode = mapping->host;
72ab70a1 1841 size_t isize = i_size_read(inode);
d3bc815a
DC
1842
1843 xfs_vm_write_failed(inode, page, pos, len);
1844 unlock_page(page);
1845
72ab70a1
DC
1846 /*
1847 * If the write is beyond EOF, we only want to kill blocks
1848 * allocated in this write, not blocks that were previously
1849 * written successfully.
1850 */
1851 if (pos + len > isize) {
1852 ssize_t start = max_t(ssize_t, pos, isize);
1853
1854 truncate_pagecache_range(inode, start, pos + len);
1855 }
d3bc815a
DC
1856
1857 page_cache_release(page);
1858 page = NULL;
1859 }
1860
1861 *pagep = page;
1862 return status;
fa9b227e
CH
1863}
1864
d3bc815a 1865/*
aad3f375
DC
1866 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1867 * this specific write because they will never be written. Previous writes
1868 * beyond EOF where block allocation succeeded do not need to be trashed, so
1869 * only new blocks from this write should be trashed. For blocks within
1870 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1871 * written with all the other valid data.
d3bc815a 1872 */
fa9b227e
CH
1873STATIC int
1874xfs_vm_write_end(
1875 struct file *file,
1876 struct address_space *mapping,
1877 loff_t pos,
1878 unsigned len,
1879 unsigned copied,
1880 struct page *page,
1881 void *fsdata)
1882{
1883 int ret;
155130a4 1884
d3bc815a
DC
1885 ASSERT(len <= PAGE_CACHE_SIZE);
1886
fa9b227e 1887 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
d3bc815a
DC
1888 if (unlikely(ret < len)) {
1889 struct inode *inode = mapping->host;
1890 size_t isize = i_size_read(inode);
1891 loff_t to = pos + len;
1892
1893 if (to > isize) {
aad3f375
DC
1894 /* only kill blocks in this write beyond EOF */
1895 if (pos > isize)
1896 isize = pos;
d3bc815a 1897 xfs_vm_kill_delalloc_range(inode, isize, to);
aad3f375 1898 truncate_pagecache_range(inode, isize, to);
d3bc815a
DC
1899 }
1900 }
155130a4 1901 return ret;
f51623b2 1902}
1da177e4
LT
1903
1904STATIC sector_t
e4c573bb 1905xfs_vm_bmap(
1da177e4
LT
1906 struct address_space *mapping,
1907 sector_t block)
1908{
1909 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1910 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1911
cca28fb8 1912 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1913 xfs_ilock(ip, XFS_IOLOCK_SHARED);
4bc1ea6b 1914 filemap_write_and_wait(mapping);
126468b1 1915 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1916 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1917}
1918
1919STATIC int
e4c573bb 1920xfs_vm_readpage(
1da177e4
LT
1921 struct file *unused,
1922 struct page *page)
1923{
121e213e 1924 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1925 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1926}
1927
1928STATIC int
e4c573bb 1929xfs_vm_readpages(
1da177e4
LT
1930 struct file *unused,
1931 struct address_space *mapping,
1932 struct list_head *pages,
1933 unsigned nr_pages)
1934{
121e213e 1935 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1936 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1937}
1938
22e757a4
DC
1939/*
1940 * This is basically a copy of __set_page_dirty_buffers() with one
1941 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1942 * dirty, we'll never be able to clean them because we don't write buffers
1943 * beyond EOF, and that means we can't invalidate pages that span EOF
1944 * that have been marked dirty. Further, the dirty state can leak into
1945 * the file interior if the file is extended, resulting in all sorts of
1946 * bad things happening as the state does not match the underlying data.
1947 *
1948 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1949 * this only exist because of bufferheads and how the generic code manages them.
1950 */
1951STATIC int
1952xfs_vm_set_page_dirty(
1953 struct page *page)
1954{
1955 struct address_space *mapping = page->mapping;
1956 struct inode *inode = mapping->host;
1957 loff_t end_offset;
1958 loff_t offset;
1959 int newly_dirty;
1960
1961 if (unlikely(!mapping))
1962 return !TestSetPageDirty(page);
1963
1964 end_offset = i_size_read(inode);
1965 offset = page_offset(page);
1966
1967 spin_lock(&mapping->private_lock);
1968 if (page_has_buffers(page)) {
1969 struct buffer_head *head = page_buffers(page);
1970 struct buffer_head *bh = head;
1971
1972 do {
1973 if (offset < end_offset)
1974 set_buffer_dirty(bh);
1975 bh = bh->b_this_page;
1976 offset += 1 << inode->i_blkbits;
1977 } while (bh != head);
1978 }
c4843a75 1979 /*
81f8c3a4
JW
1980 * Lock out page->mem_cgroup migration to keep PageDirty
1981 * synchronized with per-memcg dirty page counters.
c4843a75 1982 */
62cccb8c 1983 lock_page_memcg(page);
22e757a4
DC
1984 newly_dirty = !TestSetPageDirty(page);
1985 spin_unlock(&mapping->private_lock);
1986
1987 if (newly_dirty) {
1988 /* sigh - __set_page_dirty() is static, so copy it here, too */
1989 unsigned long flags;
1990
1991 spin_lock_irqsave(&mapping->tree_lock, flags);
1992 if (page->mapping) { /* Race with truncate? */
1993 WARN_ON_ONCE(!PageUptodate(page));
62cccb8c 1994 account_page_dirtied(page, mapping);
22e757a4
DC
1995 radix_tree_tag_set(&mapping->page_tree,
1996 page_index(page), PAGECACHE_TAG_DIRTY);
1997 }
1998 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1999 }
62cccb8c 2000 unlock_page_memcg(page);
c4843a75
GT
2001 if (newly_dirty)
2002 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
2003 return newly_dirty;
2004}
2005
f5e54d6e 2006const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
2007 .readpage = xfs_vm_readpage,
2008 .readpages = xfs_vm_readpages,
2009 .writepage = xfs_vm_writepage,
7d4fb40a 2010 .writepages = xfs_vm_writepages,
22e757a4 2011 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
2012 .releasepage = xfs_vm_releasepage,
2013 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 2014 .write_begin = xfs_vm_write_begin,
fa9b227e 2015 .write_end = xfs_vm_write_end,
e4c573bb
NS
2016 .bmap = xfs_vm_bmap,
2017 .direct_IO = xfs_vm_direct_IO,
e965f963 2018 .migratepage = buffer_migrate_page,
bddaafa1 2019 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2020 .error_remove_page = generic_error_remove_page,
1da177e4 2021};