xfs: split direct IO write path from xfs_file_aio_write
[linux-2.6-block.git] / fs / xfs / linux-2.6 / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
a844f451 20#include "xfs_bit.h"
1da177e4 21#include "xfs_log.h"
a844f451 22#include "xfs_inum.h"
1da177e4 23#include "xfs_sb.h"
a844f451 24#include "xfs_ag.h"
1da177e4 25#include "xfs_trans.h"
1da177e4
LT
26#include "xfs_mount.h"
27#include "xfs_bmap_btree.h"
1da177e4 28#include "xfs_alloc.h"
1da177e4
LT
29#include "xfs_dinode.h"
30#include "xfs_inode.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
1da177e4 33#include "xfs_error.h"
739bfb2a 34#include "xfs_vnodeops.h"
f999a5bf 35#include "xfs_da_btree.h"
ddcd856d 36#include "xfs_ioctl.h"
dda35b8f 37#include "xfs_trace.h"
1da177e4
LT
38
39#include <linux/dcache.h>
1da177e4 40
f0f37e2f 41static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 42
487f84f3
DC
43/*
44 * Locking primitives for read and write IO paths to ensure we consistently use
45 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
46 */
47static inline void
48xfs_rw_ilock(
49 struct xfs_inode *ip,
50 int type)
51{
52 if (type & XFS_IOLOCK_EXCL)
53 mutex_lock(&VFS_I(ip)->i_mutex);
54 xfs_ilock(ip, type);
55}
56
57static inline void
58xfs_rw_iunlock(
59 struct xfs_inode *ip,
60 int type)
61{
62 xfs_iunlock(ip, type);
63 if (type & XFS_IOLOCK_EXCL)
64 mutex_unlock(&VFS_I(ip)->i_mutex);
65}
66
67static inline void
68xfs_rw_ilock_demote(
69 struct xfs_inode *ip,
70 int type)
71{
72 xfs_ilock_demote(ip, type);
73 if (type & XFS_IOLOCK_EXCL)
74 mutex_unlock(&VFS_I(ip)->i_mutex);
75}
76
dda35b8f
CH
77/*
78 * xfs_iozero
79 *
80 * xfs_iozero clears the specified range of buffer supplied,
81 * and marks all the affected blocks as valid and modified. If
82 * an affected block is not allocated, it will be allocated. If
83 * an affected block is not completely overwritten, and is not
84 * valid before the operation, it will be read from disk before
85 * being partially zeroed.
86 */
87STATIC int
88xfs_iozero(
89 struct xfs_inode *ip, /* inode */
90 loff_t pos, /* offset in file */
91 size_t count) /* size of data to zero */
92{
93 struct page *page;
94 struct address_space *mapping;
95 int status;
96
97 mapping = VFS_I(ip)->i_mapping;
98 do {
99 unsigned offset, bytes;
100 void *fsdata;
101
102 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
103 bytes = PAGE_CACHE_SIZE - offset;
104 if (bytes > count)
105 bytes = count;
106
107 status = pagecache_write_begin(NULL, mapping, pos, bytes,
108 AOP_FLAG_UNINTERRUPTIBLE,
109 &page, &fsdata);
110 if (status)
111 break;
112
113 zero_user(page, offset, bytes);
114
115 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
116 page, fsdata);
117 WARN_ON(status <= 0); /* can't return less than zero! */
118 pos += bytes;
119 count -= bytes;
120 status = 0;
121 } while (count);
122
123 return (-status);
124}
125
fd3200be
CH
126STATIC int
127xfs_file_fsync(
128 struct file *file,
fd3200be
CH
129 int datasync)
130{
7ea80859
CH
131 struct inode *inode = file->f_mapping->host;
132 struct xfs_inode *ip = XFS_I(inode);
fd3200be
CH
133 struct xfs_trans *tp;
134 int error = 0;
135 int log_flushed = 0;
136
cca28fb8 137 trace_xfs_file_fsync(ip);
fd3200be
CH
138
139 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
140 return -XFS_ERROR(EIO);
141
142 xfs_iflags_clear(ip, XFS_ITRUNCATED);
143
37bc5743
CH
144 xfs_ioend_wait(ip);
145
fd3200be
CH
146 /*
147 * We always need to make sure that the required inode state is safe on
148 * disk. The inode might be clean but we still might need to force the
149 * log because of committed transactions that haven't hit the disk yet.
150 * Likewise, there could be unflushed non-transactional changes to the
151 * inode core that have to go to disk and this requires us to issue
152 * a synchronous transaction to capture these changes correctly.
153 *
154 * This code relies on the assumption that if the i_update_core field
155 * of the inode is clear and the inode is unpinned then it is clean
156 * and no action is required.
157 */
158 xfs_ilock(ip, XFS_ILOCK_SHARED);
159
66d834ea
CH
160 /*
161 * First check if the VFS inode is marked dirty. All the dirtying
162 * of non-transactional updates no goes through mark_inode_dirty*,
163 * which allows us to distinguish beteeen pure timestamp updates
164 * and i_size updates which need to be caught for fdatasync.
165 * After that also theck for the dirty state in the XFS inode, which
166 * might gets cleared when the inode gets written out via the AIL
167 * or xfs_iflush_cluster.
168 */
7ea80859
CH
169 if (((inode->i_state & I_DIRTY_DATASYNC) ||
170 ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
66d834ea 171 ip->i_update_core) {
fd3200be
CH
172 /*
173 * Kick off a transaction to log the inode core to get the
174 * updates. The sync transaction will also force the log.
175 */
176 xfs_iunlock(ip, XFS_ILOCK_SHARED);
177 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
178 error = xfs_trans_reserve(tp, 0,
179 XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
180 if (error) {
181 xfs_trans_cancel(tp, 0);
182 return -error;
183 }
184 xfs_ilock(ip, XFS_ILOCK_EXCL);
185
186 /*
187 * Note - it's possible that we might have pushed ourselves out
188 * of the way during trans_reserve which would flush the inode.
189 * But there's no guarantee that the inode buffer has actually
190 * gone out yet (it's delwri). Plus the buffer could be pinned
191 * anyway if it's part of an inode in another recent
192 * transaction. So we play it safe and fire off the
193 * transaction anyway.
194 */
898621d5 195 xfs_trans_ijoin(tp, ip);
fd3200be
CH
196 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
197 xfs_trans_set_sync(tp);
198 error = _xfs_trans_commit(tp, 0, &log_flushed);
199
200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
201 } else {
202 /*
203 * Timestamps/size haven't changed since last inode flush or
204 * inode transaction commit. That means either nothing got
205 * written or a transaction committed which caught the updates.
206 * If the latter happened and the transaction hasn't hit the
207 * disk yet, the inode will be still be pinned. If it is,
208 * force the log.
209 */
fd3200be 210 if (xfs_ipincount(ip)) {
024910cb
CH
211 error = _xfs_log_force_lsn(ip->i_mount,
212 ip->i_itemp->ili_last_lsn,
213 XFS_LOG_SYNC, &log_flushed);
fd3200be 214 }
024910cb 215 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be
CH
216 }
217
218 if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) {
219 /*
220 * If the log write didn't issue an ordered tag we need
221 * to flush the disk cache for the data device now.
222 */
223 if (!log_flushed)
224 xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp);
225
226 /*
227 * If this inode is on the RT dev we need to flush that
228 * cache as well.
229 */
230 if (XFS_IS_REALTIME_INODE(ip))
231 xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp);
232 }
233
234 return -error;
235}
236
00258e36
CH
237STATIC ssize_t
238xfs_file_aio_read(
dda35b8f
CH
239 struct kiocb *iocb,
240 const struct iovec *iovp,
00258e36
CH
241 unsigned long nr_segs,
242 loff_t pos)
dda35b8f
CH
243{
244 struct file *file = iocb->ki_filp;
245 struct inode *inode = file->f_mapping->host;
00258e36
CH
246 struct xfs_inode *ip = XFS_I(inode);
247 struct xfs_mount *mp = ip->i_mount;
dda35b8f
CH
248 size_t size = 0;
249 ssize_t ret = 0;
00258e36 250 int ioflags = 0;
dda35b8f
CH
251 xfs_fsize_t n;
252 unsigned long seg;
253
dda35b8f
CH
254 XFS_STATS_INC(xs_read_calls);
255
00258e36
CH
256 BUG_ON(iocb->ki_pos != pos);
257
258 if (unlikely(file->f_flags & O_DIRECT))
259 ioflags |= IO_ISDIRECT;
260 if (file->f_mode & FMODE_NOCMTIME)
261 ioflags |= IO_INVIS;
262
dda35b8f 263 /* START copy & waste from filemap.c */
00258e36 264 for (seg = 0; seg < nr_segs; seg++) {
dda35b8f
CH
265 const struct iovec *iv = &iovp[seg];
266
267 /*
268 * If any segment has a negative length, or the cumulative
269 * length ever wraps negative then return -EINVAL.
270 */
271 size += iv->iov_len;
272 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
273 return XFS_ERROR(-EINVAL);
274 }
275 /* END copy & waste from filemap.c */
276
277 if (unlikely(ioflags & IO_ISDIRECT)) {
278 xfs_buftarg_t *target =
279 XFS_IS_REALTIME_INODE(ip) ?
280 mp->m_rtdev_targp : mp->m_ddev_targp;
00258e36 281 if ((iocb->ki_pos & target->bt_smask) ||
dda35b8f 282 (size & target->bt_smask)) {
00258e36
CH
283 if (iocb->ki_pos == ip->i_size)
284 return 0;
dda35b8f
CH
285 return -XFS_ERROR(EINVAL);
286 }
287 }
288
00258e36
CH
289 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
290 if (n <= 0 || size == 0)
dda35b8f
CH
291 return 0;
292
293 if (n < size)
294 size = n;
295
296 if (XFS_FORCED_SHUTDOWN(mp))
297 return -EIO;
298
dda35b8f 299 if (unlikely(ioflags & IO_ISDIRECT)) {
487f84f3
DC
300 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
301
00258e36
CH
302 if (inode->i_mapping->nrpages) {
303 ret = -xfs_flushinval_pages(ip,
304 (iocb->ki_pos & PAGE_CACHE_MASK),
305 -1, FI_REMAPF_LOCKED);
487f84f3
DC
306 if (ret) {
307 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
308 return ret;
309 }
00258e36 310 }
487f84f3
DC
311 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
312 } else
313 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 314
00258e36 315 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
dda35b8f 316
00258e36 317 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
dda35b8f
CH
318 if (ret > 0)
319 XFS_STATS_ADD(xs_read_bytes, ret);
320
487f84f3 321 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
322 return ret;
323}
324
00258e36
CH
325STATIC ssize_t
326xfs_file_splice_read(
dda35b8f
CH
327 struct file *infilp,
328 loff_t *ppos,
329 struct pipe_inode_info *pipe,
330 size_t count,
00258e36 331 unsigned int flags)
dda35b8f 332{
00258e36 333 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 334 int ioflags = 0;
dda35b8f
CH
335 ssize_t ret;
336
337 XFS_STATS_INC(xs_read_calls);
00258e36
CH
338
339 if (infilp->f_mode & FMODE_NOCMTIME)
340 ioflags |= IO_INVIS;
341
dda35b8f
CH
342 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
343 return -EIO;
344
487f84f3 345 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 346
dda35b8f
CH
347 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
348
349 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
350 if (ret > 0)
351 XFS_STATS_ADD(xs_read_bytes, ret);
352
487f84f3 353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
354 return ret;
355}
356
edafb6da
DC
357STATIC void
358xfs_aio_write_isize_update(
359 struct inode *inode,
360 loff_t *ppos,
361 ssize_t bytes_written)
362{
363 struct xfs_inode *ip = XFS_I(inode);
364 xfs_fsize_t isize = i_size_read(inode);
365
366 if (bytes_written > 0)
367 XFS_STATS_ADD(xs_write_bytes, bytes_written);
368
369 if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
370 *ppos > isize))
371 *ppos = isize;
372
373 if (*ppos > ip->i_size) {
487f84f3 374 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
edafb6da
DC
375 if (*ppos > ip->i_size)
376 ip->i_size = *ppos;
487f84f3 377 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
edafb6da
DC
378 }
379}
380
4c5cfd1b
DC
381/*
382 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
383 * part of the I/O may have been written to disk before the error occured. In
384 * this case the on-disk file size may have been adjusted beyond the in-memory
385 * file size and now needs to be truncated back.
386 */
387STATIC void
388xfs_aio_write_newsize_update(
389 struct xfs_inode *ip)
390{
391 if (ip->i_new_size) {
487f84f3 392 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
4c5cfd1b
DC
393 ip->i_new_size = 0;
394 if (ip->i_d.di_size > ip->i_size)
395 ip->i_d.di_size = ip->i_size;
487f84f3 396 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
4c5cfd1b
DC
397 }
398}
399
487f84f3
DC
400/*
401 * xfs_file_splice_write() does not use xfs_rw_ilock() because
402 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
403 * couuld cause lock inversions between the aio_write path and the splice path
404 * if someone is doing concurrent splice(2) based writes and write(2) based
405 * writes to the same inode. The only real way to fix this is to re-implement
406 * the generic code here with correct locking orders.
407 */
00258e36
CH
408STATIC ssize_t
409xfs_file_splice_write(
dda35b8f
CH
410 struct pipe_inode_info *pipe,
411 struct file *outfilp,
412 loff_t *ppos,
413 size_t count,
00258e36 414 unsigned int flags)
dda35b8f 415{
dda35b8f 416 struct inode *inode = outfilp->f_mapping->host;
00258e36 417 struct xfs_inode *ip = XFS_I(inode);
edafb6da 418 xfs_fsize_t new_size;
00258e36
CH
419 int ioflags = 0;
420 ssize_t ret;
dda35b8f
CH
421
422 XFS_STATS_INC(xs_write_calls);
00258e36
CH
423
424 if (outfilp->f_mode & FMODE_NOCMTIME)
425 ioflags |= IO_INVIS;
426
dda35b8f
CH
427 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
428 return -EIO;
429
430 xfs_ilock(ip, XFS_IOLOCK_EXCL);
431
dda35b8f
CH
432 new_size = *ppos + count;
433
434 xfs_ilock(ip, XFS_ILOCK_EXCL);
435 if (new_size > ip->i_size)
436 ip->i_new_size = new_size;
437 xfs_iunlock(ip, XFS_ILOCK_EXCL);
438
439 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
440
441 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
dda35b8f 442
edafb6da 443 xfs_aio_write_isize_update(inode, ppos, ret);
4c5cfd1b 444 xfs_aio_write_newsize_update(ip);
dda35b8f
CH
445 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
446 return ret;
447}
448
449/*
450 * This routine is called to handle zeroing any space in the last
451 * block of the file that is beyond the EOF. We do this since the
452 * size is being increased without writing anything to that block
453 * and we don't want anyone to read the garbage on the disk.
454 */
455STATIC int /* error (positive) */
456xfs_zero_last_block(
457 xfs_inode_t *ip,
458 xfs_fsize_t offset,
459 xfs_fsize_t isize)
460{
461 xfs_fileoff_t last_fsb;
462 xfs_mount_t *mp = ip->i_mount;
463 int nimaps;
464 int zero_offset;
465 int zero_len;
466 int error = 0;
467 xfs_bmbt_irec_t imap;
468
469 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
470
471 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
472 if (zero_offset == 0) {
473 /*
474 * There are no extra bytes in the last block on disk to
475 * zero, so return.
476 */
477 return 0;
478 }
479
480 last_fsb = XFS_B_TO_FSBT(mp, isize);
481 nimaps = 1;
482 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
b4e9181e 483 &nimaps, NULL);
dda35b8f
CH
484 if (error) {
485 return error;
486 }
487 ASSERT(nimaps > 0);
488 /*
489 * If the block underlying isize is just a hole, then there
490 * is nothing to zero.
491 */
492 if (imap.br_startblock == HOLESTARTBLOCK) {
493 return 0;
494 }
495 /*
496 * Zero the part of the last block beyond the EOF, and write it
497 * out sync. We need to drop the ilock while we do this so we
498 * don't deadlock when the buffer cache calls back to us.
499 */
500 xfs_iunlock(ip, XFS_ILOCK_EXCL);
501
502 zero_len = mp->m_sb.sb_blocksize - zero_offset;
503 if (isize + zero_len > offset)
504 zero_len = offset - isize;
505 error = xfs_iozero(ip, isize, zero_len);
506
507 xfs_ilock(ip, XFS_ILOCK_EXCL);
508 ASSERT(error >= 0);
509 return error;
510}
511
512/*
513 * Zero any on disk space between the current EOF and the new,
514 * larger EOF. This handles the normal case of zeroing the remainder
515 * of the last block in the file and the unusual case of zeroing blocks
516 * out beyond the size of the file. This second case only happens
517 * with fixed size extents and when the system crashes before the inode
518 * size was updated but after blocks were allocated. If fill is set,
519 * then any holes in the range are filled and zeroed. If not, the holes
520 * are left alone as holes.
521 */
522
523int /* error (positive) */
524xfs_zero_eof(
525 xfs_inode_t *ip,
526 xfs_off_t offset, /* starting I/O offset */
527 xfs_fsize_t isize) /* current inode size */
528{
529 xfs_mount_t *mp = ip->i_mount;
530 xfs_fileoff_t start_zero_fsb;
531 xfs_fileoff_t end_zero_fsb;
532 xfs_fileoff_t zero_count_fsb;
533 xfs_fileoff_t last_fsb;
534 xfs_fileoff_t zero_off;
535 xfs_fsize_t zero_len;
536 int nimaps;
537 int error = 0;
538 xfs_bmbt_irec_t imap;
539
540 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
541 ASSERT(offset > isize);
542
543 /*
544 * First handle zeroing the block on which isize resides.
545 * We only zero a part of that block so it is handled specially.
546 */
547 error = xfs_zero_last_block(ip, offset, isize);
548 if (error) {
549 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
550 return error;
551 }
552
553 /*
554 * Calculate the range between the new size and the old
555 * where blocks needing to be zeroed may exist. To get the
556 * block where the last byte in the file currently resides,
557 * we need to subtract one from the size and truncate back
558 * to a block boundary. We subtract 1 in case the size is
559 * exactly on a block boundary.
560 */
561 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
562 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
563 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
564 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
565 if (last_fsb == end_zero_fsb) {
566 /*
567 * The size was only incremented on its last block.
568 * We took care of that above, so just return.
569 */
570 return 0;
571 }
572
573 ASSERT(start_zero_fsb <= end_zero_fsb);
574 while (start_zero_fsb <= end_zero_fsb) {
575 nimaps = 1;
576 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
577 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
b4e9181e 578 0, NULL, 0, &imap, &nimaps, NULL);
dda35b8f
CH
579 if (error) {
580 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
581 return error;
582 }
583 ASSERT(nimaps > 0);
584
585 if (imap.br_state == XFS_EXT_UNWRITTEN ||
586 imap.br_startblock == HOLESTARTBLOCK) {
587 /*
588 * This loop handles initializing pages that were
589 * partially initialized by the code below this
590 * loop. It basically zeroes the part of the page
591 * that sits on a hole and sets the page as P_HOLE
592 * and calls remapf if it is a mapped file.
593 */
594 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
595 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
596 continue;
597 }
598
599 /*
600 * There are blocks we need to zero.
601 * Drop the inode lock while we're doing the I/O.
602 * We'll still have the iolock to protect us.
603 */
604 xfs_iunlock(ip, XFS_ILOCK_EXCL);
605
606 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
607 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
608
609 if ((zero_off + zero_len) > offset)
610 zero_len = offset - zero_off;
611
612 error = xfs_iozero(ip, zero_off, zero_len);
613 if (error) {
614 goto out_lock;
615 }
616
617 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
618 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
619
620 xfs_ilock(ip, XFS_ILOCK_EXCL);
621 }
622
623 return 0;
624
625out_lock:
626 xfs_ilock(ip, XFS_ILOCK_EXCL);
627 ASSERT(error >= 0);
628 return error;
629}
630
f0d26e86
DC
631/*
632 * xfs_file_dio_aio_write - handle direct IO writes
633 *
634 * Lock the inode appropriately to prepare for and issue a direct IO write.
635 * By spearating it from the buffered write path we remove all the tricky to
636 * follow locking changes and looping.
637 *
638 * Returns with locks held indicated by @iolock and errors indicated by
639 * negative return values.
640 */
641STATIC ssize_t
642xfs_file_dio_aio_write(
643 struct kiocb *iocb,
644 const struct iovec *iovp,
645 unsigned long nr_segs,
646 loff_t pos,
647 size_t ocount,
648 int *iolock)
649{
650 struct file *file = iocb->ki_filp;
651 struct address_space *mapping = file->f_mapping;
652 struct inode *inode = mapping->host;
653 struct xfs_inode *ip = XFS_I(inode);
654 struct xfs_mount *mp = ip->i_mount;
655 ssize_t ret = 0;
656 xfs_fsize_t new_size;
657 size_t count = ocount;
658 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
659 mp->m_rtdev_targp : mp->m_ddev_targp;
660
661 *iolock = 0;
662 if ((pos & target->bt_smask) || (count & target->bt_smask))
663 return -XFS_ERROR(EINVAL);
664
665 /*
666 * For direct I/O, if there are cached pages or we're extending
667 * the file, we need IOLOCK_EXCL until we're sure the bytes at
668 * the new EOF have been zeroed and/or the cached pages are
669 * flushed out.
670 */
671 if (mapping->nrpages || pos > ip->i_size)
672 *iolock = XFS_IOLOCK_EXCL;
673 else
674 *iolock = XFS_IOLOCK_SHARED;
675 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
676
677 ret = generic_write_checks(file, &pos, &count,
678 S_ISBLK(inode->i_mode));
679 if (ret) {
680 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
681 *iolock = 0;
682 return ret;
683 }
684
685 new_size = pos + count;
686 if (new_size > ip->i_size)
687 ip->i_new_size = new_size;
688
689 if (likely(!(file->f_mode & FMODE_NOCMTIME)))
690 file_update_time(file);
691
692 /*
693 * If the offset is beyond the size of the file, we have a couple of
694 * things to do. First, if there is already space allocated we need to
695 * either create holes or zero the disk or ...
696 *
697 * If there is a page where the previous size lands, we need to zero it
698 * out up to the new size.
699 */
700 if (pos > ip->i_size) {
701 ret = -xfs_zero_eof(ip, pos, ip->i_size);
702 if (ret) {
703 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
704 return ret;
705 }
706 }
707 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
708
709 /*
710 * If we're writing the file then make sure to clear the setuid and
711 * setgid bits if the process is not being run by root. This keeps
712 * people from modifying setuid and setgid binaries.
713 */
714 ret = file_remove_suid(file);
715 if (unlikely(ret))
716 return ret;
717
718 if (mapping->nrpages) {
719 WARN_ON(*iolock != XFS_IOLOCK_EXCL);
720 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
721 FI_REMAPF_LOCKED);
722 if (ret)
723 return ret;
724 }
725
726 if (*iolock == XFS_IOLOCK_EXCL) {
727 /* demote the lock now the cached pages are gone */
728 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
729 *iolock = XFS_IOLOCK_SHARED;
730 }
731
732 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
733 ret = generic_file_direct_write(iocb, iovp,
734 &nr_segs, pos, &iocb->ki_pos, count, ocount);
735
736 /* No fallback to buffered IO on errors for XFS. */
737 ASSERT(ret < 0 || ret == count);
738 return ret;
739}
740
00258e36
CH
741STATIC ssize_t
742xfs_file_aio_write(
dda35b8f
CH
743 struct kiocb *iocb,
744 const struct iovec *iovp,
00258e36
CH
745 unsigned long nr_segs,
746 loff_t pos)
dda35b8f
CH
747{
748 struct file *file = iocb->ki_filp;
749 struct address_space *mapping = file->f_mapping;
750 struct inode *inode = mapping->host;
00258e36
CH
751 struct xfs_inode *ip = XFS_I(inode);
752 struct xfs_mount *mp = ip->i_mount;
a363f0c2 753 ssize_t ret = 0;
00258e36 754 int ioflags = 0;
edafb6da 755 xfs_fsize_t new_size;
dda35b8f 756 int iolock;
dda35b8f 757 size_t ocount = 0, count;
dda35b8f
CH
758
759 XFS_STATS_INC(xs_write_calls);
760
00258e36
CH
761 BUG_ON(iocb->ki_pos != pos);
762
763 if (unlikely(file->f_flags & O_DIRECT))
764 ioflags |= IO_ISDIRECT;
765 if (file->f_mode & FMODE_NOCMTIME)
766 ioflags |= IO_INVIS;
767
a363f0c2
DC
768 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
769 if (ret)
770 return ret;
dda35b8f
CH
771
772 count = ocount;
dda35b8f
CH
773 if (count == 0)
774 return 0;
775
dda35b8f
CH
776 xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
777
778 if (XFS_FORCED_SHUTDOWN(mp))
779 return -EIO;
780
781relock:
782 if (ioflags & IO_ISDIRECT) {
f0d26e86
DC
783 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
784 ocount, &iolock);
785 goto done_io;
dda35b8f 786 }
f0d26e86 787 iolock = XFS_IOLOCK_EXCL;
dda35b8f 788
487f84f3 789 xfs_rw_ilock(ip, XFS_ILOCK_EXCL|iolock);
a363f0c2 790 ret = generic_write_checks(file, &pos, &count,
dda35b8f 791 S_ISBLK(inode->i_mode));
a363f0c2 792 if (ret) {
487f84f3
DC
793 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL|iolock);
794 return ret;
dda35b8f
CH
795 }
796
dda35b8f 797 new_size = pos + count;
00258e36
CH
798 if (new_size > ip->i_size)
799 ip->i_new_size = new_size;
dda35b8f
CH
800
801 if (likely(!(ioflags & IO_INVIS)))
802 file_update_time(file);
803
804 /*
805 * If the offset is beyond the size of the file, we have a couple
806 * of things to do. First, if there is already space allocated
807 * we need to either create holes or zero the disk or ...
808 *
809 * If there is a page where the previous size lands, we need
810 * to zero it out up to the new size.
811 */
812
00258e36 813 if (pos > ip->i_size) {
a363f0c2
DC
814 ret = -xfs_zero_eof(ip, pos, ip->i_size);
815 if (ret) {
487f84f3 816 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
dda35b8f
CH
817 goto out_unlock_internal;
818 }
819 }
487f84f3 820 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
dda35b8f
CH
821
822 /*
823 * If we're writing the file then make sure to clear the
824 * setuid and setgid bits if the process is not being run
825 * by root. This keeps people from modifying setuid and
826 * setgid binaries.
827 */
a363f0c2
DC
828 ret = file_remove_suid(file);
829 if (unlikely(ret))
dda35b8f
CH
830 goto out_unlock_internal;
831
832 /* We can write back this queue in page reclaim */
833 current->backing_dev_info = mapping->backing_dev_info;
834
f0d26e86 835 if (!(ioflags & IO_ISDIRECT)) {
dda35b8f 836 int enospc = 0;
dda35b8f
CH
837
838write_retry:
00258e36 839 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, ioflags);
a363f0c2 840 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
00258e36 841 pos, &iocb->ki_pos, count, ret);
dda35b8f
CH
842 /*
843 * if we just got an ENOSPC, flush the inode now we
844 * aren't holding any page locks and retry *once*
845 */
a363f0c2
DC
846 if (ret == -ENOSPC && !enospc) {
847 ret = xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
848 if (ret)
dda35b8f
CH
849 goto out_unlock_internal;
850 enospc = 1;
851 goto write_retry;
852 }
dda35b8f
CH
853 }
854
855 current->backing_dev_info = NULL;
856
f0d26e86 857done_io:
edafb6da 858 xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
dda35b8f 859
dda35b8f
CH
860 if (ret <= 0)
861 goto out_unlock_internal;
862
dda35b8f
CH
863 /* Handle various SYNC-type writes */
864 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
865 loff_t end = pos + ret - 1;
a363f0c2 866 int error, error2;
dda35b8f 867
487f84f3 868 xfs_rw_iunlock(ip, iolock);
a363f0c2 869 error = filemap_write_and_wait_range(mapping, pos, end);
487f84f3 870 xfs_rw_ilock(ip, iolock);
dda35b8f 871
7ea80859 872 error2 = -xfs_file_fsync(file,
fd3200be 873 (file->f_flags & __O_SYNC) ? 0 : 1);
a363f0c2
DC
874 if (error)
875 ret = error;
876 else if (error2)
877 ret = error2;
dda35b8f
CH
878 }
879
880 out_unlock_internal:
4c5cfd1b 881 xfs_aio_write_newsize_update(ip);
487f84f3 882 xfs_rw_iunlock(ip, iolock);
a363f0c2 883 return ret;
dda35b8f
CH
884}
885
1da177e4 886STATIC int
3562fd45 887xfs_file_open(
1da177e4 888 struct inode *inode,
f999a5bf 889 struct file *file)
1da177e4 890{
f999a5bf 891 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 892 return -EFBIG;
f999a5bf
CH
893 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
894 return -EIO;
895 return 0;
896}
897
898STATIC int
899xfs_dir_open(
900 struct inode *inode,
901 struct file *file)
902{
903 struct xfs_inode *ip = XFS_I(inode);
904 int mode;
905 int error;
906
907 error = xfs_file_open(inode, file);
908 if (error)
909 return error;
910
911 /*
912 * If there are any blocks, read-ahead block 0 as we're almost
913 * certain to have the next operation be a read there.
914 */
915 mode = xfs_ilock_map_shared(ip);
916 if (ip->i_d.di_nextents > 0)
917 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
918 xfs_iunlock(ip, mode);
919 return 0;
1da177e4
LT
920}
921
1da177e4 922STATIC int
3562fd45 923xfs_file_release(
1da177e4
LT
924 struct inode *inode,
925 struct file *filp)
926{
739bfb2a 927 return -xfs_release(XFS_I(inode));
1da177e4
LT
928}
929
1da177e4 930STATIC int
3562fd45 931xfs_file_readdir(
1da177e4
LT
932 struct file *filp,
933 void *dirent,
934 filldir_t filldir)
935{
051e7cd4 936 struct inode *inode = filp->f_path.dentry->d_inode;
739bfb2a 937 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
938 int error;
939 size_t bufsize;
940
941 /*
942 * The Linux API doesn't pass down the total size of the buffer
943 * we read into down to the filesystem. With the filldir concept
944 * it's not needed for correct information, but the XFS dir2 leaf
945 * code wants an estimate of the buffer size to calculate it's
946 * readahead window and size the buffers used for mapping to
947 * physical blocks.
948 *
949 * Try to give it an estimate that's good enough, maybe at some
950 * point we can change the ->readdir prototype to include the
a9cc799e 951 * buffer size. For now we use the current glibc buffer size.
051e7cd4 952 */
a9cc799e 953 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 954
739bfb2a 955 error = xfs_readdir(ip, dirent, bufsize,
051e7cd4
CH
956 (xfs_off_t *)&filp->f_pos, filldir);
957 if (error)
958 return -error;
959 return 0;
1da177e4
LT
960}
961
1da177e4 962STATIC int
3562fd45 963xfs_file_mmap(
1da177e4
LT
964 struct file *filp,
965 struct vm_area_struct *vma)
966{
3562fd45 967 vma->vm_ops = &xfs_file_vm_ops;
d0217ac0 968 vma->vm_flags |= VM_CAN_NONLINEAR;
6fac0cb4 969
fbc1462b 970 file_accessed(filp);
1da177e4
LT
971 return 0;
972}
973
4f57dbc6
DC
974/*
975 * mmap()d file has taken write protection fault and is being made
976 * writable. We can set the page state up correctly for a writable
977 * page, which means we can do correct delalloc accounting (ENOSPC
978 * checking!) and unwritten extent mapping.
979 */
980STATIC int
981xfs_vm_page_mkwrite(
982 struct vm_area_struct *vma,
c2ec175c 983 struct vm_fault *vmf)
4f57dbc6 984{
c2ec175c 985 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
986}
987
4b6f5d20 988const struct file_operations xfs_file_operations = {
1da177e4
LT
989 .llseek = generic_file_llseek,
990 .read = do_sync_read,
bb3f724e 991 .write = do_sync_write,
3562fd45
NS
992 .aio_read = xfs_file_aio_read,
993 .aio_write = xfs_file_aio_write,
1b895840
NS
994 .splice_read = xfs_file_splice_read,
995 .splice_write = xfs_file_splice_write,
3562fd45 996 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 997#ifdef CONFIG_COMPAT
3562fd45 998 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 999#endif
3562fd45
NS
1000 .mmap = xfs_file_mmap,
1001 .open = xfs_file_open,
1002 .release = xfs_file_release,
1003 .fsync = xfs_file_fsync,
1da177e4
LT
1004};
1005
4b6f5d20 1006const struct file_operations xfs_dir_file_operations = {
f999a5bf 1007 .open = xfs_dir_open,
1da177e4 1008 .read = generic_read_dir,
3562fd45 1009 .readdir = xfs_file_readdir,
59af1584 1010 .llseek = generic_file_llseek,
3562fd45 1011 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1012#ifdef CONFIG_COMPAT
3562fd45 1013 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1014#endif
3562fd45 1015 .fsync = xfs_file_fsync,
1da177e4
LT
1016};
1017
f0f37e2f 1018static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1019 .fault = filemap_fault,
4f57dbc6 1020 .page_mkwrite = xfs_vm_page_mkwrite,
6fac0cb4 1021};