block: remove per-queue plugging
[linux-2.6-block.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
ce8e922c 47STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
23ea4032 48
7989cb8e 49static struct workqueue_struct *xfslogd_workqueue;
0829c360 50struct workqueue_struct *xfsdatad_workqueue;
c626d174 51struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 52
ce8e922c
NS
53#ifdef XFS_BUF_LOCK_TRACKING
54# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 57#else
ce8e922c
NS
58# define XB_SET_OWNER(bp) do { } while (0)
59# define XB_CLEAR_OWNER(bp) do { } while (0)
60# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
61#endif
62
ce8e922c
NS
63#define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 66
ce8e922c
NS
67#define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 69
ce8e922c
NS
70#define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72#define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 74
73c77e2c
JB
75static inline int
76xfs_buf_is_vmapped(
77 struct xfs_buf *bp)
78{
79 /*
80 * Return true if the buffer is vmapped.
81 *
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85 */
86 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87}
88
89static inline int
90xfs_buf_vmap_len(
91 struct xfs_buf *bp)
92{
93 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94}
95
1da177e4 96/*
ce8e922c 97 * Page Region interfaces.
1da177e4 98 *
ce8e922c
NS
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
1da177e4 102 *
ce8e922c 103 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 104 *
ce8e922c
NS
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
108 */
109#if (BITS_PER_LONG == 32)
110#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111#elif (BITS_PER_LONG == 64)
112#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
113#else
114#error BITS_PER_LONG must be 32 or 64
115#endif
116#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119
120STATIC unsigned long
121page_region_mask(
122 size_t offset,
123 size_t length)
124{
125 unsigned long mask;
126 int first, final;
127
128 first = BTOPR(offset);
129 final = BTOPRT(offset + length - 1);
130 first = min(first, final);
131
132 mask = ~0UL;
133 mask <<= BITS_PER_LONG - (final - first);
134 mask >>= BITS_PER_LONG - (final);
135
136 ASSERT(offset + length <= PAGE_CACHE_SIZE);
137 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139 return mask;
140}
141
b8f82a4a 142STATIC void
1da177e4
LT
143set_page_region(
144 struct page *page,
145 size_t offset,
146 size_t length)
147{
4c21e2f2
HD
148 set_page_private(page,
149 page_private(page) | page_region_mask(offset, length));
150 if (page_private(page) == ~0UL)
1da177e4
LT
151 SetPageUptodate(page);
152}
153
b8f82a4a 154STATIC int
1da177e4
LT
155test_page_region(
156 struct page *page,
157 size_t offset,
158 size_t length)
159{
160 unsigned long mask = page_region_mask(offset, length);
161
4c21e2f2 162 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
163}
164
1da177e4 165/*
430cbeb8
DC
166 * xfs_buf_lru_add - add a buffer to the LRU.
167 *
168 * The LRU takes a new reference to the buffer so that it will only be freed
169 * once the shrinker takes the buffer off the LRU.
170 */
171STATIC void
172xfs_buf_lru_add(
173 struct xfs_buf *bp)
174{
175 struct xfs_buftarg *btp = bp->b_target;
176
177 spin_lock(&btp->bt_lru_lock);
178 if (list_empty(&bp->b_lru)) {
179 atomic_inc(&bp->b_hold);
180 list_add_tail(&bp->b_lru, &btp->bt_lru);
181 btp->bt_lru_nr++;
182 }
183 spin_unlock(&btp->bt_lru_lock);
184}
185
186/*
187 * xfs_buf_lru_del - remove a buffer from the LRU
188 *
189 * The unlocked check is safe here because it only occurs when there are not
190 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
191 * to optimise the shrinker removing the buffer from the LRU and calling
192 * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
193 * bt_lru_lock.
1da177e4 194 */
430cbeb8
DC
195STATIC void
196xfs_buf_lru_del(
197 struct xfs_buf *bp)
198{
199 struct xfs_buftarg *btp = bp->b_target;
200
201 if (list_empty(&bp->b_lru))
202 return;
203
204 spin_lock(&btp->bt_lru_lock);
205 if (!list_empty(&bp->b_lru)) {
206 list_del_init(&bp->b_lru);
207 btp->bt_lru_nr--;
208 }
209 spin_unlock(&btp->bt_lru_lock);
210}
211
212/*
213 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
214 * b_lru_ref count so that the buffer is freed immediately when the buffer
215 * reference count falls to zero. If the buffer is already on the LRU, we need
216 * to remove the reference that LRU holds on the buffer.
217 *
218 * This prevents build-up of stale buffers on the LRU.
219 */
220void
221xfs_buf_stale(
222 struct xfs_buf *bp)
223{
224 bp->b_flags |= XBF_STALE;
225 atomic_set(&(bp)->b_lru_ref, 0);
226 if (!list_empty(&bp->b_lru)) {
227 struct xfs_buftarg *btp = bp->b_target;
228
229 spin_lock(&btp->bt_lru_lock);
230 if (!list_empty(&bp->b_lru)) {
231 list_del_init(&bp->b_lru);
232 btp->bt_lru_nr--;
233 atomic_dec(&bp->b_hold);
234 }
235 spin_unlock(&btp->bt_lru_lock);
236 }
237 ASSERT(atomic_read(&bp->b_hold) >= 1);
238}
1da177e4
LT
239
240STATIC void
ce8e922c
NS
241_xfs_buf_initialize(
242 xfs_buf_t *bp,
1da177e4 243 xfs_buftarg_t *target,
204ab25f 244 xfs_off_t range_base,
1da177e4 245 size_t range_length,
ce8e922c 246 xfs_buf_flags_t flags)
1da177e4
LT
247{
248 /*
ce8e922c 249 * We don't want certain flags to appear in b_flags.
1da177e4 250 */
ce8e922c
NS
251 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
252
253 memset(bp, 0, sizeof(xfs_buf_t));
254 atomic_set(&bp->b_hold, 1);
430cbeb8 255 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 256 init_completion(&bp->b_iowait);
430cbeb8 257 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 258 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 259 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 260 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
261 XB_SET_OWNER(bp);
262 bp->b_target = target;
263 bp->b_file_offset = range_base;
1da177e4
LT
264 /*
265 * Set buffer_length and count_desired to the same value initially.
266 * I/O routines should use count_desired, which will be the same in
267 * most cases but may be reset (e.g. XFS recovery).
268 */
ce8e922c
NS
269 bp->b_buffer_length = bp->b_count_desired = range_length;
270 bp->b_flags = flags;
271 bp->b_bn = XFS_BUF_DADDR_NULL;
272 atomic_set(&bp->b_pin_count, 0);
273 init_waitqueue_head(&bp->b_waiters);
274
275 XFS_STATS_INC(xb_create);
0b1b213f
CH
276
277 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
278}
279
280/*
ce8e922c
NS
281 * Allocate a page array capable of holding a specified number
282 * of pages, and point the page buf at it.
1da177e4
LT
283 */
284STATIC int
ce8e922c
NS
285_xfs_buf_get_pages(
286 xfs_buf_t *bp,
1da177e4 287 int page_count,
ce8e922c 288 xfs_buf_flags_t flags)
1da177e4
LT
289{
290 /* Make sure that we have a page list */
ce8e922c
NS
291 if (bp->b_pages == NULL) {
292 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
293 bp->b_page_count = page_count;
294 if (page_count <= XB_PAGES) {
295 bp->b_pages = bp->b_page_array;
1da177e4 296 } else {
ce8e922c
NS
297 bp->b_pages = kmem_alloc(sizeof(struct page *) *
298 page_count, xb_to_km(flags));
299 if (bp->b_pages == NULL)
1da177e4
LT
300 return -ENOMEM;
301 }
ce8e922c 302 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
303 }
304 return 0;
305}
306
307/*
ce8e922c 308 * Frees b_pages if it was allocated.
1da177e4
LT
309 */
310STATIC void
ce8e922c 311_xfs_buf_free_pages(
1da177e4
LT
312 xfs_buf_t *bp)
313{
ce8e922c 314 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 315 kmem_free(bp->b_pages);
3fc98b1a 316 bp->b_pages = NULL;
1da177e4
LT
317 }
318}
319
320/*
321 * Releases the specified buffer.
322 *
323 * The modification state of any associated pages is left unchanged.
ce8e922c 324 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
325 * hashed and refcounted buffers
326 */
327void
ce8e922c 328xfs_buf_free(
1da177e4
LT
329 xfs_buf_t *bp)
330{
0b1b213f 331 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 332
430cbeb8
DC
333 ASSERT(list_empty(&bp->b_lru));
334
1fa40b01 335 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
336 uint i;
337
73c77e2c 338 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
339 vm_unmap_ram(bp->b_addr - bp->b_offset,
340 bp->b_page_count);
1da177e4 341
948ecdb4
NS
342 for (i = 0; i < bp->b_page_count; i++) {
343 struct page *page = bp->b_pages[i];
344
1fa40b01
CH
345 if (bp->b_flags & _XBF_PAGE_CACHE)
346 ASSERT(!PagePrivate(page));
948ecdb4
NS
347 page_cache_release(page);
348 }
1da177e4 349 }
3fc98b1a 350 _xfs_buf_free_pages(bp);
ce8e922c 351 xfs_buf_deallocate(bp);
1da177e4
LT
352}
353
354/*
355 * Finds all pages for buffer in question and builds it's page list.
356 */
357STATIC int
ce8e922c 358_xfs_buf_lookup_pages(
1da177e4
LT
359 xfs_buf_t *bp,
360 uint flags)
361{
ce8e922c
NS
362 struct address_space *mapping = bp->b_target->bt_mapping;
363 size_t blocksize = bp->b_target->bt_bsize;
364 size_t size = bp->b_count_desired;
1da177e4 365 size_t nbytes, offset;
ce8e922c 366 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
367 unsigned short page_count, i;
368 pgoff_t first;
204ab25f 369 xfs_off_t end;
1da177e4
LT
370 int error;
371
ce8e922c
NS
372 end = bp->b_file_offset + bp->b_buffer_length;
373 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 374
ce8e922c 375 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
376 if (unlikely(error))
377 return error;
ce8e922c 378 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 379
ce8e922c
NS
380 offset = bp->b_offset;
381 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 382
ce8e922c 383 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
384 struct page *page;
385 uint retries = 0;
386
387 retry:
388 page = find_or_create_page(mapping, first + i, gfp_mask);
389 if (unlikely(page == NULL)) {
ce8e922c
NS
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
6ab455ee
CH
392 for (i = 0; i < bp->b_page_count; i++)
393 unlock_page(bp->b_pages[i]);
1da177e4
LT
394 return -ENOMEM;
395 }
396
397 /*
398 * This could deadlock.
399 *
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
402 */
403 if (!(++retries % 100))
404 printk(KERN_ERR
405 "XFS: possible memory allocation "
406 "deadlock in %s (mode:0x%x)\n",
34a622b2 407 __func__, gfp_mask);
1da177e4 408
ce8e922c 409 XFS_STATS_INC(xb_page_retries);
8aa7e847 410 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
411 goto retry;
412 }
413
ce8e922c 414 XFS_STATS_INC(xb_page_found);
1da177e4
LT
415
416 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
417 size -= nbytes;
418
948ecdb4 419 ASSERT(!PagePrivate(page));
1da177e4
LT
420 if (!PageUptodate(page)) {
421 page_count--;
6ab455ee
CH
422 if (blocksize >= PAGE_CACHE_SIZE) {
423 if (flags & XBF_READ)
424 bp->b_flags |= _XBF_PAGE_LOCKED;
425 } else if (!PagePrivate(page)) {
1da177e4
LT
426 if (test_page_region(page, offset, nbytes))
427 page_count++;
428 }
429 }
430
ce8e922c 431 bp->b_pages[i] = page;
1da177e4
LT
432 offset = 0;
433 }
434
6ab455ee
CH
435 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
436 for (i = 0; i < bp->b_page_count; i++)
437 unlock_page(bp->b_pages[i]);
438 }
439
ce8e922c
NS
440 if (page_count == bp->b_page_count)
441 bp->b_flags |= XBF_DONE;
1da177e4 442
1da177e4
LT
443 return error;
444}
445
446/*
447 * Map buffer into kernel address-space if nessecary.
448 */
449STATIC int
ce8e922c 450_xfs_buf_map_pages(
1da177e4
LT
451 xfs_buf_t *bp,
452 uint flags)
453{
454 /* A single page buffer is always mappable */
ce8e922c
NS
455 if (bp->b_page_count == 1) {
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 bp->b_flags |= XBF_MAPPED;
458 } else if (flags & XBF_MAPPED) {
8a262e57
AE
459 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
460 -1, PAGE_KERNEL);
ce8e922c 461 if (unlikely(bp->b_addr == NULL))
1da177e4 462 return -ENOMEM;
ce8e922c
NS
463 bp->b_addr += bp->b_offset;
464 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
465 }
466
467 return 0;
468}
469
470/*
471 * Finding and Reading Buffers
472 */
473
474/*
ce8e922c 475 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
476 * a given range of an inode. The buffer is returned
477 * locked. If other overlapping buffers exist, they are
478 * released before the new buffer is created and locked,
479 * which may imply that this call will block until those buffers
480 * are unlocked. No I/O is implied by this call.
481 */
482xfs_buf_t *
ce8e922c 483_xfs_buf_find(
1da177e4 484 xfs_buftarg_t *btp, /* block device target */
204ab25f 485 xfs_off_t ioff, /* starting offset of range */
1da177e4 486 size_t isize, /* length of range */
ce8e922c
NS
487 xfs_buf_flags_t flags,
488 xfs_buf_t *new_bp)
1da177e4 489{
204ab25f 490 xfs_off_t range_base;
1da177e4 491 size_t range_length;
74f75a0c
DC
492 struct xfs_perag *pag;
493 struct rb_node **rbp;
494 struct rb_node *parent;
495 xfs_buf_t *bp;
1da177e4
LT
496
497 range_base = (ioff << BBSHIFT);
498 range_length = (isize << BBSHIFT);
499
500 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 501 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 502 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 503
74f75a0c
DC
504 /* get tree root */
505 pag = xfs_perag_get(btp->bt_mount,
506 xfs_daddr_to_agno(btp->bt_mount, ioff));
507
508 /* walk tree */
509 spin_lock(&pag->pag_buf_lock);
510 rbp = &pag->pag_buf_tree.rb_node;
511 parent = NULL;
512 bp = NULL;
513 while (*rbp) {
514 parent = *rbp;
515 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
516
517 if (range_base < bp->b_file_offset)
518 rbp = &(*rbp)->rb_left;
519 else if (range_base > bp->b_file_offset)
520 rbp = &(*rbp)->rb_right;
521 else {
522 /*
523 * found a block offset match. If the range doesn't
524 * match, the only way this is allowed is if the buffer
525 * in the cache is stale and the transaction that made
526 * it stale has not yet committed. i.e. we are
527 * reallocating a busy extent. Skip this buffer and
528 * continue searching to the right for an exact match.
529 */
530 if (bp->b_buffer_length != range_length) {
531 ASSERT(bp->b_flags & XBF_STALE);
532 rbp = &(*rbp)->rb_right;
533 continue;
534 }
ce8e922c 535 atomic_inc(&bp->b_hold);
1da177e4
LT
536 goto found;
537 }
538 }
539
540 /* No match found */
ce8e922c
NS
541 if (new_bp) {
542 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 543 range_length, flags);
74f75a0c
DC
544 rb_link_node(&new_bp->b_rbnode, parent, rbp);
545 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
546 /* the buffer keeps the perag reference until it is freed */
547 new_bp->b_pag = pag;
548 spin_unlock(&pag->pag_buf_lock);
1da177e4 549 } else {
ce8e922c 550 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
551 spin_unlock(&pag->pag_buf_lock);
552 xfs_perag_put(pag);
1da177e4 553 }
ce8e922c 554 return new_bp;
1da177e4
LT
555
556found:
74f75a0c
DC
557 spin_unlock(&pag->pag_buf_lock);
558 xfs_perag_put(pag);
1da177e4 559
90810b9e
DC
560 if (xfs_buf_cond_lock(bp)) {
561 /* failed, so wait for the lock if requested. */
ce8e922c 562 if (!(flags & XBF_TRYLOCK)) {
ce8e922c
NS
563 xfs_buf_lock(bp);
564 XFS_STATS_INC(xb_get_locked_waited);
1da177e4 565 } else {
ce8e922c
NS
566 xfs_buf_rele(bp);
567 XFS_STATS_INC(xb_busy_locked);
568 return NULL;
1da177e4 569 }
1da177e4
LT
570 }
571
ce8e922c
NS
572 if (bp->b_flags & XBF_STALE) {
573 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
574 bp->b_flags &= XBF_MAPPED;
2f926587 575 }
0b1b213f
CH
576
577 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
578 XFS_STATS_INC(xb_get_locked);
579 return bp;
1da177e4
LT
580}
581
582/*
ce8e922c 583 * Assembles a buffer covering the specified range.
1da177e4
LT
584 * Storage in memory for all portions of the buffer will be allocated,
585 * although backing storage may not be.
586 */
587xfs_buf_t *
6ad112bf 588xfs_buf_get(
1da177e4 589 xfs_buftarg_t *target,/* target for buffer */
204ab25f 590 xfs_off_t ioff, /* starting offset of range */
1da177e4 591 size_t isize, /* length of range */
ce8e922c 592 xfs_buf_flags_t flags)
1da177e4 593{
ce8e922c 594 xfs_buf_t *bp, *new_bp;
1da177e4
LT
595 int error = 0, i;
596
ce8e922c
NS
597 new_bp = xfs_buf_allocate(flags);
598 if (unlikely(!new_bp))
1da177e4
LT
599 return NULL;
600
ce8e922c
NS
601 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
602 if (bp == new_bp) {
603 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
604 if (error)
605 goto no_buffer;
606 } else {
ce8e922c
NS
607 xfs_buf_deallocate(new_bp);
608 if (unlikely(bp == NULL))
1da177e4
LT
609 return NULL;
610 }
611
ce8e922c
NS
612 for (i = 0; i < bp->b_page_count; i++)
613 mark_page_accessed(bp->b_pages[i]);
1da177e4 614
ce8e922c
NS
615 if (!(bp->b_flags & XBF_MAPPED)) {
616 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
617 if (unlikely(error)) {
618 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 619 __func__);
1da177e4
LT
620 goto no_buffer;
621 }
622 }
623
ce8e922c 624 XFS_STATS_INC(xb_get);
1da177e4
LT
625
626 /*
627 * Always fill in the block number now, the mapped cases can do
628 * their own overlay of this later.
629 */
ce8e922c
NS
630 bp->b_bn = ioff;
631 bp->b_count_desired = bp->b_buffer_length;
1da177e4 632
0b1b213f 633 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 634 return bp;
1da177e4
LT
635
636 no_buffer:
ce8e922c
NS
637 if (flags & (XBF_LOCK | XBF_TRYLOCK))
638 xfs_buf_unlock(bp);
639 xfs_buf_rele(bp);
1da177e4
LT
640 return NULL;
641}
642
5d765b97
CH
643STATIC int
644_xfs_buf_read(
645 xfs_buf_t *bp,
646 xfs_buf_flags_t flags)
647{
648 int status;
649
5d765b97
CH
650 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
651 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
652
653 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
654 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
655 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
656 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
657
658 status = xfs_buf_iorequest(bp);
ec53d1db
DC
659 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
660 return status;
661 return xfs_buf_iowait(bp);
5d765b97
CH
662}
663
1da177e4 664xfs_buf_t *
6ad112bf 665xfs_buf_read(
1da177e4 666 xfs_buftarg_t *target,
204ab25f 667 xfs_off_t ioff,
1da177e4 668 size_t isize,
ce8e922c 669 xfs_buf_flags_t flags)
1da177e4 670{
ce8e922c
NS
671 xfs_buf_t *bp;
672
673 flags |= XBF_READ;
674
6ad112bf 675 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 676 if (bp) {
0b1b213f
CH
677 trace_xfs_buf_read(bp, flags, _RET_IP_);
678
ce8e922c 679 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 680 XFS_STATS_INC(xb_get_read);
5d765b97 681 _xfs_buf_read(bp, flags);
ce8e922c 682 } else if (flags & XBF_ASYNC) {
1da177e4
LT
683 /*
684 * Read ahead call which is already satisfied,
685 * drop the buffer
686 */
687 goto no_buffer;
688 } else {
1da177e4 689 /* We do not want read in the flags */
ce8e922c 690 bp->b_flags &= ~XBF_READ;
1da177e4
LT
691 }
692 }
693
ce8e922c 694 return bp;
1da177e4
LT
695
696 no_buffer:
ce8e922c
NS
697 if (flags & (XBF_LOCK | XBF_TRYLOCK))
698 xfs_buf_unlock(bp);
699 xfs_buf_rele(bp);
1da177e4
LT
700 return NULL;
701}
702
1da177e4 703/*
ce8e922c
NS
704 * If we are not low on memory then do the readahead in a deadlock
705 * safe manner.
1da177e4
LT
706 */
707void
ce8e922c 708xfs_buf_readahead(
1da177e4 709 xfs_buftarg_t *target,
204ab25f 710 xfs_off_t ioff,
1a1a3e97 711 size_t isize)
1da177e4
LT
712{
713 struct backing_dev_info *bdi;
714
ce8e922c 715 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
716 if (bdi_read_congested(bdi))
717 return;
718
1a1a3e97
CH
719 xfs_buf_read(target, ioff, isize,
720 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
721}
722
5adc94c2
DC
723/*
724 * Read an uncached buffer from disk. Allocates and returns a locked
725 * buffer containing the disk contents or nothing.
726 */
727struct xfs_buf *
728xfs_buf_read_uncached(
729 struct xfs_mount *mp,
730 struct xfs_buftarg *target,
731 xfs_daddr_t daddr,
732 size_t length,
733 int flags)
734{
735 xfs_buf_t *bp;
736 int error;
737
738 bp = xfs_buf_get_uncached(target, length, flags);
739 if (!bp)
740 return NULL;
741
742 /* set up the buffer for a read IO */
743 xfs_buf_lock(bp);
744 XFS_BUF_SET_ADDR(bp, daddr);
745 XFS_BUF_READ(bp);
746 XFS_BUF_BUSY(bp);
747
748 xfsbdstrat(mp, bp);
1a1a3e97 749 error = xfs_buf_iowait(bp);
5adc94c2
DC
750 if (error || bp->b_error) {
751 xfs_buf_relse(bp);
752 return NULL;
753 }
754 return bp;
1da177e4
LT
755}
756
757xfs_buf_t *
ce8e922c 758xfs_buf_get_empty(
1da177e4
LT
759 size_t len,
760 xfs_buftarg_t *target)
761{
ce8e922c 762 xfs_buf_t *bp;
1da177e4 763
ce8e922c
NS
764 bp = xfs_buf_allocate(0);
765 if (bp)
766 _xfs_buf_initialize(bp, target, 0, len, 0);
767 return bp;
1da177e4
LT
768}
769
770static inline struct page *
771mem_to_page(
772 void *addr)
773{
9e2779fa 774 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
775 return virt_to_page(addr);
776 } else {
777 return vmalloc_to_page(addr);
778 }
779}
780
781int
ce8e922c
NS
782xfs_buf_associate_memory(
783 xfs_buf_t *bp,
1da177e4
LT
784 void *mem,
785 size_t len)
786{
787 int rval;
788 int i = 0;
d1afb678
LM
789 unsigned long pageaddr;
790 unsigned long offset;
791 size_t buflen;
1da177e4
LT
792 int page_count;
793
d1afb678
LM
794 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
795 offset = (unsigned long)mem - pageaddr;
796 buflen = PAGE_CACHE_ALIGN(len + offset);
797 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
798
799 /* Free any previous set of page pointers */
ce8e922c
NS
800 if (bp->b_pages)
801 _xfs_buf_free_pages(bp);
1da177e4 802
ce8e922c
NS
803 bp->b_pages = NULL;
804 bp->b_addr = mem;
1da177e4 805
36fae17a 806 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
807 if (rval)
808 return rval;
809
ce8e922c 810 bp->b_offset = offset;
d1afb678
LM
811
812 for (i = 0; i < bp->b_page_count; i++) {
813 bp->b_pages[i] = mem_to_page((void *)pageaddr);
814 pageaddr += PAGE_CACHE_SIZE;
1da177e4 815 }
1da177e4 816
d1afb678
LM
817 bp->b_count_desired = len;
818 bp->b_buffer_length = buflen;
ce8e922c 819 bp->b_flags |= XBF_MAPPED;
6ab455ee 820 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
821
822 return 0;
823}
824
825xfs_buf_t *
686865f7
DC
826xfs_buf_get_uncached(
827 struct xfs_buftarg *target,
1da177e4 828 size_t len,
686865f7 829 int flags)
1da177e4 830{
1fa40b01
CH
831 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
832 int error, i;
1da177e4 833 xfs_buf_t *bp;
1da177e4 834
ce8e922c 835 bp = xfs_buf_allocate(0);
1da177e4
LT
836 if (unlikely(bp == NULL))
837 goto fail;
ce8e922c 838 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 839
1fa40b01
CH
840 error = _xfs_buf_get_pages(bp, page_count, 0);
841 if (error)
1da177e4
LT
842 goto fail_free_buf;
843
1fa40b01 844 for (i = 0; i < page_count; i++) {
686865f7 845 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
846 if (!bp->b_pages[i])
847 goto fail_free_mem;
1da177e4 848 }
1fa40b01 849 bp->b_flags |= _XBF_PAGES;
1da177e4 850
1fa40b01
CH
851 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
852 if (unlikely(error)) {
853 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 854 __func__);
1da177e4 855 goto fail_free_mem;
1fa40b01 856 }
1da177e4 857
ce8e922c 858 xfs_buf_unlock(bp);
1da177e4 859
686865f7 860 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 861 return bp;
1fa40b01 862
1da177e4 863 fail_free_mem:
1fa40b01
CH
864 while (--i >= 0)
865 __free_page(bp->b_pages[i]);
ca165b88 866 _xfs_buf_free_pages(bp);
1da177e4 867 fail_free_buf:
ca165b88 868 xfs_buf_deallocate(bp);
1da177e4
LT
869 fail:
870 return NULL;
871}
872
873/*
1da177e4
LT
874 * Increment reference count on buffer, to hold the buffer concurrently
875 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
876 * Must hold the buffer already to call this function.
877 */
878void
ce8e922c
NS
879xfs_buf_hold(
880 xfs_buf_t *bp)
1da177e4 881{
0b1b213f 882 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 883 atomic_inc(&bp->b_hold);
1da177e4
LT
884}
885
886/*
ce8e922c
NS
887 * Releases a hold on the specified buffer. If the
888 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
889 */
890void
ce8e922c
NS
891xfs_buf_rele(
892 xfs_buf_t *bp)
1da177e4 893{
74f75a0c 894 struct xfs_perag *pag = bp->b_pag;
1da177e4 895
0b1b213f 896 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 897
74f75a0c 898 if (!pag) {
430cbeb8 899 ASSERT(list_empty(&bp->b_lru));
74f75a0c 900 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
901 if (atomic_dec_and_test(&bp->b_hold))
902 xfs_buf_free(bp);
903 return;
904 }
905
74f75a0c 906 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 907
3790689f 908 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 909 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 910 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
911 atomic_read(&bp->b_lru_ref)) {
912 xfs_buf_lru_add(bp);
913 spin_unlock(&pag->pag_buf_lock);
1da177e4 914 } else {
430cbeb8 915 xfs_buf_lru_del(bp);
ce8e922c 916 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
917 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
918 spin_unlock(&pag->pag_buf_lock);
919 xfs_perag_put(pag);
ce8e922c 920 xfs_buf_free(bp);
1da177e4
LT
921 }
922 }
923}
924
925
926/*
927 * Mutual exclusion on buffers. Locking model:
928 *
929 * Buffers associated with inodes for which buffer locking
930 * is not enabled are not protected by semaphores, and are
931 * assumed to be exclusively owned by the caller. There is a
932 * spinlock in the buffer, used by the caller when concurrent
933 * access is possible.
934 */
935
936/*
90810b9e
DC
937 * Locks a buffer object, if it is not already locked. Note that this in
938 * no way locks the underlying pages, so it is only useful for
939 * synchronizing concurrent use of buffer objects, not for synchronizing
940 * independent access to the underlying pages.
941 *
942 * If we come across a stale, pinned, locked buffer, we know that we are
943 * being asked to lock a buffer that has been reallocated. Because it is
944 * pinned, we know that the log has not been pushed to disk and hence it
945 * will still be locked. Rather than continuing to have trylock attempts
946 * fail until someone else pushes the log, push it ourselves before
947 * returning. This means that the xfsaild will not get stuck trying
948 * to push on stale inode buffers.
1da177e4
LT
949 */
950int
ce8e922c
NS
951xfs_buf_cond_lock(
952 xfs_buf_t *bp)
1da177e4
LT
953{
954 int locked;
955
ce8e922c 956 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 957 if (locked)
ce8e922c 958 XB_SET_OWNER(bp);
90810b9e
DC
959 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
960 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f
CH
961
962 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 963 return locked ? 0 : -EBUSY;
1da177e4
LT
964}
965
1da177e4 966int
ce8e922c
NS
967xfs_buf_lock_value(
968 xfs_buf_t *bp)
1da177e4 969{
adaa693b 970 return bp->b_sema.count;
1da177e4 971}
1da177e4
LT
972
973/*
ce8e922c
NS
974 * Locks a buffer object.
975 * Note that this in no way locks the underlying pages, so it is only
976 * useful for synchronizing concurrent use of buffer objects, not for
977 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
978 *
979 * If we come across a stale, pinned, locked buffer, we know that we
980 * are being asked to lock a buffer that has been reallocated. Because
981 * it is pinned, we know that the log has not been pushed to disk and
982 * hence it will still be locked. Rather than sleeping until someone
983 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 984 */
ce8e922c
NS
985void
986xfs_buf_lock(
987 xfs_buf_t *bp)
1da177e4 988{
0b1b213f
CH
989 trace_xfs_buf_lock(bp, _RET_IP_);
990
ed3b4d6c 991 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 992 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c 993 if (atomic_read(&bp->b_io_remaining))
7eaceacc 994 blk_flush_plug(current);
ce8e922c
NS
995 down(&bp->b_sema);
996 XB_SET_OWNER(bp);
0b1b213f
CH
997
998 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
999}
1000
1001/*
ce8e922c 1002 * Releases the lock on the buffer object.
2f926587 1003 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 1004 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
1005 * take a reference for the delwri queue because the unlocker is going to
1006 * drop their's and they don't know we just queued it.
1da177e4
LT
1007 */
1008void
ce8e922c
NS
1009xfs_buf_unlock(
1010 xfs_buf_t *bp)
1da177e4 1011{
ce8e922c
NS
1012 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
1013 atomic_inc(&bp->b_hold);
1014 bp->b_flags |= XBF_ASYNC;
1015 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
1016 }
1017
ce8e922c
NS
1018 XB_CLEAR_OWNER(bp);
1019 up(&bp->b_sema);
0b1b213f
CH
1020
1021 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1022}
1023
ce8e922c
NS
1024STATIC void
1025xfs_buf_wait_unpin(
1026 xfs_buf_t *bp)
1da177e4
LT
1027{
1028 DECLARE_WAITQUEUE (wait, current);
1029
ce8e922c 1030 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1031 return;
1032
ce8e922c 1033 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1034 for (;;) {
1035 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1036 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1037 break;
7eaceacc 1038 io_schedule();
1da177e4 1039 }
ce8e922c 1040 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1041 set_current_state(TASK_RUNNING);
1042}
1043
1044/*
1045 * Buffer Utility Routines
1046 */
1047
1da177e4 1048STATIC void
ce8e922c 1049xfs_buf_iodone_work(
c4028958 1050 struct work_struct *work)
1da177e4 1051{
c4028958
DH
1052 xfs_buf_t *bp =
1053 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 1054
80f6c29d 1055 if (bp->b_iodone)
ce8e922c
NS
1056 (*(bp->b_iodone))(bp);
1057 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
1058 xfs_buf_relse(bp);
1059}
1060
1061void
ce8e922c
NS
1062xfs_buf_ioend(
1063 xfs_buf_t *bp,
1da177e4
LT
1064 int schedule)
1065{
0b1b213f
CH
1066 trace_xfs_buf_iodone(bp, _RET_IP_);
1067
77be55a5 1068 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1069 if (bp->b_error == 0)
1070 bp->b_flags |= XBF_DONE;
1da177e4 1071
ce8e922c 1072 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1073 if (schedule) {
c4028958 1074 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1075 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1076 } else {
c4028958 1077 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1078 }
1079 } else {
b4dd330b 1080 complete(&bp->b_iowait);
1da177e4
LT
1081 }
1082}
1083
1da177e4 1084void
ce8e922c
NS
1085xfs_buf_ioerror(
1086 xfs_buf_t *bp,
1087 int error)
1da177e4
LT
1088{
1089 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1090 bp->b_error = (unsigned short)error;
0b1b213f 1091 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1092}
1093
1da177e4 1094int
64e0bc7d
CH
1095xfs_bwrite(
1096 struct xfs_mount *mp,
5d765b97 1097 struct xfs_buf *bp)
1da177e4 1098{
8c38366f 1099 int error;
1da177e4 1100
64e0bc7d 1101 bp->b_flags |= XBF_WRITE;
8c38366f 1102 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1103
5d765b97 1104 xfs_buf_delwri_dequeue(bp);
939d723b 1105 xfs_bdstrat_cb(bp);
1da177e4 1106
8c38366f
CH
1107 error = xfs_buf_iowait(bp);
1108 if (error)
1109 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1110 xfs_buf_relse(bp);
64e0bc7d 1111 return error;
5d765b97 1112}
1da177e4 1113
5d765b97
CH
1114void
1115xfs_bdwrite(
1116 void *mp,
1117 struct xfs_buf *bp)
1118{
0b1b213f 1119 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1120
5d765b97
CH
1121 bp->b_flags &= ~XBF_READ;
1122 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1123
1124 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1125}
1126
4e23471a
CH
1127/*
1128 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1129 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1130 * so that the proper iodone callbacks get called.
1131 */
1132STATIC int
1133xfs_bioerror(
1134 xfs_buf_t *bp)
1135{
1136#ifdef XFSERRORDEBUG
1137 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1138#endif
1139
1140 /*
1141 * No need to wait until the buffer is unpinned, we aren't flushing it.
1142 */
1143 XFS_BUF_ERROR(bp, EIO);
1144
1145 /*
1a1a3e97 1146 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1147 */
1148 XFS_BUF_UNREAD(bp);
1149 XFS_BUF_UNDELAYWRITE(bp);
1150 XFS_BUF_UNDONE(bp);
1151 XFS_BUF_STALE(bp);
1152
1a1a3e97 1153 xfs_buf_ioend(bp, 0);
4e23471a
CH
1154
1155 return EIO;
1156}
1157
1158/*
1159 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1160 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1161 * This is meant for userdata errors; metadata bufs come with
1162 * iodone functions attached, so that we can track down errors.
1163 */
1164STATIC int
1165xfs_bioerror_relse(
1166 struct xfs_buf *bp)
1167{
1168 int64_t fl = XFS_BUF_BFLAGS(bp);
1169 /*
1170 * No need to wait until the buffer is unpinned.
1171 * We aren't flushing it.
1172 *
1173 * chunkhold expects B_DONE to be set, whether
1174 * we actually finish the I/O or not. We don't want to
1175 * change that interface.
1176 */
1177 XFS_BUF_UNREAD(bp);
1178 XFS_BUF_UNDELAYWRITE(bp);
1179 XFS_BUF_DONE(bp);
1180 XFS_BUF_STALE(bp);
1181 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1182 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1183 /*
1184 * Mark b_error and B_ERROR _both_.
1185 * Lot's of chunkcache code assumes that.
1186 * There's no reason to mark error for
1187 * ASYNC buffers.
1188 */
1189 XFS_BUF_ERROR(bp, EIO);
1190 XFS_BUF_FINISH_IOWAIT(bp);
1191 } else {
1192 xfs_buf_relse(bp);
1193 }
1194
1195 return EIO;
1196}
1197
1198
1199/*
1200 * All xfs metadata buffers except log state machine buffers
1201 * get this attached as their b_bdstrat callback function.
1202 * This is so that we can catch a buffer
1203 * after prematurely unpinning it to forcibly shutdown the filesystem.
1204 */
1205int
1206xfs_bdstrat_cb(
1207 struct xfs_buf *bp)
1208{
ebad861b 1209 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1210 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1211 /*
1212 * Metadata write that didn't get logged but
1213 * written delayed anyway. These aren't associated
1214 * with a transaction, and can be ignored.
1215 */
1216 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1217 return xfs_bioerror_relse(bp);
1218 else
1219 return xfs_bioerror(bp);
1220 }
1221
1222 xfs_buf_iorequest(bp);
1223 return 0;
1224}
1225
1226/*
1227 * Wrapper around bdstrat so that we can stop data from going to disk in case
1228 * we are shutting down the filesystem. Typically user data goes thru this
1229 * path; one of the exceptions is the superblock.
1230 */
1231void
1232xfsbdstrat(
1233 struct xfs_mount *mp,
1234 struct xfs_buf *bp)
1235{
1236 if (XFS_FORCED_SHUTDOWN(mp)) {
1237 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1238 xfs_bioerror_relse(bp);
1239 return;
1240 }
1241
1242 xfs_buf_iorequest(bp);
1243}
1244
b8f82a4a 1245STATIC void
ce8e922c
NS
1246_xfs_buf_ioend(
1247 xfs_buf_t *bp,
1da177e4
LT
1248 int schedule)
1249{
6ab455ee
CH
1250 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1251 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1252 xfs_buf_ioend(bp, schedule);
6ab455ee 1253 }
1da177e4
LT
1254}
1255
782e3b3b 1256STATIC void
ce8e922c 1257xfs_buf_bio_end_io(
1da177e4 1258 struct bio *bio,
1da177e4
LT
1259 int error)
1260{
ce8e922c
NS
1261 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1262 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1263 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1264
cfbe5267 1265 xfs_buf_ioerror(bp, -error);
1da177e4 1266
73c77e2c
JB
1267 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1268 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1269
eedb5530 1270 do {
1da177e4
LT
1271 struct page *page = bvec->bv_page;
1272
948ecdb4 1273 ASSERT(!PagePrivate(page));
ce8e922c
NS
1274 if (unlikely(bp->b_error)) {
1275 if (bp->b_flags & XBF_READ)
eedb5530 1276 ClearPageUptodate(page);
ce8e922c 1277 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1278 SetPageUptodate(page);
1279 } else if (!PagePrivate(page) &&
ce8e922c 1280 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1281 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1282 }
1283
eedb5530
NS
1284 if (--bvec >= bio->bi_io_vec)
1285 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1286
1287 if (bp->b_flags & _XBF_PAGE_LOCKED)
1288 unlock_page(page);
eedb5530 1289 } while (bvec >= bio->bi_io_vec);
1da177e4 1290
ce8e922c 1291 _xfs_buf_ioend(bp, 1);
1da177e4 1292 bio_put(bio);
1da177e4
LT
1293}
1294
1295STATIC void
ce8e922c
NS
1296_xfs_buf_ioapply(
1297 xfs_buf_t *bp)
1da177e4 1298{
a9759f2d 1299 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1300 struct bio *bio;
ce8e922c
NS
1301 int offset = bp->b_offset;
1302 int size = bp->b_count_desired;
1303 sector_t sector = bp->b_bn;
1304 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1305
ce8e922c 1306 total_nr_pages = bp->b_page_count;
1da177e4
LT
1307 map_i = 0;
1308
ce8e922c
NS
1309 if (bp->b_flags & XBF_ORDERED) {
1310 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1311 rw = WRITE_FLUSH_FUA;
2ee1abad 1312 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1313 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1314 bp->b_flags &= ~_XBF_RUN_QUEUES;
1315 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1316 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1317 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1318 bp->b_flags &= ~_XBF_RUN_QUEUES;
1319 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1320 } else {
1321 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1322 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1323 }
1324
ce8e922c 1325 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1326 * we populate up the whole page, and hence the other metadata
1327 * in the same page. This optimization is only valid when the
ce8e922c 1328 * filesystem block size is not smaller than the page size.
1da177e4 1329 */
ce8e922c 1330 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1331 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1332 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1333 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1334 bio = bio_alloc(GFP_NOIO, 1);
1335
ce8e922c 1336 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1337 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1338 bio->bi_end_io = xfs_buf_bio_end_io;
1339 bio->bi_private = bp;
1da177e4 1340
ce8e922c 1341 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1342 size = 0;
1343
ce8e922c 1344 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1345
1346 goto submit_io;
1347 }
1348
1da177e4 1349next_chunk:
ce8e922c 1350 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1351 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1352 if (nr_pages > total_nr_pages)
1353 nr_pages = total_nr_pages;
1354
1355 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1356 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1357 bio->bi_sector = sector;
ce8e922c
NS
1358 bio->bi_end_io = xfs_buf_bio_end_io;
1359 bio->bi_private = bp;
1da177e4
LT
1360
1361 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1362 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1363
1364 if (nbytes > size)
1365 nbytes = size;
1366
ce8e922c
NS
1367 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1368 if (rbytes < nbytes)
1da177e4
LT
1369 break;
1370
1371 offset = 0;
1372 sector += nbytes >> BBSHIFT;
1373 size -= nbytes;
1374 total_nr_pages--;
1375 }
1376
1377submit_io:
1378 if (likely(bio->bi_size)) {
73c77e2c
JB
1379 if (xfs_buf_is_vmapped(bp)) {
1380 flush_kernel_vmap_range(bp->b_addr,
1381 xfs_buf_vmap_len(bp));
1382 }
1da177e4
LT
1383 submit_bio(rw, bio);
1384 if (size)
1385 goto next_chunk;
1386 } else {
ec53d1db
DC
1387 /*
1388 * if we get here, no pages were added to the bio. However,
1389 * we can't just error out here - if the pages are locked then
1390 * we have to unlock them otherwise we can hang on a later
1391 * access to the page.
1392 */
ce8e922c 1393 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1394 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1395 int i;
1396 for (i = 0; i < bp->b_page_count; i++)
1397 unlock_page(bp->b_pages[i]);
1398 }
1399 bio_put(bio);
1da177e4
LT
1400 }
1401}
1402
1da177e4 1403int
ce8e922c
NS
1404xfs_buf_iorequest(
1405 xfs_buf_t *bp)
1da177e4 1406{
0b1b213f 1407 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1408
ce8e922c
NS
1409 if (bp->b_flags & XBF_DELWRI) {
1410 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1411 return 0;
1412 }
1413
ce8e922c
NS
1414 if (bp->b_flags & XBF_WRITE) {
1415 xfs_buf_wait_unpin(bp);
1da177e4
LT
1416 }
1417
ce8e922c 1418 xfs_buf_hold(bp);
1da177e4
LT
1419
1420 /* Set the count to 1 initially, this will stop an I/O
1421 * completion callout which happens before we have started
ce8e922c 1422 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1423 */
ce8e922c
NS
1424 atomic_set(&bp->b_io_remaining, 1);
1425 _xfs_buf_ioapply(bp);
1426 _xfs_buf_ioend(bp, 0);
1da177e4 1427
ce8e922c 1428 xfs_buf_rele(bp);
1da177e4
LT
1429 return 0;
1430}
1431
1432/*
ce8e922c
NS
1433 * Waits for I/O to complete on the buffer supplied.
1434 * It returns immediately if no I/O is pending.
1435 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1436 */
1437int
ce8e922c
NS
1438xfs_buf_iowait(
1439 xfs_buf_t *bp)
1da177e4 1440{
0b1b213f
CH
1441 trace_xfs_buf_iowait(bp, _RET_IP_);
1442
ce8e922c 1443 if (atomic_read(&bp->b_io_remaining))
7eaceacc 1444 blk_flush_plug(current);
b4dd330b 1445 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1446
1447 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1448 return bp->b_error;
1da177e4
LT
1449}
1450
ce8e922c
NS
1451xfs_caddr_t
1452xfs_buf_offset(
1453 xfs_buf_t *bp,
1da177e4
LT
1454 size_t offset)
1455{
1456 struct page *page;
1457
ce8e922c
NS
1458 if (bp->b_flags & XBF_MAPPED)
1459 return XFS_BUF_PTR(bp) + offset;
1da177e4 1460
ce8e922c
NS
1461 offset += bp->b_offset;
1462 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1463 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1464}
1465
1466/*
1da177e4
LT
1467 * Move data into or out of a buffer.
1468 */
1469void
ce8e922c
NS
1470xfs_buf_iomove(
1471 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1472 size_t boff, /* starting buffer offset */
1473 size_t bsize, /* length to copy */
b9c48649 1474 void *data, /* data address */
ce8e922c 1475 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1476{
1477 size_t bend, cpoff, csize;
1478 struct page *page;
1479
1480 bend = boff + bsize;
1481 while (boff < bend) {
ce8e922c
NS
1482 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1483 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1484 csize = min_t(size_t,
ce8e922c 1485 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1486
1487 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1488
1489 switch (mode) {
ce8e922c 1490 case XBRW_ZERO:
1da177e4
LT
1491 memset(page_address(page) + cpoff, 0, csize);
1492 break;
ce8e922c 1493 case XBRW_READ:
1da177e4
LT
1494 memcpy(data, page_address(page) + cpoff, csize);
1495 break;
ce8e922c 1496 case XBRW_WRITE:
1da177e4
LT
1497 memcpy(page_address(page) + cpoff, data, csize);
1498 }
1499
1500 boff += csize;
1501 data += csize;
1502 }
1503}
1504
1505/*
ce8e922c 1506 * Handling of buffer targets (buftargs).
1da177e4
LT
1507 */
1508
1509/*
430cbeb8
DC
1510 * Wait for any bufs with callbacks that have been submitted but have not yet
1511 * returned. These buffers will have an elevated hold count, so wait on those
1512 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1513 */
1514void
1515xfs_wait_buftarg(
74f75a0c 1516 struct xfs_buftarg *btp)
1da177e4 1517{
430cbeb8
DC
1518 struct xfs_buf *bp;
1519
1520restart:
1521 spin_lock(&btp->bt_lru_lock);
1522 while (!list_empty(&btp->bt_lru)) {
1523 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1524 if (atomic_read(&bp->b_hold) > 1) {
1525 spin_unlock(&btp->bt_lru_lock);
26af6552 1526 delay(100);
430cbeb8 1527 goto restart;
1da177e4 1528 }
430cbeb8
DC
1529 /*
1530 * clear the LRU reference count so the bufer doesn't get
1531 * ignored in xfs_buf_rele().
1532 */
1533 atomic_set(&bp->b_lru_ref, 0);
1534 spin_unlock(&btp->bt_lru_lock);
1535 xfs_buf_rele(bp);
1536 spin_lock(&btp->bt_lru_lock);
1da177e4 1537 }
430cbeb8 1538 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1539}
1540
ff57ab21
DC
1541int
1542xfs_buftarg_shrink(
1543 struct shrinker *shrink,
1544 int nr_to_scan,
1545 gfp_t mask)
a6867a68 1546{
ff57ab21
DC
1547 struct xfs_buftarg *btp = container_of(shrink,
1548 struct xfs_buftarg, bt_shrinker);
430cbeb8
DC
1549 struct xfs_buf *bp;
1550 LIST_HEAD(dispose);
1551
1552 if (!nr_to_scan)
1553 return btp->bt_lru_nr;
1554
1555 spin_lock(&btp->bt_lru_lock);
1556 while (!list_empty(&btp->bt_lru)) {
1557 if (nr_to_scan-- <= 0)
1558 break;
1559
1560 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1561
1562 /*
1563 * Decrement the b_lru_ref count unless the value is already
1564 * zero. If the value is already zero, we need to reclaim the
1565 * buffer, otherwise it gets another trip through the LRU.
1566 */
1567 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1568 list_move_tail(&bp->b_lru, &btp->bt_lru);
1569 continue;
1570 }
1571
1572 /*
1573 * remove the buffer from the LRU now to avoid needing another
1574 * lock round trip inside xfs_buf_rele().
1575 */
1576 list_move(&bp->b_lru, &dispose);
1577 btp->bt_lru_nr--;
ff57ab21 1578 }
430cbeb8
DC
1579 spin_unlock(&btp->bt_lru_lock);
1580
1581 while (!list_empty(&dispose)) {
1582 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1583 list_del_init(&bp->b_lru);
1584 xfs_buf_rele(bp);
1585 }
1586
1587 return btp->bt_lru_nr;
a6867a68
DC
1588}
1589
1da177e4
LT
1590void
1591xfs_free_buftarg(
b7963133
CH
1592 struct xfs_mount *mp,
1593 struct xfs_buftarg *btp)
1da177e4 1594{
ff57ab21
DC
1595 unregister_shrinker(&btp->bt_shrinker);
1596
1da177e4 1597 xfs_flush_buftarg(btp, 1);
b7963133
CH
1598 if (mp->m_flags & XFS_MOUNT_BARRIER)
1599 xfs_blkdev_issue_flush(btp);
ce8e922c 1600 iput(btp->bt_mapping->host);
a6867a68 1601
a6867a68 1602 kthread_stop(btp->bt_task);
f0e2d93c 1603 kmem_free(btp);
1da177e4
LT
1604}
1605
1da177e4
LT
1606STATIC int
1607xfs_setsize_buftarg_flags(
1608 xfs_buftarg_t *btp,
1609 unsigned int blocksize,
1610 unsigned int sectorsize,
1611 int verbose)
1612{
ce8e922c
NS
1613 btp->bt_bsize = blocksize;
1614 btp->bt_sshift = ffs(sectorsize) - 1;
1615 btp->bt_smask = sectorsize - 1;
1da177e4 1616
ce8e922c 1617 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1618 printk(KERN_WARNING
1619 "XFS: Cannot set_blocksize to %u on device %s\n",
1620 sectorsize, XFS_BUFTARG_NAME(btp));
1621 return EINVAL;
1622 }
1623
1624 if (verbose &&
1625 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1626 printk(KERN_WARNING
1627 "XFS: %u byte sectors in use on device %s. "
1628 "This is suboptimal; %u or greater is ideal.\n",
1629 sectorsize, XFS_BUFTARG_NAME(btp),
1630 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1631 }
1632
1633 return 0;
1634}
1635
1636/*
ce8e922c
NS
1637 * When allocating the initial buffer target we have not yet
1638 * read in the superblock, so don't know what sized sectors
1639 * are being used is at this early stage. Play safe.
1640 */
1da177e4
LT
1641STATIC int
1642xfs_setsize_buftarg_early(
1643 xfs_buftarg_t *btp,
1644 struct block_device *bdev)
1645{
1646 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1647 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1648}
1649
1650int
1651xfs_setsize_buftarg(
1652 xfs_buftarg_t *btp,
1653 unsigned int blocksize,
1654 unsigned int sectorsize)
1655{
1656 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1657}
1658
1659STATIC int
1660xfs_mapping_buftarg(
1661 xfs_buftarg_t *btp,
1662 struct block_device *bdev)
1663{
1664 struct backing_dev_info *bdi;
1665 struct inode *inode;
1666 struct address_space *mapping;
f5e54d6e 1667 static const struct address_space_operations mapping_aops = {
e965f963 1668 .migratepage = fail_migrate_page,
1da177e4
LT
1669 };
1670
1671 inode = new_inode(bdev->bd_inode->i_sb);
1672 if (!inode) {
1673 printk(KERN_WARNING
1674 "XFS: Cannot allocate mapping inode for device %s\n",
1675 XFS_BUFTARG_NAME(btp));
1676 return ENOMEM;
1677 }
85fe4025 1678 inode->i_ino = get_next_ino();
1da177e4
LT
1679 inode->i_mode = S_IFBLK;
1680 inode->i_bdev = bdev;
1681 inode->i_rdev = bdev->bd_dev;
1682 bdi = blk_get_backing_dev_info(bdev);
1683 if (!bdi)
1684 bdi = &default_backing_dev_info;
1685 mapping = &inode->i_data;
1686 mapping->a_ops = &mapping_aops;
1687 mapping->backing_dev_info = bdi;
1688 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1689 btp->bt_mapping = mapping;
1da177e4
LT
1690 return 0;
1691}
1692
a6867a68
DC
1693STATIC int
1694xfs_alloc_delwrite_queue(
e2a07812
JE
1695 xfs_buftarg_t *btp,
1696 const char *fsname)
a6867a68 1697{
a6867a68 1698 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1699 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1700 btp->bt_flags = 0;
e2a07812 1701 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
ff57ab21
DC
1702 if (IS_ERR(btp->bt_task))
1703 return PTR_ERR(btp->bt_task);
1704 return 0;
a6867a68
DC
1705}
1706
1da177e4
LT
1707xfs_buftarg_t *
1708xfs_alloc_buftarg(
ebad861b 1709 struct xfs_mount *mp,
1da177e4 1710 struct block_device *bdev,
e2a07812
JE
1711 int external,
1712 const char *fsname)
1da177e4
LT
1713{
1714 xfs_buftarg_t *btp;
1715
1716 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1717
ebad861b 1718 btp->bt_mount = mp;
ce8e922c
NS
1719 btp->bt_dev = bdev->bd_dev;
1720 btp->bt_bdev = bdev;
430cbeb8
DC
1721 INIT_LIST_HEAD(&btp->bt_lru);
1722 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1723 if (xfs_setsize_buftarg_early(btp, bdev))
1724 goto error;
1725 if (xfs_mapping_buftarg(btp, bdev))
1726 goto error;
e2a07812 1727 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1728 goto error;
ff57ab21
DC
1729 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1730 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1731 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1732 return btp;
1733
1734error:
f0e2d93c 1735 kmem_free(btp);
1da177e4
LT
1736 return NULL;
1737}
1738
1739
1740/*
ce8e922c 1741 * Delayed write buffer handling
1da177e4 1742 */
1da177e4 1743STATIC void
ce8e922c
NS
1744xfs_buf_delwri_queue(
1745 xfs_buf_t *bp,
1da177e4
LT
1746 int unlock)
1747{
ce8e922c
NS
1748 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1749 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1750
0b1b213f
CH
1751 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1752
ce8e922c 1753 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1754
a6867a68 1755 spin_lock(dwlk);
1da177e4 1756 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1757 if (!list_empty(&bp->b_list)) {
1758 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1759 if (unlock)
1760 atomic_dec(&bp->b_hold);
1761 list_del(&bp->b_list);
1da177e4
LT
1762 }
1763
c9c12971
DC
1764 if (list_empty(dwq)) {
1765 /* start xfsbufd as it is about to have something to do */
1766 wake_up_process(bp->b_target->bt_task);
1767 }
1768
ce8e922c
NS
1769 bp->b_flags |= _XBF_DELWRI_Q;
1770 list_add_tail(&bp->b_list, dwq);
1771 bp->b_queuetime = jiffies;
a6867a68 1772 spin_unlock(dwlk);
1da177e4
LT
1773
1774 if (unlock)
ce8e922c 1775 xfs_buf_unlock(bp);
1da177e4
LT
1776}
1777
1778void
ce8e922c
NS
1779xfs_buf_delwri_dequeue(
1780 xfs_buf_t *bp)
1da177e4 1781{
ce8e922c 1782 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1783 int dequeued = 0;
1784
a6867a68 1785 spin_lock(dwlk);
ce8e922c
NS
1786 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1787 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1788 list_del_init(&bp->b_list);
1da177e4
LT
1789 dequeued = 1;
1790 }
ce8e922c 1791 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1792 spin_unlock(dwlk);
1da177e4
LT
1793
1794 if (dequeued)
ce8e922c 1795 xfs_buf_rele(bp);
1da177e4 1796
0b1b213f 1797 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1798}
1799
d808f617
DC
1800/*
1801 * If a delwri buffer needs to be pushed before it has aged out, then promote
1802 * it to the head of the delwri queue so that it will be flushed on the next
1803 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1804 * than the age currently needed to flush the buffer. Hence the next time the
1805 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1806 */
1807void
1808xfs_buf_delwri_promote(
1809 struct xfs_buf *bp)
1810{
1811 struct xfs_buftarg *btp = bp->b_target;
1812 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1813
1814 ASSERT(bp->b_flags & XBF_DELWRI);
1815 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1816
1817 /*
1818 * Check the buffer age before locking the delayed write queue as we
1819 * don't need to promote buffers that are already past the flush age.
1820 */
1821 if (bp->b_queuetime < jiffies - age)
1822 return;
1823 bp->b_queuetime = jiffies - age;
1824 spin_lock(&btp->bt_delwrite_lock);
1825 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1826 spin_unlock(&btp->bt_delwrite_lock);
1827}
1828
1da177e4 1829STATIC void
ce8e922c 1830xfs_buf_runall_queues(
1da177e4
LT
1831 struct workqueue_struct *queue)
1832{
1833 flush_workqueue(queue);
1834}
1835
585e6d88
DC
1836/*
1837 * Move as many buffers as specified to the supplied list
1838 * idicating if we skipped any buffers to prevent deadlocks.
1839 */
1840STATIC int
1841xfs_buf_delwri_split(
1842 xfs_buftarg_t *target,
1843 struct list_head *list,
5e6a07df 1844 unsigned long age)
585e6d88
DC
1845{
1846 xfs_buf_t *bp, *n;
1847 struct list_head *dwq = &target->bt_delwrite_queue;
1848 spinlock_t *dwlk = &target->bt_delwrite_lock;
1849 int skipped = 0;
5e6a07df 1850 int force;
585e6d88 1851
5e6a07df 1852 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1853 INIT_LIST_HEAD(list);
1854 spin_lock(dwlk);
1855 list_for_each_entry_safe(bp, n, dwq, b_list) {
585e6d88
DC
1856 ASSERT(bp->b_flags & XBF_DELWRI);
1857
4d16e924 1858 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1859 if (!force &&
585e6d88
DC
1860 time_before(jiffies, bp->b_queuetime + age)) {
1861 xfs_buf_unlock(bp);
1862 break;
1863 }
1864
1865 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1866 _XBF_RUN_QUEUES);
1867 bp->b_flags |= XBF_WRITE;
1868 list_move_tail(&bp->b_list, list);
bfe27419 1869 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1870 } else
1871 skipped++;
1872 }
1873 spin_unlock(dwlk);
1874
1875 return skipped;
1876
1877}
1878
089716aa
DC
1879/*
1880 * Compare function is more complex than it needs to be because
1881 * the return value is only 32 bits and we are doing comparisons
1882 * on 64 bit values
1883 */
1884static int
1885xfs_buf_cmp(
1886 void *priv,
1887 struct list_head *a,
1888 struct list_head *b)
1889{
1890 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1891 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1892 xfs_daddr_t diff;
1893
1894 diff = ap->b_bn - bp->b_bn;
1895 if (diff < 0)
1896 return -1;
1897 if (diff > 0)
1898 return 1;
1899 return 0;
1900}
1901
1902void
1903xfs_buf_delwri_sort(
1904 xfs_buftarg_t *target,
1905 struct list_head *list)
1906{
1907 list_sort(NULL, list, xfs_buf_cmp);
1908}
1909
1da177e4 1910STATIC int
23ea4032 1911xfsbufd(
585e6d88 1912 void *data)
1da177e4 1913{
089716aa 1914 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1915
1da177e4
LT
1916 current->flags |= PF_MEMALLOC;
1917
978c7b2f
RW
1918 set_freezable();
1919
1da177e4 1920 do {
c9c12971
DC
1921 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1922 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1923 int count = 0;
1924 struct list_head tmp;
c9c12971 1925
3e1d1d28 1926 if (unlikely(freezing(current))) {
ce8e922c 1927 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1928 refrigerator();
abd0cf7a 1929 } else {
ce8e922c 1930 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1931 }
1da177e4 1932
c9c12971
DC
1933 /* sleep for a long time if there is nothing to do. */
1934 if (list_empty(&target->bt_delwrite_queue))
1935 tout = MAX_SCHEDULE_TIMEOUT;
1936 schedule_timeout_interruptible(tout);
1da177e4 1937
c9c12971 1938 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1939 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1940 while (!list_empty(&tmp)) {
089716aa
DC
1941 struct xfs_buf *bp;
1942 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1943 list_del_init(&bp->b_list);
939d723b 1944 xfs_bdstrat_cb(bp);
585e6d88 1945 count++;
1da177e4 1946 }
f07c2250 1947 if (count)
7eaceacc 1948 blk_flush_plug(current);
1da177e4 1949
4df08c52 1950 } while (!kthread_should_stop());
1da177e4 1951
4df08c52 1952 return 0;
1da177e4
LT
1953}
1954
1955/*
ce8e922c
NS
1956 * Go through all incore buffers, and release buffers if they belong to
1957 * the given device. This is used in filesystem error handling to
1958 * preserve the consistency of its metadata.
1da177e4
LT
1959 */
1960int
1961xfs_flush_buftarg(
585e6d88
DC
1962 xfs_buftarg_t *target,
1963 int wait)
1da177e4 1964{
089716aa 1965 xfs_buf_t *bp;
585e6d88 1966 int pincount = 0;
089716aa
DC
1967 LIST_HEAD(tmp_list);
1968 LIST_HEAD(wait_list);
1da177e4 1969
c626d174 1970 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1971 xfs_buf_runall_queues(xfsdatad_workqueue);
1972 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1973
5e6a07df 1974 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1975 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1976
1977 /*
089716aa
DC
1978 * Dropped the delayed write list lock, now walk the temporary list.
1979 * All I/O is issued async and then if we need to wait for completion
1980 * we do that after issuing all the IO.
1da177e4 1981 */
089716aa
DC
1982 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1983 while (!list_empty(&tmp_list)) {
1984 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1985 ASSERT(target == bp->b_target);
089716aa
DC
1986 list_del_init(&bp->b_list);
1987 if (wait) {
ce8e922c 1988 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1989 list_add(&bp->b_list, &wait_list);
1990 }
939d723b 1991 xfs_bdstrat_cb(bp);
1da177e4
LT
1992 }
1993
089716aa
DC
1994 if (wait) {
1995 /* Expedite and wait for IO to complete. */
7eaceacc 1996 blk_flush_plug(current);
089716aa
DC
1997 while (!list_empty(&wait_list)) {
1998 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1999
089716aa 2000 list_del_init(&bp->b_list);
1a1a3e97 2001 xfs_buf_iowait(bp);
089716aa
DC
2002 xfs_buf_relse(bp);
2003 }
1da177e4
LT
2004 }
2005
1da177e4
LT
2006 return pincount;
2007}
2008
04d8b284 2009int __init
ce8e922c 2010xfs_buf_init(void)
1da177e4 2011{
8758280f
NS
2012 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2013 KM_ZONE_HWALIGN, NULL);
ce8e922c 2014 if (!xfs_buf_zone)
0b1b213f 2015 goto out;
04d8b284 2016
51749e47 2017 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 2018 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 2019 if (!xfslogd_workqueue)
04d8b284 2020 goto out_free_buf_zone;
1da177e4 2021
b4337692 2022 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
2023 if (!xfsdatad_workqueue)
2024 goto out_destroy_xfslogd_workqueue;
1da177e4 2025
c626d174
DC
2026 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
2027 if (!xfsconvertd_workqueue)
2028 goto out_destroy_xfsdatad_workqueue;
2029
23ea4032 2030 return 0;
1da177e4 2031
c626d174
DC
2032 out_destroy_xfsdatad_workqueue:
2033 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
2034 out_destroy_xfslogd_workqueue:
2035 destroy_workqueue(xfslogd_workqueue);
23ea4032 2036 out_free_buf_zone:
ce8e922c 2037 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 2038 out:
8758280f 2039 return -ENOMEM;
1da177e4
LT
2040}
2041
1da177e4 2042void
ce8e922c 2043xfs_buf_terminate(void)
1da177e4 2044{
c626d174 2045 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
2046 destroy_workqueue(xfsdatad_workqueue);
2047 destroy_workqueue(xfslogd_workqueue);
ce8e922c 2048 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2049}
e6a0e9cd
TS
2050
2051#ifdef CONFIG_KDB_MODULES
2052struct list_head *
2053xfs_get_buftarg_list(void)
2054{
2055 return &xfs_buftarg_list;
2056}
2057#endif