ALSA: hda - Fix pending unsol events at shutdown
[linux-2.6-block.git] / fs / userfaultfd.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
86039bd3
AA
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
86039bd3
AA
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
9cd75c3c 13#include <linux/list.h>
86039bd3 14#include <linux/hashtable.h>
174cd4b1 15#include <linux/sched/signal.h>
6e84f315 16#include <linux/sched/mm.h>
86039bd3
AA
17#include <linux/mm.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/seq_file.h>
21#include <linux/file.h>
22#include <linux/bug.h>
23#include <linux/anon_inodes.h>
24#include <linux/syscalls.h>
25#include <linux/userfaultfd_k.h>
26#include <linux/mempolicy.h>
27#include <linux/ioctl.h>
28#include <linux/security.h>
cab350af 29#include <linux/hugetlb.h>
86039bd3 30
cefdca0a
PX
31int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
cbcfa130
EB
43 *
44 * Locking order:
45 * fd_wqh.lock
46 * fault_pending_wqh.lock
47 * fault_wqh.lock
48 * event_wqh.lock
49 *
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
3004ec9c 53 */
86039bd3 54struct userfaultfd_ctx {
15b726ef
AA
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
86039bd3
AA
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
9cd75c3c
PE
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
2c5b7e1b
AA
63 /* a refile sequence protected by fault_pending_wqh lock */
64 struct seqcount refile_seq;
3004ec9c 65 /* pseudo fd refcounting */
ca880420 66 refcount_t refcount;
86039bd3
AA
67 /* userfaultfd syscall flags */
68 unsigned int flags;
9cd75c3c
PE
69 /* features requested from the userspace */
70 unsigned int features;
86039bd3
AA
71 /* state machine */
72 enum userfaultfd_state state;
73 /* released */
74 bool released;
df2cc96e
MR
75 /* memory mappings are changing because of non-cooperative event */
76 bool mmap_changing;
86039bd3
AA
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
78 struct mm_struct *mm;
79};
80
893e26e6
PE
81struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
85};
86
897ab3e0
MR
87struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
89 unsigned long start;
90 unsigned long end;
91 struct list_head list;
92};
93
86039bd3 94struct userfaultfd_wait_queue {
a9b85f94 95 struct uffd_msg msg;
ac6424b9 96 wait_queue_entry_t wq;
86039bd3 97 struct userfaultfd_ctx *ctx;
15a77c6f 98 bool waken;
86039bd3
AA
99};
100
101struct userfaultfd_wake_range {
102 unsigned long start;
103 unsigned long len;
104};
105
ac6424b9 106static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
107 int wake_flags, void *key)
108{
109 struct userfaultfd_wake_range *range = key;
110 int ret;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
113
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 ret = 0;
86039bd3
AA
116 /* len == 0 means wake all */
117 start = range->start;
118 len = range->len;
a9b85f94
AA
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 121 goto out;
15a77c6f
AA
122 WRITE_ONCE(uwq->waken, true);
123 /*
a9668cd6
PZ
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
15a77c6f 126 */
86039bd3 127 ret = wake_up_state(wq->private, mode);
a9668cd6 128 if (ret) {
86039bd3
AA
129 /*
130 * Wake only once, autoremove behavior.
131 *
a9668cd6
PZ
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
135 *
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 139 */
2055da97 140 list_del_init(&wq->entry);
a9668cd6 141 }
86039bd3
AA
142out:
143 return ret;
144}
145
146/**
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
150 */
151static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152{
ca880420 153 refcount_inc(&ctx->refcount);
86039bd3
AA
154}
155
156/**
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158 * context.
159 * @ctx: [in] Pointer to userfaultfd context.
160 *
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163 */
164static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165{
ca880420 166 if (refcount_dec_and_test(&ctx->refcount)) {
86039bd3
AA
167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 175 mmdrop(ctx->mm);
3004ec9c 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
177 }
178}
179
a9b85f94 180static inline void msg_init(struct uffd_msg *msg)
86039bd3 181{
a9b85f94
AA
182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183 /*
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
186 */
187 memset(msg, 0, sizeof(struct uffd_msg));
188}
189
190static inline struct uffd_msg userfault_msg(unsigned long address,
191 unsigned int flags,
9d4ac934
AP
192 unsigned long reason,
193 unsigned int features)
a9b85f94
AA
194{
195 struct uffd_msg msg;
196 msg_init(&msg);
197 msg.event = UFFD_EVENT_PAGEFAULT;
198 msg.arg.pagefault.address = address;
86039bd3
AA
199 if (flags & FAULT_FLAG_WRITE)
200 /*
a4605a61 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
205 * a write fault.
86039bd3 206 */
a9b85f94 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
208 if (reason & VM_UFFD_WP)
209 /*
a9b85f94
AA
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
86039bd3 215 */
a9b85f94 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
9d4ac934 217 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 219 return msg;
86039bd3
AA
220}
221
369cd212
MK
222#ifdef CONFIG_HUGETLB_PAGE
223/*
224 * Same functionality as userfaultfd_must_wait below with modifications for
225 * hugepmd ranges.
226 */
227static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 228 struct vm_area_struct *vma,
369cd212
MK
229 unsigned long address,
230 unsigned long flags,
231 unsigned long reason)
232{
233 struct mm_struct *mm = ctx->mm;
1e2c0436 234 pte_t *ptep, pte;
369cd212
MK
235 bool ret = true;
236
237 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
238
1e2c0436
JF
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240
241 if (!ptep)
369cd212
MK
242 goto out;
243
244 ret = false;
1e2c0436 245 pte = huge_ptep_get(ptep);
369cd212
MK
246
247 /*
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us.
250 */
1e2c0436 251 if (huge_pte_none(pte))
369cd212 252 ret = true;
1e2c0436 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
254 ret = true;
255out:
256 return ret;
257}
258#else
259static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 260 struct vm_area_struct *vma,
369cd212
MK
261 unsigned long address,
262 unsigned long flags,
263 unsigned long reason)
264{
265 return false; /* should never get here */
266}
267#endif /* CONFIG_HUGETLB_PAGE */
268
8d2afd96
AA
269/*
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274 * threads.
275 */
276static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
278 unsigned long flags,
279 unsigned long reason)
280{
281 struct mm_struct *mm = ctx->mm;
282 pgd_t *pgd;
c2febafc 283 p4d_t *p4d;
8d2afd96
AA
284 pud_t *pud;
285 pmd_t *pmd, _pmd;
286 pte_t *pte;
287 bool ret = true;
288
289 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
293 goto out;
c2febafc
KS
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
296 goto out;
297 pud = pud_offset(p4d, address);
8d2afd96
AA
298 if (!pud_present(*pud))
299 goto out;
300 pmd = pmd_offset(pud, address);
301 /*
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
305 *
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
308 */
309 _pmd = READ_ONCE(*pmd);
a365ac09 310 if (pmd_none(_pmd))
8d2afd96
AA
311 goto out;
312
313 ret = false;
a365ac09
HY
314 if (!pmd_present(_pmd))
315 goto out;
316
8d2afd96
AA
317 if (pmd_trans_huge(_pmd))
318 goto out;
319
320 /*
321 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
322 * and use the standard pte_offset_map() instead of parsing _pmd.
323 */
324 pte = pte_offset_map(pmd, address);
325 /*
326 * Lockless access: we're in a wait_event so it's ok if it
327 * changes under us.
328 */
329 if (pte_none(*pte))
330 ret = true;
331 pte_unmap(pte);
332
333out:
334 return ret;
335}
336
86039bd3
AA
337/*
338 * The locking rules involved in returning VM_FAULT_RETRY depending on
339 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
340 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
341 * recommendation in __lock_page_or_retry is not an understatement.
342 *
343 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
344 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
345 * not set.
346 *
347 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
348 * set, VM_FAULT_RETRY can still be returned if and only if there are
349 * fatal_signal_pending()s, and the mmap_sem must be released before
350 * returning it.
351 */
2b740303 352vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 353{
82b0f8c3 354 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
355 struct userfaultfd_ctx *ctx;
356 struct userfaultfd_wait_queue uwq;
2b740303 357 vm_fault_t ret = VM_FAULT_SIGBUS;
dfa37dc3 358 bool must_wait, return_to_userland;
15a77c6f 359 long blocking_state;
86039bd3 360
64c2b203
AA
361 /*
362 * We don't do userfault handling for the final child pid update.
363 *
364 * We also don't do userfault handling during
365 * coredumping. hugetlbfs has the special
366 * follow_hugetlb_page() to skip missing pages in the
367 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
368 * the no_page_table() helper in follow_page_mask(), but the
369 * shmem_vm_ops->fault method is invoked even during
370 * coredumping without mmap_sem and it ends up here.
371 */
372 if (current->flags & (PF_EXITING|PF_DUMPCORE))
373 goto out;
374
375 /*
376 * Coredumping runs without mmap_sem so we can only check that
377 * the mmap_sem is held, if PF_DUMPCORE was not set.
378 */
379 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
380
82b0f8c3 381 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 382 if (!ctx)
ba85c702 383 goto out;
86039bd3
AA
384
385 BUG_ON(ctx->mm != mm);
386
387 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
388 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
389
2d6d6f5a
PS
390 if (ctx->features & UFFD_FEATURE_SIGBUS)
391 goto out;
392
86039bd3
AA
393 /*
394 * If it's already released don't get it. This avoids to loop
395 * in __get_user_pages if userfaultfd_release waits on the
396 * caller of handle_userfault to release the mmap_sem.
397 */
6aa7de05 398 if (unlikely(READ_ONCE(ctx->released))) {
656710a6
AA
399 /*
400 * Don't return VM_FAULT_SIGBUS in this case, so a non
401 * cooperative manager can close the uffd after the
402 * last UFFDIO_COPY, without risking to trigger an
403 * involuntary SIGBUS if the process was starting the
404 * userfaultfd while the userfaultfd was still armed
405 * (but after the last UFFDIO_COPY). If the uffd
406 * wasn't already closed when the userfault reached
407 * this point, that would normally be solved by
408 * userfaultfd_must_wait returning 'false'.
409 *
410 * If we were to return VM_FAULT_SIGBUS here, the non
411 * cooperative manager would be instead forced to
412 * always call UFFDIO_UNREGISTER before it can safely
413 * close the uffd.
414 */
415 ret = VM_FAULT_NOPAGE;
ba85c702 416 goto out;
656710a6 417 }
86039bd3
AA
418
419 /*
420 * Check that we can return VM_FAULT_RETRY.
421 *
422 * NOTE: it should become possible to return VM_FAULT_RETRY
423 * even if FAULT_FLAG_TRIED is set without leading to gup()
424 * -EBUSY failures, if the userfaultfd is to be extended for
425 * VM_UFFD_WP tracking and we intend to arm the userfault
426 * without first stopping userland access to the memory. For
427 * VM_UFFD_MISSING userfaults this is enough for now.
428 */
82b0f8c3 429 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
430 /*
431 * Validate the invariant that nowait must allow retry
432 * to be sure not to return SIGBUS erroneously on
433 * nowait invocations.
434 */
82b0f8c3 435 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
436#ifdef CONFIG_DEBUG_VM
437 if (printk_ratelimit()) {
438 printk(KERN_WARNING
82b0f8c3
JK
439 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
440 vmf->flags);
86039bd3
AA
441 dump_stack();
442 }
443#endif
ba85c702 444 goto out;
86039bd3
AA
445 }
446
447 /*
448 * Handle nowait, not much to do other than tell it to retry
449 * and wait.
450 */
ba85c702 451 ret = VM_FAULT_RETRY;
82b0f8c3 452 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 453 goto out;
86039bd3
AA
454
455 /* take the reference before dropping the mmap_sem */
456 userfaultfd_ctx_get(ctx);
457
86039bd3
AA
458 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
459 uwq.wq.private = current;
9d4ac934
AP
460 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
461 ctx->features);
86039bd3 462 uwq.ctx = ctx;
15a77c6f 463 uwq.waken = false;
86039bd3 464
bae473a4 465 return_to_userland =
82b0f8c3 466 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 467 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
468 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
469 TASK_KILLABLE;
dfa37dc3 470
cbcfa130 471 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
472 /*
473 * After the __add_wait_queue the uwq is visible to userland
474 * through poll/read().
475 */
15b726ef
AA
476 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
477 /*
478 * The smp_mb() after __set_current_state prevents the reads
479 * following the spin_unlock to happen before the list_add in
480 * __add_wait_queue.
481 */
15a77c6f 482 set_current_state(blocking_state);
cbcfa130 483 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 484
369cd212
MK
485 if (!is_vm_hugetlb_page(vmf->vma))
486 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
487 reason);
488 else
7868a208
PA
489 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
490 vmf->address,
369cd212 491 vmf->flags, reason);
8d2afd96
AA
492 up_read(&mm->mmap_sem);
493
6aa7de05 494 if (likely(must_wait && !READ_ONCE(ctx->released) &&
dfa37dc3
AA
495 (return_to_userland ? !signal_pending(current) :
496 !fatal_signal_pending(current)))) {
a9a08845 497 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
86039bd3 498 schedule();
ba85c702 499 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
500
501 /*
502 * False wakeups can orginate even from rwsem before
503 * up_read() however userfaults will wait either for a
504 * targeted wakeup on the specific uwq waitqueue from
505 * wake_userfault() or for signals or for uffd
506 * release.
507 */
508 while (!READ_ONCE(uwq.waken)) {
509 /*
510 * This needs the full smp_store_mb()
511 * guarantee as the state write must be
512 * visible to other CPUs before reading
513 * uwq.waken from other CPUs.
514 */
515 set_current_state(blocking_state);
516 if (READ_ONCE(uwq.waken) ||
517 READ_ONCE(ctx->released) ||
518 (return_to_userland ? signal_pending(current) :
519 fatal_signal_pending(current)))
520 break;
521 schedule();
522 }
ba85c702 523 }
86039bd3 524
ba85c702 525 __set_current_state(TASK_RUNNING);
15b726ef 526
dfa37dc3
AA
527 if (return_to_userland) {
528 if (signal_pending(current) &&
529 !fatal_signal_pending(current)) {
530 /*
531 * If we got a SIGSTOP or SIGCONT and this is
532 * a normal userland page fault, just let
533 * userland return so the signal will be
534 * handled and gdb debugging works. The page
535 * fault code immediately after we return from
536 * this function is going to release the
537 * mmap_sem and it's not depending on it
538 * (unlike gup would if we were not to return
539 * VM_FAULT_RETRY).
540 *
541 * If a fatal signal is pending we still take
542 * the streamlined VM_FAULT_RETRY failure path
543 * and there's no need to retake the mmap_sem
544 * in such case.
545 */
546 down_read(&mm->mmap_sem);
6bbc4a41 547 ret = VM_FAULT_NOPAGE;
dfa37dc3
AA
548 }
549 }
550
15b726ef
AA
551 /*
552 * Here we race with the list_del; list_add in
553 * userfaultfd_ctx_read(), however because we don't ever run
554 * list_del_init() to refile across the two lists, the prev
555 * and next pointers will never point to self. list_add also
556 * would never let any of the two pointers to point to
557 * self. So list_empty_careful won't risk to see both pointers
558 * pointing to self at any time during the list refile. The
559 * only case where list_del_init() is called is the full
560 * removal in the wake function and there we don't re-list_add
561 * and it's fine not to block on the spinlock. The uwq on this
562 * kernel stack can be released after the list_del_init.
563 */
2055da97 564 if (!list_empty_careful(&uwq.wq.entry)) {
cbcfa130 565 spin_lock_irq(&ctx->fault_pending_wqh.lock);
15b726ef
AA
566 /*
567 * No need of list_del_init(), the uwq on the stack
568 * will be freed shortly anyway.
569 */
2055da97 570 list_del(&uwq.wq.entry);
cbcfa130 571 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 572 }
86039bd3
AA
573
574 /*
575 * ctx may go away after this if the userfault pseudo fd is
576 * already released.
577 */
578 userfaultfd_ctx_put(ctx);
579
ba85c702
AA
580out:
581 return ret;
86039bd3
AA
582}
583
8c9e7bb7
AA
584static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
585 struct userfaultfd_wait_queue *ewq)
9cd75c3c 586{
0cbb4b4f
AA
587 struct userfaultfd_ctx *release_new_ctx;
588
9a69a829
AA
589 if (WARN_ON_ONCE(current->flags & PF_EXITING))
590 goto out;
9cd75c3c
PE
591
592 ewq->ctx = ctx;
593 init_waitqueue_entry(&ewq->wq, current);
0cbb4b4f 594 release_new_ctx = NULL;
9cd75c3c 595
cbcfa130 596 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
597 /*
598 * After the __add_wait_queue the uwq is visible to userland
599 * through poll/read().
600 */
601 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
602 for (;;) {
603 set_current_state(TASK_KILLABLE);
604 if (ewq->msg.event == 0)
605 break;
6aa7de05 606 if (READ_ONCE(ctx->released) ||
9cd75c3c 607 fatal_signal_pending(current)) {
384632e6
AA
608 /*
609 * &ewq->wq may be queued in fork_event, but
610 * __remove_wait_queue ignores the head
611 * parameter. It would be a problem if it
612 * didn't.
613 */
9cd75c3c 614 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
615 if (ewq->msg.event == UFFD_EVENT_FORK) {
616 struct userfaultfd_ctx *new;
617
618 new = (struct userfaultfd_ctx *)
619 (unsigned long)
620 ewq->msg.arg.reserved.reserved1;
0cbb4b4f 621 release_new_ctx = new;
7eb76d45 622 }
9cd75c3c
PE
623 break;
624 }
625
cbcfa130 626 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 627
a9a08845 628 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
9cd75c3c
PE
629 schedule();
630
cbcfa130 631 spin_lock_irq(&ctx->event_wqh.lock);
9cd75c3c
PE
632 }
633 __set_current_state(TASK_RUNNING);
cbcfa130 634 spin_unlock_irq(&ctx->event_wqh.lock);
9cd75c3c 635
0cbb4b4f
AA
636 if (release_new_ctx) {
637 struct vm_area_struct *vma;
638 struct mm_struct *mm = release_new_ctx->mm;
639
640 /* the various vma->vm_userfaultfd_ctx still points to it */
641 down_write(&mm->mmap_sem);
04f5866e
AA
642 /* no task can run (and in turn coredump) yet */
643 VM_WARN_ON(!mmget_still_valid(mm));
0cbb4b4f 644 for (vma = mm->mmap; vma; vma = vma->vm_next)
31e810aa 645 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
0cbb4b4f 646 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
31e810aa
MR
647 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
648 }
0cbb4b4f
AA
649 up_write(&mm->mmap_sem);
650
651 userfaultfd_ctx_put(release_new_ctx);
652 }
653
9cd75c3c
PE
654 /*
655 * ctx may go away after this if the userfault pseudo fd is
656 * already released.
657 */
9a69a829 658out:
df2cc96e 659 WRITE_ONCE(ctx->mmap_changing, false);
9cd75c3c 660 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
661}
662
663static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
664 struct userfaultfd_wait_queue *ewq)
665{
666 ewq->msg.event = 0;
667 wake_up_locked(&ctx->event_wqh);
668 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
669}
670
893e26e6
PE
671int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
672{
673 struct userfaultfd_ctx *ctx = NULL, *octx;
674 struct userfaultfd_fork_ctx *fctx;
675
676 octx = vma->vm_userfaultfd_ctx.ctx;
677 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
678 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
679 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
680 return 0;
681 }
682
683 list_for_each_entry(fctx, fcs, list)
684 if (fctx->orig == octx) {
685 ctx = fctx->new;
686 break;
687 }
688
689 if (!ctx) {
690 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
691 if (!fctx)
692 return -ENOMEM;
693
694 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
695 if (!ctx) {
696 kfree(fctx);
697 return -ENOMEM;
698 }
699
ca880420 700 refcount_set(&ctx->refcount, 1);
893e26e6
PE
701 ctx->flags = octx->flags;
702 ctx->state = UFFD_STATE_RUNNING;
703 ctx->features = octx->features;
704 ctx->released = false;
df2cc96e 705 ctx->mmap_changing = false;
893e26e6 706 ctx->mm = vma->vm_mm;
00bb31fa 707 mmgrab(ctx->mm);
893e26e6
PE
708
709 userfaultfd_ctx_get(octx);
df2cc96e 710 WRITE_ONCE(octx->mmap_changing, true);
893e26e6
PE
711 fctx->orig = octx;
712 fctx->new = ctx;
713 list_add_tail(&fctx->list, fcs);
714 }
715
716 vma->vm_userfaultfd_ctx.ctx = ctx;
717 return 0;
718}
719
8c9e7bb7 720static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
721{
722 struct userfaultfd_ctx *ctx = fctx->orig;
723 struct userfaultfd_wait_queue ewq;
724
725 msg_init(&ewq.msg);
726
727 ewq.msg.event = UFFD_EVENT_FORK;
728 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
729
8c9e7bb7 730 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
731}
732
733void dup_userfaultfd_complete(struct list_head *fcs)
734{
893e26e6
PE
735 struct userfaultfd_fork_ctx *fctx, *n;
736
737 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 738 dup_fctx(fctx);
893e26e6
PE
739 list_del(&fctx->list);
740 kfree(fctx);
741 }
742}
743
72f87654
PE
744void mremap_userfaultfd_prep(struct vm_area_struct *vma,
745 struct vm_userfaultfd_ctx *vm_ctx)
746{
747 struct userfaultfd_ctx *ctx;
748
749 ctx = vma->vm_userfaultfd_ctx.ctx;
3cfd22be
PX
750
751 if (!ctx)
752 return;
753
754 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
72f87654
PE
755 vm_ctx->ctx = ctx;
756 userfaultfd_ctx_get(ctx);
df2cc96e 757 WRITE_ONCE(ctx->mmap_changing, true);
3cfd22be
PX
758 } else {
759 /* Drop uffd context if remap feature not enabled */
760 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
761 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
72f87654
PE
762 }
763}
764
90794bf1 765void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
766 unsigned long from, unsigned long to,
767 unsigned long len)
768{
90794bf1 769 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
770 struct userfaultfd_wait_queue ewq;
771
772 if (!ctx)
773 return;
774
775 if (to & ~PAGE_MASK) {
776 userfaultfd_ctx_put(ctx);
777 return;
778 }
779
780 msg_init(&ewq.msg);
781
782 ewq.msg.event = UFFD_EVENT_REMAP;
783 ewq.msg.arg.remap.from = from;
784 ewq.msg.arg.remap.to = to;
785 ewq.msg.arg.remap.len = len;
786
787 userfaultfd_event_wait_completion(ctx, &ewq);
788}
789
70ccb92f 790bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 791 unsigned long start, unsigned long end)
05ce7724
PE
792{
793 struct mm_struct *mm = vma->vm_mm;
794 struct userfaultfd_ctx *ctx;
795 struct userfaultfd_wait_queue ewq;
796
797 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 798 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 799 return true;
05ce7724
PE
800
801 userfaultfd_ctx_get(ctx);
df2cc96e 802 WRITE_ONCE(ctx->mmap_changing, true);
05ce7724
PE
803 up_read(&mm->mmap_sem);
804
05ce7724
PE
805 msg_init(&ewq.msg);
806
d811914d
MR
807 ewq.msg.event = UFFD_EVENT_REMOVE;
808 ewq.msg.arg.remove.start = start;
809 ewq.msg.arg.remove.end = end;
05ce7724
PE
810
811 userfaultfd_event_wait_completion(ctx, &ewq);
812
70ccb92f 813 return false;
05ce7724
PE
814}
815
897ab3e0
MR
816static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
817 unsigned long start, unsigned long end)
818{
819 struct userfaultfd_unmap_ctx *unmap_ctx;
820
821 list_for_each_entry(unmap_ctx, unmaps, list)
822 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
823 unmap_ctx->end == end)
824 return true;
825
826 return false;
827}
828
829int userfaultfd_unmap_prep(struct vm_area_struct *vma,
830 unsigned long start, unsigned long end,
831 struct list_head *unmaps)
832{
833 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
834 struct userfaultfd_unmap_ctx *unmap_ctx;
835 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
836
837 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
838 has_unmap_ctx(ctx, unmaps, start, end))
839 continue;
840
841 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
842 if (!unmap_ctx)
843 return -ENOMEM;
844
845 userfaultfd_ctx_get(ctx);
df2cc96e 846 WRITE_ONCE(ctx->mmap_changing, true);
897ab3e0
MR
847 unmap_ctx->ctx = ctx;
848 unmap_ctx->start = start;
849 unmap_ctx->end = end;
850 list_add_tail(&unmap_ctx->list, unmaps);
851 }
852
853 return 0;
854}
855
856void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
857{
858 struct userfaultfd_unmap_ctx *ctx, *n;
859 struct userfaultfd_wait_queue ewq;
860
861 list_for_each_entry_safe(ctx, n, uf, list) {
862 msg_init(&ewq.msg);
863
864 ewq.msg.event = UFFD_EVENT_UNMAP;
865 ewq.msg.arg.remove.start = ctx->start;
866 ewq.msg.arg.remove.end = ctx->end;
867
868 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
869
870 list_del(&ctx->list);
871 kfree(ctx);
872 }
873}
874
86039bd3
AA
875static int userfaultfd_release(struct inode *inode, struct file *file)
876{
877 struct userfaultfd_ctx *ctx = file->private_data;
878 struct mm_struct *mm = ctx->mm;
879 struct vm_area_struct *vma, *prev;
880 /* len == 0 means wake all */
881 struct userfaultfd_wake_range range = { .len = 0, };
882 unsigned long new_flags;
46d0b24c 883 bool still_valid;
86039bd3 884
6aa7de05 885 WRITE_ONCE(ctx->released, true);
86039bd3 886
d2005e3f
ON
887 if (!mmget_not_zero(mm))
888 goto wakeup;
889
86039bd3
AA
890 /*
891 * Flush page faults out of all CPUs. NOTE: all page faults
892 * must be retried without returning VM_FAULT_SIGBUS if
893 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
894 * changes while handle_userfault released the mmap_sem. So
895 * it's critical that released is set to true (above), before
896 * taking the mmap_sem for writing.
897 */
898 down_write(&mm->mmap_sem);
46d0b24c 899 still_valid = mmget_still_valid(mm);
86039bd3
AA
900 prev = NULL;
901 for (vma = mm->mmap; vma; vma = vma->vm_next) {
902 cond_resched();
903 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
904 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
905 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
906 prev = vma;
907 continue;
908 }
909 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
46d0b24c
ON
910 if (still_valid) {
911 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
912 new_flags, vma->anon_vma,
913 vma->vm_file, vma->vm_pgoff,
914 vma_policy(vma),
915 NULL_VM_UFFD_CTX);
916 if (prev)
917 vma = prev;
918 else
919 prev = vma;
920 }
86039bd3
AA
921 vma->vm_flags = new_flags;
922 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
923 }
924 up_write(&mm->mmap_sem);
d2005e3f
ON
925 mmput(mm);
926wakeup:
86039bd3 927 /*
15b726ef 928 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 929 * the last page faults that may have been already waiting on
15b726ef 930 * the fault_*wqh.
86039bd3 931 */
cbcfa130 932 spin_lock_irq(&ctx->fault_pending_wqh.lock);
ac5be6b4 933 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
c430d1e8 934 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
cbcfa130 935 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 936
5a18b64e
MR
937 /* Flush pending events that may still wait on event_wqh */
938 wake_up_all(&ctx->event_wqh);
939
a9a08845 940 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
86039bd3
AA
941 userfaultfd_ctx_put(ctx);
942 return 0;
943}
944
15b726ef 945/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
946static inline struct userfaultfd_wait_queue *find_userfault_in(
947 wait_queue_head_t *wqh)
86039bd3 948{
ac6424b9 949 wait_queue_entry_t *wq;
15b726ef 950 struct userfaultfd_wait_queue *uwq;
86039bd3 951
456a7378 952 lockdep_assert_held(&wqh->lock);
86039bd3 953
15b726ef 954 uwq = NULL;
6dcc27fd 955 if (!waitqueue_active(wqh))
15b726ef
AA
956 goto out;
957 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 958 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
959 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
960out:
961 return uwq;
86039bd3 962}
6dcc27fd
PE
963
964static inline struct userfaultfd_wait_queue *find_userfault(
965 struct userfaultfd_ctx *ctx)
966{
967 return find_userfault_in(&ctx->fault_pending_wqh);
968}
86039bd3 969
9cd75c3c
PE
970static inline struct userfaultfd_wait_queue *find_userfault_evt(
971 struct userfaultfd_ctx *ctx)
972{
973 return find_userfault_in(&ctx->event_wqh);
974}
975
076ccb76 976static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
86039bd3
AA
977{
978 struct userfaultfd_ctx *ctx = file->private_data;
076ccb76 979 __poll_t ret;
86039bd3
AA
980
981 poll_wait(file, &ctx->fd_wqh, wait);
982
983 switch (ctx->state) {
984 case UFFD_STATE_WAIT_API:
a9a08845 985 return EPOLLERR;
86039bd3 986 case UFFD_STATE_RUNNING:
ba85c702
AA
987 /*
988 * poll() never guarantees that read won't block.
989 * userfaults can be waken before they're read().
990 */
991 if (unlikely(!(file->f_flags & O_NONBLOCK)))
a9a08845 992 return EPOLLERR;
15b726ef
AA
993 /*
994 * lockless access to see if there are pending faults
995 * __pollwait last action is the add_wait_queue but
996 * the spin_unlock would allow the waitqueue_active to
997 * pass above the actual list_add inside
998 * add_wait_queue critical section. So use a full
999 * memory barrier to serialize the list_add write of
1000 * add_wait_queue() with the waitqueue_active read
1001 * below.
1002 */
1003 ret = 0;
1004 smp_mb();
1005 if (waitqueue_active(&ctx->fault_pending_wqh))
a9a08845 1006 ret = EPOLLIN;
9cd75c3c 1007 else if (waitqueue_active(&ctx->event_wqh))
a9a08845 1008 ret = EPOLLIN;
9cd75c3c 1009
86039bd3
AA
1010 return ret;
1011 default:
8474901a 1012 WARN_ON_ONCE(1);
a9a08845 1013 return EPOLLERR;
86039bd3
AA
1014 }
1015}
1016
893e26e6
PE
1017static const struct file_operations userfaultfd_fops;
1018
1019static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1020 struct userfaultfd_ctx *new,
1021 struct uffd_msg *msg)
1022{
1023 int fd;
893e26e6 1024
284cd241
EB
1025 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1026 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
893e26e6
PE
1027 if (fd < 0)
1028 return fd;
1029
893e26e6
PE
1030 msg->arg.reserved.reserved1 = 0;
1031 msg->arg.fork.ufd = fd;
893e26e6
PE
1032 return 0;
1033}
1034
86039bd3 1035static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 1036 struct uffd_msg *msg)
86039bd3
AA
1037{
1038 ssize_t ret;
1039 DECLARE_WAITQUEUE(wait, current);
15b726ef 1040 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1041 /*
1042 * Handling fork event requires sleeping operations, so
1043 * we drop the event_wqh lock, then do these ops, then
1044 * lock it back and wake up the waiter. While the lock is
1045 * dropped the ewq may go away so we keep track of it
1046 * carefully.
1047 */
1048 LIST_HEAD(fork_event);
1049 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1050
15b726ef 1051 /* always take the fd_wqh lock before the fault_pending_wqh lock */
ae62c16e 1052 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1053 __add_wait_queue(&ctx->fd_wqh, &wait);
1054 for (;;) {
1055 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1056 spin_lock(&ctx->fault_pending_wqh.lock);
1057 uwq = find_userfault(ctx);
1058 if (uwq) {
2c5b7e1b
AA
1059 /*
1060 * Use a seqcount to repeat the lockless check
1061 * in wake_userfault() to avoid missing
1062 * wakeups because during the refile both
1063 * waitqueue could become empty if this is the
1064 * only userfault.
1065 */
1066 write_seqcount_begin(&ctx->refile_seq);
1067
86039bd3 1068 /*
15b726ef
AA
1069 * The fault_pending_wqh.lock prevents the uwq
1070 * to disappear from under us.
1071 *
1072 * Refile this userfault from
1073 * fault_pending_wqh to fault_wqh, it's not
1074 * pending anymore after we read it.
1075 *
1076 * Use list_del() by hand (as
1077 * userfaultfd_wake_function also uses
1078 * list_del_init() by hand) to be sure nobody
1079 * changes __remove_wait_queue() to use
1080 * list_del_init() in turn breaking the
1081 * !list_empty_careful() check in
2055da97 1082 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1083 * must never be empty at any time during the
1084 * refile, or the waitqueue could disappear
1085 * from under us. The "wait_queue_head_t"
1086 * parameter of __remove_wait_queue() is unused
1087 * anyway.
86039bd3 1088 */
2055da97 1089 list_del(&uwq->wq.entry);
c430d1e8 1090 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
15b726ef 1091
2c5b7e1b
AA
1092 write_seqcount_end(&ctx->refile_seq);
1093
a9b85f94
AA
1094 /* careful to always initialize msg if ret == 0 */
1095 *msg = uwq->msg;
15b726ef 1096 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1097 ret = 0;
1098 break;
1099 }
15b726ef 1100 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1101
1102 spin_lock(&ctx->event_wqh.lock);
1103 uwq = find_userfault_evt(ctx);
1104 if (uwq) {
1105 *msg = uwq->msg;
1106
893e26e6
PE
1107 if (uwq->msg.event == UFFD_EVENT_FORK) {
1108 fork_nctx = (struct userfaultfd_ctx *)
1109 (unsigned long)
1110 uwq->msg.arg.reserved.reserved1;
2055da97 1111 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1112 /*
1113 * fork_nctx can be freed as soon as
1114 * we drop the lock, unless we take a
1115 * reference on it.
1116 */
1117 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1118 spin_unlock(&ctx->event_wqh.lock);
1119 ret = 0;
1120 break;
1121 }
1122
9cd75c3c
PE
1123 userfaultfd_event_complete(ctx, uwq);
1124 spin_unlock(&ctx->event_wqh.lock);
1125 ret = 0;
1126 break;
1127 }
1128 spin_unlock(&ctx->event_wqh.lock);
1129
86039bd3
AA
1130 if (signal_pending(current)) {
1131 ret = -ERESTARTSYS;
1132 break;
1133 }
1134 if (no_wait) {
1135 ret = -EAGAIN;
1136 break;
1137 }
ae62c16e 1138 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1139 schedule();
ae62c16e 1140 spin_lock_irq(&ctx->fd_wqh.lock);
86039bd3
AA
1141 }
1142 __remove_wait_queue(&ctx->fd_wqh, &wait);
1143 __set_current_state(TASK_RUNNING);
ae62c16e 1144 spin_unlock_irq(&ctx->fd_wqh.lock);
86039bd3 1145
893e26e6
PE
1146 if (!ret && msg->event == UFFD_EVENT_FORK) {
1147 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
cbcfa130 1148 spin_lock_irq(&ctx->event_wqh.lock);
384632e6
AA
1149 if (!list_empty(&fork_event)) {
1150 /*
1151 * The fork thread didn't abort, so we can
1152 * drop the temporary refcount.
1153 */
1154 userfaultfd_ctx_put(fork_nctx);
1155
1156 uwq = list_first_entry(&fork_event,
1157 typeof(*uwq),
1158 wq.entry);
1159 /*
1160 * If fork_event list wasn't empty and in turn
1161 * the event wasn't already released by fork
1162 * (the event is allocated on fork kernel
1163 * stack), put the event back to its place in
1164 * the event_wq. fork_event head will be freed
1165 * as soon as we return so the event cannot
1166 * stay queued there no matter the current
1167 * "ret" value.
1168 */
1169 list_del(&uwq->wq.entry);
1170 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1171
384632e6
AA
1172 /*
1173 * Leave the event in the waitqueue and report
1174 * error to userland if we failed to resolve
1175 * the userfault fork.
1176 */
1177 if (likely(!ret))
893e26e6 1178 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1179 } else {
1180 /*
1181 * Here the fork thread aborted and the
1182 * refcount from the fork thread on fork_nctx
1183 * has already been released. We still hold
1184 * the reference we took before releasing the
1185 * lock above. If resolve_userfault_fork
1186 * failed we've to drop it because the
1187 * fork_nctx has to be freed in such case. If
1188 * it succeeded we'll hold it because the new
1189 * uffd references it.
1190 */
1191 if (ret)
1192 userfaultfd_ctx_put(fork_nctx);
893e26e6 1193 }
cbcfa130 1194 spin_unlock_irq(&ctx->event_wqh.lock);
893e26e6
PE
1195 }
1196
86039bd3
AA
1197 return ret;
1198}
1199
1200static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1201 size_t count, loff_t *ppos)
1202{
1203 struct userfaultfd_ctx *ctx = file->private_data;
1204 ssize_t _ret, ret = 0;
a9b85f94 1205 struct uffd_msg msg;
86039bd3
AA
1206 int no_wait = file->f_flags & O_NONBLOCK;
1207
1208 if (ctx->state == UFFD_STATE_WAIT_API)
1209 return -EINVAL;
86039bd3
AA
1210
1211 for (;;) {
a9b85f94 1212 if (count < sizeof(msg))
86039bd3 1213 return ret ? ret : -EINVAL;
a9b85f94 1214 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1215 if (_ret < 0)
1216 return ret ? ret : _ret;
a9b85f94 1217 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1218 return ret ? ret : -EFAULT;
a9b85f94
AA
1219 ret += sizeof(msg);
1220 buf += sizeof(msg);
1221 count -= sizeof(msg);
86039bd3
AA
1222 /*
1223 * Allow to read more than one fault at time but only
1224 * block if waiting for the very first one.
1225 */
1226 no_wait = O_NONBLOCK;
1227 }
1228}
1229
1230static void __wake_userfault(struct userfaultfd_ctx *ctx,
1231 struct userfaultfd_wake_range *range)
1232{
cbcfa130 1233 spin_lock_irq(&ctx->fault_pending_wqh.lock);
86039bd3 1234 /* wake all in the range and autoremove */
15b726ef 1235 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1236 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1237 range);
1238 if (waitqueue_active(&ctx->fault_wqh))
c430d1e8 1239 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
cbcfa130 1240 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1241}
1242
1243static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1244 struct userfaultfd_wake_range *range)
1245{
2c5b7e1b
AA
1246 unsigned seq;
1247 bool need_wakeup;
1248
86039bd3
AA
1249 /*
1250 * To be sure waitqueue_active() is not reordered by the CPU
1251 * before the pagetable update, use an explicit SMP memory
1252 * barrier here. PT lock release or up_read(mmap_sem) still
1253 * have release semantics that can allow the
1254 * waitqueue_active() to be reordered before the pte update.
1255 */
1256 smp_mb();
1257
1258 /*
1259 * Use waitqueue_active because it's very frequent to
1260 * change the address space atomically even if there are no
1261 * userfaults yet. So we take the spinlock only when we're
1262 * sure we've userfaults to wake.
1263 */
2c5b7e1b
AA
1264 do {
1265 seq = read_seqcount_begin(&ctx->refile_seq);
1266 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1267 waitqueue_active(&ctx->fault_wqh);
1268 cond_resched();
1269 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1270 if (need_wakeup)
86039bd3
AA
1271 __wake_userfault(ctx, range);
1272}
1273
1274static __always_inline int validate_range(struct mm_struct *mm,
7d032574 1275 __u64 *start, __u64 len)
86039bd3
AA
1276{
1277 __u64 task_size = mm->task_size;
1278
7d032574
AK
1279 *start = untagged_addr(*start);
1280
1281 if (*start & ~PAGE_MASK)
86039bd3
AA
1282 return -EINVAL;
1283 if (len & ~PAGE_MASK)
1284 return -EINVAL;
1285 if (!len)
1286 return -EINVAL;
7d032574 1287 if (*start < mmap_min_addr)
86039bd3 1288 return -EINVAL;
7d032574 1289 if (*start >= task_size)
86039bd3 1290 return -EINVAL;
7d032574 1291 if (len > task_size - *start)
86039bd3
AA
1292 return -EINVAL;
1293 return 0;
1294}
1295
ba6907db
MR
1296static inline bool vma_can_userfault(struct vm_area_struct *vma)
1297{
cac67329
MR
1298 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1299 vma_is_shmem(vma);
ba6907db
MR
1300}
1301
86039bd3
AA
1302static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1303 unsigned long arg)
1304{
1305 struct mm_struct *mm = ctx->mm;
1306 struct vm_area_struct *vma, *prev, *cur;
1307 int ret;
1308 struct uffdio_register uffdio_register;
1309 struct uffdio_register __user *user_uffdio_register;
1310 unsigned long vm_flags, new_flags;
1311 bool found;
ce53e8e6 1312 bool basic_ioctls;
86039bd3
AA
1313 unsigned long start, end, vma_end;
1314
1315 user_uffdio_register = (struct uffdio_register __user *) arg;
1316
1317 ret = -EFAULT;
1318 if (copy_from_user(&uffdio_register, user_uffdio_register,
1319 sizeof(uffdio_register)-sizeof(__u64)))
1320 goto out;
1321
1322 ret = -EINVAL;
1323 if (!uffdio_register.mode)
1324 goto out;
1325 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1326 UFFDIO_REGISTER_MODE_WP))
1327 goto out;
1328 vm_flags = 0;
1329 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1330 vm_flags |= VM_UFFD_MISSING;
1331 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1332 vm_flags |= VM_UFFD_WP;
1333 /*
1334 * FIXME: remove the below error constraint by
1335 * implementing the wprotect tracking mode.
1336 */
1337 ret = -EINVAL;
1338 goto out;
1339 }
1340
7d032574 1341 ret = validate_range(mm, &uffdio_register.range.start,
86039bd3
AA
1342 uffdio_register.range.len);
1343 if (ret)
1344 goto out;
1345
1346 start = uffdio_register.range.start;
1347 end = start + uffdio_register.range.len;
1348
d2005e3f
ON
1349 ret = -ENOMEM;
1350 if (!mmget_not_zero(mm))
1351 goto out;
1352
86039bd3 1353 down_write(&mm->mmap_sem);
04f5866e
AA
1354 if (!mmget_still_valid(mm))
1355 goto out_unlock;
86039bd3 1356 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1357 if (!vma)
1358 goto out_unlock;
1359
1360 /* check that there's at least one vma in the range */
1361 ret = -EINVAL;
1362 if (vma->vm_start >= end)
1363 goto out_unlock;
1364
cab350af
MK
1365 /*
1366 * If the first vma contains huge pages, make sure start address
1367 * is aligned to huge page size.
1368 */
1369 if (is_vm_hugetlb_page(vma)) {
1370 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1371
1372 if (start & (vma_hpagesize - 1))
1373 goto out_unlock;
1374 }
1375
86039bd3
AA
1376 /*
1377 * Search for not compatible vmas.
86039bd3
AA
1378 */
1379 found = false;
ce53e8e6 1380 basic_ioctls = false;
86039bd3
AA
1381 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1382 cond_resched();
1383
1384 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1385 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1386
1387 /* check not compatible vmas */
1388 ret = -EINVAL;
ba6907db 1389 if (!vma_can_userfault(cur))
86039bd3 1390 goto out_unlock;
29ec9066
AA
1391
1392 /*
1393 * UFFDIO_COPY will fill file holes even without
1394 * PROT_WRITE. This check enforces that if this is a
1395 * MAP_SHARED, the process has write permission to the backing
1396 * file. If VM_MAYWRITE is set it also enforces that on a
1397 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1398 * F_WRITE_SEAL can be taken until the vma is destroyed.
1399 */
1400 ret = -EPERM;
1401 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1402 goto out_unlock;
1403
cab350af
MK
1404 /*
1405 * If this vma contains ending address, and huge pages
1406 * check alignment.
1407 */
1408 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1409 end > cur->vm_start) {
1410 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1411
1412 ret = -EINVAL;
1413
1414 if (end & (vma_hpagesize - 1))
1415 goto out_unlock;
1416 }
86039bd3
AA
1417
1418 /*
1419 * Check that this vma isn't already owned by a
1420 * different userfaultfd. We can't allow more than one
1421 * userfaultfd to own a single vma simultaneously or we
1422 * wouldn't know which one to deliver the userfaults to.
1423 */
1424 ret = -EBUSY;
1425 if (cur->vm_userfaultfd_ctx.ctx &&
1426 cur->vm_userfaultfd_ctx.ctx != ctx)
1427 goto out_unlock;
1428
cab350af
MK
1429 /*
1430 * Note vmas containing huge pages
1431 */
ce53e8e6
MR
1432 if (is_vm_hugetlb_page(cur))
1433 basic_ioctls = true;
cab350af 1434
86039bd3
AA
1435 found = true;
1436 }
1437 BUG_ON(!found);
1438
1439 if (vma->vm_start < start)
1440 prev = vma;
1441
1442 ret = 0;
1443 do {
1444 cond_resched();
1445
ba6907db 1446 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1447 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1448 vma->vm_userfaultfd_ctx.ctx != ctx);
29ec9066 1449 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1450
1451 /*
1452 * Nothing to do: this vma is already registered into this
1453 * userfaultfd and with the right tracking mode too.
1454 */
1455 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1456 (vma->vm_flags & vm_flags) == vm_flags)
1457 goto skip;
1458
1459 if (vma->vm_start > start)
1460 start = vma->vm_start;
1461 vma_end = min(end, vma->vm_end);
1462
1463 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1464 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1465 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1466 vma_policy(vma),
1467 ((struct vm_userfaultfd_ctx){ ctx }));
1468 if (prev) {
1469 vma = prev;
1470 goto next;
1471 }
1472 if (vma->vm_start < start) {
1473 ret = split_vma(mm, vma, start, 1);
1474 if (ret)
1475 break;
1476 }
1477 if (vma->vm_end > end) {
1478 ret = split_vma(mm, vma, end, 0);
1479 if (ret)
1480 break;
1481 }
1482 next:
1483 /*
1484 * In the vma_merge() successful mprotect-like case 8:
1485 * the next vma was merged into the current one and
1486 * the current one has not been updated yet.
1487 */
1488 vma->vm_flags = new_flags;
1489 vma->vm_userfaultfd_ctx.ctx = ctx;
1490
1491 skip:
1492 prev = vma;
1493 start = vma->vm_end;
1494 vma = vma->vm_next;
1495 } while (vma && vma->vm_start < end);
1496out_unlock:
1497 up_write(&mm->mmap_sem);
d2005e3f 1498 mmput(mm);
86039bd3
AA
1499 if (!ret) {
1500 /*
1501 * Now that we scanned all vmas we can already tell
1502 * userland which ioctls methods are guaranteed to
1503 * succeed on this range.
1504 */
ce53e8e6 1505 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1506 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1507 &user_uffdio_register->ioctls))
1508 ret = -EFAULT;
1509 }
1510out:
1511 return ret;
1512}
1513
1514static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1515 unsigned long arg)
1516{
1517 struct mm_struct *mm = ctx->mm;
1518 struct vm_area_struct *vma, *prev, *cur;
1519 int ret;
1520 struct uffdio_range uffdio_unregister;
1521 unsigned long new_flags;
1522 bool found;
1523 unsigned long start, end, vma_end;
1524 const void __user *buf = (void __user *)arg;
1525
1526 ret = -EFAULT;
1527 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1528 goto out;
1529
7d032574 1530 ret = validate_range(mm, &uffdio_unregister.start,
86039bd3
AA
1531 uffdio_unregister.len);
1532 if (ret)
1533 goto out;
1534
1535 start = uffdio_unregister.start;
1536 end = start + uffdio_unregister.len;
1537
d2005e3f
ON
1538 ret = -ENOMEM;
1539 if (!mmget_not_zero(mm))
1540 goto out;
1541
86039bd3 1542 down_write(&mm->mmap_sem);
04f5866e
AA
1543 if (!mmget_still_valid(mm))
1544 goto out_unlock;
86039bd3 1545 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1546 if (!vma)
1547 goto out_unlock;
1548
1549 /* check that there's at least one vma in the range */
1550 ret = -EINVAL;
1551 if (vma->vm_start >= end)
1552 goto out_unlock;
1553
cab350af
MK
1554 /*
1555 * If the first vma contains huge pages, make sure start address
1556 * is aligned to huge page size.
1557 */
1558 if (is_vm_hugetlb_page(vma)) {
1559 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1560
1561 if (start & (vma_hpagesize - 1))
1562 goto out_unlock;
1563 }
1564
86039bd3
AA
1565 /*
1566 * Search for not compatible vmas.
86039bd3
AA
1567 */
1568 found = false;
1569 ret = -EINVAL;
1570 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1571 cond_resched();
1572
1573 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1574 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1575
1576 /*
1577 * Check not compatible vmas, not strictly required
1578 * here as not compatible vmas cannot have an
1579 * userfaultfd_ctx registered on them, but this
1580 * provides for more strict behavior to notice
1581 * unregistration errors.
1582 */
ba6907db 1583 if (!vma_can_userfault(cur))
86039bd3
AA
1584 goto out_unlock;
1585
1586 found = true;
1587 }
1588 BUG_ON(!found);
1589
1590 if (vma->vm_start < start)
1591 prev = vma;
1592
1593 ret = 0;
1594 do {
1595 cond_resched();
1596
ba6907db 1597 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1598
1599 /*
1600 * Nothing to do: this vma is already registered into this
1601 * userfaultfd and with the right tracking mode too.
1602 */
1603 if (!vma->vm_userfaultfd_ctx.ctx)
1604 goto skip;
1605
01e881f5
AA
1606 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1607
86039bd3
AA
1608 if (vma->vm_start > start)
1609 start = vma->vm_start;
1610 vma_end = min(end, vma->vm_end);
1611
09fa5296
AA
1612 if (userfaultfd_missing(vma)) {
1613 /*
1614 * Wake any concurrent pending userfault while
1615 * we unregister, so they will not hang
1616 * permanently and it avoids userland to call
1617 * UFFDIO_WAKE explicitly.
1618 */
1619 struct userfaultfd_wake_range range;
1620 range.start = start;
1621 range.len = vma_end - start;
1622 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1623 }
1624
86039bd3
AA
1625 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1626 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1627 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1628 vma_policy(vma),
1629 NULL_VM_UFFD_CTX);
1630 if (prev) {
1631 vma = prev;
1632 goto next;
1633 }
1634 if (vma->vm_start < start) {
1635 ret = split_vma(mm, vma, start, 1);
1636 if (ret)
1637 break;
1638 }
1639 if (vma->vm_end > end) {
1640 ret = split_vma(mm, vma, end, 0);
1641 if (ret)
1642 break;
1643 }
1644 next:
1645 /*
1646 * In the vma_merge() successful mprotect-like case 8:
1647 * the next vma was merged into the current one and
1648 * the current one has not been updated yet.
1649 */
1650 vma->vm_flags = new_flags;
1651 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1652
1653 skip:
1654 prev = vma;
1655 start = vma->vm_end;
1656 vma = vma->vm_next;
1657 } while (vma && vma->vm_start < end);
1658out_unlock:
1659 up_write(&mm->mmap_sem);
d2005e3f 1660 mmput(mm);
86039bd3
AA
1661out:
1662 return ret;
1663}
1664
1665/*
ba85c702
AA
1666 * userfaultfd_wake may be used in combination with the
1667 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1668 */
1669static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1670 unsigned long arg)
1671{
1672 int ret;
1673 struct uffdio_range uffdio_wake;
1674 struct userfaultfd_wake_range range;
1675 const void __user *buf = (void __user *)arg;
1676
1677 ret = -EFAULT;
1678 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1679 goto out;
1680
7d032574 1681 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
86039bd3
AA
1682 if (ret)
1683 goto out;
1684
1685 range.start = uffdio_wake.start;
1686 range.len = uffdio_wake.len;
1687
1688 /*
1689 * len == 0 means wake all and we don't want to wake all here,
1690 * so check it again to be sure.
1691 */
1692 VM_BUG_ON(!range.len);
1693
1694 wake_userfault(ctx, &range);
1695 ret = 0;
1696
1697out:
1698 return ret;
1699}
1700
ad465cae
AA
1701static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1702 unsigned long arg)
1703{
1704 __s64 ret;
1705 struct uffdio_copy uffdio_copy;
1706 struct uffdio_copy __user *user_uffdio_copy;
1707 struct userfaultfd_wake_range range;
1708
1709 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1710
df2cc96e
MR
1711 ret = -EAGAIN;
1712 if (READ_ONCE(ctx->mmap_changing))
1713 goto out;
1714
ad465cae
AA
1715 ret = -EFAULT;
1716 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1717 /* don't copy "copy" last field */
1718 sizeof(uffdio_copy)-sizeof(__s64)))
1719 goto out;
1720
7d032574 1721 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
ad465cae
AA
1722 if (ret)
1723 goto out;
1724 /*
1725 * double check for wraparound just in case. copy_from_user()
1726 * will later check uffdio_copy.src + uffdio_copy.len to fit
1727 * in the userland range.
1728 */
1729 ret = -EINVAL;
1730 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1731 goto out;
1732 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1733 goto out;
d2005e3f
ON
1734 if (mmget_not_zero(ctx->mm)) {
1735 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
df2cc96e 1736 uffdio_copy.len, &ctx->mmap_changing);
d2005e3f 1737 mmput(ctx->mm);
96333187 1738 } else {
e86b298b 1739 return -ESRCH;
d2005e3f 1740 }
ad465cae
AA
1741 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1742 return -EFAULT;
1743 if (ret < 0)
1744 goto out;
1745 BUG_ON(!ret);
1746 /* len == 0 would wake all */
1747 range.len = ret;
1748 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1749 range.start = uffdio_copy.dst;
1750 wake_userfault(ctx, &range);
1751 }
1752 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1753out:
1754 return ret;
1755}
1756
1757static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1758 unsigned long arg)
1759{
1760 __s64 ret;
1761 struct uffdio_zeropage uffdio_zeropage;
1762 struct uffdio_zeropage __user *user_uffdio_zeropage;
1763 struct userfaultfd_wake_range range;
1764
1765 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1766
df2cc96e
MR
1767 ret = -EAGAIN;
1768 if (READ_ONCE(ctx->mmap_changing))
1769 goto out;
1770
ad465cae
AA
1771 ret = -EFAULT;
1772 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1773 /* don't copy "zeropage" last field */
1774 sizeof(uffdio_zeropage)-sizeof(__s64)))
1775 goto out;
1776
7d032574 1777 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
ad465cae
AA
1778 uffdio_zeropage.range.len);
1779 if (ret)
1780 goto out;
1781 ret = -EINVAL;
1782 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1783 goto out;
1784
d2005e3f
ON
1785 if (mmget_not_zero(ctx->mm)) {
1786 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
df2cc96e
MR
1787 uffdio_zeropage.range.len,
1788 &ctx->mmap_changing);
d2005e3f 1789 mmput(ctx->mm);
9d95aa4b 1790 } else {
e86b298b 1791 return -ESRCH;
d2005e3f 1792 }
ad465cae
AA
1793 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1794 return -EFAULT;
1795 if (ret < 0)
1796 goto out;
1797 /* len == 0 would wake all */
1798 BUG_ON(!ret);
1799 range.len = ret;
1800 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1801 range.start = uffdio_zeropage.range.start;
1802 wake_userfault(ctx, &range);
1803 }
1804 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1805out:
1806 return ret;
1807}
1808
9cd75c3c
PE
1809static inline unsigned int uffd_ctx_features(__u64 user_features)
1810{
1811 /*
1812 * For the current set of features the bits just coincide
1813 */
1814 return (unsigned int)user_features;
1815}
1816
86039bd3
AA
1817/*
1818 * userland asks for a certain API version and we return which bits
1819 * and ioctl commands are implemented in this kernel for such API
1820 * version or -EINVAL if unknown.
1821 */
1822static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1823 unsigned long arg)
1824{
1825 struct uffdio_api uffdio_api;
1826 void __user *buf = (void __user *)arg;
1827 int ret;
65603144 1828 __u64 features;
86039bd3
AA
1829
1830 ret = -EINVAL;
1831 if (ctx->state != UFFD_STATE_WAIT_API)
1832 goto out;
1833 ret = -EFAULT;
a9b85f94 1834 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1835 goto out;
65603144
AA
1836 features = uffdio_api.features;
1837 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1838 memset(&uffdio_api, 0, sizeof(uffdio_api));
1839 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1840 goto out;
1841 ret = -EINVAL;
1842 goto out;
1843 }
65603144
AA
1844 /* report all available features and ioctls to userland */
1845 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1846 uffdio_api.ioctls = UFFD_API_IOCTLS;
1847 ret = -EFAULT;
1848 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1849 goto out;
1850 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1851 /* only enable the requested features for this uffd context */
1852 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1853 ret = 0;
1854out:
1855 return ret;
1856}
1857
1858static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1859 unsigned long arg)
1860{
1861 int ret = -EINVAL;
1862 struct userfaultfd_ctx *ctx = file->private_data;
1863
e6485a47
AA
1864 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1865 return -EINVAL;
1866
86039bd3
AA
1867 switch(cmd) {
1868 case UFFDIO_API:
1869 ret = userfaultfd_api(ctx, arg);
1870 break;
1871 case UFFDIO_REGISTER:
1872 ret = userfaultfd_register(ctx, arg);
1873 break;
1874 case UFFDIO_UNREGISTER:
1875 ret = userfaultfd_unregister(ctx, arg);
1876 break;
1877 case UFFDIO_WAKE:
1878 ret = userfaultfd_wake(ctx, arg);
1879 break;
ad465cae
AA
1880 case UFFDIO_COPY:
1881 ret = userfaultfd_copy(ctx, arg);
1882 break;
1883 case UFFDIO_ZEROPAGE:
1884 ret = userfaultfd_zeropage(ctx, arg);
1885 break;
86039bd3
AA
1886 }
1887 return ret;
1888}
1889
1890#ifdef CONFIG_PROC_FS
1891static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1892{
1893 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1894 wait_queue_entry_t *wq;
86039bd3
AA
1895 unsigned long pending = 0, total = 0;
1896
cbcfa130 1897 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2055da97 1898 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1899 pending++;
1900 total++;
1901 }
2055da97 1902 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3
AA
1903 total++;
1904 }
cbcfa130 1905 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1906
1907 /*
1908 * If more protocols will be added, there will be all shown
1909 * separated by a space. Like this:
1910 * protocols: aa:... bb:...
1911 */
1912 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1913 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1914 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1915}
1916#endif
1917
1918static const struct file_operations userfaultfd_fops = {
1919#ifdef CONFIG_PROC_FS
1920 .show_fdinfo = userfaultfd_show_fdinfo,
1921#endif
1922 .release = userfaultfd_release,
1923 .poll = userfaultfd_poll,
1924 .read = userfaultfd_read,
1925 .unlocked_ioctl = userfaultfd_ioctl,
1926 .compat_ioctl = userfaultfd_ioctl,
1927 .llseek = noop_llseek,
1928};
1929
3004ec9c
AA
1930static void init_once_userfaultfd_ctx(void *mem)
1931{
1932 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1933
1934 init_waitqueue_head(&ctx->fault_pending_wqh);
1935 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1936 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1937 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1938 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1939}
1940
284cd241 1941SYSCALL_DEFINE1(userfaultfd, int, flags)
86039bd3 1942{
86039bd3 1943 struct userfaultfd_ctx *ctx;
284cd241 1944 int fd;
86039bd3 1945
cefdca0a
PX
1946 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1947 return -EPERM;
1948
86039bd3
AA
1949 BUG_ON(!current->mm);
1950
1951 /* Check the UFFD_* constants for consistency. */
1952 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1953 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1954
86039bd3 1955 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
284cd241 1956 return -EINVAL;
86039bd3 1957
3004ec9c 1958 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3 1959 if (!ctx)
284cd241 1960 return -ENOMEM;
86039bd3 1961
ca880420 1962 refcount_set(&ctx->refcount, 1);
86039bd3 1963 ctx->flags = flags;
9cd75c3c 1964 ctx->features = 0;
86039bd3
AA
1965 ctx->state = UFFD_STATE_WAIT_API;
1966 ctx->released = false;
df2cc96e 1967 ctx->mmap_changing = false;
86039bd3
AA
1968 ctx->mm = current->mm;
1969 /* prevent the mm struct to be freed */
f1f10076 1970 mmgrab(ctx->mm);
86039bd3 1971
284cd241
EB
1972 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1973 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1974 if (fd < 0) {
d2005e3f 1975 mmdrop(ctx->mm);
3004ec9c 1976 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1977 }
86039bd3 1978 return fd;
86039bd3 1979}
3004ec9c
AA
1980
1981static int __init userfaultfd_init(void)
1982{
1983 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1984 sizeof(struct userfaultfd_ctx),
1985 0,
1986 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1987 init_once_userfaultfd_ctx);
1988 return 0;
1989}
1990__initcall(userfaultfd_init);