Merge branch 'for-2.6.28' of git://linux-nfs.org/~bfields/linux
[linux-2.6-block.git] / fs / ubifs / journal.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61#include "ubifs.h"
62
63/**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
67static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68{
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
71}
72
73/**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
77 */
78static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79{
80 dent->padding1 = 0;
81 memset(dent->padding2, 0, 4);
82}
83
84/**
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
87 */
88static inline void zero_data_node_unused(struct ubifs_data_node *data)
89{
90 memset(data->padding, 0, 2);
91}
92
93/**
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95 * node.
96 * @trun: the truncation node to zero out
97 */
98static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
99{
100 memset(trun->padding, 0, 12);
101}
102
103/**
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
107 * @len: node length
108 *
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
114 */
115static int reserve_space(struct ubifs_info *c, int jhead, int len)
116{
117 int err = 0, err1, retries = 0, avail, lnum, offs, free, squeeze;
118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
119
120 /*
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
124 */
125 squeeze = (jhead == BASEHD);
126again:
127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
128
129 if (c->ro_media) {
130 err = -EROFS;
131 goto out_unlock;
132 }
133
134 avail = c->leb_size - wbuf->offs - wbuf->used;
135 if (wbuf->lnum != -1 && avail >= len)
136 return 0;
137
138 /*
139 * Write buffer wasn't seek'ed or there is no enough space - look for an
140 * LEB with some empty space.
141 */
142 lnum = ubifs_find_free_space(c, len, &free, squeeze);
143 if (lnum >= 0) {
144 /* Found an LEB, add it to the journal head */
145 offs = c->leb_size - free;
146 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
147 if (err)
148 goto out_return;
149 /* A new bud was successfully allocated and added to the log */
150 goto out;
151 }
152
153 err = lnum;
154 if (err != -ENOSPC)
155 goto out_unlock;
156
157 /*
158 * No free space, we have to run garbage collector to make
159 * some. But the write-buffer mutex has to be unlocked because
160 * GC also takes it.
161 */
162 dbg_jnl("no free space jhead %d, run GC", jhead);
163 mutex_unlock(&wbuf->io_mutex);
164
165 lnum = ubifs_garbage_collect(c, 0);
166 if (lnum < 0) {
167 err = lnum;
168 if (err != -ENOSPC)
169 return err;
170
171 /*
172 * GC could not make a free LEB. But someone else may
173 * have allocated new bud for this journal head,
174 * because we dropped @wbuf->io_mutex, so try once
175 * again.
176 */
177 dbg_jnl("GC couldn't make a free LEB for jhead %d", jhead);
178 if (retries++ < 2) {
179 dbg_jnl("retry (%d)", retries);
180 goto again;
181 }
182
183 dbg_jnl("return -ENOSPC");
184 return err;
185 }
186
187 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
188 dbg_jnl("got LEB %d for jhead %d", lnum, jhead);
189 avail = c->leb_size - wbuf->offs - wbuf->used;
190
191 if (wbuf->lnum != -1 && avail >= len) {
192 /*
193 * Someone else has switched the journal head and we have
194 * enough space now. This happens when more then one process is
195 * trying to write to the same journal head at the same time.
196 */
197 dbg_jnl("return LEB %d back, already have LEB %d:%d",
198 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
199 err = ubifs_return_leb(c, lnum);
200 if (err)
201 goto out_unlock;
202 return 0;
203 }
204
205 err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
206 if (err)
207 goto out_return;
208 offs = 0;
209
210out:
211 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, UBI_SHORTTERM);
212 if (err)
213 goto out_unlock;
214
215 return 0;
216
217out_unlock:
218 mutex_unlock(&wbuf->io_mutex);
219 return err;
220
221out_return:
222 /* An error occurred and the LEB has to be returned to lprops */
223 ubifs_assert(err < 0);
224 err1 = ubifs_return_leb(c, lnum);
225 if (err1 && err == -EAGAIN)
226 /*
227 * Return original error code only if it is not %-EAGAIN,
228 * which is not really an error. Otherwise, return the error
229 * code of 'ubifs_return_leb()'.
230 */
231 err = err1;
232 mutex_unlock(&wbuf->io_mutex);
233 return err;
234}
235
236/**
237 * write_node - write node to a journal head.
238 * @c: UBIFS file-system description object
239 * @jhead: journal head
240 * @node: node to write
241 * @len: node length
242 * @lnum: LEB number written is returned here
243 * @offs: offset written is returned here
244 *
245 * This function writes a node to reserved space of journal head @jhead.
246 * Returns zero in case of success and a negative error code in case of
247 * failure.
248 */
249static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
250 int *lnum, int *offs)
251{
252 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
253
254 ubifs_assert(jhead != GCHD);
255
256 *lnum = c->jheads[jhead].wbuf.lnum;
257 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
258
259 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
260 ubifs_prepare_node(c, node, len, 0);
261
262 return ubifs_wbuf_write_nolock(wbuf, node, len);
263}
264
265/**
266 * write_head - write data to a journal head.
267 * @c: UBIFS file-system description object
268 * @jhead: journal head
269 * @buf: buffer to write
270 * @len: length to write
271 * @lnum: LEB number written is returned here
272 * @offs: offset written is returned here
273 * @sync: non-zero if the write-buffer has to by synchronized
274 *
275 * This function is the same as 'write_node()' but it does not assume the
276 * buffer it is writing is a node, so it does not prepare it (which means
277 * initializing common header and calculating CRC).
278 */
279static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
280 int *lnum, int *offs, int sync)
281{
282 int err;
283 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
284
285 ubifs_assert(jhead != GCHD);
286
287 *lnum = c->jheads[jhead].wbuf.lnum;
288 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
289 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
290
291 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
292 if (err)
293 return err;
294 if (sync)
295 err = ubifs_wbuf_sync_nolock(wbuf);
296 return err;
297}
298
299/**
300 * make_reservation - reserve journal space.
301 * @c: UBIFS file-system description object
302 * @jhead: journal head
303 * @len: how many bytes to reserve
304 *
305 * This function makes space reservation in journal head @jhead. The function
306 * takes the commit lock and locks the journal head, and the caller has to
307 * unlock the head and finish the reservation with 'finish_reservation()'.
308 * Returns zero in case of success and a negative error code in case of
309 * failure.
310 *
311 * Note, the journal head may be unlocked as soon as the data is written, while
312 * the commit lock has to be released after the data has been added to the
313 * TNC.
314 */
315static int make_reservation(struct ubifs_info *c, int jhead, int len)
316{
317 int err, cmt_retries = 0, nospc_retries = 0;
318
319again:
320 down_read(&c->commit_sem);
321 err = reserve_space(c, jhead, len);
322 if (!err)
323 return 0;
324 up_read(&c->commit_sem);
325
326 if (err == -ENOSPC) {
327 /*
328 * GC could not make any progress. We should try to commit
329 * once because it could make some dirty space and GC would
330 * make progress, so make the error -EAGAIN so that the below
331 * will commit and re-try.
332 */
333 if (nospc_retries++ < 2) {
334 dbg_jnl("no space, retry");
335 err = -EAGAIN;
336 }
337
338 /*
339 * This means that the budgeting is incorrect. We always have
340 * to be able to write to the media, because all operations are
341 * budgeted. Deletions are not budgeted, though, but we reserve
342 * an extra LEB for them.
343 */
344 }
345
346 if (err != -EAGAIN)
347 goto out;
348
349 /*
350 * -EAGAIN means that the journal is full or too large, or the above
351 * code wants to do one commit. Do this and re-try.
352 */
353 if (cmt_retries > 128) {
354 /*
355 * This should not happen unless the journal size limitations
356 * are too tough.
357 */
358 ubifs_err("stuck in space allocation");
359 err = -ENOSPC;
360 goto out;
361 } else if (cmt_retries > 32)
362 ubifs_warn("too many space allocation re-tries (%d)",
363 cmt_retries);
364
365 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
366 cmt_retries);
367 cmt_retries += 1;
368
369 err = ubifs_run_commit(c);
370 if (err)
371 return err;
372 goto again;
373
374out:
375 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
376 len, jhead, err);
377 if (err == -ENOSPC) {
378 /* This are some budgeting problems, print useful information */
379 down_write(&c->commit_sem);
380 spin_lock(&c->space_lock);
381 dbg_dump_stack();
382 dbg_dump_budg(c);
383 spin_unlock(&c->space_lock);
384 dbg_dump_lprops(c);
385 cmt_retries = dbg_check_lprops(c);
386 up_write(&c->commit_sem);
387 }
388 return err;
389}
390
391/**
392 * release_head - release a journal head.
393 * @c: UBIFS file-system description object
394 * @jhead: journal head
395 *
396 * This function releases journal head @jhead which was locked by
397 * the 'make_reservation()' function. It has to be called after each successful
398 * 'make_reservation()' invocation.
399 */
400static inline void release_head(struct ubifs_info *c, int jhead)
401{
402 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
403}
404
405/**
406 * finish_reservation - finish a reservation.
407 * @c: UBIFS file-system description object
408 *
409 * This function finishes journal space reservation. It must be called after
410 * 'make_reservation()'.
411 */
412static void finish_reservation(struct ubifs_info *c)
413{
414 up_read(&c->commit_sem);
415}
416
417/**
418 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
419 * @mode: inode mode
420 */
421static int get_dent_type(int mode)
422{
423 switch (mode & S_IFMT) {
424 case S_IFREG:
425 return UBIFS_ITYPE_REG;
426 case S_IFDIR:
427 return UBIFS_ITYPE_DIR;
428 case S_IFLNK:
429 return UBIFS_ITYPE_LNK;
430 case S_IFBLK:
431 return UBIFS_ITYPE_BLK;
432 case S_IFCHR:
433 return UBIFS_ITYPE_CHR;
434 case S_IFIFO:
435 return UBIFS_ITYPE_FIFO;
436 case S_IFSOCK:
437 return UBIFS_ITYPE_SOCK;
438 default:
439 BUG();
440 }
441 return 0;
442}
443
444/**
445 * pack_inode - pack an inode node.
446 * @c: UBIFS file-system description object
447 * @ino: buffer in which to pack inode node
448 * @inode: inode to pack
449 * @last: indicates the last node of the group
1e51764a
AB
450 */
451static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
fd6c6b51 452 const struct inode *inode, int last)
1e51764a 453{
fd6c6b51 454 int data_len = 0, last_reference = !inode->i_nlink;
1e51764a
AB
455 struct ubifs_inode *ui = ubifs_inode(inode);
456
457 ino->ch.node_type = UBIFS_INO_NODE;
458 ino_key_init_flash(c, &ino->key, inode->i_ino);
459 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
460 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
461 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
462 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
463 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
464 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
465 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
466 ino->uid = cpu_to_le32(inode->i_uid);
467 ino->gid = cpu_to_le32(inode->i_gid);
468 ino->mode = cpu_to_le32(inode->i_mode);
469 ino->flags = cpu_to_le32(ui->flags);
470 ino->size = cpu_to_le64(ui->ui_size);
471 ino->nlink = cpu_to_le32(inode->i_nlink);
472 ino->compr_type = cpu_to_le16(ui->compr_type);
473 ino->data_len = cpu_to_le32(ui->data_len);
474 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
475 ino->xattr_size = cpu_to_le32(ui->xattr_size);
476 ino->xattr_names = cpu_to_le32(ui->xattr_names);
477 zero_ino_node_unused(ino);
478
479 /*
480 * Drop the attached data if this is a deletion inode, the data is not
481 * needed anymore.
482 */
483 if (!last_reference) {
484 memcpy(ino->data, ui->data, ui->data_len);
485 data_len = ui->data_len;
486 }
487
488 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
489}
490
491/**
492 * mark_inode_clean - mark UBIFS inode as clean.
493 * @c: UBIFS file-system description object
494 * @ui: UBIFS inode to mark as clean
495 *
496 * This helper function marks UBIFS inode @ui as clean by cleaning the
497 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
498 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
499 * just do nothing.
500 */
501static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
502{
503 if (ui->dirty)
504 ubifs_release_dirty_inode_budget(c, ui);
505 ui->dirty = 0;
506}
507
508/**
509 * ubifs_jnl_update - update inode.
510 * @c: UBIFS file-system description object
511 * @dir: parent inode or host inode in case of extended attributes
512 * @nm: directory entry name
513 * @inode: inode to update
514 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
515 * @xent: non-zero if the directory entry is an extended attribute entry
516 *
517 * This function updates an inode by writing a directory entry (or extended
518 * attribute entry), the inode itself, and the parent directory inode (or the
519 * host inode) to the journal.
520 *
521 * The function writes the host inode @dir last, which is important in case of
522 * extended attributes. Indeed, then we guarantee that if the host inode gets
523 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
524 * the extended attribute inode gets flushed too. And this is exactly what the
525 * user expects - synchronizing the host inode synchronizes its extended
526 * attributes. Similarly, this guarantees that if @dir is synchronized, its
527 * directory entry corresponding to @nm gets synchronized too.
528 *
529 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
530 * function synchronizes the write-buffer.
531 *
532 * This function marks the @dir and @inode inodes as clean and returns zero on
533 * success. In case of failure, a negative error code is returned.
534 */
535int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
536 const struct qstr *nm, const struct inode *inode,
537 int deletion, int xent)
538{
539 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
540 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
541 int last_reference = !!(deletion && inode->i_nlink == 0);
542 struct ubifs_inode *ui = ubifs_inode(inode);
543 struct ubifs_inode *dir_ui = ubifs_inode(dir);
544 struct ubifs_dent_node *dent;
545 struct ubifs_ino_node *ino;
546 union ubifs_key dent_key, ino_key;
547
548 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
549 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
550 ubifs_assert(dir_ui->data_len == 0);
551 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
552
553 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
554 ilen = UBIFS_INO_NODE_SZ;
555
556 /*
557 * If the last reference to the inode is being deleted, then there is
558 * no need to attach and write inode data, it is being deleted anyway.
559 * And if the inode is being deleted, no need to synchronize
560 * write-buffer even if the inode is synchronous.
561 */
562 if (!last_reference) {
563 ilen += ui->data_len;
564 sync |= IS_SYNC(inode);
565 }
566
567 aligned_dlen = ALIGN(dlen, 8);
568 aligned_ilen = ALIGN(ilen, 8);
569 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
570 dent = kmalloc(len, GFP_NOFS);
571 if (!dent)
572 return -ENOMEM;
573
574 /* Make reservation before allocating sequence numbers */
575 err = make_reservation(c, BASEHD, len);
576 if (err)
577 goto out_free;
578
579 if (!xent) {
580 dent->ch.node_type = UBIFS_DENT_NODE;
581 dent_key_init(c, &dent_key, dir->i_ino, nm);
582 } else {
583 dent->ch.node_type = UBIFS_XENT_NODE;
584 xent_key_init(c, &dent_key, dir->i_ino, nm);
585 }
586
587 key_write(c, &dent_key, dent->key);
588 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
589 dent->type = get_dent_type(inode->i_mode);
590 dent->nlen = cpu_to_le16(nm->len);
591 memcpy(dent->name, nm->name, nm->len);
592 dent->name[nm->len] = '\0';
593 zero_dent_node_unused(dent);
594 ubifs_prep_grp_node(c, dent, dlen, 0);
595
596 ino = (void *)dent + aligned_dlen;
fd6c6b51 597 pack_inode(c, ino, inode, 0);
1e51764a 598 ino = (void *)ino + aligned_ilen;
fd6c6b51 599 pack_inode(c, ino, dir, 1);
1e51764a
AB
600
601 if (last_reference) {
602 err = ubifs_add_orphan(c, inode->i_ino);
603 if (err) {
604 release_head(c, BASEHD);
605 goto out_finish;
606 }
de94eb55 607 ui->del_cmtno = c->cmt_no;
1e51764a
AB
608 }
609
610 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
611 if (err)
612 goto out_release;
613 if (!sync) {
614 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
615
616 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
617 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
618 }
619 release_head(c, BASEHD);
620 kfree(dent);
621
622 if (deletion) {
623 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
624 if (err)
625 goto out_ro;
626 err = ubifs_add_dirt(c, lnum, dlen);
627 } else
628 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
629 if (err)
630 goto out_ro;
631
632 /*
633 * Note, we do not remove the inode from TNC even if the last reference
634 * to it has just been deleted, because the inode may still be opened.
635 * Instead, the inode has been added to orphan lists and the orphan
636 * subsystem will take further care about it.
637 */
638 ino_key_init(c, &ino_key, inode->i_ino);
639 ino_offs = dent_offs + aligned_dlen;
640 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
641 if (err)
642 goto out_ro;
643
644 ino_key_init(c, &ino_key, dir->i_ino);
645 ino_offs += aligned_ilen;
646 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
647 if (err)
648 goto out_ro;
649
650 finish_reservation(c);
651 spin_lock(&ui->ui_lock);
652 ui->synced_i_size = ui->ui_size;
653 spin_unlock(&ui->ui_lock);
654 mark_inode_clean(c, ui);
655 mark_inode_clean(c, dir_ui);
656 return 0;
657
658out_finish:
659 finish_reservation(c);
660out_free:
661 kfree(dent);
662 return err;
663
664out_release:
665 release_head(c, BASEHD);
666out_ro:
667 ubifs_ro_mode(c, err);
668 if (last_reference)
669 ubifs_delete_orphan(c, inode->i_ino);
670 finish_reservation(c);
671 return err;
672}
673
674/**
675 * ubifs_jnl_write_data - write a data node to the journal.
676 * @c: UBIFS file-system description object
677 * @inode: inode the data node belongs to
678 * @key: node key
679 * @buf: buffer to write
680 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
681 *
682 * This function writes a data node to the journal. Returns %0 if the data node
683 * was successfully written, and a negative error code in case of failure.
684 */
685int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
686 const union ubifs_key *key, const void *buf, int len)
687{
688 struct ubifs_data_node *data;
689 int err, lnum, offs, compr_type, out_len;
690 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
691 struct ubifs_inode *ui = ubifs_inode(inode);
692
e84461ad
AB
693 dbg_jnl("ino %lu, blk %u, len %d, key %s",
694 (unsigned long)key_inum(c, key), key_block(c, key), len,
695 DBGKEY(key));
1e51764a
AB
696 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
697
698 data = kmalloc(dlen, GFP_NOFS);
699 if (!data)
700 return -ENOMEM;
701
702 data->ch.node_type = UBIFS_DATA_NODE;
703 key_write(c, key, &data->key);
704 data->size = cpu_to_le32(len);
705 zero_data_node_unused(data);
706
707 if (!(ui->flags && UBIFS_COMPR_FL))
708 /* Compression is disabled for this inode */
709 compr_type = UBIFS_COMPR_NONE;
710 else
711 compr_type = ui->compr_type;
712
713 out_len = dlen - UBIFS_DATA_NODE_SZ;
714 ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
715 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
716
717 dlen = UBIFS_DATA_NODE_SZ + out_len;
718 data->compr_type = cpu_to_le16(compr_type);
719
720 /* Make reservation before allocating sequence numbers */
721 err = make_reservation(c, DATAHD, dlen);
722 if (err)
723 goto out_free;
724
725 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
726 if (err)
727 goto out_release;
728 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
729 release_head(c, DATAHD);
730
731 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
732 if (err)
733 goto out_ro;
734
735 finish_reservation(c);
736 kfree(data);
737 return 0;
738
739out_release:
740 release_head(c, DATAHD);
741out_ro:
742 ubifs_ro_mode(c, err);
743 finish_reservation(c);
744out_free:
745 kfree(data);
746 return err;
747}
748
749/**
750 * ubifs_jnl_write_inode - flush inode to the journal.
751 * @c: UBIFS file-system description object
752 * @inode: inode to flush
1e51764a
AB
753 *
754 * This function writes inode @inode to the journal. If the inode is
755 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
756 * success and a negative error code in case of failure.
757 */
1f28681a 758int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
1e51764a 759{
1f28681a 760 int err, lnum, offs;
1e51764a
AB
761 struct ubifs_ino_node *ino;
762 struct ubifs_inode *ui = ubifs_inode(inode);
1f28681a 763 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
1e51764a 764
1f28681a 765 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
1e51764a 766
1e51764a
AB
767 /*
768 * If the inode is being deleted, do not write the attached data. No
769 * need to synchronize the write-buffer either.
770 */
1f28681a 771 if (!last_reference) {
1e51764a
AB
772 len += ui->data_len;
773 sync = IS_SYNC(inode);
774 }
775 ino = kmalloc(len, GFP_NOFS);
776 if (!ino)
777 return -ENOMEM;
778
779 /* Make reservation before allocating sequence numbers */
780 err = make_reservation(c, BASEHD, len);
781 if (err)
782 goto out_free;
783
fd6c6b51 784 pack_inode(c, ino, inode, 1);
1e51764a
AB
785 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
786 if (err)
787 goto out_release;
788 if (!sync)
789 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
790 inode->i_ino);
791 release_head(c, BASEHD);
792
1f28681a 793 if (last_reference) {
1e51764a
AB
794 err = ubifs_tnc_remove_ino(c, inode->i_ino);
795 if (err)
796 goto out_ro;
797 ubifs_delete_orphan(c, inode->i_ino);
798 err = ubifs_add_dirt(c, lnum, len);
799 } else {
800 union ubifs_key key;
801
802 ino_key_init(c, &key, inode->i_ino);
803 err = ubifs_tnc_add(c, &key, lnum, offs, len);
804 }
805 if (err)
806 goto out_ro;
807
808 finish_reservation(c);
809 spin_lock(&ui->ui_lock);
810 ui->synced_i_size = ui->ui_size;
811 spin_unlock(&ui->ui_lock);
812 kfree(ino);
813 return 0;
814
815out_release:
816 release_head(c, BASEHD);
817out_ro:
818 ubifs_ro_mode(c, err);
819 finish_reservation(c);
820out_free:
821 kfree(ino);
822 return err;
823}
824
de94eb55 825/**
7d62ff2c 826 * ubifs_jnl_delete_inode - delete an inode.
de94eb55
AB
827 * @c: UBIFS file-system description object
828 * @inode: inode to delete
829 *
830 * This function deletes inode @inode which includes removing it from orphans,
831 * deleting it from TNC and, in some cases, writing a deletion inode to the
832 * journal.
833 *
834 * When regular file inodes are unlinked or a directory inode is removed, the
7d62ff2c 835 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
de94eb55
AB
836 * direntry to the media, and adds the inode to orphans. After this, when the
837 * last reference to this inode has been dropped, this function is called. In
838 * general, it has to write one more deletion inode to the media, because if
839 * a commit happened between 'ubifs_jnl_update()' and
840 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
7d62ff2c
AH
841 * anymore, and in fact it might not be on the flash anymore, because it might
842 * have been garbage-collected already. And for optimization reasons UBIFS does
de94eb55
AB
843 * not read the orphan area if it has been unmounted cleanly, so it would have
844 * no indication in the journal that there is a deleted inode which has to be
845 * removed from TNC.
846 *
847 * However, if there was no commit between 'ubifs_jnl_update()' and
848 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
7d62ff2c 849 * inode to the media for the second time. And this is quite a typical case.
de94eb55
AB
850 *
851 * This function returns zero in case of success and a negative error code in
852 * case of failure.
853 */
854int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
855{
856 int err;
857 struct ubifs_inode *ui = ubifs_inode(inode);
858
859 ubifs_assert(inode->i_nlink == 0);
860
861 if (ui->del_cmtno != c->cmt_no)
862 /* A commit happened for sure */
863 return ubifs_jnl_write_inode(c, inode);
864
865 down_read(&c->commit_sem);
866 /*
867 * Check commit number again, because the first test has been done
868 * without @c->commit_sem, so a commit might have happened.
869 */
870 if (ui->del_cmtno != c->cmt_no) {
871 up_read(&c->commit_sem);
872 return ubifs_jnl_write_inode(c, inode);
873 }
874
de94eb55
AB
875 err = ubifs_tnc_remove_ino(c, inode->i_ino);
876 if (err)
877 ubifs_ro_mode(c, err);
f7691084
AH
878 else
879 ubifs_delete_orphan(c, inode->i_ino);
de94eb55
AB
880 up_read(&c->commit_sem);
881 return err;
882}
883
1e51764a
AB
884/**
885 * ubifs_jnl_rename - rename a directory entry.
886 * @c: UBIFS file-system description object
887 * @old_dir: parent inode of directory entry to rename
888 * @old_dentry: directory entry to rename
889 * @new_dir: parent inode of directory entry to rename
890 * @new_dentry: new directory entry (or directory entry to replace)
891 * @sync: non-zero if the write-buffer has to be synchronized
892 *
893 * This function implements the re-name operation which may involve writing up
894 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
895 * and returns zero on success. In case of failure, a negative error code is
896 * returned.
897 */
898int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
899 const struct dentry *old_dentry,
900 const struct inode *new_dir,
901 const struct dentry *new_dentry, int sync)
902{
903 void *p;
904 union ubifs_key key;
905 struct ubifs_dent_node *dent, *dent2;
906 int err, dlen1, dlen2, ilen, lnum, offs, len;
907 const struct inode *old_inode = old_dentry->d_inode;
908 const struct inode *new_inode = new_dentry->d_inode;
909 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
910 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
911 int move = (old_dir != new_dir);
912 struct ubifs_inode *uninitialized_var(new_ui);
913
914 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
915 old_dentry->d_name.len, old_dentry->d_name.name,
916 old_dir->i_ino, new_dentry->d_name.len,
917 new_dentry->d_name.name, new_dir->i_ino);
918 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
919 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
920 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
921 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
922
923 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
924 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
925 if (new_inode) {
926 new_ui = ubifs_inode(new_inode);
927 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
928 ilen = UBIFS_INO_NODE_SZ;
929 if (!last_reference)
930 ilen += new_ui->data_len;
931 } else
932 ilen = 0;
933
934 aligned_dlen1 = ALIGN(dlen1, 8);
935 aligned_dlen2 = ALIGN(dlen2, 8);
936 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
937 if (old_dir != new_dir)
938 len += plen;
939 dent = kmalloc(len, GFP_NOFS);
940 if (!dent)
941 return -ENOMEM;
942
943 /* Make reservation before allocating sequence numbers */
944 err = make_reservation(c, BASEHD, len);
945 if (err)
946 goto out_free;
947
948 /* Make new dent */
949 dent->ch.node_type = UBIFS_DENT_NODE;
950 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
951 dent->inum = cpu_to_le64(old_inode->i_ino);
952 dent->type = get_dent_type(old_inode->i_mode);
953 dent->nlen = cpu_to_le16(new_dentry->d_name.len);
954 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
955 dent->name[new_dentry->d_name.len] = '\0';
956 zero_dent_node_unused(dent);
957 ubifs_prep_grp_node(c, dent, dlen1, 0);
958
959 /* Make deletion dent */
960 dent2 = (void *)dent + aligned_dlen1;
961 dent2->ch.node_type = UBIFS_DENT_NODE;
962 dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
963 &old_dentry->d_name);
964 dent2->inum = 0;
965 dent2->type = DT_UNKNOWN;
966 dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
967 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
968 dent2->name[old_dentry->d_name.len] = '\0';
969 zero_dent_node_unused(dent2);
970 ubifs_prep_grp_node(c, dent2, dlen2, 0);
971
972 p = (void *)dent2 + aligned_dlen2;
973 if (new_inode) {
fd6c6b51 974 pack_inode(c, p, new_inode, 0);
1e51764a
AB
975 p += ALIGN(ilen, 8);
976 }
977
978 if (!move)
fd6c6b51 979 pack_inode(c, p, old_dir, 1);
1e51764a 980 else {
fd6c6b51 981 pack_inode(c, p, old_dir, 0);
1e51764a 982 p += ALIGN(plen, 8);
fd6c6b51 983 pack_inode(c, p, new_dir, 1);
1e51764a
AB
984 }
985
986 if (last_reference) {
987 err = ubifs_add_orphan(c, new_inode->i_ino);
988 if (err) {
989 release_head(c, BASEHD);
990 goto out_finish;
991 }
de94eb55 992 new_ui->del_cmtno = c->cmt_no;
1e51764a
AB
993 }
994
995 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
996 if (err)
997 goto out_release;
998 if (!sync) {
999 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1000
1001 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1002 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1003 if (new_inode)
1004 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1005 new_inode->i_ino);
1006 }
1007 release_head(c, BASEHD);
1008
1009 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1010 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1011 if (err)
1012 goto out_ro;
1013
1014 err = ubifs_add_dirt(c, lnum, dlen2);
1015 if (err)
1016 goto out_ro;
1017
1018 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1019 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1020 if (err)
1021 goto out_ro;
1022
1023 offs += aligned_dlen1 + aligned_dlen2;
1024 if (new_inode) {
1025 ino_key_init(c, &key, new_inode->i_ino);
1026 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1027 if (err)
1028 goto out_ro;
1029 offs += ALIGN(ilen, 8);
1030 }
1031
1032 ino_key_init(c, &key, old_dir->i_ino);
1033 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1034 if (err)
1035 goto out_ro;
1036
1037 if (old_dir != new_dir) {
1038 offs += ALIGN(plen, 8);
1039 ino_key_init(c, &key, new_dir->i_ino);
1040 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1041 if (err)
1042 goto out_ro;
1043 }
1044
1045 finish_reservation(c);
1046 if (new_inode) {
1047 mark_inode_clean(c, new_ui);
1048 spin_lock(&new_ui->ui_lock);
1049 new_ui->synced_i_size = new_ui->ui_size;
1050 spin_unlock(&new_ui->ui_lock);
1051 }
1052 mark_inode_clean(c, ubifs_inode(old_dir));
1053 if (move)
1054 mark_inode_clean(c, ubifs_inode(new_dir));
1055 kfree(dent);
1056 return 0;
1057
1058out_release:
1059 release_head(c, BASEHD);
1060out_ro:
1061 ubifs_ro_mode(c, err);
1062 if (last_reference)
1063 ubifs_delete_orphan(c, new_inode->i_ino);
1064out_finish:
1065 finish_reservation(c);
1066out_free:
1067 kfree(dent);
1068 return err;
1069}
1070
1071/**
1072 * recomp_data_node - re-compress a truncated data node.
1073 * @dn: data node to re-compress
1074 * @new_len: new length
1075 *
1076 * This function is used when an inode is truncated and the last data node of
1077 * the inode has to be re-compressed and re-written.
1078 */
1079static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1080{
1081 void *buf;
1082 int err, len, compr_type, out_len;
1083
1084 out_len = le32_to_cpu(dn->size);
1085 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1086 if (!buf)
1087 return -ENOMEM;
1088
1089 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1090 compr_type = le16_to_cpu(dn->compr_type);
1091 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1092 if (err)
1093 goto out;
1094
1095 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1096 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1097 dn->compr_type = cpu_to_le16(compr_type);
1098 dn->size = cpu_to_le32(*new_len);
1099 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1100out:
1101 kfree(buf);
1102 return err;
1103}
1104
1105/**
1106 * ubifs_jnl_truncate - update the journal for a truncation.
1107 * @c: UBIFS file-system description object
1108 * @inode: inode to truncate
1109 * @old_size: old size
1110 * @new_size: new size
1111 *
1112 * When the size of a file decreases due to truncation, a truncation node is
1113 * written, the journal tree is updated, and the last data block is re-written
1114 * if it has been affected. The inode is also updated in order to synchronize
1115 * the new inode size.
1116 *
1117 * This function marks the inode as clean and returns zero on success. In case
1118 * of failure, a negative error code is returned.
1119 */
1120int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1121 loff_t old_size, loff_t new_size)
1122{
1123 union ubifs_key key, to_key;
1124 struct ubifs_ino_node *ino;
1125 struct ubifs_trun_node *trun;
1126 struct ubifs_data_node *uninitialized_var(dn);
1127 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1128 struct ubifs_inode *ui = ubifs_inode(inode);
1129 ino_t inum = inode->i_ino;
1130 unsigned int blk;
1131
e84461ad
AB
1132 dbg_jnl("ino %lu, size %lld -> %lld",
1133 (unsigned long)inum, old_size, new_size);
1e51764a
AB
1134 ubifs_assert(!ui->data_len);
1135 ubifs_assert(S_ISREG(inode->i_mode));
1136 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1137
1138 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1139 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1140 ino = kmalloc(sz, GFP_NOFS);
1141 if (!ino)
1142 return -ENOMEM;
1143
1144 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1145 trun->ch.node_type = UBIFS_TRUN_NODE;
1146 trun->inum = cpu_to_le32(inum);
1147 trun->old_size = cpu_to_le64(old_size);
1148 trun->new_size = cpu_to_le64(new_size);
1149 zero_trun_node_unused(trun);
1150
1151 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1152 if (dlen) {
1153 /* Get last data block so it can be truncated */
1154 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1155 blk = new_size >> UBIFS_BLOCK_SHIFT;
1156 data_key_init(c, &key, inum, blk);
1157 dbg_jnl("last block key %s", DBGKEY(&key));
1158 err = ubifs_tnc_lookup(c, &key, dn);
1159 if (err == -ENOENT)
1160 dlen = 0; /* Not found (so it is a hole) */
1161 else if (err)
1162 goto out_free;
1163 else {
1164 if (le32_to_cpu(dn->size) <= dlen)
1165 dlen = 0; /* Nothing to do */
1166 else {
1167 int compr_type = le16_to_cpu(dn->compr_type);
1168
1169 if (compr_type != UBIFS_COMPR_NONE) {
1170 err = recomp_data_node(dn, &dlen);
1171 if (err)
1172 goto out_free;
1173 } else {
1174 dn->size = cpu_to_le32(dlen);
1175 dlen += UBIFS_DATA_NODE_SZ;
1176 }
1177 zero_data_node_unused(dn);
1178 }
1179 }
1180 }
1181
1182 /* Must make reservation before allocating sequence numbers */
1183 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1184 if (dlen)
1185 len += dlen;
1186 err = make_reservation(c, BASEHD, len);
1187 if (err)
1188 goto out_free;
1189
fd6c6b51 1190 pack_inode(c, ino, inode, 0);
1e51764a
AB
1191 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1192 if (dlen)
1193 ubifs_prep_grp_node(c, dn, dlen, 1);
1194
1195 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1196 if (err)
1197 goto out_release;
1198 if (!sync)
1199 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1200 release_head(c, BASEHD);
1201
1202 if (dlen) {
1203 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1204 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1205 if (err)
1206 goto out_ro;
1207 }
1208
1209 ino_key_init(c, &key, inum);
1210 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1211 if (err)
1212 goto out_ro;
1213
1214 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1215 if (err)
1216 goto out_ro;
1217
1218 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1219 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1220 data_key_init(c, &key, inum, blk);
1221
1222 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1223 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0: 1);
1224 data_key_init(c, &to_key, inum, blk);
1225
1226 err = ubifs_tnc_remove_range(c, &key, &to_key);
1227 if (err)
1228 goto out_ro;
1229
1230 finish_reservation(c);
1231 spin_lock(&ui->ui_lock);
1232 ui->synced_i_size = ui->ui_size;
1233 spin_unlock(&ui->ui_lock);
1234 mark_inode_clean(c, ui);
1235 kfree(ino);
1236 return 0;
1237
1238out_release:
1239 release_head(c, BASEHD);
1240out_ro:
1241 ubifs_ro_mode(c, err);
1242 finish_reservation(c);
1243out_free:
1244 kfree(ino);
1245 return err;
1246}
1247
1248#ifdef CONFIG_UBIFS_FS_XATTR
1249
1250/**
1251 * ubifs_jnl_delete_xattr - delete an extended attribute.
1252 * @c: UBIFS file-system description object
1253 * @host: host inode
1254 * @inode: extended attribute inode
1255 * @nm: extended attribute entry name
1256 *
1257 * This function delete an extended attribute which is very similar to
1258 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1259 * updates the target inode. Returns zero in case of success and a negative
1260 * error code in case of failure.
1261 */
1262int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1263 const struct inode *inode, const struct qstr *nm)
1264{
1265 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1266 struct ubifs_dent_node *xent;
1267 struct ubifs_ino_node *ino;
1268 union ubifs_key xent_key, key1, key2;
1269 int sync = IS_DIRSYNC(host);
1270 struct ubifs_inode *host_ui = ubifs_inode(host);
1271
1272 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1273 host->i_ino, inode->i_ino, nm->name,
1274 ubifs_inode(inode)->data_len);
1275 ubifs_assert(inode->i_nlink == 0);
1276 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1277
1278 /*
1279 * Since we are deleting the inode, we do not bother to attach any data
1280 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1281 */
1282 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1283 aligned_xlen = ALIGN(xlen, 8);
1284 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1285 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1286
1287 xent = kmalloc(len, GFP_NOFS);
1288 if (!xent)
1289 return -ENOMEM;
1290
1291 /* Make reservation before allocating sequence numbers */
1292 err = make_reservation(c, BASEHD, len);
1293 if (err) {
1294 kfree(xent);
1295 return err;
1296 }
1297
1298 xent->ch.node_type = UBIFS_XENT_NODE;
1299 xent_key_init(c, &xent_key, host->i_ino, nm);
1300 key_write(c, &xent_key, xent->key);
1301 xent->inum = 0;
1302 xent->type = get_dent_type(inode->i_mode);
1303 xent->nlen = cpu_to_le16(nm->len);
1304 memcpy(xent->name, nm->name, nm->len);
1305 xent->name[nm->len] = '\0';
1306 zero_dent_node_unused(xent);
1307 ubifs_prep_grp_node(c, xent, xlen, 0);
1308
1309 ino = (void *)xent + aligned_xlen;
fd6c6b51 1310 pack_inode(c, ino, inode, 0);
1e51764a 1311 ino = (void *)ino + UBIFS_INO_NODE_SZ;
fd6c6b51 1312 pack_inode(c, ino, host, 1);
1e51764a
AB
1313
1314 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1315 if (!sync && !err)
1316 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1317 release_head(c, BASEHD);
1318 kfree(xent);
1319 if (err)
1320 goto out_ro;
1321
1322 /* Remove the extended attribute entry from TNC */
1323 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1324 if (err)
1325 goto out_ro;
1326 err = ubifs_add_dirt(c, lnum, xlen);
1327 if (err)
1328 goto out_ro;
1329
1330 /*
1331 * Remove all nodes belonging to the extended attribute inode from TNC.
1332 * Well, there actually must be only one node - the inode itself.
1333 */
1334 lowest_ino_key(c, &key1, inode->i_ino);
1335 highest_ino_key(c, &key2, inode->i_ino);
1336 err = ubifs_tnc_remove_range(c, &key1, &key2);
1337 if (err)
1338 goto out_ro;
1339 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1340 if (err)
1341 goto out_ro;
1342
1343 /* And update TNC with the new host inode position */
1344 ino_key_init(c, &key1, host->i_ino);
1345 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1346 if (err)
1347 goto out_ro;
1348
1349 finish_reservation(c);
1350 spin_lock(&host_ui->ui_lock);
1351 host_ui->synced_i_size = host_ui->ui_size;
1352 spin_unlock(&host_ui->ui_lock);
1353 mark_inode_clean(c, host_ui);
1354 return 0;
1355
1356out_ro:
1357 ubifs_ro_mode(c, err);
1358 finish_reservation(c);
1359 return err;
1360}
1361
1362/**
1363 * ubifs_jnl_change_xattr - change an extended attribute.
1364 * @c: UBIFS file-system description object
1365 * @inode: extended attribute inode
1366 * @host: host inode
1367 *
1368 * This function writes the updated version of an extended attribute inode and
1369 * the host inode tho the journal (to the base head). The host inode is written
1370 * after the extended attribute inode in order to guarantee that the extended
1371 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1372 * consequently, the write-buffer is synchronized. This function returns zero
1373 * in case of success and a negative error code in case of failure.
1374 */
1375int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1376 const struct inode *host)
1377{
1378 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
c78c7e35 1379 struct ubifs_inode *host_ui = ubifs_inode(host);
1e51764a
AB
1380 struct ubifs_ino_node *ino;
1381 union ubifs_key key;
1382 int sync = IS_DIRSYNC(host);
1383
1384 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1385 ubifs_assert(host->i_nlink > 0);
1386 ubifs_assert(inode->i_nlink > 0);
1387 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1388
1389 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1390 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1391 aligned_len1 = ALIGN(len1, 8);
1392 aligned_len = aligned_len1 + ALIGN(len2, 8);
1393
1394 ino = kmalloc(aligned_len, GFP_NOFS);
1395 if (!ino)
1396 return -ENOMEM;
1397
1398 /* Make reservation before allocating sequence numbers */
1399 err = make_reservation(c, BASEHD, aligned_len);
1400 if (err)
1401 goto out_free;
1402
fd6c6b51
AB
1403 pack_inode(c, ino, host, 0);
1404 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1e51764a
AB
1405
1406 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1407 if (!sync && !err) {
1408 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1409
1410 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1411 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1412 }
1413 release_head(c, BASEHD);
1414 if (err)
1415 goto out_ro;
1416
1417 ino_key_init(c, &key, host->i_ino);
1418 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1419 if (err)
1420 goto out_ro;
1421
1422 ino_key_init(c, &key, inode->i_ino);
1423 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1424 if (err)
1425 goto out_ro;
1426
1427 finish_reservation(c);
1428 spin_lock(&host_ui->ui_lock);
1429 host_ui->synced_i_size = host_ui->ui_size;
1430 spin_unlock(&host_ui->ui_lock);
1431 mark_inode_clean(c, host_ui);
1432 kfree(ino);
1433 return 0;
1434
1435out_ro:
1436 ubifs_ro_mode(c, err);
1437 finish_reservation(c);
1438out_free:
1439 kfree(ino);
1440 return err;
1441}
1442
1443#endif /* CONFIG_UBIFS_FS_XATTR */