UBIFS: do not allocate too much
[linux-2.6-block.git] / fs / ubifs / file.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements VFS file and inode operations of regular files, device
25 * nodes and symlinks as well as address space operations.
26 *
27 * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
28 * page is dirty and is used for budgeting purposes - dirty pages should not be
29 * budgeted. The PG_checked flag is set if full budgeting is required for the
30 * page e.g., when it corresponds to a file hole or it is just beyond the file
31 * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
32 * fail in this function, and the budget is released in 'ubifs_write_end()'. So
33 * the PG_private and PG_checked flags carry the information about how the page
34 * was budgeted, to make it possible to release the budget properly.
35 *
36 * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
37 * we implement. However, this is not true for '->writepage()', which might be
38 * called with 'i_mutex' unlocked. For example, when pdflush is performing
39 * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
40 * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
41 * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
42 * path'. So, in '->writepage()' we are only guaranteed that the page is
43 * locked.
44 *
45 * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
46 * readahead path does not have it locked ("sys_read -> generic_file_aio_read
47 * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
48 * not set as well. However, UBIFS disables readahead.
49 *
50 * This, for example means that there might be 2 concurrent '->writepage()'
51 * calls for the same inode, but different inode dirty pages.
52 */
53
54#include "ubifs.h"
55#include <linux/mount.h>
3f8206d4 56#include <linux/namei.h>
1e51764a
AB
57
58static int read_block(struct inode *inode, void *addr, unsigned int block,
59 struct ubifs_data_node *dn)
60{
61 struct ubifs_info *c = inode->i_sb->s_fs_info;
62 int err, len, out_len;
63 union ubifs_key key;
64 unsigned int dlen;
65
66 data_key_init(c, &key, inode->i_ino, block);
67 err = ubifs_tnc_lookup(c, &key, dn);
68 if (err) {
69 if (err == -ENOENT)
70 /* Not found, so it must be a hole */
71 memset(addr, 0, UBIFS_BLOCK_SIZE);
72 return err;
73 }
74
0ecb9529 75 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > ubifs_inode(inode)->creat_sqnum);
1e51764a
AB
76
77 len = le32_to_cpu(dn->size);
78 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 goto dump;
80
81 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 out_len = UBIFS_BLOCK_SIZE;
83 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 le16_to_cpu(dn->compr_type));
85 if (err || len != out_len)
86 goto dump;
87
88 /*
89 * Data length can be less than a full block, even for blocks that are
90 * not the last in the file (e.g., as a result of making a hole and
91 * appending data). Ensure that the remainder is zeroed out.
92 */
93 if (len < UBIFS_BLOCK_SIZE)
94 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95
96 return 0;
97
98dump:
99 ubifs_err("bad data node (block %u, inode %lu)",
100 block, inode->i_ino);
101 dbg_dump_node(c, dn);
102 return -EINVAL;
103}
104
105static int do_readpage(struct page *page)
106{
107 void *addr;
108 int err = 0, i;
109 unsigned int block, beyond;
110 struct ubifs_data_node *dn;
111 struct inode *inode = page->mapping->host;
112 loff_t i_size = i_size_read(inode);
113
114 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 inode->i_ino, page->index, i_size, page->flags);
116 ubifs_assert(!PageChecked(page));
117 ubifs_assert(!PagePrivate(page));
118
119 addr = kmap(page);
120
121 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 if (block >= beyond) {
124 /* Reading beyond inode */
125 SetPageChecked(page);
126 memset(addr, 0, PAGE_CACHE_SIZE);
127 goto out;
128 }
129
130 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 if (!dn) {
132 err = -ENOMEM;
133 goto error;
134 }
135
136 i = 0;
137 while (1) {
138 int ret;
139
140 if (block >= beyond) {
141 /* Reading beyond inode */
142 err = -ENOENT;
143 memset(addr, 0, UBIFS_BLOCK_SIZE);
144 } else {
145 ret = read_block(inode, addr, block, dn);
146 if (ret) {
147 err = ret;
148 if (err != -ENOENT)
149 break;
ed382d58
AH
150 } else if (block + 1 == beyond) {
151 int dlen = le32_to_cpu(dn->size);
152 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
153
154 if (ilen && ilen < dlen)
155 memset(addr + ilen, 0, dlen - ilen);
1e51764a
AB
156 }
157 }
158 if (++i >= UBIFS_BLOCKS_PER_PAGE)
159 break;
160 block += 1;
161 addr += UBIFS_BLOCK_SIZE;
162 }
163 if (err) {
164 if (err == -ENOENT) {
165 /* Not found, so it must be a hole */
166 SetPageChecked(page);
167 dbg_gen("hole");
168 goto out_free;
169 }
170 ubifs_err("cannot read page %lu of inode %lu, error %d",
171 page->index, inode->i_ino, err);
172 goto error;
173 }
174
175out_free:
176 kfree(dn);
177out:
178 SetPageUptodate(page);
179 ClearPageError(page);
180 flush_dcache_page(page);
181 kunmap(page);
182 return 0;
183
184error:
185 kfree(dn);
186 ClearPageUptodate(page);
187 SetPageError(page);
188 flush_dcache_page(page);
189 kunmap(page);
190 return err;
191}
192
193/**
194 * release_new_page_budget - release budget of a new page.
195 * @c: UBIFS file-system description object
196 *
197 * This is a helper function which releases budget corresponding to the budget
198 * of one new page of data.
199 */
200static void release_new_page_budget(struct ubifs_info *c)
201{
202 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203
204 ubifs_release_budget(c, &req);
205}
206
207/**
208 * release_existing_page_budget - release budget of an existing page.
209 * @c: UBIFS file-system description object
210 *
211 * This is a helper function which releases budget corresponding to the budget
212 * of changing one one page of data which already exists on the flash media.
213 */
214static void release_existing_page_budget(struct ubifs_info *c)
215{
216 struct ubifs_budget_req req = { .dd_growth = c->page_budget};
217
218 ubifs_release_budget(c, &req);
219}
220
221static int write_begin_slow(struct address_space *mapping,
222 loff_t pos, unsigned len, struct page **pagep)
223{
224 struct inode *inode = mapping->host;
225 struct ubifs_info *c = inode->i_sb->s_fs_info;
226 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
227 struct ubifs_budget_req req = { .new_page = 1 };
228 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
229 struct page *page;
230
231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
232 inode->i_ino, pos, len, inode->i_size);
233
234 /*
235 * At the slow path we have to budget before locking the page, because
236 * budgeting may force write-back, which would wait on locked pages and
237 * deadlock if we had the page locked. At this point we do not know
238 * anything about the page, so assume that this is a new page which is
239 * written to a hole. This corresponds to largest budget. Later the
240 * budget will be amended if this is not true.
241 */
242 if (appending)
243 /* We are appending data, budget for inode change */
244 req.dirtied_ino = 1;
245
246 err = ubifs_budget_space(c, &req);
247 if (unlikely(err))
248 return err;
249
250 page = __grab_cache_page(mapping, index);
251 if (unlikely(!page)) {
252 ubifs_release_budget(c, &req);
253 return -ENOMEM;
254 }
255
256 if (!PageUptodate(page)) {
257 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
258 SetPageChecked(page);
259 else {
260 err = do_readpage(page);
261 if (err) {
262 unlock_page(page);
263 page_cache_release(page);
264 return err;
265 }
266 }
267
268 SetPageUptodate(page);
269 ClearPageError(page);
270 }
271
272 if (PagePrivate(page))
273 /*
274 * The page is dirty, which means it was budgeted twice:
275 * o first time the budget was allocated by the task which
276 * made the page dirty and set the PG_private flag;
277 * o and then we budgeted for it for the second time at the
278 * very beginning of this function.
279 *
280 * So what we have to do is to release the page budget we
281 * allocated.
282 */
283 release_new_page_budget(c);
284 else if (!PageChecked(page))
285 /*
286 * We are changing a page which already exists on the media.
287 * This means that changing the page does not make the amount
288 * of indexing information larger, and this part of the budget
289 * which we have already acquired may be released.
290 */
291 ubifs_convert_page_budget(c);
292
293 if (appending) {
294 struct ubifs_inode *ui = ubifs_inode(inode);
295
296 /*
297 * 'ubifs_write_end()' is optimized from the fast-path part of
298 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
299 * if data is appended.
300 */
301 mutex_lock(&ui->ui_mutex);
302 if (ui->dirty)
303 /*
304 * The inode is dirty already, so we may free the
305 * budget we allocated.
306 */
307 ubifs_release_dirty_inode_budget(c, ui);
308 }
309
310 *pagep = page;
311 return 0;
312}
313
314/**
315 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
316 * @c: UBIFS file-system description object
317 * @page: page to allocate budget for
318 * @ui: UBIFS inode object the page belongs to
319 * @appending: non-zero if the page is appended
320 *
321 * This is a helper function for 'ubifs_write_begin()' which allocates budget
322 * for the operation. The budget is allocated differently depending on whether
323 * this is appending, whether the page is dirty or not, and so on. This
324 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
325 * in case of success and %-ENOSPC in case of failure.
326 */
327static int allocate_budget(struct ubifs_info *c, struct page *page,
328 struct ubifs_inode *ui, int appending)
329{
330 struct ubifs_budget_req req = { .fast = 1 };
331
332 if (PagePrivate(page)) {
333 if (!appending)
334 /*
335 * The page is dirty and we are not appending, which
336 * means no budget is needed at all.
337 */
338 return 0;
339
340 mutex_lock(&ui->ui_mutex);
341 if (ui->dirty)
342 /*
343 * The page is dirty and we are appending, so the inode
344 * has to be marked as dirty. However, it is already
345 * dirty, so we do not need any budget. We may return,
346 * but @ui->ui_mutex hast to be left locked because we
347 * should prevent write-back from flushing the inode
348 * and freeing the budget. The lock will be released in
349 * 'ubifs_write_end()'.
350 */
351 return 0;
352
353 /*
354 * The page is dirty, we are appending, the inode is clean, so
355 * we need to budget the inode change.
356 */
357 req.dirtied_ino = 1;
358 } else {
359 if (PageChecked(page))
360 /*
361 * The page corresponds to a hole and does not
362 * exist on the media. So changing it makes
363 * make the amount of indexing information
364 * larger, and we have to budget for a new
365 * page.
366 */
367 req.new_page = 1;
368 else
369 /*
370 * Not a hole, the change will not add any new
371 * indexing information, budget for page
372 * change.
373 */
374 req.dirtied_page = 1;
375
376 if (appending) {
377 mutex_lock(&ui->ui_mutex);
378 if (!ui->dirty)
379 /*
380 * The inode is clean but we will have to mark
381 * it as dirty because we are appending. This
382 * needs a budget.
383 */
384 req.dirtied_ino = 1;
385 }
386 }
387
388 return ubifs_budget_space(c, &req);
389}
390
391/*
392 * This function is called when a page of data is going to be written. Since
393 * the page of data will not necessarily go to the flash straight away, UBIFS
394 * has to reserve space on the media for it, which is done by means of
395 * budgeting.
396 *
397 * This is the hot-path of the file-system and we are trying to optimize it as
398 * much as possible. For this reasons it is split on 2 parts - slow and fast.
399 *
400 * There many budgeting cases:
401 * o a new page is appended - we have to budget for a new page and for
402 * changing the inode; however, if the inode is already dirty, there is
403 * no need to budget for it;
404 * o an existing clean page is changed - we have budget for it; if the page
405 * does not exist on the media (a hole), we have to budget for a new
406 * page; otherwise, we may budget for changing an existing page; the
407 * difference between these cases is that changing an existing page does
408 * not introduce anything new to the FS indexing information, so it does
409 * not grow, and smaller budget is acquired in this case;
410 * o an existing dirty page is changed - no need to budget at all, because
411 * the page budget has been acquired by earlier, when the page has been
412 * marked dirty.
413 *
414 * UBIFS budgeting sub-system may force write-back if it thinks there is no
415 * space to reserve. This imposes some locking restrictions and makes it
416 * impossible to take into account the above cases, and makes it impossible to
417 * optimize budgeting.
418 *
419 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
420 * there is a plenty of flash space and the budget will be acquired quickly,
421 * without forcing write-back. The slow path does not make this assumption.
422 */
423static int ubifs_write_begin(struct file *file, struct address_space *mapping,
424 loff_t pos, unsigned len, unsigned flags,
425 struct page **pagep, void **fsdata)
426{
427 struct inode *inode = mapping->host;
428 struct ubifs_info *c = inode->i_sb->s_fs_info;
429 struct ubifs_inode *ui = ubifs_inode(inode);
430 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
431 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
432 struct page *page;
433
434
435 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
436
437 if (unlikely(c->ro_media))
438 return -EROFS;
439
440 /* Try out the fast-path part first */
441 page = __grab_cache_page(mapping, index);
442 if (unlikely(!page))
443 return -ENOMEM;
444
445 if (!PageUptodate(page)) {
446 /* The page is not loaded from the flash */
447 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
448 /*
449 * We change whole page so no need to load it. But we
450 * have to set the @PG_checked flag to make the further
451 * code the page is new. This might be not true, but it
452 * is better to budget more that to read the page from
453 * the media.
454 */
455 SetPageChecked(page);
456 else {
457 err = do_readpage(page);
458 if (err) {
459 unlock_page(page);
460 page_cache_release(page);
461 return err;
462 }
463 }
464
465 SetPageUptodate(page);
466 ClearPageError(page);
467 }
468
469 err = allocate_budget(c, page, ui, appending);
470 if (unlikely(err)) {
471 ubifs_assert(err == -ENOSPC);
472 /*
473 * Budgeting failed which means it would have to force
474 * write-back but didn't, because we set the @fast flag in the
475 * request. Write-back cannot be done now, while we have the
476 * page locked, because it would deadlock. Unlock and free
477 * everything and fall-back to slow-path.
478 */
479 if (appending) {
480 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
481 mutex_unlock(&ui->ui_mutex);
482 }
483 unlock_page(page);
484 page_cache_release(page);
485
486 return write_begin_slow(mapping, pos, len, pagep);
487 }
488
489 /*
490 * Whee, we aquired budgeting quickly - without involving
491 * garbage-collection, committing or forceing write-back. We return
492 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493 * otherwise. This is an optimization (slightly hacky though).
494 */
495 *pagep = page;
496 return 0;
497
498}
499
500/**
501 * cancel_budget - cancel budget.
502 * @c: UBIFS file-system description object
503 * @page: page to cancel budget for
504 * @ui: UBIFS inode object the page belongs to
505 * @appending: non-zero if the page is appended
506 *
507 * This is a helper function for a page write operation. It unlocks the
508 * @ui->ui_mutex in case of appending.
509 */
510static void cancel_budget(struct ubifs_info *c, struct page *page,
511 struct ubifs_inode *ui, int appending)
512{
513 if (appending) {
514 if (!ui->dirty)
515 ubifs_release_dirty_inode_budget(c, ui);
516 mutex_unlock(&ui->ui_mutex);
517 }
518 if (!PagePrivate(page)) {
519 if (PageChecked(page))
520 release_new_page_budget(c);
521 else
522 release_existing_page_budget(c);
523 }
524}
525
526static int ubifs_write_end(struct file *file, struct address_space *mapping,
527 loff_t pos, unsigned len, unsigned copied,
528 struct page *page, void *fsdata)
529{
530 struct inode *inode = mapping->host;
531 struct ubifs_inode *ui = ubifs_inode(inode);
532 struct ubifs_info *c = inode->i_sb->s_fs_info;
533 loff_t end_pos = pos + len;
534 int appending = !!(end_pos > inode->i_size);
535
536 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
537 inode->i_ino, pos, page->index, len, copied, inode->i_size);
538
539 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
540 /*
541 * VFS copied less data to the page that it intended and
542 * declared in its '->write_begin()' call via the @len
543 * argument. If the page was not up-to-date, and @len was
544 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
545 * not load it from the media (for optimization reasons). This
546 * means that part of the page contains garbage. So read the
547 * page now.
548 */
549 dbg_gen("copied %d instead of %d, read page and repeat",
550 copied, len);
551 cancel_budget(c, page, ui, appending);
552
553 /*
554 * Return 0 to force VFS to repeat the whole operation, or the
555 * error code if 'do_readpage()' failes.
556 */
557 copied = do_readpage(page);
558 goto out;
559 }
560
561 if (!PagePrivate(page)) {
562 SetPagePrivate(page);
563 atomic_long_inc(&c->dirty_pg_cnt);
564 __set_page_dirty_nobuffers(page);
565 }
566
567 if (appending) {
568 i_size_write(inode, end_pos);
569 ui->ui_size = end_pos;
570 /*
571 * Note, we do not set @I_DIRTY_PAGES (which means that the
572 * inode has dirty pages), this has been done in
573 * '__set_page_dirty_nobuffers()'.
574 */
575 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
576 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
577 mutex_unlock(&ui->ui_mutex);
578 }
579
580out:
581 unlock_page(page);
582 page_cache_release(page);
583 return copied;
584}
585
4793e7c5
AH
586/**
587 * populate_page - copy data nodes into a page for bulk-read.
588 * @c: UBIFS file-system description object
589 * @page: page
590 * @bu: bulk-read information
591 * @n: next zbranch slot
592 *
593 * This function returns %0 on success and a negative error code on failure.
594 */
595static int populate_page(struct ubifs_info *c, struct page *page,
596 struct bu_info *bu, int *n)
597{
5c0013c1 598 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
4793e7c5
AH
599 struct inode *inode = page->mapping->host;
600 loff_t i_size = i_size_read(inode);
601 unsigned int page_block;
602 void *addr, *zaddr;
603 pgoff_t end_index;
604
605 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
606 inode->i_ino, page->index, i_size, page->flags);
607
608 addr = zaddr = kmap(page);
609
ed382d58 610 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
4793e7c5 611 if (!i_size || page->index > end_index) {
5c0013c1 612 hole = 1;
4793e7c5
AH
613 memset(addr, 0, PAGE_CACHE_SIZE);
614 goto out_hole;
615 }
616
617 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
618 while (1) {
619 int err, len, out_len, dlen;
620
5c0013c1
AH
621 if (nn >= bu->cnt) {
622 hole = 1;
4793e7c5 623 memset(addr, 0, UBIFS_BLOCK_SIZE);
5c0013c1 624 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
4793e7c5
AH
625 struct ubifs_data_node *dn;
626
627 dn = bu->buf + (bu->zbranch[nn].offs - offs);
628
0ecb9529 629 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
4793e7c5
AH
630 ubifs_inode(inode)->creat_sqnum);
631
632 len = le32_to_cpu(dn->size);
633 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
634 goto out_err;
635
636 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
637 out_len = UBIFS_BLOCK_SIZE;
638 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
639 le16_to_cpu(dn->compr_type));
640 if (err || len != out_len)
641 goto out_err;
642
643 if (len < UBIFS_BLOCK_SIZE)
644 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
645
646 nn += 1;
4793e7c5 647 read = (i << UBIFS_BLOCK_SHIFT) + len;
5c0013c1
AH
648 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
649 nn += 1;
650 continue;
651 } else {
652 hole = 1;
653 memset(addr, 0, UBIFS_BLOCK_SIZE);
4793e7c5
AH
654 }
655 if (++i >= UBIFS_BLOCKS_PER_PAGE)
656 break;
657 addr += UBIFS_BLOCK_SIZE;
658 page_block += 1;
659 }
660
661 if (end_index == page->index) {
662 int len = i_size & (PAGE_CACHE_SIZE - 1);
663
ed382d58 664 if (len && len < read)
4793e7c5
AH
665 memset(zaddr + len, 0, read - len);
666 }
667
668out_hole:
669 if (hole) {
670 SetPageChecked(page);
671 dbg_gen("hole");
672 }
673
674 SetPageUptodate(page);
675 ClearPageError(page);
676 flush_dcache_page(page);
677 kunmap(page);
678 *n = nn;
679 return 0;
680
681out_err:
682 ClearPageUptodate(page);
683 SetPageError(page);
684 flush_dcache_page(page);
685 kunmap(page);
686 ubifs_err("bad data node (block %u, inode %lu)",
687 page_block, inode->i_ino);
688 return -EINVAL;
689}
690
691/**
692 * ubifs_do_bulk_read - do bulk-read.
693 * @c: UBIFS file-system description object
6c0c42cd
AB
694 * @bu: bulk-read information
695 * @page1: first page to read
4793e7c5
AH
696 *
697 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
698 */
6c0c42cd
AB
699static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
700 struct page *page1)
4793e7c5
AH
701{
702 pgoff_t offset = page1->index, end_index;
703 struct address_space *mapping = page1->mapping;
704 struct inode *inode = mapping->host;
705 struct ubifs_inode *ui = ubifs_inode(inode);
4793e7c5 706 int err, page_idx, page_cnt, ret = 0, n = 0;
6c0c42cd 707 int allocate = bu->buf ? 0 : 1;
4793e7c5
AH
708 loff_t isize;
709
4793e7c5
AH
710 err = ubifs_tnc_get_bu_keys(c, bu);
711 if (err)
712 goto out_warn;
713
714 if (bu->eof) {
715 /* Turn off bulk-read at the end of the file */
716 ui->read_in_a_row = 1;
717 ui->bulk_read = 0;
718 }
719
720 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
721 if (!page_cnt) {
722 /*
723 * This happens when there are multiple blocks per page and the
724 * blocks for the first page we are looking for, are not
725 * together. If all the pages were like this, bulk-read would
726 * reduce performance, so we turn it off for a while.
727 */
6c0c42cd 728 goto out_bu_off;
4793e7c5
AH
729 }
730
731 if (bu->cnt) {
6c0c42cd
AB
732 if (allocate) {
733 /*
734 * Allocate bulk-read buffer depending on how many data
735 * nodes we are going to read.
736 */
737 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
738 bu->zbranch[bu->cnt - 1].len -
739 bu->zbranch[0].offs;
740 ubifs_assert(bu->buf_len > 0);
741 ubifs_assert(bu->buf_len <= c->leb_size);
742 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
743 if (!bu->buf)
744 goto out_bu_off;
745 }
746
4793e7c5
AH
747 err = ubifs_tnc_bulk_read(c, bu);
748 if (err)
749 goto out_warn;
750 }
751
752 err = populate_page(c, page1, bu, &n);
753 if (err)
754 goto out_warn;
755
756 unlock_page(page1);
757 ret = 1;
758
759 isize = i_size_read(inode);
760 if (isize == 0)
761 goto out_free;
762 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
763
764 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
765 pgoff_t page_offset = offset + page_idx;
766 struct page *page;
767
768 if (page_offset > end_index)
769 break;
770 page = find_or_create_page(mapping, page_offset,
771 GFP_NOFS | __GFP_COLD);
772 if (!page)
773 break;
774 if (!PageUptodate(page))
775 err = populate_page(c, page, bu, &n);
776 unlock_page(page);
777 page_cache_release(page);
778 if (err)
779 break;
780 }
781
782 ui->last_page_read = offset + page_idx - 1;
783
784out_free:
6c0c42cd
AB
785 if (allocate)
786 kfree(bu->buf);
4793e7c5
AH
787 return ret;
788
789out_warn:
790 ubifs_warn("ignoring error %d and skipping bulk-read", err);
791 goto out_free;
6c0c42cd
AB
792
793out_bu_off:
794 ui->read_in_a_row = ui->bulk_read = 0;
795 goto out_free;
4793e7c5
AH
796}
797
798/**
799 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
800 * @page: page from which to start bulk-read.
801 *
802 * Some flash media are capable of reading sequentially at faster rates. UBIFS
803 * bulk-read facility is designed to take advantage of that, by reading in one
804 * go consecutive data nodes that are also located consecutively in the same
805 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
806 */
807static int ubifs_bulk_read(struct page *page)
808{
809 struct inode *inode = page->mapping->host;
810 struct ubifs_info *c = inode->i_sb->s_fs_info;
811 struct ubifs_inode *ui = ubifs_inode(inode);
812 pgoff_t index = page->index, last_page_read = ui->last_page_read;
6c0c42cd
AB
813 struct bu_info *bu;
814 int err = 0;
4793e7c5
AH
815
816 ui->last_page_read = index;
4793e7c5
AH
817 if (!c->bulk_read)
818 return 0;
6c0c42cd 819
4793e7c5
AH
820 /*
821 * Bulk-read is protected by ui_mutex, but it is an optimization, so
822 * don't bother if we cannot lock the mutex.
823 */
824 if (!mutex_trylock(&ui->ui_mutex))
825 return 0;
6c0c42cd 826
4793e7c5
AH
827 if (index != last_page_read + 1) {
828 /* Turn off bulk-read if we stop reading sequentially */
829 ui->read_in_a_row = 1;
830 if (ui->bulk_read)
831 ui->bulk_read = 0;
832 goto out_unlock;
833 }
6c0c42cd 834
4793e7c5
AH
835 if (!ui->bulk_read) {
836 ui->read_in_a_row += 1;
837 if (ui->read_in_a_row < 3)
838 goto out_unlock;
839 /* Three reads in a row, so switch on bulk-read */
840 ui->bulk_read = 1;
841 }
6c0c42cd
AB
842
843 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
844 if (!bu)
845 return 0;
846
847 bu->buf = NULL;
848 bu->buf_len = c->max_bu_buf_len;
849 data_key_init(c, &bu->key, inode->i_ino,
850 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
851
852 err = ubifs_do_bulk_read(c, bu, page);
853 kfree(bu);
854
4793e7c5
AH
855out_unlock:
856 mutex_unlock(&ui->ui_mutex);
6c0c42cd 857 return err;
4793e7c5
AH
858}
859
1e51764a
AB
860static int ubifs_readpage(struct file *file, struct page *page)
861{
4793e7c5
AH
862 if (ubifs_bulk_read(page))
863 return 0;
1e51764a
AB
864 do_readpage(page);
865 unlock_page(page);
866 return 0;
867}
868
869static int do_writepage(struct page *page, int len)
870{
871 int err = 0, i, blen;
872 unsigned int block;
873 void *addr;
874 union ubifs_key key;
875 struct inode *inode = page->mapping->host;
876 struct ubifs_info *c = inode->i_sb->s_fs_info;
877
878#ifdef UBIFS_DEBUG
879 spin_lock(&ui->ui_lock);
880 ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
881 spin_unlock(&ui->ui_lock);
882#endif
883
884 /* Update radix tree tags */
885 set_page_writeback(page);
886
887 addr = kmap(page);
888 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
889 i = 0;
890 while (len) {
891 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
892 data_key_init(c, &key, inode->i_ino, block);
893 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
894 if (err)
895 break;
896 if (++i >= UBIFS_BLOCKS_PER_PAGE)
897 break;
898 block += 1;
899 addr += blen;
900 len -= blen;
901 }
902 if (err) {
903 SetPageError(page);
904 ubifs_err("cannot write page %lu of inode %lu, error %d",
905 page->index, inode->i_ino, err);
906 ubifs_ro_mode(c, err);
907 }
908
909 ubifs_assert(PagePrivate(page));
910 if (PageChecked(page))
911 release_new_page_budget(c);
912 else
913 release_existing_page_budget(c);
914
915 atomic_long_dec(&c->dirty_pg_cnt);
916 ClearPagePrivate(page);
917 ClearPageChecked(page);
918
919 kunmap(page);
920 unlock_page(page);
921 end_page_writeback(page);
922 return err;
923}
924
925/*
926 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
927 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
928 * situation when a we have an inode with size 0, then a megabyte of data is
929 * appended to the inode, then write-back starts and flushes some amount of the
930 * dirty pages, the journal becomes full, commit happens and finishes, and then
931 * an unclean reboot happens. When the file system is mounted next time, the
932 * inode size would still be 0, but there would be many pages which are beyond
933 * the inode size, they would be indexed and consume flash space. Because the
934 * journal has been committed, the replay would not be able to detect this
935 * situation and correct the inode size. This means UBIFS would have to scan
936 * whole index and correct all inode sizes, which is long an unacceptable.
937 *
938 * To prevent situations like this, UBIFS writes pages back only if they are
939 * within last synchronized inode size, i.e. the the size which has been
940 * written to the flash media last time. Otherwise, UBIFS forces inode
941 * write-back, thus making sure the on-flash inode contains current inode size,
942 * and then keeps writing pages back.
943 *
944 * Some locking issues explanation. 'ubifs_writepage()' first is called with
945 * the page locked, and it locks @ui_mutex. However, write-back does take inode
946 * @i_mutex, which means other VFS operations may be run on this inode at the
947 * same time. And the problematic one is truncation to smaller size, from where
948 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
949 * drops the truncated pages. And while dropping the pages, it takes the page
950 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
951 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
952 * means that @inode->i_size is changed while @ui_mutex is unlocked.
953 *
954 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
955 * inode size. How do we do this if @inode->i_size may became smaller while we
956 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
957 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
958 * internally and updates it under @ui_mutex.
959 *
960 * Q: why we do not worry that if we race with truncation, we may end up with a
961 * situation when the inode is truncated while we are in the middle of
962 * 'do_writepage()', so we do write beyond inode size?
963 * A: If we are in the middle of 'do_writepage()', truncation would be locked
964 * on the page lock and it would not write the truncated inode node to the
965 * journal before we have finished.
966 */
967static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
968{
969 struct inode *inode = page->mapping->host;
970 struct ubifs_inode *ui = ubifs_inode(inode);
971 loff_t i_size = i_size_read(inode), synced_i_size;
972 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
973 int err, len = i_size & (PAGE_CACHE_SIZE - 1);
974 void *kaddr;
975
976 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
977 inode->i_ino, page->index, page->flags);
978 ubifs_assert(PagePrivate(page));
979
980 /* Is the page fully outside @i_size? (truncate in progress) */
981 if (page->index > end_index || (page->index == end_index && !len)) {
982 err = 0;
983 goto out_unlock;
984 }
985
986 spin_lock(&ui->ui_lock);
987 synced_i_size = ui->synced_i_size;
988 spin_unlock(&ui->ui_lock);
989
990 /* Is the page fully inside @i_size? */
991 if (page->index < end_index) {
992 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
993 err = inode->i_sb->s_op->write_inode(inode, 1);
994 if (err)
995 goto out_unlock;
996 /*
997 * The inode has been written, but the write-buffer has
998 * not been synchronized, so in case of an unclean
999 * reboot we may end up with some pages beyond inode
1000 * size, but they would be in the journal (because
1001 * commit flushes write buffers) and recovery would deal
1002 * with this.
1003 */
1004 }
1005 return do_writepage(page, PAGE_CACHE_SIZE);
1006 }
1007
1008 /*
1009 * The page straddles @i_size. It must be zeroed out on each and every
1010 * writepage invocation because it may be mmapped. "A file is mapped
1011 * in multiples of the page size. For a file that is not a multiple of
1012 * the page size, the remaining memory is zeroed when mapped, and
1013 * writes to that region are not written out to the file."
1014 */
1015 kaddr = kmap_atomic(page, KM_USER0);
1016 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1017 flush_dcache_page(page);
1018 kunmap_atomic(kaddr, KM_USER0);
1019
1020 if (i_size > synced_i_size) {
1021 err = inode->i_sb->s_op->write_inode(inode, 1);
1022 if (err)
1023 goto out_unlock;
1024 }
1025
1026 return do_writepage(page, len);
1027
1028out_unlock:
1029 unlock_page(page);
1030 return err;
1031}
1032
1033/**
1034 * do_attr_changes - change inode attributes.
1035 * @inode: inode to change attributes for
1036 * @attr: describes attributes to change
1037 */
1038static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1039{
1040 if (attr->ia_valid & ATTR_UID)
1041 inode->i_uid = attr->ia_uid;
1042 if (attr->ia_valid & ATTR_GID)
1043 inode->i_gid = attr->ia_gid;
1044 if (attr->ia_valid & ATTR_ATIME)
1045 inode->i_atime = timespec_trunc(attr->ia_atime,
1046 inode->i_sb->s_time_gran);
1047 if (attr->ia_valid & ATTR_MTIME)
1048 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1049 inode->i_sb->s_time_gran);
1050 if (attr->ia_valid & ATTR_CTIME)
1051 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1052 inode->i_sb->s_time_gran);
1053 if (attr->ia_valid & ATTR_MODE) {
1054 umode_t mode = attr->ia_mode;
1055
1056 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1057 mode &= ~S_ISGID;
1058 inode->i_mode = mode;
1059 }
1060}
1061
1062/**
1063 * do_truncation - truncate an inode.
1064 * @c: UBIFS file-system description object
1065 * @inode: inode to truncate
1066 * @attr: inode attribute changes description
1067 *
1068 * This function implements VFS '->setattr()' call when the inode is truncated
1069 * to a smaller size. Returns zero in case of success and a negative error code
1070 * in case of failure.
1071 */
1072static int do_truncation(struct ubifs_info *c, struct inode *inode,
1073 const struct iattr *attr)
1074{
1075 int err;
1076 struct ubifs_budget_req req;
1077 loff_t old_size = inode->i_size, new_size = attr->ia_size;
04da11bf 1078 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1e51764a
AB
1079 struct ubifs_inode *ui = ubifs_inode(inode);
1080
1081 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1082 memset(&req, 0, sizeof(struct ubifs_budget_req));
1083
1084 /*
1085 * If this is truncation to a smaller size, and we do not truncate on a
1086 * block boundary, budget for changing one data block, because the last
1087 * block will be re-written.
1088 */
1089 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1090 req.dirtied_page = 1;
1091
1092 req.dirtied_ino = 1;
1093 /* A funny way to budget for truncation node */
1094 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1095 err = ubifs_budget_space(c, &req);
04da11bf
AB
1096 if (err) {
1097 /*
1098 * Treat truncations to zero as deletion and always allow them,
1099 * just like we do for '->unlink()'.
1100 */
1101 if (new_size || err != -ENOSPC)
1102 return err;
1103 budgeted = 0;
1104 }
1e51764a
AB
1105
1106 err = vmtruncate(inode, new_size);
1107 if (err)
1108 goto out_budg;
1109
1110 if (offset) {
1111 pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1112 struct page *page;
1113
1114 page = find_lock_page(inode->i_mapping, index);
1115 if (page) {
1116 if (PageDirty(page)) {
1117 /*
1118 * 'ubifs_jnl_truncate()' will try to truncate
1119 * the last data node, but it contains
1120 * out-of-date data because the page is dirty.
1121 * Write the page now, so that
1122 * 'ubifs_jnl_truncate()' will see an already
1123 * truncated (and up to date) data node.
1124 */
1125 ubifs_assert(PagePrivate(page));
1126
1127 clear_page_dirty_for_io(page);
1128 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1129 offset = new_size &
1130 (PAGE_CACHE_SIZE - 1);
1131 err = do_writepage(page, offset);
1132 page_cache_release(page);
1133 if (err)
1134 goto out_budg;
1135 /*
1136 * We could now tell 'ubifs_jnl_truncate()' not
1137 * to read the last block.
1138 */
1139 } else {
1140 /*
1141 * We could 'kmap()' the page and pass the data
1142 * to 'ubifs_jnl_truncate()' to save it from
1143 * having to read it.
1144 */
1145 unlock_page(page);
1146 page_cache_release(page);
1147 }
1148 }
1149 }
1150
1151 mutex_lock(&ui->ui_mutex);
1152 ui->ui_size = inode->i_size;
1153 /* Truncation changes inode [mc]time */
1154 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1155 /* The other attributes may be changed at the same time as well */
1156 do_attr_changes(inode, attr);
1157
1158 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1159 mutex_unlock(&ui->ui_mutex);
1160out_budg:
04da11bf
AB
1161 if (budgeted)
1162 ubifs_release_budget(c, &req);
1163 else {
1164 c->nospace = c->nospace_rp = 0;
1165 smp_wmb();
1166 }
1e51764a
AB
1167 return err;
1168}
1169
1170/**
1171 * do_setattr - change inode attributes.
1172 * @c: UBIFS file-system description object
1173 * @inode: inode to change attributes for
1174 * @attr: inode attribute changes description
1175 *
1176 * This function implements VFS '->setattr()' call for all cases except
1177 * truncations to smaller size. Returns zero in case of success and a negative
1178 * error code in case of failure.
1179 */
1180static int do_setattr(struct ubifs_info *c, struct inode *inode,
1181 const struct iattr *attr)
1182{
1183 int err, release;
1184 loff_t new_size = attr->ia_size;
1185 struct ubifs_inode *ui = ubifs_inode(inode);
1186 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1187 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1188
1189 err = ubifs_budget_space(c, &req);
1190 if (err)
1191 return err;
1192
1193 if (attr->ia_valid & ATTR_SIZE) {
1194 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1195 err = vmtruncate(inode, new_size);
1196 if (err)
1197 goto out;
1198 }
1199
1200 mutex_lock(&ui->ui_mutex);
1201 if (attr->ia_valid & ATTR_SIZE) {
1202 /* Truncation changes inode [mc]time */
1203 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1204 /* 'vmtruncate()' changed @i_size, update @ui_size */
1205 ui->ui_size = inode->i_size;
1206 }
1207
1208 do_attr_changes(inode, attr);
1209
1210 release = ui->dirty;
1211 if (attr->ia_valid & ATTR_SIZE)
1212 /*
1213 * Inode length changed, so we have to make sure
1214 * @I_DIRTY_DATASYNC is set.
1215 */
1216 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1217 else
1218 mark_inode_dirty_sync(inode);
1219 mutex_unlock(&ui->ui_mutex);
1220
1221 if (release)
1222 ubifs_release_budget(c, &req);
1223 if (IS_SYNC(inode))
1224 err = inode->i_sb->s_op->write_inode(inode, 1);
1225 return err;
1226
1227out:
1228 ubifs_release_budget(c, &req);
1229 return err;
1230}
1231
1232int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1233{
1234 int err;
1235 struct inode *inode = dentry->d_inode;
1236 struct ubifs_info *c = inode->i_sb->s_fs_info;
1237
7d32c2bb
AB
1238 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1239 inode->i_ino, inode->i_mode, attr->ia_valid);
1e51764a
AB
1240 err = inode_change_ok(inode, attr);
1241 if (err)
1242 return err;
1243
1244 err = dbg_check_synced_i_size(inode);
1245 if (err)
1246 return err;
1247
1248 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1249 /* Truncation to a smaller size */
1250 err = do_truncation(c, inode, attr);
1251 else
1252 err = do_setattr(c, inode, attr);
1253
1254 return err;
1255}
1256
1257static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1258{
1259 struct inode *inode = page->mapping->host;
1260 struct ubifs_info *c = inode->i_sb->s_fs_info;
1261
1262 ubifs_assert(PagePrivate(page));
1263 if (offset)
1264 /* Partial page remains dirty */
1265 return;
1266
1267 if (PageChecked(page))
1268 release_new_page_budget(c);
1269 else
1270 release_existing_page_budget(c);
1271
1272 atomic_long_dec(&c->dirty_pg_cnt);
1273 ClearPagePrivate(page);
1274 ClearPageChecked(page);
1275}
1276
1277static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1278{
1279 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1280
1281 nd_set_link(nd, ui->data);
1282 return NULL;
1283}
1284
1285int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1286{
1287 struct inode *inode = dentry->d_inode;
1288 struct ubifs_info *c = inode->i_sb->s_fs_info;
1289 int err;
1290
1291 dbg_gen("syncing inode %lu", inode->i_ino);
1292
1293 /*
1294 * VFS has already synchronized dirty pages for this inode. Synchronize
1295 * the inode unless this is a 'datasync()' call.
1296 */
1297 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1298 err = inode->i_sb->s_op->write_inode(inode, 1);
1299 if (err)
1300 return err;
1301 }
1302
1303 /*
1304 * Nodes related to this inode may still sit in a write-buffer. Flush
1305 * them.
1306 */
1307 err = ubifs_sync_wbufs_by_inode(c, inode);
1308 if (err)
1309 return err;
1310
1311 return 0;
1312}
1313
1314/**
1315 * mctime_update_needed - check if mtime or ctime update is needed.
1316 * @inode: the inode to do the check for
1317 * @now: current time
1318 *
1319 * This helper function checks if the inode mtime/ctime should be updated or
1320 * not. If current values of the time-stamps are within the UBIFS inode time
1321 * granularity, they are not updated. This is an optimization.
1322 */
1323static inline int mctime_update_needed(const struct inode *inode,
1324 const struct timespec *now)
1325{
1326 if (!timespec_equal(&inode->i_mtime, now) ||
1327 !timespec_equal(&inode->i_ctime, now))
1328 return 1;
1329 return 0;
1330}
1331
1332/**
1333 * update_ctime - update mtime and ctime of an inode.
1334 * @c: UBIFS file-system description object
1335 * @inode: inode to update
1336 *
1337 * This function updates mtime and ctime of the inode if it is not equivalent to
1338 * current time. Returns zero in case of success and a negative error code in
1339 * case of failure.
1340 */
1341static int update_mctime(struct ubifs_info *c, struct inode *inode)
1342{
1343 struct timespec now = ubifs_current_time(inode);
1344 struct ubifs_inode *ui = ubifs_inode(inode);
1345
1346 if (mctime_update_needed(inode, &now)) {
1347 int err, release;
1348 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1349 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1350
1351 err = ubifs_budget_space(c, &req);
1352 if (err)
1353 return err;
1354
1355 mutex_lock(&ui->ui_mutex);
1356 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1357 release = ui->dirty;
1358 mark_inode_dirty_sync(inode);
1359 mutex_unlock(&ui->ui_mutex);
1360 if (release)
1361 ubifs_release_budget(c, &req);
1362 }
1363
1364 return 0;
1365}
1366
1367static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1368 unsigned long nr_segs, loff_t pos)
1369{
1370 int err;
1371 ssize_t ret;
1372 struct inode *inode = iocb->ki_filp->f_mapping->host;
1373 struct ubifs_info *c = inode->i_sb->s_fs_info;
1374
1375 err = update_mctime(c, inode);
1376 if (err)
1377 return err;
1378
1379 ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1380 if (ret < 0)
1381 return ret;
1382
1383 if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1384 err = ubifs_sync_wbufs_by_inode(c, inode);
1385 if (err)
1386 return err;
1387 }
1388
1389 return ret;
1390}
1391
1392static int ubifs_set_page_dirty(struct page *page)
1393{
1394 int ret;
1395
1396 ret = __set_page_dirty_nobuffers(page);
1397 /*
1398 * An attempt to dirty a page without budgeting for it - should not
1399 * happen.
1400 */
1401 ubifs_assert(ret == 0);
1402 return ret;
1403}
1404
1405static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1406{
1407 /*
1408 * An attempt to release a dirty page without budgeting for it - should
1409 * not happen.
1410 */
1411 if (PageWriteback(page))
1412 return 0;
1413 ubifs_assert(PagePrivate(page));
1414 ubifs_assert(0);
1415 ClearPagePrivate(page);
1416 ClearPageChecked(page);
1417 return 1;
1418}
1419
1420/*
1421 * mmap()d file has taken write protection fault and is being made
1422 * writable. UBIFS must ensure page is budgeted for.
1423 */
1424static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
1425{
1426 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1427 struct ubifs_info *c = inode->i_sb->s_fs_info;
1428 struct timespec now = ubifs_current_time(inode);
1429 struct ubifs_budget_req req = { .new_page = 1 };
1430 int err, update_time;
1431
1432 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1433 i_size_read(inode));
1434 ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1435
1436 if (unlikely(c->ro_media))
1437 return -EROFS;
1438
1439 /*
1440 * We have not locked @page so far so we may budget for changing the
1441 * page. Note, we cannot do this after we locked the page, because
1442 * budgeting may cause write-back which would cause deadlock.
1443 *
1444 * At the moment we do not know whether the page is dirty or not, so we
1445 * assume that it is not and budget for a new page. We could look at
1446 * the @PG_private flag and figure this out, but we may race with write
1447 * back and the page state may change by the time we lock it, so this
1448 * would need additional care. We do not bother with this at the
1449 * moment, although it might be good idea to do. Instead, we allocate
1450 * budget for a new page and amend it later on if the page was in fact
1451 * dirty.
1452 *
1453 * The budgeting-related logic of this function is similar to what we
1454 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1455 * for more comments.
1456 */
1457 update_time = mctime_update_needed(inode, &now);
1458 if (update_time)
1459 /*
1460 * We have to change inode time stamp which requires extra
1461 * budgeting.
1462 */
1463 req.dirtied_ino = 1;
1464
1465 err = ubifs_budget_space(c, &req);
1466 if (unlikely(err)) {
1467 if (err == -ENOSPC)
1468 ubifs_warn("out of space for mmapped file "
1469 "(inode number %lu)", inode->i_ino);
1470 return err;
1471 }
1472
1473 lock_page(page);
1474 if (unlikely(page->mapping != inode->i_mapping ||
1475 page_offset(page) > i_size_read(inode))) {
1476 /* Page got truncated out from underneath us */
1477 err = -EINVAL;
1478 goto out_unlock;
1479 }
1480
1481 if (PagePrivate(page))
1482 release_new_page_budget(c);
1483 else {
1484 if (!PageChecked(page))
1485 ubifs_convert_page_budget(c);
1486 SetPagePrivate(page);
1487 atomic_long_inc(&c->dirty_pg_cnt);
1488 __set_page_dirty_nobuffers(page);
1489 }
1490
1491 if (update_time) {
1492 int release;
1493 struct ubifs_inode *ui = ubifs_inode(inode);
1494
1495 mutex_lock(&ui->ui_mutex);
1496 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1497 release = ui->dirty;
1498 mark_inode_dirty_sync(inode);
1499 mutex_unlock(&ui->ui_mutex);
1500 if (release)
1501 ubifs_release_dirty_inode_budget(c, ui);
1502 }
1503
1504 unlock_page(page);
1505 return 0;
1506
1507out_unlock:
1508 unlock_page(page);
1509 ubifs_release_budget(c, &req);
1510 return err;
1511}
1512
1513static struct vm_operations_struct ubifs_file_vm_ops = {
1514 .fault = filemap_fault,
1515 .page_mkwrite = ubifs_vm_page_mkwrite,
1516};
1517
1518static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1519{
1520 int err;
1521
1522 /* 'generic_file_mmap()' takes care of NOMMU case */
1523 err = generic_file_mmap(file, vma);
1524 if (err)
1525 return err;
1526 vma->vm_ops = &ubifs_file_vm_ops;
1527 return 0;
1528}
1529
1530struct address_space_operations ubifs_file_address_operations = {
1531 .readpage = ubifs_readpage,
1532 .writepage = ubifs_writepage,
1533 .write_begin = ubifs_write_begin,
1534 .write_end = ubifs_write_end,
1535 .invalidatepage = ubifs_invalidatepage,
1536 .set_page_dirty = ubifs_set_page_dirty,
1537 .releasepage = ubifs_releasepage,
1538};
1539
1540struct inode_operations ubifs_file_inode_operations = {
1541 .setattr = ubifs_setattr,
1542 .getattr = ubifs_getattr,
1543#ifdef CONFIG_UBIFS_FS_XATTR
1544 .setxattr = ubifs_setxattr,
1545 .getxattr = ubifs_getxattr,
1546 .listxattr = ubifs_listxattr,
1547 .removexattr = ubifs_removexattr,
1548#endif
1549};
1550
1551struct inode_operations ubifs_symlink_inode_operations = {
1552 .readlink = generic_readlink,
1553 .follow_link = ubifs_follow_link,
1554 .setattr = ubifs_setattr,
1555 .getattr = ubifs_getattr,
1556};
1557
1558struct file_operations ubifs_file_operations = {
1559 .llseek = generic_file_llseek,
1560 .read = do_sync_read,
1561 .write = do_sync_write,
1562 .aio_read = generic_file_aio_read,
1563 .aio_write = ubifs_aio_write,
1564 .mmap = ubifs_file_mmap,
1565 .fsync = ubifs_fsync,
1566 .unlocked_ioctl = ubifs_ioctl,
1567 .splice_read = generic_file_splice_read,
22bc7fa8 1568 .splice_write = generic_file_splice_write,
1e51764a
AB
1569#ifdef CONFIG_COMPAT
1570 .compat_ioctl = ubifs_compat_ioctl,
1571#endif
1572};