UBIFS: improve garbage collection
[linux-2.6-block.git] / fs / ubifs / file.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements VFS file and inode operations of regular files, device
25 * nodes and symlinks as well as address space operations.
26 *
27 * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
28 * page is dirty and is used for budgeting purposes - dirty pages should not be
29 * budgeted. The PG_checked flag is set if full budgeting is required for the
30 * page e.g., when it corresponds to a file hole or it is just beyond the file
31 * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
32 * fail in this function, and the budget is released in 'ubifs_write_end()'. So
33 * the PG_private and PG_checked flags carry the information about how the page
34 * was budgeted, to make it possible to release the budget properly.
35 *
36 * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
37 * we implement. However, this is not true for '->writepage()', which might be
38 * called with 'i_mutex' unlocked. For example, when pdflush is performing
39 * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
40 * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
41 * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
42 * path'. So, in '->writepage()' we are only guaranteed that the page is
43 * locked.
44 *
45 * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
46 * readahead path does not have it locked ("sys_read -> generic_file_aio_read
47 * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
48 * not set as well. However, UBIFS disables readahead.
49 *
50 * This, for example means that there might be 2 concurrent '->writepage()'
51 * calls for the same inode, but different inode dirty pages.
52 */
53
54#include "ubifs.h"
55#include <linux/mount.h>
3f8206d4 56#include <linux/namei.h>
1e51764a
AB
57
58static int read_block(struct inode *inode, void *addr, unsigned int block,
59 struct ubifs_data_node *dn)
60{
61 struct ubifs_info *c = inode->i_sb->s_fs_info;
62 int err, len, out_len;
63 union ubifs_key key;
64 unsigned int dlen;
65
66 data_key_init(c, &key, inode->i_ino, block);
67 err = ubifs_tnc_lookup(c, &key, dn);
68 if (err) {
69 if (err == -ENOENT)
70 /* Not found, so it must be a hole */
71 memset(addr, 0, UBIFS_BLOCK_SIZE);
72 return err;
73 }
74
75 ubifs_assert(dn->ch.sqnum > ubifs_inode(inode)->creat_sqnum);
76
77 len = le32_to_cpu(dn->size);
78 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 goto dump;
80
81 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 out_len = UBIFS_BLOCK_SIZE;
83 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 le16_to_cpu(dn->compr_type));
85 if (err || len != out_len)
86 goto dump;
87
88 /*
89 * Data length can be less than a full block, even for blocks that are
90 * not the last in the file (e.g., as a result of making a hole and
91 * appending data). Ensure that the remainder is zeroed out.
92 */
93 if (len < UBIFS_BLOCK_SIZE)
94 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95
96 return 0;
97
98dump:
99 ubifs_err("bad data node (block %u, inode %lu)",
100 block, inode->i_ino);
101 dbg_dump_node(c, dn);
102 return -EINVAL;
103}
104
105static int do_readpage(struct page *page)
106{
107 void *addr;
108 int err = 0, i;
109 unsigned int block, beyond;
110 struct ubifs_data_node *dn;
111 struct inode *inode = page->mapping->host;
112 loff_t i_size = i_size_read(inode);
113
114 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 inode->i_ino, page->index, i_size, page->flags);
116 ubifs_assert(!PageChecked(page));
117 ubifs_assert(!PagePrivate(page));
118
119 addr = kmap(page);
120
121 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 if (block >= beyond) {
124 /* Reading beyond inode */
125 SetPageChecked(page);
126 memset(addr, 0, PAGE_CACHE_SIZE);
127 goto out;
128 }
129
130 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 if (!dn) {
132 err = -ENOMEM;
133 goto error;
134 }
135
136 i = 0;
137 while (1) {
138 int ret;
139
140 if (block >= beyond) {
141 /* Reading beyond inode */
142 err = -ENOENT;
143 memset(addr, 0, UBIFS_BLOCK_SIZE);
144 } else {
145 ret = read_block(inode, addr, block, dn);
146 if (ret) {
147 err = ret;
148 if (err != -ENOENT)
149 break;
ed382d58
AH
150 } else if (block + 1 == beyond) {
151 int dlen = le32_to_cpu(dn->size);
152 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
153
154 if (ilen && ilen < dlen)
155 memset(addr + ilen, 0, dlen - ilen);
1e51764a
AB
156 }
157 }
158 if (++i >= UBIFS_BLOCKS_PER_PAGE)
159 break;
160 block += 1;
161 addr += UBIFS_BLOCK_SIZE;
162 }
163 if (err) {
164 if (err == -ENOENT) {
165 /* Not found, so it must be a hole */
166 SetPageChecked(page);
167 dbg_gen("hole");
168 goto out_free;
169 }
170 ubifs_err("cannot read page %lu of inode %lu, error %d",
171 page->index, inode->i_ino, err);
172 goto error;
173 }
174
175out_free:
176 kfree(dn);
177out:
178 SetPageUptodate(page);
179 ClearPageError(page);
180 flush_dcache_page(page);
181 kunmap(page);
182 return 0;
183
184error:
185 kfree(dn);
186 ClearPageUptodate(page);
187 SetPageError(page);
188 flush_dcache_page(page);
189 kunmap(page);
190 return err;
191}
192
193/**
194 * release_new_page_budget - release budget of a new page.
195 * @c: UBIFS file-system description object
196 *
197 * This is a helper function which releases budget corresponding to the budget
198 * of one new page of data.
199 */
200static void release_new_page_budget(struct ubifs_info *c)
201{
202 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203
204 ubifs_release_budget(c, &req);
205}
206
207/**
208 * release_existing_page_budget - release budget of an existing page.
209 * @c: UBIFS file-system description object
210 *
211 * This is a helper function which releases budget corresponding to the budget
212 * of changing one one page of data which already exists on the flash media.
213 */
214static void release_existing_page_budget(struct ubifs_info *c)
215{
216 struct ubifs_budget_req req = { .dd_growth = c->page_budget};
217
218 ubifs_release_budget(c, &req);
219}
220
221static int write_begin_slow(struct address_space *mapping,
222 loff_t pos, unsigned len, struct page **pagep)
223{
224 struct inode *inode = mapping->host;
225 struct ubifs_info *c = inode->i_sb->s_fs_info;
226 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
227 struct ubifs_budget_req req = { .new_page = 1 };
228 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
229 struct page *page;
230
231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
232 inode->i_ino, pos, len, inode->i_size);
233
234 /*
235 * At the slow path we have to budget before locking the page, because
236 * budgeting may force write-back, which would wait on locked pages and
237 * deadlock if we had the page locked. At this point we do not know
238 * anything about the page, so assume that this is a new page which is
239 * written to a hole. This corresponds to largest budget. Later the
240 * budget will be amended if this is not true.
241 */
242 if (appending)
243 /* We are appending data, budget for inode change */
244 req.dirtied_ino = 1;
245
246 err = ubifs_budget_space(c, &req);
247 if (unlikely(err))
248 return err;
249
250 page = __grab_cache_page(mapping, index);
251 if (unlikely(!page)) {
252 ubifs_release_budget(c, &req);
253 return -ENOMEM;
254 }
255
256 if (!PageUptodate(page)) {
257 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
258 SetPageChecked(page);
259 else {
260 err = do_readpage(page);
261 if (err) {
262 unlock_page(page);
263 page_cache_release(page);
264 return err;
265 }
266 }
267
268 SetPageUptodate(page);
269 ClearPageError(page);
270 }
271
272 if (PagePrivate(page))
273 /*
274 * The page is dirty, which means it was budgeted twice:
275 * o first time the budget was allocated by the task which
276 * made the page dirty and set the PG_private flag;
277 * o and then we budgeted for it for the second time at the
278 * very beginning of this function.
279 *
280 * So what we have to do is to release the page budget we
281 * allocated.
282 */
283 release_new_page_budget(c);
284 else if (!PageChecked(page))
285 /*
286 * We are changing a page which already exists on the media.
287 * This means that changing the page does not make the amount
288 * of indexing information larger, and this part of the budget
289 * which we have already acquired may be released.
290 */
291 ubifs_convert_page_budget(c);
292
293 if (appending) {
294 struct ubifs_inode *ui = ubifs_inode(inode);
295
296 /*
297 * 'ubifs_write_end()' is optimized from the fast-path part of
298 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
299 * if data is appended.
300 */
301 mutex_lock(&ui->ui_mutex);
302 if (ui->dirty)
303 /*
304 * The inode is dirty already, so we may free the
305 * budget we allocated.
306 */
307 ubifs_release_dirty_inode_budget(c, ui);
308 }
309
310 *pagep = page;
311 return 0;
312}
313
314/**
315 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
316 * @c: UBIFS file-system description object
317 * @page: page to allocate budget for
318 * @ui: UBIFS inode object the page belongs to
319 * @appending: non-zero if the page is appended
320 *
321 * This is a helper function for 'ubifs_write_begin()' which allocates budget
322 * for the operation. The budget is allocated differently depending on whether
323 * this is appending, whether the page is dirty or not, and so on. This
324 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
325 * in case of success and %-ENOSPC in case of failure.
326 */
327static int allocate_budget(struct ubifs_info *c, struct page *page,
328 struct ubifs_inode *ui, int appending)
329{
330 struct ubifs_budget_req req = { .fast = 1 };
331
332 if (PagePrivate(page)) {
333 if (!appending)
334 /*
335 * The page is dirty and we are not appending, which
336 * means no budget is needed at all.
337 */
338 return 0;
339
340 mutex_lock(&ui->ui_mutex);
341 if (ui->dirty)
342 /*
343 * The page is dirty and we are appending, so the inode
344 * has to be marked as dirty. However, it is already
345 * dirty, so we do not need any budget. We may return,
346 * but @ui->ui_mutex hast to be left locked because we
347 * should prevent write-back from flushing the inode
348 * and freeing the budget. The lock will be released in
349 * 'ubifs_write_end()'.
350 */
351 return 0;
352
353 /*
354 * The page is dirty, we are appending, the inode is clean, so
355 * we need to budget the inode change.
356 */
357 req.dirtied_ino = 1;
358 } else {
359 if (PageChecked(page))
360 /*
361 * The page corresponds to a hole and does not
362 * exist on the media. So changing it makes
363 * make the amount of indexing information
364 * larger, and we have to budget for a new
365 * page.
366 */
367 req.new_page = 1;
368 else
369 /*
370 * Not a hole, the change will not add any new
371 * indexing information, budget for page
372 * change.
373 */
374 req.dirtied_page = 1;
375
376 if (appending) {
377 mutex_lock(&ui->ui_mutex);
378 if (!ui->dirty)
379 /*
380 * The inode is clean but we will have to mark
381 * it as dirty because we are appending. This
382 * needs a budget.
383 */
384 req.dirtied_ino = 1;
385 }
386 }
387
388 return ubifs_budget_space(c, &req);
389}
390
391/*
392 * This function is called when a page of data is going to be written. Since
393 * the page of data will not necessarily go to the flash straight away, UBIFS
394 * has to reserve space on the media for it, which is done by means of
395 * budgeting.
396 *
397 * This is the hot-path of the file-system and we are trying to optimize it as
398 * much as possible. For this reasons it is split on 2 parts - slow and fast.
399 *
400 * There many budgeting cases:
401 * o a new page is appended - we have to budget for a new page and for
402 * changing the inode; however, if the inode is already dirty, there is
403 * no need to budget for it;
404 * o an existing clean page is changed - we have budget for it; if the page
405 * does not exist on the media (a hole), we have to budget for a new
406 * page; otherwise, we may budget for changing an existing page; the
407 * difference between these cases is that changing an existing page does
408 * not introduce anything new to the FS indexing information, so it does
409 * not grow, and smaller budget is acquired in this case;
410 * o an existing dirty page is changed - no need to budget at all, because
411 * the page budget has been acquired by earlier, when the page has been
412 * marked dirty.
413 *
414 * UBIFS budgeting sub-system may force write-back if it thinks there is no
415 * space to reserve. This imposes some locking restrictions and makes it
416 * impossible to take into account the above cases, and makes it impossible to
417 * optimize budgeting.
418 *
419 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
420 * there is a plenty of flash space and the budget will be acquired quickly,
421 * without forcing write-back. The slow path does not make this assumption.
422 */
423static int ubifs_write_begin(struct file *file, struct address_space *mapping,
424 loff_t pos, unsigned len, unsigned flags,
425 struct page **pagep, void **fsdata)
426{
427 struct inode *inode = mapping->host;
428 struct ubifs_info *c = inode->i_sb->s_fs_info;
429 struct ubifs_inode *ui = ubifs_inode(inode);
430 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
431 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
432 struct page *page;
433
434
435 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
436
437 if (unlikely(c->ro_media))
438 return -EROFS;
439
440 /* Try out the fast-path part first */
441 page = __grab_cache_page(mapping, index);
442 if (unlikely(!page))
443 return -ENOMEM;
444
445 if (!PageUptodate(page)) {
446 /* The page is not loaded from the flash */
447 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
448 /*
449 * We change whole page so no need to load it. But we
450 * have to set the @PG_checked flag to make the further
451 * code the page is new. This might be not true, but it
452 * is better to budget more that to read the page from
453 * the media.
454 */
455 SetPageChecked(page);
456 else {
457 err = do_readpage(page);
458 if (err) {
459 unlock_page(page);
460 page_cache_release(page);
461 return err;
462 }
463 }
464
465 SetPageUptodate(page);
466 ClearPageError(page);
467 }
468
469 err = allocate_budget(c, page, ui, appending);
470 if (unlikely(err)) {
471 ubifs_assert(err == -ENOSPC);
472 /*
473 * Budgeting failed which means it would have to force
474 * write-back but didn't, because we set the @fast flag in the
475 * request. Write-back cannot be done now, while we have the
476 * page locked, because it would deadlock. Unlock and free
477 * everything and fall-back to slow-path.
478 */
479 if (appending) {
480 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
481 mutex_unlock(&ui->ui_mutex);
482 }
483 unlock_page(page);
484 page_cache_release(page);
485
486 return write_begin_slow(mapping, pos, len, pagep);
487 }
488
489 /*
490 * Whee, we aquired budgeting quickly - without involving
491 * garbage-collection, committing or forceing write-back. We return
492 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493 * otherwise. This is an optimization (slightly hacky though).
494 */
495 *pagep = page;
496 return 0;
497
498}
499
500/**
501 * cancel_budget - cancel budget.
502 * @c: UBIFS file-system description object
503 * @page: page to cancel budget for
504 * @ui: UBIFS inode object the page belongs to
505 * @appending: non-zero if the page is appended
506 *
507 * This is a helper function for a page write operation. It unlocks the
508 * @ui->ui_mutex in case of appending.
509 */
510static void cancel_budget(struct ubifs_info *c, struct page *page,
511 struct ubifs_inode *ui, int appending)
512{
513 if (appending) {
514 if (!ui->dirty)
515 ubifs_release_dirty_inode_budget(c, ui);
516 mutex_unlock(&ui->ui_mutex);
517 }
518 if (!PagePrivate(page)) {
519 if (PageChecked(page))
520 release_new_page_budget(c);
521 else
522 release_existing_page_budget(c);
523 }
524}
525
526static int ubifs_write_end(struct file *file, struct address_space *mapping,
527 loff_t pos, unsigned len, unsigned copied,
528 struct page *page, void *fsdata)
529{
530 struct inode *inode = mapping->host;
531 struct ubifs_inode *ui = ubifs_inode(inode);
532 struct ubifs_info *c = inode->i_sb->s_fs_info;
533 loff_t end_pos = pos + len;
534 int appending = !!(end_pos > inode->i_size);
535
536 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
537 inode->i_ino, pos, page->index, len, copied, inode->i_size);
538
539 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
540 /*
541 * VFS copied less data to the page that it intended and
542 * declared in its '->write_begin()' call via the @len
543 * argument. If the page was not up-to-date, and @len was
544 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
545 * not load it from the media (for optimization reasons). This
546 * means that part of the page contains garbage. So read the
547 * page now.
548 */
549 dbg_gen("copied %d instead of %d, read page and repeat",
550 copied, len);
551 cancel_budget(c, page, ui, appending);
552
553 /*
554 * Return 0 to force VFS to repeat the whole operation, or the
555 * error code if 'do_readpage()' failes.
556 */
557 copied = do_readpage(page);
558 goto out;
559 }
560
561 if (!PagePrivate(page)) {
562 SetPagePrivate(page);
563 atomic_long_inc(&c->dirty_pg_cnt);
564 __set_page_dirty_nobuffers(page);
565 }
566
567 if (appending) {
568 i_size_write(inode, end_pos);
569 ui->ui_size = end_pos;
570 /*
571 * Note, we do not set @I_DIRTY_PAGES (which means that the
572 * inode has dirty pages), this has been done in
573 * '__set_page_dirty_nobuffers()'.
574 */
575 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
576 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
577 mutex_unlock(&ui->ui_mutex);
578 }
579
580out:
581 unlock_page(page);
582 page_cache_release(page);
583 return copied;
584}
585
4793e7c5
AH
586/**
587 * populate_page - copy data nodes into a page for bulk-read.
588 * @c: UBIFS file-system description object
589 * @page: page
590 * @bu: bulk-read information
591 * @n: next zbranch slot
592 *
593 * This function returns %0 on success and a negative error code on failure.
594 */
595static int populate_page(struct ubifs_info *c, struct page *page,
596 struct bu_info *bu, int *n)
597{
598 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 1, read = 0;
599 struct inode *inode = page->mapping->host;
600 loff_t i_size = i_size_read(inode);
601 unsigned int page_block;
602 void *addr, *zaddr;
603 pgoff_t end_index;
604
605 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
606 inode->i_ino, page->index, i_size, page->flags);
607
608 addr = zaddr = kmap(page);
609
ed382d58 610 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
4793e7c5
AH
611 if (!i_size || page->index > end_index) {
612 memset(addr, 0, PAGE_CACHE_SIZE);
613 goto out_hole;
614 }
615
616 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
617 while (1) {
618 int err, len, out_len, dlen;
619
620 if (nn >= bu->cnt ||
621 key_block(c, &bu->zbranch[nn].key) != page_block)
622 memset(addr, 0, UBIFS_BLOCK_SIZE);
623 else {
624 struct ubifs_data_node *dn;
625
626 dn = bu->buf + (bu->zbranch[nn].offs - offs);
627
628 ubifs_assert(dn->ch.sqnum >
629 ubifs_inode(inode)->creat_sqnum);
630
631 len = le32_to_cpu(dn->size);
632 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
633 goto out_err;
634
635 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
636 out_len = UBIFS_BLOCK_SIZE;
637 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
638 le16_to_cpu(dn->compr_type));
639 if (err || len != out_len)
640 goto out_err;
641
642 if (len < UBIFS_BLOCK_SIZE)
643 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
644
645 nn += 1;
646 hole = 0;
647 read = (i << UBIFS_BLOCK_SHIFT) + len;
648 }
649 if (++i >= UBIFS_BLOCKS_PER_PAGE)
650 break;
651 addr += UBIFS_BLOCK_SIZE;
652 page_block += 1;
653 }
654
655 if (end_index == page->index) {
656 int len = i_size & (PAGE_CACHE_SIZE - 1);
657
ed382d58 658 if (len && len < read)
4793e7c5
AH
659 memset(zaddr + len, 0, read - len);
660 }
661
662out_hole:
663 if (hole) {
664 SetPageChecked(page);
665 dbg_gen("hole");
666 }
667
668 SetPageUptodate(page);
669 ClearPageError(page);
670 flush_dcache_page(page);
671 kunmap(page);
672 *n = nn;
673 return 0;
674
675out_err:
676 ClearPageUptodate(page);
677 SetPageError(page);
678 flush_dcache_page(page);
679 kunmap(page);
680 ubifs_err("bad data node (block %u, inode %lu)",
681 page_block, inode->i_ino);
682 return -EINVAL;
683}
684
685/**
686 * ubifs_do_bulk_read - do bulk-read.
687 * @c: UBIFS file-system description object
688 * @page1: first page
689 *
690 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
691 */
692static int ubifs_do_bulk_read(struct ubifs_info *c, struct page *page1)
693{
694 pgoff_t offset = page1->index, end_index;
695 struct address_space *mapping = page1->mapping;
696 struct inode *inode = mapping->host;
697 struct ubifs_inode *ui = ubifs_inode(inode);
698 struct bu_info *bu;
699 int err, page_idx, page_cnt, ret = 0, n = 0;
700 loff_t isize;
701
702 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS);
703 if (!bu)
704 return 0;
705
706 bu->buf_len = c->bulk_read_buf_size;
707 bu->buf = kmalloc(bu->buf_len, GFP_NOFS);
708 if (!bu->buf)
709 goto out_free;
710
711 data_key_init(c, &bu->key, inode->i_ino,
712 offset << UBIFS_BLOCKS_PER_PAGE_SHIFT);
713
714 err = ubifs_tnc_get_bu_keys(c, bu);
715 if (err)
716 goto out_warn;
717
718 if (bu->eof) {
719 /* Turn off bulk-read at the end of the file */
720 ui->read_in_a_row = 1;
721 ui->bulk_read = 0;
722 }
723
724 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
725 if (!page_cnt) {
726 /*
727 * This happens when there are multiple blocks per page and the
728 * blocks for the first page we are looking for, are not
729 * together. If all the pages were like this, bulk-read would
730 * reduce performance, so we turn it off for a while.
731 */
732 ui->read_in_a_row = 0;
733 ui->bulk_read = 0;
734 goto out_free;
735 }
736
737 if (bu->cnt) {
738 err = ubifs_tnc_bulk_read(c, bu);
739 if (err)
740 goto out_warn;
741 }
742
743 err = populate_page(c, page1, bu, &n);
744 if (err)
745 goto out_warn;
746
747 unlock_page(page1);
748 ret = 1;
749
750 isize = i_size_read(inode);
751 if (isize == 0)
752 goto out_free;
753 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
754
755 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
756 pgoff_t page_offset = offset + page_idx;
757 struct page *page;
758
759 if (page_offset > end_index)
760 break;
761 page = find_or_create_page(mapping, page_offset,
762 GFP_NOFS | __GFP_COLD);
763 if (!page)
764 break;
765 if (!PageUptodate(page))
766 err = populate_page(c, page, bu, &n);
767 unlock_page(page);
768 page_cache_release(page);
769 if (err)
770 break;
771 }
772
773 ui->last_page_read = offset + page_idx - 1;
774
775out_free:
776 kfree(bu->buf);
777 kfree(bu);
778 return ret;
779
780out_warn:
781 ubifs_warn("ignoring error %d and skipping bulk-read", err);
782 goto out_free;
783}
784
785/**
786 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
787 * @page: page from which to start bulk-read.
788 *
789 * Some flash media are capable of reading sequentially at faster rates. UBIFS
790 * bulk-read facility is designed to take advantage of that, by reading in one
791 * go consecutive data nodes that are also located consecutively in the same
792 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
793 */
794static int ubifs_bulk_read(struct page *page)
795{
796 struct inode *inode = page->mapping->host;
797 struct ubifs_info *c = inode->i_sb->s_fs_info;
798 struct ubifs_inode *ui = ubifs_inode(inode);
799 pgoff_t index = page->index, last_page_read = ui->last_page_read;
800 int ret = 0;
801
802 ui->last_page_read = index;
803
804 if (!c->bulk_read)
805 return 0;
806 /*
807 * Bulk-read is protected by ui_mutex, but it is an optimization, so
808 * don't bother if we cannot lock the mutex.
809 */
810 if (!mutex_trylock(&ui->ui_mutex))
811 return 0;
812 if (index != last_page_read + 1) {
813 /* Turn off bulk-read if we stop reading sequentially */
814 ui->read_in_a_row = 1;
815 if (ui->bulk_read)
816 ui->bulk_read = 0;
817 goto out_unlock;
818 }
819 if (!ui->bulk_read) {
820 ui->read_in_a_row += 1;
821 if (ui->read_in_a_row < 3)
822 goto out_unlock;
823 /* Three reads in a row, so switch on bulk-read */
824 ui->bulk_read = 1;
825 }
826 ret = ubifs_do_bulk_read(c, page);
827out_unlock:
828 mutex_unlock(&ui->ui_mutex);
829 return ret;
830}
831
1e51764a
AB
832static int ubifs_readpage(struct file *file, struct page *page)
833{
4793e7c5
AH
834 if (ubifs_bulk_read(page))
835 return 0;
1e51764a
AB
836 do_readpage(page);
837 unlock_page(page);
838 return 0;
839}
840
841static int do_writepage(struct page *page, int len)
842{
843 int err = 0, i, blen;
844 unsigned int block;
845 void *addr;
846 union ubifs_key key;
847 struct inode *inode = page->mapping->host;
848 struct ubifs_info *c = inode->i_sb->s_fs_info;
849
850#ifdef UBIFS_DEBUG
851 spin_lock(&ui->ui_lock);
852 ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
853 spin_unlock(&ui->ui_lock);
854#endif
855
856 /* Update radix tree tags */
857 set_page_writeback(page);
858
859 addr = kmap(page);
860 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
861 i = 0;
862 while (len) {
863 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
864 data_key_init(c, &key, inode->i_ino, block);
865 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
866 if (err)
867 break;
868 if (++i >= UBIFS_BLOCKS_PER_PAGE)
869 break;
870 block += 1;
871 addr += blen;
872 len -= blen;
873 }
874 if (err) {
875 SetPageError(page);
876 ubifs_err("cannot write page %lu of inode %lu, error %d",
877 page->index, inode->i_ino, err);
878 ubifs_ro_mode(c, err);
879 }
880
881 ubifs_assert(PagePrivate(page));
882 if (PageChecked(page))
883 release_new_page_budget(c);
884 else
885 release_existing_page_budget(c);
886
887 atomic_long_dec(&c->dirty_pg_cnt);
888 ClearPagePrivate(page);
889 ClearPageChecked(page);
890
891 kunmap(page);
892 unlock_page(page);
893 end_page_writeback(page);
894 return err;
895}
896
897/*
898 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
899 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
900 * situation when a we have an inode with size 0, then a megabyte of data is
901 * appended to the inode, then write-back starts and flushes some amount of the
902 * dirty pages, the journal becomes full, commit happens and finishes, and then
903 * an unclean reboot happens. When the file system is mounted next time, the
904 * inode size would still be 0, but there would be many pages which are beyond
905 * the inode size, they would be indexed and consume flash space. Because the
906 * journal has been committed, the replay would not be able to detect this
907 * situation and correct the inode size. This means UBIFS would have to scan
908 * whole index and correct all inode sizes, which is long an unacceptable.
909 *
910 * To prevent situations like this, UBIFS writes pages back only if they are
911 * within last synchronized inode size, i.e. the the size which has been
912 * written to the flash media last time. Otherwise, UBIFS forces inode
913 * write-back, thus making sure the on-flash inode contains current inode size,
914 * and then keeps writing pages back.
915 *
916 * Some locking issues explanation. 'ubifs_writepage()' first is called with
917 * the page locked, and it locks @ui_mutex. However, write-back does take inode
918 * @i_mutex, which means other VFS operations may be run on this inode at the
919 * same time. And the problematic one is truncation to smaller size, from where
920 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
921 * drops the truncated pages. And while dropping the pages, it takes the page
922 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
923 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
924 * means that @inode->i_size is changed while @ui_mutex is unlocked.
925 *
926 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
927 * inode size. How do we do this if @inode->i_size may became smaller while we
928 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
929 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
930 * internally and updates it under @ui_mutex.
931 *
932 * Q: why we do not worry that if we race with truncation, we may end up with a
933 * situation when the inode is truncated while we are in the middle of
934 * 'do_writepage()', so we do write beyond inode size?
935 * A: If we are in the middle of 'do_writepage()', truncation would be locked
936 * on the page lock and it would not write the truncated inode node to the
937 * journal before we have finished.
938 */
939static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
940{
941 struct inode *inode = page->mapping->host;
942 struct ubifs_inode *ui = ubifs_inode(inode);
943 loff_t i_size = i_size_read(inode), synced_i_size;
944 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
945 int err, len = i_size & (PAGE_CACHE_SIZE - 1);
946 void *kaddr;
947
948 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
949 inode->i_ino, page->index, page->flags);
950 ubifs_assert(PagePrivate(page));
951
952 /* Is the page fully outside @i_size? (truncate in progress) */
953 if (page->index > end_index || (page->index == end_index && !len)) {
954 err = 0;
955 goto out_unlock;
956 }
957
958 spin_lock(&ui->ui_lock);
959 synced_i_size = ui->synced_i_size;
960 spin_unlock(&ui->ui_lock);
961
962 /* Is the page fully inside @i_size? */
963 if (page->index < end_index) {
964 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
965 err = inode->i_sb->s_op->write_inode(inode, 1);
966 if (err)
967 goto out_unlock;
968 /*
969 * The inode has been written, but the write-buffer has
970 * not been synchronized, so in case of an unclean
971 * reboot we may end up with some pages beyond inode
972 * size, but they would be in the journal (because
973 * commit flushes write buffers) and recovery would deal
974 * with this.
975 */
976 }
977 return do_writepage(page, PAGE_CACHE_SIZE);
978 }
979
980 /*
981 * The page straddles @i_size. It must be zeroed out on each and every
982 * writepage invocation because it may be mmapped. "A file is mapped
983 * in multiples of the page size. For a file that is not a multiple of
984 * the page size, the remaining memory is zeroed when mapped, and
985 * writes to that region are not written out to the file."
986 */
987 kaddr = kmap_atomic(page, KM_USER0);
988 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
989 flush_dcache_page(page);
990 kunmap_atomic(kaddr, KM_USER0);
991
992 if (i_size > synced_i_size) {
993 err = inode->i_sb->s_op->write_inode(inode, 1);
994 if (err)
995 goto out_unlock;
996 }
997
998 return do_writepage(page, len);
999
1000out_unlock:
1001 unlock_page(page);
1002 return err;
1003}
1004
1005/**
1006 * do_attr_changes - change inode attributes.
1007 * @inode: inode to change attributes for
1008 * @attr: describes attributes to change
1009 */
1010static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1011{
1012 if (attr->ia_valid & ATTR_UID)
1013 inode->i_uid = attr->ia_uid;
1014 if (attr->ia_valid & ATTR_GID)
1015 inode->i_gid = attr->ia_gid;
1016 if (attr->ia_valid & ATTR_ATIME)
1017 inode->i_atime = timespec_trunc(attr->ia_atime,
1018 inode->i_sb->s_time_gran);
1019 if (attr->ia_valid & ATTR_MTIME)
1020 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1021 inode->i_sb->s_time_gran);
1022 if (attr->ia_valid & ATTR_CTIME)
1023 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1024 inode->i_sb->s_time_gran);
1025 if (attr->ia_valid & ATTR_MODE) {
1026 umode_t mode = attr->ia_mode;
1027
1028 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1029 mode &= ~S_ISGID;
1030 inode->i_mode = mode;
1031 }
1032}
1033
1034/**
1035 * do_truncation - truncate an inode.
1036 * @c: UBIFS file-system description object
1037 * @inode: inode to truncate
1038 * @attr: inode attribute changes description
1039 *
1040 * This function implements VFS '->setattr()' call when the inode is truncated
1041 * to a smaller size. Returns zero in case of success and a negative error code
1042 * in case of failure.
1043 */
1044static int do_truncation(struct ubifs_info *c, struct inode *inode,
1045 const struct iattr *attr)
1046{
1047 int err;
1048 struct ubifs_budget_req req;
1049 loff_t old_size = inode->i_size, new_size = attr->ia_size;
04da11bf 1050 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1e51764a
AB
1051 struct ubifs_inode *ui = ubifs_inode(inode);
1052
1053 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1054 memset(&req, 0, sizeof(struct ubifs_budget_req));
1055
1056 /*
1057 * If this is truncation to a smaller size, and we do not truncate on a
1058 * block boundary, budget for changing one data block, because the last
1059 * block will be re-written.
1060 */
1061 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1062 req.dirtied_page = 1;
1063
1064 req.dirtied_ino = 1;
1065 /* A funny way to budget for truncation node */
1066 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1067 err = ubifs_budget_space(c, &req);
04da11bf
AB
1068 if (err) {
1069 /*
1070 * Treat truncations to zero as deletion and always allow them,
1071 * just like we do for '->unlink()'.
1072 */
1073 if (new_size || err != -ENOSPC)
1074 return err;
1075 budgeted = 0;
1076 }
1e51764a
AB
1077
1078 err = vmtruncate(inode, new_size);
1079 if (err)
1080 goto out_budg;
1081
1082 if (offset) {
1083 pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1084 struct page *page;
1085
1086 page = find_lock_page(inode->i_mapping, index);
1087 if (page) {
1088 if (PageDirty(page)) {
1089 /*
1090 * 'ubifs_jnl_truncate()' will try to truncate
1091 * the last data node, but it contains
1092 * out-of-date data because the page is dirty.
1093 * Write the page now, so that
1094 * 'ubifs_jnl_truncate()' will see an already
1095 * truncated (and up to date) data node.
1096 */
1097 ubifs_assert(PagePrivate(page));
1098
1099 clear_page_dirty_for_io(page);
1100 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1101 offset = new_size &
1102 (PAGE_CACHE_SIZE - 1);
1103 err = do_writepage(page, offset);
1104 page_cache_release(page);
1105 if (err)
1106 goto out_budg;
1107 /*
1108 * We could now tell 'ubifs_jnl_truncate()' not
1109 * to read the last block.
1110 */
1111 } else {
1112 /*
1113 * We could 'kmap()' the page and pass the data
1114 * to 'ubifs_jnl_truncate()' to save it from
1115 * having to read it.
1116 */
1117 unlock_page(page);
1118 page_cache_release(page);
1119 }
1120 }
1121 }
1122
1123 mutex_lock(&ui->ui_mutex);
1124 ui->ui_size = inode->i_size;
1125 /* Truncation changes inode [mc]time */
1126 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1127 /* The other attributes may be changed at the same time as well */
1128 do_attr_changes(inode, attr);
1129
1130 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1131 mutex_unlock(&ui->ui_mutex);
1132out_budg:
04da11bf
AB
1133 if (budgeted)
1134 ubifs_release_budget(c, &req);
1135 else {
1136 c->nospace = c->nospace_rp = 0;
1137 smp_wmb();
1138 }
1e51764a
AB
1139 return err;
1140}
1141
1142/**
1143 * do_setattr - change inode attributes.
1144 * @c: UBIFS file-system description object
1145 * @inode: inode to change attributes for
1146 * @attr: inode attribute changes description
1147 *
1148 * This function implements VFS '->setattr()' call for all cases except
1149 * truncations to smaller size. Returns zero in case of success and a negative
1150 * error code in case of failure.
1151 */
1152static int do_setattr(struct ubifs_info *c, struct inode *inode,
1153 const struct iattr *attr)
1154{
1155 int err, release;
1156 loff_t new_size = attr->ia_size;
1157 struct ubifs_inode *ui = ubifs_inode(inode);
1158 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1159 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1160
1161 err = ubifs_budget_space(c, &req);
1162 if (err)
1163 return err;
1164
1165 if (attr->ia_valid & ATTR_SIZE) {
1166 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1167 err = vmtruncate(inode, new_size);
1168 if (err)
1169 goto out;
1170 }
1171
1172 mutex_lock(&ui->ui_mutex);
1173 if (attr->ia_valid & ATTR_SIZE) {
1174 /* Truncation changes inode [mc]time */
1175 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1176 /* 'vmtruncate()' changed @i_size, update @ui_size */
1177 ui->ui_size = inode->i_size;
1178 }
1179
1180 do_attr_changes(inode, attr);
1181
1182 release = ui->dirty;
1183 if (attr->ia_valid & ATTR_SIZE)
1184 /*
1185 * Inode length changed, so we have to make sure
1186 * @I_DIRTY_DATASYNC is set.
1187 */
1188 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1189 else
1190 mark_inode_dirty_sync(inode);
1191 mutex_unlock(&ui->ui_mutex);
1192
1193 if (release)
1194 ubifs_release_budget(c, &req);
1195 if (IS_SYNC(inode))
1196 err = inode->i_sb->s_op->write_inode(inode, 1);
1197 return err;
1198
1199out:
1200 ubifs_release_budget(c, &req);
1201 return err;
1202}
1203
1204int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1205{
1206 int err;
1207 struct inode *inode = dentry->d_inode;
1208 struct ubifs_info *c = inode->i_sb->s_fs_info;
1209
7d32c2bb
AB
1210 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1211 inode->i_ino, inode->i_mode, attr->ia_valid);
1e51764a
AB
1212 err = inode_change_ok(inode, attr);
1213 if (err)
1214 return err;
1215
1216 err = dbg_check_synced_i_size(inode);
1217 if (err)
1218 return err;
1219
1220 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1221 /* Truncation to a smaller size */
1222 err = do_truncation(c, inode, attr);
1223 else
1224 err = do_setattr(c, inode, attr);
1225
1226 return err;
1227}
1228
1229static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1230{
1231 struct inode *inode = page->mapping->host;
1232 struct ubifs_info *c = inode->i_sb->s_fs_info;
1233
1234 ubifs_assert(PagePrivate(page));
1235 if (offset)
1236 /* Partial page remains dirty */
1237 return;
1238
1239 if (PageChecked(page))
1240 release_new_page_budget(c);
1241 else
1242 release_existing_page_budget(c);
1243
1244 atomic_long_dec(&c->dirty_pg_cnt);
1245 ClearPagePrivate(page);
1246 ClearPageChecked(page);
1247}
1248
1249static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1250{
1251 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1252
1253 nd_set_link(nd, ui->data);
1254 return NULL;
1255}
1256
1257int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1258{
1259 struct inode *inode = dentry->d_inode;
1260 struct ubifs_info *c = inode->i_sb->s_fs_info;
1261 int err;
1262
1263 dbg_gen("syncing inode %lu", inode->i_ino);
1264
1265 /*
1266 * VFS has already synchronized dirty pages for this inode. Synchronize
1267 * the inode unless this is a 'datasync()' call.
1268 */
1269 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1270 err = inode->i_sb->s_op->write_inode(inode, 1);
1271 if (err)
1272 return err;
1273 }
1274
1275 /*
1276 * Nodes related to this inode may still sit in a write-buffer. Flush
1277 * them.
1278 */
1279 err = ubifs_sync_wbufs_by_inode(c, inode);
1280 if (err)
1281 return err;
1282
1283 return 0;
1284}
1285
1286/**
1287 * mctime_update_needed - check if mtime or ctime update is needed.
1288 * @inode: the inode to do the check for
1289 * @now: current time
1290 *
1291 * This helper function checks if the inode mtime/ctime should be updated or
1292 * not. If current values of the time-stamps are within the UBIFS inode time
1293 * granularity, they are not updated. This is an optimization.
1294 */
1295static inline int mctime_update_needed(const struct inode *inode,
1296 const struct timespec *now)
1297{
1298 if (!timespec_equal(&inode->i_mtime, now) ||
1299 !timespec_equal(&inode->i_ctime, now))
1300 return 1;
1301 return 0;
1302}
1303
1304/**
1305 * update_ctime - update mtime and ctime of an inode.
1306 * @c: UBIFS file-system description object
1307 * @inode: inode to update
1308 *
1309 * This function updates mtime and ctime of the inode if it is not equivalent to
1310 * current time. Returns zero in case of success and a negative error code in
1311 * case of failure.
1312 */
1313static int update_mctime(struct ubifs_info *c, struct inode *inode)
1314{
1315 struct timespec now = ubifs_current_time(inode);
1316 struct ubifs_inode *ui = ubifs_inode(inode);
1317
1318 if (mctime_update_needed(inode, &now)) {
1319 int err, release;
1320 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1321 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1322
1323 err = ubifs_budget_space(c, &req);
1324 if (err)
1325 return err;
1326
1327 mutex_lock(&ui->ui_mutex);
1328 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1329 release = ui->dirty;
1330 mark_inode_dirty_sync(inode);
1331 mutex_unlock(&ui->ui_mutex);
1332 if (release)
1333 ubifs_release_budget(c, &req);
1334 }
1335
1336 return 0;
1337}
1338
1339static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1340 unsigned long nr_segs, loff_t pos)
1341{
1342 int err;
1343 ssize_t ret;
1344 struct inode *inode = iocb->ki_filp->f_mapping->host;
1345 struct ubifs_info *c = inode->i_sb->s_fs_info;
1346
1347 err = update_mctime(c, inode);
1348 if (err)
1349 return err;
1350
1351 ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1352 if (ret < 0)
1353 return ret;
1354
1355 if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1356 err = ubifs_sync_wbufs_by_inode(c, inode);
1357 if (err)
1358 return err;
1359 }
1360
1361 return ret;
1362}
1363
1364static int ubifs_set_page_dirty(struct page *page)
1365{
1366 int ret;
1367
1368 ret = __set_page_dirty_nobuffers(page);
1369 /*
1370 * An attempt to dirty a page without budgeting for it - should not
1371 * happen.
1372 */
1373 ubifs_assert(ret == 0);
1374 return ret;
1375}
1376
1377static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1378{
1379 /*
1380 * An attempt to release a dirty page without budgeting for it - should
1381 * not happen.
1382 */
1383 if (PageWriteback(page))
1384 return 0;
1385 ubifs_assert(PagePrivate(page));
1386 ubifs_assert(0);
1387 ClearPagePrivate(page);
1388 ClearPageChecked(page);
1389 return 1;
1390}
1391
1392/*
1393 * mmap()d file has taken write protection fault and is being made
1394 * writable. UBIFS must ensure page is budgeted for.
1395 */
1396static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
1397{
1398 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1399 struct ubifs_info *c = inode->i_sb->s_fs_info;
1400 struct timespec now = ubifs_current_time(inode);
1401 struct ubifs_budget_req req = { .new_page = 1 };
1402 int err, update_time;
1403
1404 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1405 i_size_read(inode));
1406 ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1407
1408 if (unlikely(c->ro_media))
1409 return -EROFS;
1410
1411 /*
1412 * We have not locked @page so far so we may budget for changing the
1413 * page. Note, we cannot do this after we locked the page, because
1414 * budgeting may cause write-back which would cause deadlock.
1415 *
1416 * At the moment we do not know whether the page is dirty or not, so we
1417 * assume that it is not and budget for a new page. We could look at
1418 * the @PG_private flag and figure this out, but we may race with write
1419 * back and the page state may change by the time we lock it, so this
1420 * would need additional care. We do not bother with this at the
1421 * moment, although it might be good idea to do. Instead, we allocate
1422 * budget for a new page and amend it later on if the page was in fact
1423 * dirty.
1424 *
1425 * The budgeting-related logic of this function is similar to what we
1426 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1427 * for more comments.
1428 */
1429 update_time = mctime_update_needed(inode, &now);
1430 if (update_time)
1431 /*
1432 * We have to change inode time stamp which requires extra
1433 * budgeting.
1434 */
1435 req.dirtied_ino = 1;
1436
1437 err = ubifs_budget_space(c, &req);
1438 if (unlikely(err)) {
1439 if (err == -ENOSPC)
1440 ubifs_warn("out of space for mmapped file "
1441 "(inode number %lu)", inode->i_ino);
1442 return err;
1443 }
1444
1445 lock_page(page);
1446 if (unlikely(page->mapping != inode->i_mapping ||
1447 page_offset(page) > i_size_read(inode))) {
1448 /* Page got truncated out from underneath us */
1449 err = -EINVAL;
1450 goto out_unlock;
1451 }
1452
1453 if (PagePrivate(page))
1454 release_new_page_budget(c);
1455 else {
1456 if (!PageChecked(page))
1457 ubifs_convert_page_budget(c);
1458 SetPagePrivate(page);
1459 atomic_long_inc(&c->dirty_pg_cnt);
1460 __set_page_dirty_nobuffers(page);
1461 }
1462
1463 if (update_time) {
1464 int release;
1465 struct ubifs_inode *ui = ubifs_inode(inode);
1466
1467 mutex_lock(&ui->ui_mutex);
1468 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1469 release = ui->dirty;
1470 mark_inode_dirty_sync(inode);
1471 mutex_unlock(&ui->ui_mutex);
1472 if (release)
1473 ubifs_release_dirty_inode_budget(c, ui);
1474 }
1475
1476 unlock_page(page);
1477 return 0;
1478
1479out_unlock:
1480 unlock_page(page);
1481 ubifs_release_budget(c, &req);
1482 return err;
1483}
1484
1485static struct vm_operations_struct ubifs_file_vm_ops = {
1486 .fault = filemap_fault,
1487 .page_mkwrite = ubifs_vm_page_mkwrite,
1488};
1489
1490static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1491{
1492 int err;
1493
1494 /* 'generic_file_mmap()' takes care of NOMMU case */
1495 err = generic_file_mmap(file, vma);
1496 if (err)
1497 return err;
1498 vma->vm_ops = &ubifs_file_vm_ops;
1499 return 0;
1500}
1501
1502struct address_space_operations ubifs_file_address_operations = {
1503 .readpage = ubifs_readpage,
1504 .writepage = ubifs_writepage,
1505 .write_begin = ubifs_write_begin,
1506 .write_end = ubifs_write_end,
1507 .invalidatepage = ubifs_invalidatepage,
1508 .set_page_dirty = ubifs_set_page_dirty,
1509 .releasepage = ubifs_releasepage,
1510};
1511
1512struct inode_operations ubifs_file_inode_operations = {
1513 .setattr = ubifs_setattr,
1514 .getattr = ubifs_getattr,
1515#ifdef CONFIG_UBIFS_FS_XATTR
1516 .setxattr = ubifs_setxattr,
1517 .getxattr = ubifs_getxattr,
1518 .listxattr = ubifs_listxattr,
1519 .removexattr = ubifs_removexattr,
1520#endif
1521};
1522
1523struct inode_operations ubifs_symlink_inode_operations = {
1524 .readlink = generic_readlink,
1525 .follow_link = ubifs_follow_link,
1526 .setattr = ubifs_setattr,
1527 .getattr = ubifs_getattr,
1528};
1529
1530struct file_operations ubifs_file_operations = {
1531 .llseek = generic_file_llseek,
1532 .read = do_sync_read,
1533 .write = do_sync_write,
1534 .aio_read = generic_file_aio_read,
1535 .aio_write = ubifs_aio_write,
1536 .mmap = ubifs_file_mmap,
1537 .fsync = ubifs_fsync,
1538 .unlocked_ioctl = ubifs_ioctl,
1539 .splice_read = generic_file_splice_read,
22bc7fa8 1540 .splice_write = generic_file_splice_write,
1e51764a
AB
1541#ifdef CONFIG_COMPAT
1542 .compat_ioctl = ubifs_compat_ioctl,
1543#endif
1544};