UBIFS: correct key comparison
[linux-2.6-block.git] / fs / ubifs / file.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements VFS file and inode operations of regular files, device
25 * nodes and symlinks as well as address space operations.
26 *
27 * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
28 * page is dirty and is used for budgeting purposes - dirty pages should not be
29 * budgeted. The PG_checked flag is set if full budgeting is required for the
30 * page e.g., when it corresponds to a file hole or it is just beyond the file
31 * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
32 * fail in this function, and the budget is released in 'ubifs_write_end()'. So
33 * the PG_private and PG_checked flags carry the information about how the page
34 * was budgeted, to make it possible to release the budget properly.
35 *
36 * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
37 * we implement. However, this is not true for '->writepage()', which might be
38 * called with 'i_mutex' unlocked. For example, when pdflush is performing
39 * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
40 * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
41 * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
42 * path'. So, in '->writepage()' we are only guaranteed that the page is
43 * locked.
44 *
45 * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
46 * readahead path does not have it locked ("sys_read -> generic_file_aio_read
47 * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
48 * not set as well. However, UBIFS disables readahead.
49 *
50 * This, for example means that there might be 2 concurrent '->writepage()'
51 * calls for the same inode, but different inode dirty pages.
52 */
53
54#include "ubifs.h"
55#include <linux/mount.h>
3f8206d4 56#include <linux/namei.h>
1e51764a
AB
57
58static int read_block(struct inode *inode, void *addr, unsigned int block,
59 struct ubifs_data_node *dn)
60{
61 struct ubifs_info *c = inode->i_sb->s_fs_info;
62 int err, len, out_len;
63 union ubifs_key key;
64 unsigned int dlen;
65
66 data_key_init(c, &key, inode->i_ino, block);
67 err = ubifs_tnc_lookup(c, &key, dn);
68 if (err) {
69 if (err == -ENOENT)
70 /* Not found, so it must be a hole */
71 memset(addr, 0, UBIFS_BLOCK_SIZE);
72 return err;
73 }
74
75 ubifs_assert(dn->ch.sqnum > ubifs_inode(inode)->creat_sqnum);
76
77 len = le32_to_cpu(dn->size);
78 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 goto dump;
80
81 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 out_len = UBIFS_BLOCK_SIZE;
83 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 le16_to_cpu(dn->compr_type));
85 if (err || len != out_len)
86 goto dump;
87
88 /*
89 * Data length can be less than a full block, even for blocks that are
90 * not the last in the file (e.g., as a result of making a hole and
91 * appending data). Ensure that the remainder is zeroed out.
92 */
93 if (len < UBIFS_BLOCK_SIZE)
94 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95
96 return 0;
97
98dump:
99 ubifs_err("bad data node (block %u, inode %lu)",
100 block, inode->i_ino);
101 dbg_dump_node(c, dn);
102 return -EINVAL;
103}
104
105static int do_readpage(struct page *page)
106{
107 void *addr;
108 int err = 0, i;
109 unsigned int block, beyond;
110 struct ubifs_data_node *dn;
111 struct inode *inode = page->mapping->host;
112 loff_t i_size = i_size_read(inode);
113
114 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 inode->i_ino, page->index, i_size, page->flags);
116 ubifs_assert(!PageChecked(page));
117 ubifs_assert(!PagePrivate(page));
118
119 addr = kmap(page);
120
121 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 if (block >= beyond) {
124 /* Reading beyond inode */
125 SetPageChecked(page);
126 memset(addr, 0, PAGE_CACHE_SIZE);
127 goto out;
128 }
129
130 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 if (!dn) {
132 err = -ENOMEM;
133 goto error;
134 }
135
136 i = 0;
137 while (1) {
138 int ret;
139
140 if (block >= beyond) {
141 /* Reading beyond inode */
142 err = -ENOENT;
143 memset(addr, 0, UBIFS_BLOCK_SIZE);
144 } else {
145 ret = read_block(inode, addr, block, dn);
146 if (ret) {
147 err = ret;
148 if (err != -ENOENT)
149 break;
150 }
151 }
152 if (++i >= UBIFS_BLOCKS_PER_PAGE)
153 break;
154 block += 1;
155 addr += UBIFS_BLOCK_SIZE;
156 }
157 if (err) {
158 if (err == -ENOENT) {
159 /* Not found, so it must be a hole */
160 SetPageChecked(page);
161 dbg_gen("hole");
162 goto out_free;
163 }
164 ubifs_err("cannot read page %lu of inode %lu, error %d",
165 page->index, inode->i_ino, err);
166 goto error;
167 }
168
169out_free:
170 kfree(dn);
171out:
172 SetPageUptodate(page);
173 ClearPageError(page);
174 flush_dcache_page(page);
175 kunmap(page);
176 return 0;
177
178error:
179 kfree(dn);
180 ClearPageUptodate(page);
181 SetPageError(page);
182 flush_dcache_page(page);
183 kunmap(page);
184 return err;
185}
186
187/**
188 * release_new_page_budget - release budget of a new page.
189 * @c: UBIFS file-system description object
190 *
191 * This is a helper function which releases budget corresponding to the budget
192 * of one new page of data.
193 */
194static void release_new_page_budget(struct ubifs_info *c)
195{
196 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
197
198 ubifs_release_budget(c, &req);
199}
200
201/**
202 * release_existing_page_budget - release budget of an existing page.
203 * @c: UBIFS file-system description object
204 *
205 * This is a helper function which releases budget corresponding to the budget
206 * of changing one one page of data which already exists on the flash media.
207 */
208static void release_existing_page_budget(struct ubifs_info *c)
209{
210 struct ubifs_budget_req req = { .dd_growth = c->page_budget};
211
212 ubifs_release_budget(c, &req);
213}
214
215static int write_begin_slow(struct address_space *mapping,
216 loff_t pos, unsigned len, struct page **pagep)
217{
218 struct inode *inode = mapping->host;
219 struct ubifs_info *c = inode->i_sb->s_fs_info;
220 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
221 struct ubifs_budget_req req = { .new_page = 1 };
222 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
223 struct page *page;
224
225 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
226 inode->i_ino, pos, len, inode->i_size);
227
228 /*
229 * At the slow path we have to budget before locking the page, because
230 * budgeting may force write-back, which would wait on locked pages and
231 * deadlock if we had the page locked. At this point we do not know
232 * anything about the page, so assume that this is a new page which is
233 * written to a hole. This corresponds to largest budget. Later the
234 * budget will be amended if this is not true.
235 */
236 if (appending)
237 /* We are appending data, budget for inode change */
238 req.dirtied_ino = 1;
239
240 err = ubifs_budget_space(c, &req);
241 if (unlikely(err))
242 return err;
243
244 page = __grab_cache_page(mapping, index);
245 if (unlikely(!page)) {
246 ubifs_release_budget(c, &req);
247 return -ENOMEM;
248 }
249
250 if (!PageUptodate(page)) {
251 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
252 SetPageChecked(page);
253 else {
254 err = do_readpage(page);
255 if (err) {
256 unlock_page(page);
257 page_cache_release(page);
258 return err;
259 }
260 }
261
262 SetPageUptodate(page);
263 ClearPageError(page);
264 }
265
266 if (PagePrivate(page))
267 /*
268 * The page is dirty, which means it was budgeted twice:
269 * o first time the budget was allocated by the task which
270 * made the page dirty and set the PG_private flag;
271 * o and then we budgeted for it for the second time at the
272 * very beginning of this function.
273 *
274 * So what we have to do is to release the page budget we
275 * allocated.
276 */
277 release_new_page_budget(c);
278 else if (!PageChecked(page))
279 /*
280 * We are changing a page which already exists on the media.
281 * This means that changing the page does not make the amount
282 * of indexing information larger, and this part of the budget
283 * which we have already acquired may be released.
284 */
285 ubifs_convert_page_budget(c);
286
287 if (appending) {
288 struct ubifs_inode *ui = ubifs_inode(inode);
289
290 /*
291 * 'ubifs_write_end()' is optimized from the fast-path part of
292 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
293 * if data is appended.
294 */
295 mutex_lock(&ui->ui_mutex);
296 if (ui->dirty)
297 /*
298 * The inode is dirty already, so we may free the
299 * budget we allocated.
300 */
301 ubifs_release_dirty_inode_budget(c, ui);
302 }
303
304 *pagep = page;
305 return 0;
306}
307
308/**
309 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
310 * @c: UBIFS file-system description object
311 * @page: page to allocate budget for
312 * @ui: UBIFS inode object the page belongs to
313 * @appending: non-zero if the page is appended
314 *
315 * This is a helper function for 'ubifs_write_begin()' which allocates budget
316 * for the operation. The budget is allocated differently depending on whether
317 * this is appending, whether the page is dirty or not, and so on. This
318 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
319 * in case of success and %-ENOSPC in case of failure.
320 */
321static int allocate_budget(struct ubifs_info *c, struct page *page,
322 struct ubifs_inode *ui, int appending)
323{
324 struct ubifs_budget_req req = { .fast = 1 };
325
326 if (PagePrivate(page)) {
327 if (!appending)
328 /*
329 * The page is dirty and we are not appending, which
330 * means no budget is needed at all.
331 */
332 return 0;
333
334 mutex_lock(&ui->ui_mutex);
335 if (ui->dirty)
336 /*
337 * The page is dirty and we are appending, so the inode
338 * has to be marked as dirty. However, it is already
339 * dirty, so we do not need any budget. We may return,
340 * but @ui->ui_mutex hast to be left locked because we
341 * should prevent write-back from flushing the inode
342 * and freeing the budget. The lock will be released in
343 * 'ubifs_write_end()'.
344 */
345 return 0;
346
347 /*
348 * The page is dirty, we are appending, the inode is clean, so
349 * we need to budget the inode change.
350 */
351 req.dirtied_ino = 1;
352 } else {
353 if (PageChecked(page))
354 /*
355 * The page corresponds to a hole and does not
356 * exist on the media. So changing it makes
357 * make the amount of indexing information
358 * larger, and we have to budget for a new
359 * page.
360 */
361 req.new_page = 1;
362 else
363 /*
364 * Not a hole, the change will not add any new
365 * indexing information, budget for page
366 * change.
367 */
368 req.dirtied_page = 1;
369
370 if (appending) {
371 mutex_lock(&ui->ui_mutex);
372 if (!ui->dirty)
373 /*
374 * The inode is clean but we will have to mark
375 * it as dirty because we are appending. This
376 * needs a budget.
377 */
378 req.dirtied_ino = 1;
379 }
380 }
381
382 return ubifs_budget_space(c, &req);
383}
384
385/*
386 * This function is called when a page of data is going to be written. Since
387 * the page of data will not necessarily go to the flash straight away, UBIFS
388 * has to reserve space on the media for it, which is done by means of
389 * budgeting.
390 *
391 * This is the hot-path of the file-system and we are trying to optimize it as
392 * much as possible. For this reasons it is split on 2 parts - slow and fast.
393 *
394 * There many budgeting cases:
395 * o a new page is appended - we have to budget for a new page and for
396 * changing the inode; however, if the inode is already dirty, there is
397 * no need to budget for it;
398 * o an existing clean page is changed - we have budget for it; if the page
399 * does not exist on the media (a hole), we have to budget for a new
400 * page; otherwise, we may budget for changing an existing page; the
401 * difference between these cases is that changing an existing page does
402 * not introduce anything new to the FS indexing information, so it does
403 * not grow, and smaller budget is acquired in this case;
404 * o an existing dirty page is changed - no need to budget at all, because
405 * the page budget has been acquired by earlier, when the page has been
406 * marked dirty.
407 *
408 * UBIFS budgeting sub-system may force write-back if it thinks there is no
409 * space to reserve. This imposes some locking restrictions and makes it
410 * impossible to take into account the above cases, and makes it impossible to
411 * optimize budgeting.
412 *
413 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
414 * there is a plenty of flash space and the budget will be acquired quickly,
415 * without forcing write-back. The slow path does not make this assumption.
416 */
417static int ubifs_write_begin(struct file *file, struct address_space *mapping,
418 loff_t pos, unsigned len, unsigned flags,
419 struct page **pagep, void **fsdata)
420{
421 struct inode *inode = mapping->host;
422 struct ubifs_info *c = inode->i_sb->s_fs_info;
423 struct ubifs_inode *ui = ubifs_inode(inode);
424 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
425 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
426 struct page *page;
427
428
429 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
430
431 if (unlikely(c->ro_media))
432 return -EROFS;
433
434 /* Try out the fast-path part first */
435 page = __grab_cache_page(mapping, index);
436 if (unlikely(!page))
437 return -ENOMEM;
438
439 if (!PageUptodate(page)) {
440 /* The page is not loaded from the flash */
441 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
442 /*
443 * We change whole page so no need to load it. But we
444 * have to set the @PG_checked flag to make the further
445 * code the page is new. This might be not true, but it
446 * is better to budget more that to read the page from
447 * the media.
448 */
449 SetPageChecked(page);
450 else {
451 err = do_readpage(page);
452 if (err) {
453 unlock_page(page);
454 page_cache_release(page);
455 return err;
456 }
457 }
458
459 SetPageUptodate(page);
460 ClearPageError(page);
461 }
462
463 err = allocate_budget(c, page, ui, appending);
464 if (unlikely(err)) {
465 ubifs_assert(err == -ENOSPC);
466 /*
467 * Budgeting failed which means it would have to force
468 * write-back but didn't, because we set the @fast flag in the
469 * request. Write-back cannot be done now, while we have the
470 * page locked, because it would deadlock. Unlock and free
471 * everything and fall-back to slow-path.
472 */
473 if (appending) {
474 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
475 mutex_unlock(&ui->ui_mutex);
476 }
477 unlock_page(page);
478 page_cache_release(page);
479
480 return write_begin_slow(mapping, pos, len, pagep);
481 }
482
483 /*
484 * Whee, we aquired budgeting quickly - without involving
485 * garbage-collection, committing or forceing write-back. We return
486 * with @ui->ui_mutex locked if we are appending pages, and unlocked
487 * otherwise. This is an optimization (slightly hacky though).
488 */
489 *pagep = page;
490 return 0;
491
492}
493
494/**
495 * cancel_budget - cancel budget.
496 * @c: UBIFS file-system description object
497 * @page: page to cancel budget for
498 * @ui: UBIFS inode object the page belongs to
499 * @appending: non-zero if the page is appended
500 *
501 * This is a helper function for a page write operation. It unlocks the
502 * @ui->ui_mutex in case of appending.
503 */
504static void cancel_budget(struct ubifs_info *c, struct page *page,
505 struct ubifs_inode *ui, int appending)
506{
507 if (appending) {
508 if (!ui->dirty)
509 ubifs_release_dirty_inode_budget(c, ui);
510 mutex_unlock(&ui->ui_mutex);
511 }
512 if (!PagePrivate(page)) {
513 if (PageChecked(page))
514 release_new_page_budget(c);
515 else
516 release_existing_page_budget(c);
517 }
518}
519
520static int ubifs_write_end(struct file *file, struct address_space *mapping,
521 loff_t pos, unsigned len, unsigned copied,
522 struct page *page, void *fsdata)
523{
524 struct inode *inode = mapping->host;
525 struct ubifs_inode *ui = ubifs_inode(inode);
526 struct ubifs_info *c = inode->i_sb->s_fs_info;
527 loff_t end_pos = pos + len;
528 int appending = !!(end_pos > inode->i_size);
529
530 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
531 inode->i_ino, pos, page->index, len, copied, inode->i_size);
532
533 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
534 /*
535 * VFS copied less data to the page that it intended and
536 * declared in its '->write_begin()' call via the @len
537 * argument. If the page was not up-to-date, and @len was
538 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
539 * not load it from the media (for optimization reasons). This
540 * means that part of the page contains garbage. So read the
541 * page now.
542 */
543 dbg_gen("copied %d instead of %d, read page and repeat",
544 copied, len);
545 cancel_budget(c, page, ui, appending);
546
547 /*
548 * Return 0 to force VFS to repeat the whole operation, or the
549 * error code if 'do_readpage()' failes.
550 */
551 copied = do_readpage(page);
552 goto out;
553 }
554
555 if (!PagePrivate(page)) {
556 SetPagePrivate(page);
557 atomic_long_inc(&c->dirty_pg_cnt);
558 __set_page_dirty_nobuffers(page);
559 }
560
561 if (appending) {
562 i_size_write(inode, end_pos);
563 ui->ui_size = end_pos;
564 /*
565 * Note, we do not set @I_DIRTY_PAGES (which means that the
566 * inode has dirty pages), this has been done in
567 * '__set_page_dirty_nobuffers()'.
568 */
569 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
570 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
571 mutex_unlock(&ui->ui_mutex);
572 }
573
574out:
575 unlock_page(page);
576 page_cache_release(page);
577 return copied;
578}
579
4793e7c5
AH
580/**
581 * populate_page - copy data nodes into a page for bulk-read.
582 * @c: UBIFS file-system description object
583 * @page: page
584 * @bu: bulk-read information
585 * @n: next zbranch slot
586 *
587 * This function returns %0 on success and a negative error code on failure.
588 */
589static int populate_page(struct ubifs_info *c, struct page *page,
590 struct bu_info *bu, int *n)
591{
592 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 1, read = 0;
593 struct inode *inode = page->mapping->host;
594 loff_t i_size = i_size_read(inode);
595 unsigned int page_block;
596 void *addr, *zaddr;
597 pgoff_t end_index;
598
599 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
600 inode->i_ino, page->index, i_size, page->flags);
601
602 addr = zaddr = kmap(page);
603
604 end_index = (i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
605 if (!i_size || page->index > end_index) {
606 memset(addr, 0, PAGE_CACHE_SIZE);
607 goto out_hole;
608 }
609
610 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
611 while (1) {
612 int err, len, out_len, dlen;
613
614 if (nn >= bu->cnt ||
615 key_block(c, &bu->zbranch[nn].key) != page_block)
616 memset(addr, 0, UBIFS_BLOCK_SIZE);
617 else {
618 struct ubifs_data_node *dn;
619
620 dn = bu->buf + (bu->zbranch[nn].offs - offs);
621
622 ubifs_assert(dn->ch.sqnum >
623 ubifs_inode(inode)->creat_sqnum);
624
625 len = le32_to_cpu(dn->size);
626 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
627 goto out_err;
628
629 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
630 out_len = UBIFS_BLOCK_SIZE;
631 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
632 le16_to_cpu(dn->compr_type));
633 if (err || len != out_len)
634 goto out_err;
635
636 if (len < UBIFS_BLOCK_SIZE)
637 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
638
639 nn += 1;
640 hole = 0;
641 read = (i << UBIFS_BLOCK_SHIFT) + len;
642 }
643 if (++i >= UBIFS_BLOCKS_PER_PAGE)
644 break;
645 addr += UBIFS_BLOCK_SIZE;
646 page_block += 1;
647 }
648
649 if (end_index == page->index) {
650 int len = i_size & (PAGE_CACHE_SIZE - 1);
651
652 if (len < read)
653 memset(zaddr + len, 0, read - len);
654 }
655
656out_hole:
657 if (hole) {
658 SetPageChecked(page);
659 dbg_gen("hole");
660 }
661
662 SetPageUptodate(page);
663 ClearPageError(page);
664 flush_dcache_page(page);
665 kunmap(page);
666 *n = nn;
667 return 0;
668
669out_err:
670 ClearPageUptodate(page);
671 SetPageError(page);
672 flush_dcache_page(page);
673 kunmap(page);
674 ubifs_err("bad data node (block %u, inode %lu)",
675 page_block, inode->i_ino);
676 return -EINVAL;
677}
678
679/**
680 * ubifs_do_bulk_read - do bulk-read.
681 * @c: UBIFS file-system description object
682 * @page1: first page
683 *
684 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
685 */
686static int ubifs_do_bulk_read(struct ubifs_info *c, struct page *page1)
687{
688 pgoff_t offset = page1->index, end_index;
689 struct address_space *mapping = page1->mapping;
690 struct inode *inode = mapping->host;
691 struct ubifs_inode *ui = ubifs_inode(inode);
692 struct bu_info *bu;
693 int err, page_idx, page_cnt, ret = 0, n = 0;
694 loff_t isize;
695
696 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS);
697 if (!bu)
698 return 0;
699
700 bu->buf_len = c->bulk_read_buf_size;
701 bu->buf = kmalloc(bu->buf_len, GFP_NOFS);
702 if (!bu->buf)
703 goto out_free;
704
705 data_key_init(c, &bu->key, inode->i_ino,
706 offset << UBIFS_BLOCKS_PER_PAGE_SHIFT);
707
708 err = ubifs_tnc_get_bu_keys(c, bu);
709 if (err)
710 goto out_warn;
711
712 if (bu->eof) {
713 /* Turn off bulk-read at the end of the file */
714 ui->read_in_a_row = 1;
715 ui->bulk_read = 0;
716 }
717
718 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
719 if (!page_cnt) {
720 /*
721 * This happens when there are multiple blocks per page and the
722 * blocks for the first page we are looking for, are not
723 * together. If all the pages were like this, bulk-read would
724 * reduce performance, so we turn it off for a while.
725 */
726 ui->read_in_a_row = 0;
727 ui->bulk_read = 0;
728 goto out_free;
729 }
730
731 if (bu->cnt) {
732 err = ubifs_tnc_bulk_read(c, bu);
733 if (err)
734 goto out_warn;
735 }
736
737 err = populate_page(c, page1, bu, &n);
738 if (err)
739 goto out_warn;
740
741 unlock_page(page1);
742 ret = 1;
743
744 isize = i_size_read(inode);
745 if (isize == 0)
746 goto out_free;
747 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
748
749 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
750 pgoff_t page_offset = offset + page_idx;
751 struct page *page;
752
753 if (page_offset > end_index)
754 break;
755 page = find_or_create_page(mapping, page_offset,
756 GFP_NOFS | __GFP_COLD);
757 if (!page)
758 break;
759 if (!PageUptodate(page))
760 err = populate_page(c, page, bu, &n);
761 unlock_page(page);
762 page_cache_release(page);
763 if (err)
764 break;
765 }
766
767 ui->last_page_read = offset + page_idx - 1;
768
769out_free:
770 kfree(bu->buf);
771 kfree(bu);
772 return ret;
773
774out_warn:
775 ubifs_warn("ignoring error %d and skipping bulk-read", err);
776 goto out_free;
777}
778
779/**
780 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
781 * @page: page from which to start bulk-read.
782 *
783 * Some flash media are capable of reading sequentially at faster rates. UBIFS
784 * bulk-read facility is designed to take advantage of that, by reading in one
785 * go consecutive data nodes that are also located consecutively in the same
786 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
787 */
788static int ubifs_bulk_read(struct page *page)
789{
790 struct inode *inode = page->mapping->host;
791 struct ubifs_info *c = inode->i_sb->s_fs_info;
792 struct ubifs_inode *ui = ubifs_inode(inode);
793 pgoff_t index = page->index, last_page_read = ui->last_page_read;
794 int ret = 0;
795
796 ui->last_page_read = index;
797
798 if (!c->bulk_read)
799 return 0;
800 /*
801 * Bulk-read is protected by ui_mutex, but it is an optimization, so
802 * don't bother if we cannot lock the mutex.
803 */
804 if (!mutex_trylock(&ui->ui_mutex))
805 return 0;
806 if (index != last_page_read + 1) {
807 /* Turn off bulk-read if we stop reading sequentially */
808 ui->read_in_a_row = 1;
809 if (ui->bulk_read)
810 ui->bulk_read = 0;
811 goto out_unlock;
812 }
813 if (!ui->bulk_read) {
814 ui->read_in_a_row += 1;
815 if (ui->read_in_a_row < 3)
816 goto out_unlock;
817 /* Three reads in a row, so switch on bulk-read */
818 ui->bulk_read = 1;
819 }
820 ret = ubifs_do_bulk_read(c, page);
821out_unlock:
822 mutex_unlock(&ui->ui_mutex);
823 return ret;
824}
825
1e51764a
AB
826static int ubifs_readpage(struct file *file, struct page *page)
827{
4793e7c5
AH
828 if (ubifs_bulk_read(page))
829 return 0;
1e51764a
AB
830 do_readpage(page);
831 unlock_page(page);
832 return 0;
833}
834
835static int do_writepage(struct page *page, int len)
836{
837 int err = 0, i, blen;
838 unsigned int block;
839 void *addr;
840 union ubifs_key key;
841 struct inode *inode = page->mapping->host;
842 struct ubifs_info *c = inode->i_sb->s_fs_info;
843
844#ifdef UBIFS_DEBUG
845 spin_lock(&ui->ui_lock);
846 ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
847 spin_unlock(&ui->ui_lock);
848#endif
849
850 /* Update radix tree tags */
851 set_page_writeback(page);
852
853 addr = kmap(page);
854 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
855 i = 0;
856 while (len) {
857 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
858 data_key_init(c, &key, inode->i_ino, block);
859 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
860 if (err)
861 break;
862 if (++i >= UBIFS_BLOCKS_PER_PAGE)
863 break;
864 block += 1;
865 addr += blen;
866 len -= blen;
867 }
868 if (err) {
869 SetPageError(page);
870 ubifs_err("cannot write page %lu of inode %lu, error %d",
871 page->index, inode->i_ino, err);
872 ubifs_ro_mode(c, err);
873 }
874
875 ubifs_assert(PagePrivate(page));
876 if (PageChecked(page))
877 release_new_page_budget(c);
878 else
879 release_existing_page_budget(c);
880
881 atomic_long_dec(&c->dirty_pg_cnt);
882 ClearPagePrivate(page);
883 ClearPageChecked(page);
884
885 kunmap(page);
886 unlock_page(page);
887 end_page_writeback(page);
888 return err;
889}
890
891/*
892 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
893 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
894 * situation when a we have an inode with size 0, then a megabyte of data is
895 * appended to the inode, then write-back starts and flushes some amount of the
896 * dirty pages, the journal becomes full, commit happens and finishes, and then
897 * an unclean reboot happens. When the file system is mounted next time, the
898 * inode size would still be 0, but there would be many pages which are beyond
899 * the inode size, they would be indexed and consume flash space. Because the
900 * journal has been committed, the replay would not be able to detect this
901 * situation and correct the inode size. This means UBIFS would have to scan
902 * whole index and correct all inode sizes, which is long an unacceptable.
903 *
904 * To prevent situations like this, UBIFS writes pages back only if they are
905 * within last synchronized inode size, i.e. the the size which has been
906 * written to the flash media last time. Otherwise, UBIFS forces inode
907 * write-back, thus making sure the on-flash inode contains current inode size,
908 * and then keeps writing pages back.
909 *
910 * Some locking issues explanation. 'ubifs_writepage()' first is called with
911 * the page locked, and it locks @ui_mutex. However, write-back does take inode
912 * @i_mutex, which means other VFS operations may be run on this inode at the
913 * same time. And the problematic one is truncation to smaller size, from where
914 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
915 * drops the truncated pages. And while dropping the pages, it takes the page
916 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
917 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
918 * means that @inode->i_size is changed while @ui_mutex is unlocked.
919 *
920 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
921 * inode size. How do we do this if @inode->i_size may became smaller while we
922 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
923 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
924 * internally and updates it under @ui_mutex.
925 *
926 * Q: why we do not worry that if we race with truncation, we may end up with a
927 * situation when the inode is truncated while we are in the middle of
928 * 'do_writepage()', so we do write beyond inode size?
929 * A: If we are in the middle of 'do_writepage()', truncation would be locked
930 * on the page lock and it would not write the truncated inode node to the
931 * journal before we have finished.
932 */
933static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
934{
935 struct inode *inode = page->mapping->host;
936 struct ubifs_inode *ui = ubifs_inode(inode);
937 loff_t i_size = i_size_read(inode), synced_i_size;
938 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
939 int err, len = i_size & (PAGE_CACHE_SIZE - 1);
940 void *kaddr;
941
942 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
943 inode->i_ino, page->index, page->flags);
944 ubifs_assert(PagePrivate(page));
945
946 /* Is the page fully outside @i_size? (truncate in progress) */
947 if (page->index > end_index || (page->index == end_index && !len)) {
948 err = 0;
949 goto out_unlock;
950 }
951
952 spin_lock(&ui->ui_lock);
953 synced_i_size = ui->synced_i_size;
954 spin_unlock(&ui->ui_lock);
955
956 /* Is the page fully inside @i_size? */
957 if (page->index < end_index) {
958 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
959 err = inode->i_sb->s_op->write_inode(inode, 1);
960 if (err)
961 goto out_unlock;
962 /*
963 * The inode has been written, but the write-buffer has
964 * not been synchronized, so in case of an unclean
965 * reboot we may end up with some pages beyond inode
966 * size, but they would be in the journal (because
967 * commit flushes write buffers) and recovery would deal
968 * with this.
969 */
970 }
971 return do_writepage(page, PAGE_CACHE_SIZE);
972 }
973
974 /*
975 * The page straddles @i_size. It must be zeroed out on each and every
976 * writepage invocation because it may be mmapped. "A file is mapped
977 * in multiples of the page size. For a file that is not a multiple of
978 * the page size, the remaining memory is zeroed when mapped, and
979 * writes to that region are not written out to the file."
980 */
981 kaddr = kmap_atomic(page, KM_USER0);
982 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
983 flush_dcache_page(page);
984 kunmap_atomic(kaddr, KM_USER0);
985
986 if (i_size > synced_i_size) {
987 err = inode->i_sb->s_op->write_inode(inode, 1);
988 if (err)
989 goto out_unlock;
990 }
991
992 return do_writepage(page, len);
993
994out_unlock:
995 unlock_page(page);
996 return err;
997}
998
999/**
1000 * do_attr_changes - change inode attributes.
1001 * @inode: inode to change attributes for
1002 * @attr: describes attributes to change
1003 */
1004static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1005{
1006 if (attr->ia_valid & ATTR_UID)
1007 inode->i_uid = attr->ia_uid;
1008 if (attr->ia_valid & ATTR_GID)
1009 inode->i_gid = attr->ia_gid;
1010 if (attr->ia_valid & ATTR_ATIME)
1011 inode->i_atime = timespec_trunc(attr->ia_atime,
1012 inode->i_sb->s_time_gran);
1013 if (attr->ia_valid & ATTR_MTIME)
1014 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1015 inode->i_sb->s_time_gran);
1016 if (attr->ia_valid & ATTR_CTIME)
1017 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1018 inode->i_sb->s_time_gran);
1019 if (attr->ia_valid & ATTR_MODE) {
1020 umode_t mode = attr->ia_mode;
1021
1022 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1023 mode &= ~S_ISGID;
1024 inode->i_mode = mode;
1025 }
1026}
1027
1028/**
1029 * do_truncation - truncate an inode.
1030 * @c: UBIFS file-system description object
1031 * @inode: inode to truncate
1032 * @attr: inode attribute changes description
1033 *
1034 * This function implements VFS '->setattr()' call when the inode is truncated
1035 * to a smaller size. Returns zero in case of success and a negative error code
1036 * in case of failure.
1037 */
1038static int do_truncation(struct ubifs_info *c, struct inode *inode,
1039 const struct iattr *attr)
1040{
1041 int err;
1042 struct ubifs_budget_req req;
1043 loff_t old_size = inode->i_size, new_size = attr->ia_size;
04da11bf 1044 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1e51764a
AB
1045 struct ubifs_inode *ui = ubifs_inode(inode);
1046
1047 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1048 memset(&req, 0, sizeof(struct ubifs_budget_req));
1049
1050 /*
1051 * If this is truncation to a smaller size, and we do not truncate on a
1052 * block boundary, budget for changing one data block, because the last
1053 * block will be re-written.
1054 */
1055 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1056 req.dirtied_page = 1;
1057
1058 req.dirtied_ino = 1;
1059 /* A funny way to budget for truncation node */
1060 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1061 err = ubifs_budget_space(c, &req);
04da11bf
AB
1062 if (err) {
1063 /*
1064 * Treat truncations to zero as deletion and always allow them,
1065 * just like we do for '->unlink()'.
1066 */
1067 if (new_size || err != -ENOSPC)
1068 return err;
1069 budgeted = 0;
1070 }
1e51764a
AB
1071
1072 err = vmtruncate(inode, new_size);
1073 if (err)
1074 goto out_budg;
1075
1076 if (offset) {
1077 pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1078 struct page *page;
1079
1080 page = find_lock_page(inode->i_mapping, index);
1081 if (page) {
1082 if (PageDirty(page)) {
1083 /*
1084 * 'ubifs_jnl_truncate()' will try to truncate
1085 * the last data node, but it contains
1086 * out-of-date data because the page is dirty.
1087 * Write the page now, so that
1088 * 'ubifs_jnl_truncate()' will see an already
1089 * truncated (and up to date) data node.
1090 */
1091 ubifs_assert(PagePrivate(page));
1092
1093 clear_page_dirty_for_io(page);
1094 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1095 offset = new_size &
1096 (PAGE_CACHE_SIZE - 1);
1097 err = do_writepage(page, offset);
1098 page_cache_release(page);
1099 if (err)
1100 goto out_budg;
1101 /*
1102 * We could now tell 'ubifs_jnl_truncate()' not
1103 * to read the last block.
1104 */
1105 } else {
1106 /*
1107 * We could 'kmap()' the page and pass the data
1108 * to 'ubifs_jnl_truncate()' to save it from
1109 * having to read it.
1110 */
1111 unlock_page(page);
1112 page_cache_release(page);
1113 }
1114 }
1115 }
1116
1117 mutex_lock(&ui->ui_mutex);
1118 ui->ui_size = inode->i_size;
1119 /* Truncation changes inode [mc]time */
1120 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1121 /* The other attributes may be changed at the same time as well */
1122 do_attr_changes(inode, attr);
1123
1124 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1125 mutex_unlock(&ui->ui_mutex);
1126out_budg:
04da11bf
AB
1127 if (budgeted)
1128 ubifs_release_budget(c, &req);
1129 else {
1130 c->nospace = c->nospace_rp = 0;
1131 smp_wmb();
1132 }
1e51764a
AB
1133 return err;
1134}
1135
1136/**
1137 * do_setattr - change inode attributes.
1138 * @c: UBIFS file-system description object
1139 * @inode: inode to change attributes for
1140 * @attr: inode attribute changes description
1141 *
1142 * This function implements VFS '->setattr()' call for all cases except
1143 * truncations to smaller size. Returns zero in case of success and a negative
1144 * error code in case of failure.
1145 */
1146static int do_setattr(struct ubifs_info *c, struct inode *inode,
1147 const struct iattr *attr)
1148{
1149 int err, release;
1150 loff_t new_size = attr->ia_size;
1151 struct ubifs_inode *ui = ubifs_inode(inode);
1152 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1153 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1154
1155 err = ubifs_budget_space(c, &req);
1156 if (err)
1157 return err;
1158
1159 if (attr->ia_valid & ATTR_SIZE) {
1160 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1161 err = vmtruncate(inode, new_size);
1162 if (err)
1163 goto out;
1164 }
1165
1166 mutex_lock(&ui->ui_mutex);
1167 if (attr->ia_valid & ATTR_SIZE) {
1168 /* Truncation changes inode [mc]time */
1169 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1170 /* 'vmtruncate()' changed @i_size, update @ui_size */
1171 ui->ui_size = inode->i_size;
1172 }
1173
1174 do_attr_changes(inode, attr);
1175
1176 release = ui->dirty;
1177 if (attr->ia_valid & ATTR_SIZE)
1178 /*
1179 * Inode length changed, so we have to make sure
1180 * @I_DIRTY_DATASYNC is set.
1181 */
1182 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1183 else
1184 mark_inode_dirty_sync(inode);
1185 mutex_unlock(&ui->ui_mutex);
1186
1187 if (release)
1188 ubifs_release_budget(c, &req);
1189 if (IS_SYNC(inode))
1190 err = inode->i_sb->s_op->write_inode(inode, 1);
1191 return err;
1192
1193out:
1194 ubifs_release_budget(c, &req);
1195 return err;
1196}
1197
1198int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1199{
1200 int err;
1201 struct inode *inode = dentry->d_inode;
1202 struct ubifs_info *c = inode->i_sb->s_fs_info;
1203
7d32c2bb
AB
1204 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1205 inode->i_ino, inode->i_mode, attr->ia_valid);
1e51764a
AB
1206 err = inode_change_ok(inode, attr);
1207 if (err)
1208 return err;
1209
1210 err = dbg_check_synced_i_size(inode);
1211 if (err)
1212 return err;
1213
1214 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1215 /* Truncation to a smaller size */
1216 err = do_truncation(c, inode, attr);
1217 else
1218 err = do_setattr(c, inode, attr);
1219
1220 return err;
1221}
1222
1223static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1224{
1225 struct inode *inode = page->mapping->host;
1226 struct ubifs_info *c = inode->i_sb->s_fs_info;
1227
1228 ubifs_assert(PagePrivate(page));
1229 if (offset)
1230 /* Partial page remains dirty */
1231 return;
1232
1233 if (PageChecked(page))
1234 release_new_page_budget(c);
1235 else
1236 release_existing_page_budget(c);
1237
1238 atomic_long_dec(&c->dirty_pg_cnt);
1239 ClearPagePrivate(page);
1240 ClearPageChecked(page);
1241}
1242
1243static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1244{
1245 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1246
1247 nd_set_link(nd, ui->data);
1248 return NULL;
1249}
1250
1251int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1252{
1253 struct inode *inode = dentry->d_inode;
1254 struct ubifs_info *c = inode->i_sb->s_fs_info;
1255 int err;
1256
1257 dbg_gen("syncing inode %lu", inode->i_ino);
1258
1259 /*
1260 * VFS has already synchronized dirty pages for this inode. Synchronize
1261 * the inode unless this is a 'datasync()' call.
1262 */
1263 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1264 err = inode->i_sb->s_op->write_inode(inode, 1);
1265 if (err)
1266 return err;
1267 }
1268
1269 /*
1270 * Nodes related to this inode may still sit in a write-buffer. Flush
1271 * them.
1272 */
1273 err = ubifs_sync_wbufs_by_inode(c, inode);
1274 if (err)
1275 return err;
1276
1277 return 0;
1278}
1279
1280/**
1281 * mctime_update_needed - check if mtime or ctime update is needed.
1282 * @inode: the inode to do the check for
1283 * @now: current time
1284 *
1285 * This helper function checks if the inode mtime/ctime should be updated or
1286 * not. If current values of the time-stamps are within the UBIFS inode time
1287 * granularity, they are not updated. This is an optimization.
1288 */
1289static inline int mctime_update_needed(const struct inode *inode,
1290 const struct timespec *now)
1291{
1292 if (!timespec_equal(&inode->i_mtime, now) ||
1293 !timespec_equal(&inode->i_ctime, now))
1294 return 1;
1295 return 0;
1296}
1297
1298/**
1299 * update_ctime - update mtime and ctime of an inode.
1300 * @c: UBIFS file-system description object
1301 * @inode: inode to update
1302 *
1303 * This function updates mtime and ctime of the inode if it is not equivalent to
1304 * current time. Returns zero in case of success and a negative error code in
1305 * case of failure.
1306 */
1307static int update_mctime(struct ubifs_info *c, struct inode *inode)
1308{
1309 struct timespec now = ubifs_current_time(inode);
1310 struct ubifs_inode *ui = ubifs_inode(inode);
1311
1312 if (mctime_update_needed(inode, &now)) {
1313 int err, release;
1314 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1315 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1316
1317 err = ubifs_budget_space(c, &req);
1318 if (err)
1319 return err;
1320
1321 mutex_lock(&ui->ui_mutex);
1322 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1323 release = ui->dirty;
1324 mark_inode_dirty_sync(inode);
1325 mutex_unlock(&ui->ui_mutex);
1326 if (release)
1327 ubifs_release_budget(c, &req);
1328 }
1329
1330 return 0;
1331}
1332
1333static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1334 unsigned long nr_segs, loff_t pos)
1335{
1336 int err;
1337 ssize_t ret;
1338 struct inode *inode = iocb->ki_filp->f_mapping->host;
1339 struct ubifs_info *c = inode->i_sb->s_fs_info;
1340
1341 err = update_mctime(c, inode);
1342 if (err)
1343 return err;
1344
1345 ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1346 if (ret < 0)
1347 return ret;
1348
1349 if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1350 err = ubifs_sync_wbufs_by_inode(c, inode);
1351 if (err)
1352 return err;
1353 }
1354
1355 return ret;
1356}
1357
1358static int ubifs_set_page_dirty(struct page *page)
1359{
1360 int ret;
1361
1362 ret = __set_page_dirty_nobuffers(page);
1363 /*
1364 * An attempt to dirty a page without budgeting for it - should not
1365 * happen.
1366 */
1367 ubifs_assert(ret == 0);
1368 return ret;
1369}
1370
1371static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1372{
1373 /*
1374 * An attempt to release a dirty page without budgeting for it - should
1375 * not happen.
1376 */
1377 if (PageWriteback(page))
1378 return 0;
1379 ubifs_assert(PagePrivate(page));
1380 ubifs_assert(0);
1381 ClearPagePrivate(page);
1382 ClearPageChecked(page);
1383 return 1;
1384}
1385
1386/*
1387 * mmap()d file has taken write protection fault and is being made
1388 * writable. UBIFS must ensure page is budgeted for.
1389 */
1390static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
1391{
1392 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1393 struct ubifs_info *c = inode->i_sb->s_fs_info;
1394 struct timespec now = ubifs_current_time(inode);
1395 struct ubifs_budget_req req = { .new_page = 1 };
1396 int err, update_time;
1397
1398 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1399 i_size_read(inode));
1400 ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1401
1402 if (unlikely(c->ro_media))
1403 return -EROFS;
1404
1405 /*
1406 * We have not locked @page so far so we may budget for changing the
1407 * page. Note, we cannot do this after we locked the page, because
1408 * budgeting may cause write-back which would cause deadlock.
1409 *
1410 * At the moment we do not know whether the page is dirty or not, so we
1411 * assume that it is not and budget for a new page. We could look at
1412 * the @PG_private flag and figure this out, but we may race with write
1413 * back and the page state may change by the time we lock it, so this
1414 * would need additional care. We do not bother with this at the
1415 * moment, although it might be good idea to do. Instead, we allocate
1416 * budget for a new page and amend it later on if the page was in fact
1417 * dirty.
1418 *
1419 * The budgeting-related logic of this function is similar to what we
1420 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1421 * for more comments.
1422 */
1423 update_time = mctime_update_needed(inode, &now);
1424 if (update_time)
1425 /*
1426 * We have to change inode time stamp which requires extra
1427 * budgeting.
1428 */
1429 req.dirtied_ino = 1;
1430
1431 err = ubifs_budget_space(c, &req);
1432 if (unlikely(err)) {
1433 if (err == -ENOSPC)
1434 ubifs_warn("out of space for mmapped file "
1435 "(inode number %lu)", inode->i_ino);
1436 return err;
1437 }
1438
1439 lock_page(page);
1440 if (unlikely(page->mapping != inode->i_mapping ||
1441 page_offset(page) > i_size_read(inode))) {
1442 /* Page got truncated out from underneath us */
1443 err = -EINVAL;
1444 goto out_unlock;
1445 }
1446
1447 if (PagePrivate(page))
1448 release_new_page_budget(c);
1449 else {
1450 if (!PageChecked(page))
1451 ubifs_convert_page_budget(c);
1452 SetPagePrivate(page);
1453 atomic_long_inc(&c->dirty_pg_cnt);
1454 __set_page_dirty_nobuffers(page);
1455 }
1456
1457 if (update_time) {
1458 int release;
1459 struct ubifs_inode *ui = ubifs_inode(inode);
1460
1461 mutex_lock(&ui->ui_mutex);
1462 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1463 release = ui->dirty;
1464 mark_inode_dirty_sync(inode);
1465 mutex_unlock(&ui->ui_mutex);
1466 if (release)
1467 ubifs_release_dirty_inode_budget(c, ui);
1468 }
1469
1470 unlock_page(page);
1471 return 0;
1472
1473out_unlock:
1474 unlock_page(page);
1475 ubifs_release_budget(c, &req);
1476 return err;
1477}
1478
1479static struct vm_operations_struct ubifs_file_vm_ops = {
1480 .fault = filemap_fault,
1481 .page_mkwrite = ubifs_vm_page_mkwrite,
1482};
1483
1484static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1485{
1486 int err;
1487
1488 /* 'generic_file_mmap()' takes care of NOMMU case */
1489 err = generic_file_mmap(file, vma);
1490 if (err)
1491 return err;
1492 vma->vm_ops = &ubifs_file_vm_ops;
1493 return 0;
1494}
1495
1496struct address_space_operations ubifs_file_address_operations = {
1497 .readpage = ubifs_readpage,
1498 .writepage = ubifs_writepage,
1499 .write_begin = ubifs_write_begin,
1500 .write_end = ubifs_write_end,
1501 .invalidatepage = ubifs_invalidatepage,
1502 .set_page_dirty = ubifs_set_page_dirty,
1503 .releasepage = ubifs_releasepage,
1504};
1505
1506struct inode_operations ubifs_file_inode_operations = {
1507 .setattr = ubifs_setattr,
1508 .getattr = ubifs_getattr,
1509#ifdef CONFIG_UBIFS_FS_XATTR
1510 .setxattr = ubifs_setxattr,
1511 .getxattr = ubifs_getxattr,
1512 .listxattr = ubifs_listxattr,
1513 .removexattr = ubifs_removexattr,
1514#endif
1515};
1516
1517struct inode_operations ubifs_symlink_inode_operations = {
1518 .readlink = generic_readlink,
1519 .follow_link = ubifs_follow_link,
1520 .setattr = ubifs_setattr,
1521 .getattr = ubifs_getattr,
1522};
1523
1524struct file_operations ubifs_file_operations = {
1525 .llseek = generic_file_llseek,
1526 .read = do_sync_read,
1527 .write = do_sync_write,
1528 .aio_read = generic_file_aio_read,
1529 .aio_write = ubifs_aio_write,
1530 .mmap = ubifs_file_mmap,
1531 .fsync = ubifs_fsync,
1532 .unlocked_ioctl = ubifs_ioctl,
1533 .splice_read = generic_file_splice_read,
22bc7fa8 1534 .splice_write = generic_file_splice_write,
1e51764a
AB
1535#ifdef CONFIG_COMPAT
1536 .compat_ioctl = ubifs_compat_ioctl,
1537#endif
1538};