UBIFS: remove printk
[linux-2.6-block.git] / fs / ubifs / file.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements VFS file and inode operations of regular files, device
25 * nodes and symlinks as well as address space operations.
26 *
27 * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
28 * page is dirty and is used for budgeting purposes - dirty pages should not be
29 * budgeted. The PG_checked flag is set if full budgeting is required for the
30 * page e.g., when it corresponds to a file hole or it is just beyond the file
31 * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
32 * fail in this function, and the budget is released in 'ubifs_write_end()'. So
33 * the PG_private and PG_checked flags carry the information about how the page
34 * was budgeted, to make it possible to release the budget properly.
35 *
36 * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
37 * we implement. However, this is not true for '->writepage()', which might be
38 * called with 'i_mutex' unlocked. For example, when pdflush is performing
39 * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
40 * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
41 * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
42 * path'. So, in '->writepage()' we are only guaranteed that the page is
43 * locked.
44 *
45 * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
46 * readahead path does not have it locked ("sys_read -> generic_file_aio_read
47 * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
48 * not set as well. However, UBIFS disables readahead.
49 *
50 * This, for example means that there might be 2 concurrent '->writepage()'
51 * calls for the same inode, but different inode dirty pages.
52 */
53
54#include "ubifs.h"
55#include <linux/mount.h>
3f8206d4 56#include <linux/namei.h>
1e51764a
AB
57
58static int read_block(struct inode *inode, void *addr, unsigned int block,
59 struct ubifs_data_node *dn)
60{
61 struct ubifs_info *c = inode->i_sb->s_fs_info;
62 int err, len, out_len;
63 union ubifs_key key;
64 unsigned int dlen;
65
66 data_key_init(c, &key, inode->i_ino, block);
67 err = ubifs_tnc_lookup(c, &key, dn);
68 if (err) {
69 if (err == -ENOENT)
70 /* Not found, so it must be a hole */
71 memset(addr, 0, UBIFS_BLOCK_SIZE);
72 return err;
73 }
74
75 ubifs_assert(dn->ch.sqnum > ubifs_inode(inode)->creat_sqnum);
76
77 len = le32_to_cpu(dn->size);
78 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 goto dump;
80
81 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 out_len = UBIFS_BLOCK_SIZE;
83 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 le16_to_cpu(dn->compr_type));
85 if (err || len != out_len)
86 goto dump;
87
88 /*
89 * Data length can be less than a full block, even for blocks that are
90 * not the last in the file (e.g., as a result of making a hole and
91 * appending data). Ensure that the remainder is zeroed out.
92 */
93 if (len < UBIFS_BLOCK_SIZE)
94 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95
96 return 0;
97
98dump:
99 ubifs_err("bad data node (block %u, inode %lu)",
100 block, inode->i_ino);
101 dbg_dump_node(c, dn);
102 return -EINVAL;
103}
104
105static int do_readpage(struct page *page)
106{
107 void *addr;
108 int err = 0, i;
109 unsigned int block, beyond;
110 struct ubifs_data_node *dn;
111 struct inode *inode = page->mapping->host;
112 loff_t i_size = i_size_read(inode);
113
114 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 inode->i_ino, page->index, i_size, page->flags);
116 ubifs_assert(!PageChecked(page));
117 ubifs_assert(!PagePrivate(page));
118
119 addr = kmap(page);
120
121 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 if (block >= beyond) {
124 /* Reading beyond inode */
125 SetPageChecked(page);
126 memset(addr, 0, PAGE_CACHE_SIZE);
127 goto out;
128 }
129
130 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 if (!dn) {
132 err = -ENOMEM;
133 goto error;
134 }
135
136 i = 0;
137 while (1) {
138 int ret;
139
140 if (block >= beyond) {
141 /* Reading beyond inode */
142 err = -ENOENT;
143 memset(addr, 0, UBIFS_BLOCK_SIZE);
144 } else {
145 ret = read_block(inode, addr, block, dn);
146 if (ret) {
147 err = ret;
148 if (err != -ENOENT)
149 break;
ed382d58
AH
150 } else if (block + 1 == beyond) {
151 int dlen = le32_to_cpu(dn->size);
152 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
153
154 if (ilen && ilen < dlen)
155 memset(addr + ilen, 0, dlen - ilen);
1e51764a
AB
156 }
157 }
158 if (++i >= UBIFS_BLOCKS_PER_PAGE)
159 break;
160 block += 1;
161 addr += UBIFS_BLOCK_SIZE;
162 }
163 if (err) {
164 if (err == -ENOENT) {
165 /* Not found, so it must be a hole */
166 SetPageChecked(page);
167 dbg_gen("hole");
168 goto out_free;
169 }
170 ubifs_err("cannot read page %lu of inode %lu, error %d",
171 page->index, inode->i_ino, err);
172 goto error;
173 }
174
175out_free:
176 kfree(dn);
177out:
178 SetPageUptodate(page);
179 ClearPageError(page);
180 flush_dcache_page(page);
181 kunmap(page);
182 return 0;
183
184error:
185 kfree(dn);
186 ClearPageUptodate(page);
187 SetPageError(page);
188 flush_dcache_page(page);
189 kunmap(page);
190 return err;
191}
192
193/**
194 * release_new_page_budget - release budget of a new page.
195 * @c: UBIFS file-system description object
196 *
197 * This is a helper function which releases budget corresponding to the budget
198 * of one new page of data.
199 */
200static void release_new_page_budget(struct ubifs_info *c)
201{
202 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203
204 ubifs_release_budget(c, &req);
205}
206
207/**
208 * release_existing_page_budget - release budget of an existing page.
209 * @c: UBIFS file-system description object
210 *
211 * This is a helper function which releases budget corresponding to the budget
212 * of changing one one page of data which already exists on the flash media.
213 */
214static void release_existing_page_budget(struct ubifs_info *c)
215{
216 struct ubifs_budget_req req = { .dd_growth = c->page_budget};
217
218 ubifs_release_budget(c, &req);
219}
220
221static int write_begin_slow(struct address_space *mapping,
222 loff_t pos, unsigned len, struct page **pagep)
223{
224 struct inode *inode = mapping->host;
225 struct ubifs_info *c = inode->i_sb->s_fs_info;
226 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
227 struct ubifs_budget_req req = { .new_page = 1 };
228 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
229 struct page *page;
230
231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
232 inode->i_ino, pos, len, inode->i_size);
233
234 /*
235 * At the slow path we have to budget before locking the page, because
236 * budgeting may force write-back, which would wait on locked pages and
237 * deadlock if we had the page locked. At this point we do not know
238 * anything about the page, so assume that this is a new page which is
239 * written to a hole. This corresponds to largest budget. Later the
240 * budget will be amended if this is not true.
241 */
242 if (appending)
243 /* We are appending data, budget for inode change */
244 req.dirtied_ino = 1;
245
246 err = ubifs_budget_space(c, &req);
247 if (unlikely(err))
248 return err;
249
250 page = __grab_cache_page(mapping, index);
251 if (unlikely(!page)) {
252 ubifs_release_budget(c, &req);
253 return -ENOMEM;
254 }
255
256 if (!PageUptodate(page)) {
257 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
258 SetPageChecked(page);
259 else {
260 err = do_readpage(page);
261 if (err) {
262 unlock_page(page);
263 page_cache_release(page);
264 return err;
265 }
266 }
267
268 SetPageUptodate(page);
269 ClearPageError(page);
270 }
271
272 if (PagePrivate(page))
273 /*
274 * The page is dirty, which means it was budgeted twice:
275 * o first time the budget was allocated by the task which
276 * made the page dirty and set the PG_private flag;
277 * o and then we budgeted for it for the second time at the
278 * very beginning of this function.
279 *
280 * So what we have to do is to release the page budget we
281 * allocated.
282 */
283 release_new_page_budget(c);
284 else if (!PageChecked(page))
285 /*
286 * We are changing a page which already exists on the media.
287 * This means that changing the page does not make the amount
288 * of indexing information larger, and this part of the budget
289 * which we have already acquired may be released.
290 */
291 ubifs_convert_page_budget(c);
292
293 if (appending) {
294 struct ubifs_inode *ui = ubifs_inode(inode);
295
296 /*
297 * 'ubifs_write_end()' is optimized from the fast-path part of
298 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
299 * if data is appended.
300 */
301 mutex_lock(&ui->ui_mutex);
302 if (ui->dirty)
303 /*
304 * The inode is dirty already, so we may free the
305 * budget we allocated.
306 */
307 ubifs_release_dirty_inode_budget(c, ui);
308 }
309
310 *pagep = page;
311 return 0;
312}
313
314/**
315 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
316 * @c: UBIFS file-system description object
317 * @page: page to allocate budget for
318 * @ui: UBIFS inode object the page belongs to
319 * @appending: non-zero if the page is appended
320 *
321 * This is a helper function for 'ubifs_write_begin()' which allocates budget
322 * for the operation. The budget is allocated differently depending on whether
323 * this is appending, whether the page is dirty or not, and so on. This
324 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
325 * in case of success and %-ENOSPC in case of failure.
326 */
327static int allocate_budget(struct ubifs_info *c, struct page *page,
328 struct ubifs_inode *ui, int appending)
329{
330 struct ubifs_budget_req req = { .fast = 1 };
331
332 if (PagePrivate(page)) {
333 if (!appending)
334 /*
335 * The page is dirty and we are not appending, which
336 * means no budget is needed at all.
337 */
338 return 0;
339
340 mutex_lock(&ui->ui_mutex);
341 if (ui->dirty)
342 /*
343 * The page is dirty and we are appending, so the inode
344 * has to be marked as dirty. However, it is already
345 * dirty, so we do not need any budget. We may return,
346 * but @ui->ui_mutex hast to be left locked because we
347 * should prevent write-back from flushing the inode
348 * and freeing the budget. The lock will be released in
349 * 'ubifs_write_end()'.
350 */
351 return 0;
352
353 /*
354 * The page is dirty, we are appending, the inode is clean, so
355 * we need to budget the inode change.
356 */
357 req.dirtied_ino = 1;
358 } else {
359 if (PageChecked(page))
360 /*
361 * The page corresponds to a hole and does not
362 * exist on the media. So changing it makes
363 * make the amount of indexing information
364 * larger, and we have to budget for a new
365 * page.
366 */
367 req.new_page = 1;
368 else
369 /*
370 * Not a hole, the change will not add any new
371 * indexing information, budget for page
372 * change.
373 */
374 req.dirtied_page = 1;
375
376 if (appending) {
377 mutex_lock(&ui->ui_mutex);
378 if (!ui->dirty)
379 /*
380 * The inode is clean but we will have to mark
381 * it as dirty because we are appending. This
382 * needs a budget.
383 */
384 req.dirtied_ino = 1;
385 }
386 }
387
388 return ubifs_budget_space(c, &req);
389}
390
391/*
392 * This function is called when a page of data is going to be written. Since
393 * the page of data will not necessarily go to the flash straight away, UBIFS
394 * has to reserve space on the media for it, which is done by means of
395 * budgeting.
396 *
397 * This is the hot-path of the file-system and we are trying to optimize it as
398 * much as possible. For this reasons it is split on 2 parts - slow and fast.
399 *
400 * There many budgeting cases:
401 * o a new page is appended - we have to budget for a new page and for
402 * changing the inode; however, if the inode is already dirty, there is
403 * no need to budget for it;
404 * o an existing clean page is changed - we have budget for it; if the page
405 * does not exist on the media (a hole), we have to budget for a new
406 * page; otherwise, we may budget for changing an existing page; the
407 * difference between these cases is that changing an existing page does
408 * not introduce anything new to the FS indexing information, so it does
409 * not grow, and smaller budget is acquired in this case;
410 * o an existing dirty page is changed - no need to budget at all, because
411 * the page budget has been acquired by earlier, when the page has been
412 * marked dirty.
413 *
414 * UBIFS budgeting sub-system may force write-back if it thinks there is no
415 * space to reserve. This imposes some locking restrictions and makes it
416 * impossible to take into account the above cases, and makes it impossible to
417 * optimize budgeting.
418 *
419 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
420 * there is a plenty of flash space and the budget will be acquired quickly,
421 * without forcing write-back. The slow path does not make this assumption.
422 */
423static int ubifs_write_begin(struct file *file, struct address_space *mapping,
424 loff_t pos, unsigned len, unsigned flags,
425 struct page **pagep, void **fsdata)
426{
427 struct inode *inode = mapping->host;
428 struct ubifs_info *c = inode->i_sb->s_fs_info;
429 struct ubifs_inode *ui = ubifs_inode(inode);
430 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
431 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
432 struct page *page;
433
434
435 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
436
437 if (unlikely(c->ro_media))
438 return -EROFS;
439
440 /* Try out the fast-path part first */
441 page = __grab_cache_page(mapping, index);
442 if (unlikely(!page))
443 return -ENOMEM;
444
445 if (!PageUptodate(page)) {
446 /* The page is not loaded from the flash */
447 if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
448 /*
449 * We change whole page so no need to load it. But we
450 * have to set the @PG_checked flag to make the further
451 * code the page is new. This might be not true, but it
452 * is better to budget more that to read the page from
453 * the media.
454 */
455 SetPageChecked(page);
456 else {
457 err = do_readpage(page);
458 if (err) {
459 unlock_page(page);
460 page_cache_release(page);
461 return err;
462 }
463 }
464
465 SetPageUptodate(page);
466 ClearPageError(page);
467 }
468
469 err = allocate_budget(c, page, ui, appending);
470 if (unlikely(err)) {
471 ubifs_assert(err == -ENOSPC);
472 /*
473 * Budgeting failed which means it would have to force
474 * write-back but didn't, because we set the @fast flag in the
475 * request. Write-back cannot be done now, while we have the
476 * page locked, because it would deadlock. Unlock and free
477 * everything and fall-back to slow-path.
478 */
479 if (appending) {
480 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
481 mutex_unlock(&ui->ui_mutex);
482 }
483 unlock_page(page);
484 page_cache_release(page);
485
486 return write_begin_slow(mapping, pos, len, pagep);
487 }
488
489 /*
490 * Whee, we aquired budgeting quickly - without involving
491 * garbage-collection, committing or forceing write-back. We return
492 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493 * otherwise. This is an optimization (slightly hacky though).
494 */
495 *pagep = page;
496 return 0;
497
498}
499
500/**
501 * cancel_budget - cancel budget.
502 * @c: UBIFS file-system description object
503 * @page: page to cancel budget for
504 * @ui: UBIFS inode object the page belongs to
505 * @appending: non-zero if the page is appended
506 *
507 * This is a helper function for a page write operation. It unlocks the
508 * @ui->ui_mutex in case of appending.
509 */
510static void cancel_budget(struct ubifs_info *c, struct page *page,
511 struct ubifs_inode *ui, int appending)
512{
513 if (appending) {
514 if (!ui->dirty)
515 ubifs_release_dirty_inode_budget(c, ui);
516 mutex_unlock(&ui->ui_mutex);
517 }
518 if (!PagePrivate(page)) {
519 if (PageChecked(page))
520 release_new_page_budget(c);
521 else
522 release_existing_page_budget(c);
523 }
524}
525
526static int ubifs_write_end(struct file *file, struct address_space *mapping,
527 loff_t pos, unsigned len, unsigned copied,
528 struct page *page, void *fsdata)
529{
530 struct inode *inode = mapping->host;
531 struct ubifs_inode *ui = ubifs_inode(inode);
532 struct ubifs_info *c = inode->i_sb->s_fs_info;
533 loff_t end_pos = pos + len;
534 int appending = !!(end_pos > inode->i_size);
535
536 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
537 inode->i_ino, pos, page->index, len, copied, inode->i_size);
538
539 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
540 /*
541 * VFS copied less data to the page that it intended and
542 * declared in its '->write_begin()' call via the @len
543 * argument. If the page was not up-to-date, and @len was
544 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
545 * not load it from the media (for optimization reasons). This
546 * means that part of the page contains garbage. So read the
547 * page now.
548 */
549 dbg_gen("copied %d instead of %d, read page and repeat",
550 copied, len);
551 cancel_budget(c, page, ui, appending);
552
553 /*
554 * Return 0 to force VFS to repeat the whole operation, or the
555 * error code if 'do_readpage()' failes.
556 */
557 copied = do_readpage(page);
558 goto out;
559 }
560
561 if (!PagePrivate(page)) {
562 SetPagePrivate(page);
563 atomic_long_inc(&c->dirty_pg_cnt);
564 __set_page_dirty_nobuffers(page);
565 }
566
567 if (appending) {
568 i_size_write(inode, end_pos);
569 ui->ui_size = end_pos;
570 /*
571 * Note, we do not set @I_DIRTY_PAGES (which means that the
572 * inode has dirty pages), this has been done in
573 * '__set_page_dirty_nobuffers()'.
574 */
575 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
576 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
577 mutex_unlock(&ui->ui_mutex);
578 }
579
580out:
581 unlock_page(page);
582 page_cache_release(page);
583 return copied;
584}
585
4793e7c5
AH
586/**
587 * populate_page - copy data nodes into a page for bulk-read.
588 * @c: UBIFS file-system description object
589 * @page: page
590 * @bu: bulk-read information
591 * @n: next zbranch slot
592 *
593 * This function returns %0 on success and a negative error code on failure.
594 */
595static int populate_page(struct ubifs_info *c, struct page *page,
596 struct bu_info *bu, int *n)
597{
5c0013c1 598 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
4793e7c5
AH
599 struct inode *inode = page->mapping->host;
600 loff_t i_size = i_size_read(inode);
601 unsigned int page_block;
602 void *addr, *zaddr;
603 pgoff_t end_index;
604
605 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
606 inode->i_ino, page->index, i_size, page->flags);
607
608 addr = zaddr = kmap(page);
609
ed382d58 610 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
4793e7c5 611 if (!i_size || page->index > end_index) {
5c0013c1 612 hole = 1;
4793e7c5
AH
613 memset(addr, 0, PAGE_CACHE_SIZE);
614 goto out_hole;
615 }
616
617 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
618 while (1) {
619 int err, len, out_len, dlen;
620
5c0013c1
AH
621 if (nn >= bu->cnt) {
622 hole = 1;
4793e7c5 623 memset(addr, 0, UBIFS_BLOCK_SIZE);
5c0013c1 624 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
4793e7c5
AH
625 struct ubifs_data_node *dn;
626
627 dn = bu->buf + (bu->zbranch[nn].offs - offs);
628
629 ubifs_assert(dn->ch.sqnum >
630 ubifs_inode(inode)->creat_sqnum);
631
632 len = le32_to_cpu(dn->size);
633 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
634 goto out_err;
635
636 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
637 out_len = UBIFS_BLOCK_SIZE;
638 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
639 le16_to_cpu(dn->compr_type));
640 if (err || len != out_len)
641 goto out_err;
642
643 if (len < UBIFS_BLOCK_SIZE)
644 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
645
646 nn += 1;
4793e7c5 647 read = (i << UBIFS_BLOCK_SHIFT) + len;
5c0013c1
AH
648 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
649 nn += 1;
650 continue;
651 } else {
652 hole = 1;
653 memset(addr, 0, UBIFS_BLOCK_SIZE);
4793e7c5
AH
654 }
655 if (++i >= UBIFS_BLOCKS_PER_PAGE)
656 break;
657 addr += UBIFS_BLOCK_SIZE;
658 page_block += 1;
659 }
660
661 if (end_index == page->index) {
662 int len = i_size & (PAGE_CACHE_SIZE - 1);
663
ed382d58 664 if (len && len < read)
4793e7c5
AH
665 memset(zaddr + len, 0, read - len);
666 }
667
668out_hole:
669 if (hole) {
670 SetPageChecked(page);
671 dbg_gen("hole");
672 }
673
674 SetPageUptodate(page);
675 ClearPageError(page);
676 flush_dcache_page(page);
677 kunmap(page);
678 *n = nn;
679 return 0;
680
681out_err:
682 ClearPageUptodate(page);
683 SetPageError(page);
684 flush_dcache_page(page);
685 kunmap(page);
686 ubifs_err("bad data node (block %u, inode %lu)",
687 page_block, inode->i_ino);
688 return -EINVAL;
689}
690
691/**
692 * ubifs_do_bulk_read - do bulk-read.
693 * @c: UBIFS file-system description object
694 * @page1: first page
695 *
696 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
697 */
698static int ubifs_do_bulk_read(struct ubifs_info *c, struct page *page1)
699{
700 pgoff_t offset = page1->index, end_index;
701 struct address_space *mapping = page1->mapping;
702 struct inode *inode = mapping->host;
703 struct ubifs_inode *ui = ubifs_inode(inode);
704 struct bu_info *bu;
705 int err, page_idx, page_cnt, ret = 0, n = 0;
706 loff_t isize;
707
708 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS);
709 if (!bu)
710 return 0;
711
712 bu->buf_len = c->bulk_read_buf_size;
713 bu->buf = kmalloc(bu->buf_len, GFP_NOFS);
714 if (!bu->buf)
715 goto out_free;
716
717 data_key_init(c, &bu->key, inode->i_ino,
718 offset << UBIFS_BLOCKS_PER_PAGE_SHIFT);
719
720 err = ubifs_tnc_get_bu_keys(c, bu);
721 if (err)
722 goto out_warn;
723
724 if (bu->eof) {
725 /* Turn off bulk-read at the end of the file */
726 ui->read_in_a_row = 1;
727 ui->bulk_read = 0;
728 }
729
730 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
731 if (!page_cnt) {
732 /*
733 * This happens when there are multiple blocks per page and the
734 * blocks for the first page we are looking for, are not
735 * together. If all the pages were like this, bulk-read would
736 * reduce performance, so we turn it off for a while.
737 */
738 ui->read_in_a_row = 0;
739 ui->bulk_read = 0;
740 goto out_free;
741 }
742
743 if (bu->cnt) {
744 err = ubifs_tnc_bulk_read(c, bu);
745 if (err)
746 goto out_warn;
747 }
748
749 err = populate_page(c, page1, bu, &n);
750 if (err)
751 goto out_warn;
752
753 unlock_page(page1);
754 ret = 1;
755
756 isize = i_size_read(inode);
757 if (isize == 0)
758 goto out_free;
759 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
760
761 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
762 pgoff_t page_offset = offset + page_idx;
763 struct page *page;
764
765 if (page_offset > end_index)
766 break;
767 page = find_or_create_page(mapping, page_offset,
768 GFP_NOFS | __GFP_COLD);
769 if (!page)
770 break;
771 if (!PageUptodate(page))
772 err = populate_page(c, page, bu, &n);
773 unlock_page(page);
774 page_cache_release(page);
775 if (err)
776 break;
777 }
778
779 ui->last_page_read = offset + page_idx - 1;
780
781out_free:
782 kfree(bu->buf);
783 kfree(bu);
784 return ret;
785
786out_warn:
787 ubifs_warn("ignoring error %d and skipping bulk-read", err);
788 goto out_free;
789}
790
791/**
792 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
793 * @page: page from which to start bulk-read.
794 *
795 * Some flash media are capable of reading sequentially at faster rates. UBIFS
796 * bulk-read facility is designed to take advantage of that, by reading in one
797 * go consecutive data nodes that are also located consecutively in the same
798 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
799 */
800static int ubifs_bulk_read(struct page *page)
801{
802 struct inode *inode = page->mapping->host;
803 struct ubifs_info *c = inode->i_sb->s_fs_info;
804 struct ubifs_inode *ui = ubifs_inode(inode);
805 pgoff_t index = page->index, last_page_read = ui->last_page_read;
806 int ret = 0;
807
808 ui->last_page_read = index;
809
810 if (!c->bulk_read)
811 return 0;
812 /*
813 * Bulk-read is protected by ui_mutex, but it is an optimization, so
814 * don't bother if we cannot lock the mutex.
815 */
816 if (!mutex_trylock(&ui->ui_mutex))
817 return 0;
818 if (index != last_page_read + 1) {
819 /* Turn off bulk-read if we stop reading sequentially */
820 ui->read_in_a_row = 1;
821 if (ui->bulk_read)
822 ui->bulk_read = 0;
823 goto out_unlock;
824 }
825 if (!ui->bulk_read) {
826 ui->read_in_a_row += 1;
827 if (ui->read_in_a_row < 3)
828 goto out_unlock;
829 /* Three reads in a row, so switch on bulk-read */
830 ui->bulk_read = 1;
831 }
832 ret = ubifs_do_bulk_read(c, page);
833out_unlock:
834 mutex_unlock(&ui->ui_mutex);
835 return ret;
836}
837
1e51764a
AB
838static int ubifs_readpage(struct file *file, struct page *page)
839{
4793e7c5
AH
840 if (ubifs_bulk_read(page))
841 return 0;
1e51764a
AB
842 do_readpage(page);
843 unlock_page(page);
844 return 0;
845}
846
847static int do_writepage(struct page *page, int len)
848{
849 int err = 0, i, blen;
850 unsigned int block;
851 void *addr;
852 union ubifs_key key;
853 struct inode *inode = page->mapping->host;
854 struct ubifs_info *c = inode->i_sb->s_fs_info;
855
856#ifdef UBIFS_DEBUG
857 spin_lock(&ui->ui_lock);
858 ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
859 spin_unlock(&ui->ui_lock);
860#endif
861
862 /* Update radix tree tags */
863 set_page_writeback(page);
864
865 addr = kmap(page);
866 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
867 i = 0;
868 while (len) {
869 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
870 data_key_init(c, &key, inode->i_ino, block);
871 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
872 if (err)
873 break;
874 if (++i >= UBIFS_BLOCKS_PER_PAGE)
875 break;
876 block += 1;
877 addr += blen;
878 len -= blen;
879 }
880 if (err) {
881 SetPageError(page);
882 ubifs_err("cannot write page %lu of inode %lu, error %d",
883 page->index, inode->i_ino, err);
884 ubifs_ro_mode(c, err);
885 }
886
887 ubifs_assert(PagePrivate(page));
888 if (PageChecked(page))
889 release_new_page_budget(c);
890 else
891 release_existing_page_budget(c);
892
893 atomic_long_dec(&c->dirty_pg_cnt);
894 ClearPagePrivate(page);
895 ClearPageChecked(page);
896
897 kunmap(page);
898 unlock_page(page);
899 end_page_writeback(page);
900 return err;
901}
902
903/*
904 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
905 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
906 * situation when a we have an inode with size 0, then a megabyte of data is
907 * appended to the inode, then write-back starts and flushes some amount of the
908 * dirty pages, the journal becomes full, commit happens and finishes, and then
909 * an unclean reboot happens. When the file system is mounted next time, the
910 * inode size would still be 0, but there would be many pages which are beyond
911 * the inode size, they would be indexed and consume flash space. Because the
912 * journal has been committed, the replay would not be able to detect this
913 * situation and correct the inode size. This means UBIFS would have to scan
914 * whole index and correct all inode sizes, which is long an unacceptable.
915 *
916 * To prevent situations like this, UBIFS writes pages back only if they are
917 * within last synchronized inode size, i.e. the the size which has been
918 * written to the flash media last time. Otherwise, UBIFS forces inode
919 * write-back, thus making sure the on-flash inode contains current inode size,
920 * and then keeps writing pages back.
921 *
922 * Some locking issues explanation. 'ubifs_writepage()' first is called with
923 * the page locked, and it locks @ui_mutex. However, write-back does take inode
924 * @i_mutex, which means other VFS operations may be run on this inode at the
925 * same time. And the problematic one is truncation to smaller size, from where
926 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
927 * drops the truncated pages. And while dropping the pages, it takes the page
928 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
929 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
930 * means that @inode->i_size is changed while @ui_mutex is unlocked.
931 *
932 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
933 * inode size. How do we do this if @inode->i_size may became smaller while we
934 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
935 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
936 * internally and updates it under @ui_mutex.
937 *
938 * Q: why we do not worry that if we race with truncation, we may end up with a
939 * situation when the inode is truncated while we are in the middle of
940 * 'do_writepage()', so we do write beyond inode size?
941 * A: If we are in the middle of 'do_writepage()', truncation would be locked
942 * on the page lock and it would not write the truncated inode node to the
943 * journal before we have finished.
944 */
945static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
946{
947 struct inode *inode = page->mapping->host;
948 struct ubifs_inode *ui = ubifs_inode(inode);
949 loff_t i_size = i_size_read(inode), synced_i_size;
950 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
951 int err, len = i_size & (PAGE_CACHE_SIZE - 1);
952 void *kaddr;
953
954 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
955 inode->i_ino, page->index, page->flags);
956 ubifs_assert(PagePrivate(page));
957
958 /* Is the page fully outside @i_size? (truncate in progress) */
959 if (page->index > end_index || (page->index == end_index && !len)) {
960 err = 0;
961 goto out_unlock;
962 }
963
964 spin_lock(&ui->ui_lock);
965 synced_i_size = ui->synced_i_size;
966 spin_unlock(&ui->ui_lock);
967
968 /* Is the page fully inside @i_size? */
969 if (page->index < end_index) {
970 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
971 err = inode->i_sb->s_op->write_inode(inode, 1);
972 if (err)
973 goto out_unlock;
974 /*
975 * The inode has been written, but the write-buffer has
976 * not been synchronized, so in case of an unclean
977 * reboot we may end up with some pages beyond inode
978 * size, but they would be in the journal (because
979 * commit flushes write buffers) and recovery would deal
980 * with this.
981 */
982 }
983 return do_writepage(page, PAGE_CACHE_SIZE);
984 }
985
986 /*
987 * The page straddles @i_size. It must be zeroed out on each and every
988 * writepage invocation because it may be mmapped. "A file is mapped
989 * in multiples of the page size. For a file that is not a multiple of
990 * the page size, the remaining memory is zeroed when mapped, and
991 * writes to that region are not written out to the file."
992 */
993 kaddr = kmap_atomic(page, KM_USER0);
994 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
995 flush_dcache_page(page);
996 kunmap_atomic(kaddr, KM_USER0);
997
998 if (i_size > synced_i_size) {
999 err = inode->i_sb->s_op->write_inode(inode, 1);
1000 if (err)
1001 goto out_unlock;
1002 }
1003
1004 return do_writepage(page, len);
1005
1006out_unlock:
1007 unlock_page(page);
1008 return err;
1009}
1010
1011/**
1012 * do_attr_changes - change inode attributes.
1013 * @inode: inode to change attributes for
1014 * @attr: describes attributes to change
1015 */
1016static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1017{
1018 if (attr->ia_valid & ATTR_UID)
1019 inode->i_uid = attr->ia_uid;
1020 if (attr->ia_valid & ATTR_GID)
1021 inode->i_gid = attr->ia_gid;
1022 if (attr->ia_valid & ATTR_ATIME)
1023 inode->i_atime = timespec_trunc(attr->ia_atime,
1024 inode->i_sb->s_time_gran);
1025 if (attr->ia_valid & ATTR_MTIME)
1026 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1027 inode->i_sb->s_time_gran);
1028 if (attr->ia_valid & ATTR_CTIME)
1029 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1030 inode->i_sb->s_time_gran);
1031 if (attr->ia_valid & ATTR_MODE) {
1032 umode_t mode = attr->ia_mode;
1033
1034 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1035 mode &= ~S_ISGID;
1036 inode->i_mode = mode;
1037 }
1038}
1039
1040/**
1041 * do_truncation - truncate an inode.
1042 * @c: UBIFS file-system description object
1043 * @inode: inode to truncate
1044 * @attr: inode attribute changes description
1045 *
1046 * This function implements VFS '->setattr()' call when the inode is truncated
1047 * to a smaller size. Returns zero in case of success and a negative error code
1048 * in case of failure.
1049 */
1050static int do_truncation(struct ubifs_info *c, struct inode *inode,
1051 const struct iattr *attr)
1052{
1053 int err;
1054 struct ubifs_budget_req req;
1055 loff_t old_size = inode->i_size, new_size = attr->ia_size;
04da11bf 1056 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1e51764a
AB
1057 struct ubifs_inode *ui = ubifs_inode(inode);
1058
1059 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1060 memset(&req, 0, sizeof(struct ubifs_budget_req));
1061
1062 /*
1063 * If this is truncation to a smaller size, and we do not truncate on a
1064 * block boundary, budget for changing one data block, because the last
1065 * block will be re-written.
1066 */
1067 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1068 req.dirtied_page = 1;
1069
1070 req.dirtied_ino = 1;
1071 /* A funny way to budget for truncation node */
1072 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1073 err = ubifs_budget_space(c, &req);
04da11bf
AB
1074 if (err) {
1075 /*
1076 * Treat truncations to zero as deletion and always allow them,
1077 * just like we do for '->unlink()'.
1078 */
1079 if (new_size || err != -ENOSPC)
1080 return err;
1081 budgeted = 0;
1082 }
1e51764a
AB
1083
1084 err = vmtruncate(inode, new_size);
1085 if (err)
1086 goto out_budg;
1087
1088 if (offset) {
1089 pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1090 struct page *page;
1091
1092 page = find_lock_page(inode->i_mapping, index);
1093 if (page) {
1094 if (PageDirty(page)) {
1095 /*
1096 * 'ubifs_jnl_truncate()' will try to truncate
1097 * the last data node, but it contains
1098 * out-of-date data because the page is dirty.
1099 * Write the page now, so that
1100 * 'ubifs_jnl_truncate()' will see an already
1101 * truncated (and up to date) data node.
1102 */
1103 ubifs_assert(PagePrivate(page));
1104
1105 clear_page_dirty_for_io(page);
1106 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1107 offset = new_size &
1108 (PAGE_CACHE_SIZE - 1);
1109 err = do_writepage(page, offset);
1110 page_cache_release(page);
1111 if (err)
1112 goto out_budg;
1113 /*
1114 * We could now tell 'ubifs_jnl_truncate()' not
1115 * to read the last block.
1116 */
1117 } else {
1118 /*
1119 * We could 'kmap()' the page and pass the data
1120 * to 'ubifs_jnl_truncate()' to save it from
1121 * having to read it.
1122 */
1123 unlock_page(page);
1124 page_cache_release(page);
1125 }
1126 }
1127 }
1128
1129 mutex_lock(&ui->ui_mutex);
1130 ui->ui_size = inode->i_size;
1131 /* Truncation changes inode [mc]time */
1132 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1133 /* The other attributes may be changed at the same time as well */
1134 do_attr_changes(inode, attr);
1135
1136 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1137 mutex_unlock(&ui->ui_mutex);
1138out_budg:
04da11bf
AB
1139 if (budgeted)
1140 ubifs_release_budget(c, &req);
1141 else {
1142 c->nospace = c->nospace_rp = 0;
1143 smp_wmb();
1144 }
1e51764a
AB
1145 return err;
1146}
1147
1148/**
1149 * do_setattr - change inode attributes.
1150 * @c: UBIFS file-system description object
1151 * @inode: inode to change attributes for
1152 * @attr: inode attribute changes description
1153 *
1154 * This function implements VFS '->setattr()' call for all cases except
1155 * truncations to smaller size. Returns zero in case of success and a negative
1156 * error code in case of failure.
1157 */
1158static int do_setattr(struct ubifs_info *c, struct inode *inode,
1159 const struct iattr *attr)
1160{
1161 int err, release;
1162 loff_t new_size = attr->ia_size;
1163 struct ubifs_inode *ui = ubifs_inode(inode);
1164 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1165 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1166
1167 err = ubifs_budget_space(c, &req);
1168 if (err)
1169 return err;
1170
1171 if (attr->ia_valid & ATTR_SIZE) {
1172 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1173 err = vmtruncate(inode, new_size);
1174 if (err)
1175 goto out;
1176 }
1177
1178 mutex_lock(&ui->ui_mutex);
1179 if (attr->ia_valid & ATTR_SIZE) {
1180 /* Truncation changes inode [mc]time */
1181 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1182 /* 'vmtruncate()' changed @i_size, update @ui_size */
1183 ui->ui_size = inode->i_size;
1184 }
1185
1186 do_attr_changes(inode, attr);
1187
1188 release = ui->dirty;
1189 if (attr->ia_valid & ATTR_SIZE)
1190 /*
1191 * Inode length changed, so we have to make sure
1192 * @I_DIRTY_DATASYNC is set.
1193 */
1194 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1195 else
1196 mark_inode_dirty_sync(inode);
1197 mutex_unlock(&ui->ui_mutex);
1198
1199 if (release)
1200 ubifs_release_budget(c, &req);
1201 if (IS_SYNC(inode))
1202 err = inode->i_sb->s_op->write_inode(inode, 1);
1203 return err;
1204
1205out:
1206 ubifs_release_budget(c, &req);
1207 return err;
1208}
1209
1210int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1211{
1212 int err;
1213 struct inode *inode = dentry->d_inode;
1214 struct ubifs_info *c = inode->i_sb->s_fs_info;
1215
7d32c2bb
AB
1216 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1217 inode->i_ino, inode->i_mode, attr->ia_valid);
1e51764a
AB
1218 err = inode_change_ok(inode, attr);
1219 if (err)
1220 return err;
1221
1222 err = dbg_check_synced_i_size(inode);
1223 if (err)
1224 return err;
1225
1226 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1227 /* Truncation to a smaller size */
1228 err = do_truncation(c, inode, attr);
1229 else
1230 err = do_setattr(c, inode, attr);
1231
1232 return err;
1233}
1234
1235static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1236{
1237 struct inode *inode = page->mapping->host;
1238 struct ubifs_info *c = inode->i_sb->s_fs_info;
1239
1240 ubifs_assert(PagePrivate(page));
1241 if (offset)
1242 /* Partial page remains dirty */
1243 return;
1244
1245 if (PageChecked(page))
1246 release_new_page_budget(c);
1247 else
1248 release_existing_page_budget(c);
1249
1250 atomic_long_dec(&c->dirty_pg_cnt);
1251 ClearPagePrivate(page);
1252 ClearPageChecked(page);
1253}
1254
1255static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1256{
1257 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1258
1259 nd_set_link(nd, ui->data);
1260 return NULL;
1261}
1262
1263int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1264{
1265 struct inode *inode = dentry->d_inode;
1266 struct ubifs_info *c = inode->i_sb->s_fs_info;
1267 int err;
1268
1269 dbg_gen("syncing inode %lu", inode->i_ino);
1270
1271 /*
1272 * VFS has already synchronized dirty pages for this inode. Synchronize
1273 * the inode unless this is a 'datasync()' call.
1274 */
1275 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1276 err = inode->i_sb->s_op->write_inode(inode, 1);
1277 if (err)
1278 return err;
1279 }
1280
1281 /*
1282 * Nodes related to this inode may still sit in a write-buffer. Flush
1283 * them.
1284 */
1285 err = ubifs_sync_wbufs_by_inode(c, inode);
1286 if (err)
1287 return err;
1288
1289 return 0;
1290}
1291
1292/**
1293 * mctime_update_needed - check if mtime or ctime update is needed.
1294 * @inode: the inode to do the check for
1295 * @now: current time
1296 *
1297 * This helper function checks if the inode mtime/ctime should be updated or
1298 * not. If current values of the time-stamps are within the UBIFS inode time
1299 * granularity, they are not updated. This is an optimization.
1300 */
1301static inline int mctime_update_needed(const struct inode *inode,
1302 const struct timespec *now)
1303{
1304 if (!timespec_equal(&inode->i_mtime, now) ||
1305 !timespec_equal(&inode->i_ctime, now))
1306 return 1;
1307 return 0;
1308}
1309
1310/**
1311 * update_ctime - update mtime and ctime of an inode.
1312 * @c: UBIFS file-system description object
1313 * @inode: inode to update
1314 *
1315 * This function updates mtime and ctime of the inode if it is not equivalent to
1316 * current time. Returns zero in case of success and a negative error code in
1317 * case of failure.
1318 */
1319static int update_mctime(struct ubifs_info *c, struct inode *inode)
1320{
1321 struct timespec now = ubifs_current_time(inode);
1322 struct ubifs_inode *ui = ubifs_inode(inode);
1323
1324 if (mctime_update_needed(inode, &now)) {
1325 int err, release;
1326 struct ubifs_budget_req req = { .dirtied_ino = 1,
dab4b4d2 1327 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1e51764a
AB
1328
1329 err = ubifs_budget_space(c, &req);
1330 if (err)
1331 return err;
1332
1333 mutex_lock(&ui->ui_mutex);
1334 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1335 release = ui->dirty;
1336 mark_inode_dirty_sync(inode);
1337 mutex_unlock(&ui->ui_mutex);
1338 if (release)
1339 ubifs_release_budget(c, &req);
1340 }
1341
1342 return 0;
1343}
1344
1345static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1346 unsigned long nr_segs, loff_t pos)
1347{
1348 int err;
1349 ssize_t ret;
1350 struct inode *inode = iocb->ki_filp->f_mapping->host;
1351 struct ubifs_info *c = inode->i_sb->s_fs_info;
1352
1353 err = update_mctime(c, inode);
1354 if (err)
1355 return err;
1356
1357 ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1358 if (ret < 0)
1359 return ret;
1360
1361 if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1362 err = ubifs_sync_wbufs_by_inode(c, inode);
1363 if (err)
1364 return err;
1365 }
1366
1367 return ret;
1368}
1369
1370static int ubifs_set_page_dirty(struct page *page)
1371{
1372 int ret;
1373
1374 ret = __set_page_dirty_nobuffers(page);
1375 /*
1376 * An attempt to dirty a page without budgeting for it - should not
1377 * happen.
1378 */
1379 ubifs_assert(ret == 0);
1380 return ret;
1381}
1382
1383static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1384{
1385 /*
1386 * An attempt to release a dirty page without budgeting for it - should
1387 * not happen.
1388 */
1389 if (PageWriteback(page))
1390 return 0;
1391 ubifs_assert(PagePrivate(page));
1392 ubifs_assert(0);
1393 ClearPagePrivate(page);
1394 ClearPageChecked(page);
1395 return 1;
1396}
1397
1398/*
1399 * mmap()d file has taken write protection fault and is being made
1400 * writable. UBIFS must ensure page is budgeted for.
1401 */
1402static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
1403{
1404 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1405 struct ubifs_info *c = inode->i_sb->s_fs_info;
1406 struct timespec now = ubifs_current_time(inode);
1407 struct ubifs_budget_req req = { .new_page = 1 };
1408 int err, update_time;
1409
1410 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1411 i_size_read(inode));
1412 ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1413
1414 if (unlikely(c->ro_media))
1415 return -EROFS;
1416
1417 /*
1418 * We have not locked @page so far so we may budget for changing the
1419 * page. Note, we cannot do this after we locked the page, because
1420 * budgeting may cause write-back which would cause deadlock.
1421 *
1422 * At the moment we do not know whether the page is dirty or not, so we
1423 * assume that it is not and budget for a new page. We could look at
1424 * the @PG_private flag and figure this out, but we may race with write
1425 * back and the page state may change by the time we lock it, so this
1426 * would need additional care. We do not bother with this at the
1427 * moment, although it might be good idea to do. Instead, we allocate
1428 * budget for a new page and amend it later on if the page was in fact
1429 * dirty.
1430 *
1431 * The budgeting-related logic of this function is similar to what we
1432 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1433 * for more comments.
1434 */
1435 update_time = mctime_update_needed(inode, &now);
1436 if (update_time)
1437 /*
1438 * We have to change inode time stamp which requires extra
1439 * budgeting.
1440 */
1441 req.dirtied_ino = 1;
1442
1443 err = ubifs_budget_space(c, &req);
1444 if (unlikely(err)) {
1445 if (err == -ENOSPC)
1446 ubifs_warn("out of space for mmapped file "
1447 "(inode number %lu)", inode->i_ino);
1448 return err;
1449 }
1450
1451 lock_page(page);
1452 if (unlikely(page->mapping != inode->i_mapping ||
1453 page_offset(page) > i_size_read(inode))) {
1454 /* Page got truncated out from underneath us */
1455 err = -EINVAL;
1456 goto out_unlock;
1457 }
1458
1459 if (PagePrivate(page))
1460 release_new_page_budget(c);
1461 else {
1462 if (!PageChecked(page))
1463 ubifs_convert_page_budget(c);
1464 SetPagePrivate(page);
1465 atomic_long_inc(&c->dirty_pg_cnt);
1466 __set_page_dirty_nobuffers(page);
1467 }
1468
1469 if (update_time) {
1470 int release;
1471 struct ubifs_inode *ui = ubifs_inode(inode);
1472
1473 mutex_lock(&ui->ui_mutex);
1474 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1475 release = ui->dirty;
1476 mark_inode_dirty_sync(inode);
1477 mutex_unlock(&ui->ui_mutex);
1478 if (release)
1479 ubifs_release_dirty_inode_budget(c, ui);
1480 }
1481
1482 unlock_page(page);
1483 return 0;
1484
1485out_unlock:
1486 unlock_page(page);
1487 ubifs_release_budget(c, &req);
1488 return err;
1489}
1490
1491static struct vm_operations_struct ubifs_file_vm_ops = {
1492 .fault = filemap_fault,
1493 .page_mkwrite = ubifs_vm_page_mkwrite,
1494};
1495
1496static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1497{
1498 int err;
1499
1500 /* 'generic_file_mmap()' takes care of NOMMU case */
1501 err = generic_file_mmap(file, vma);
1502 if (err)
1503 return err;
1504 vma->vm_ops = &ubifs_file_vm_ops;
1505 return 0;
1506}
1507
1508struct address_space_operations ubifs_file_address_operations = {
1509 .readpage = ubifs_readpage,
1510 .writepage = ubifs_writepage,
1511 .write_begin = ubifs_write_begin,
1512 .write_end = ubifs_write_end,
1513 .invalidatepage = ubifs_invalidatepage,
1514 .set_page_dirty = ubifs_set_page_dirty,
1515 .releasepage = ubifs_releasepage,
1516};
1517
1518struct inode_operations ubifs_file_inode_operations = {
1519 .setattr = ubifs_setattr,
1520 .getattr = ubifs_getattr,
1521#ifdef CONFIG_UBIFS_FS_XATTR
1522 .setxattr = ubifs_setxattr,
1523 .getxattr = ubifs_getxattr,
1524 .listxattr = ubifs_listxattr,
1525 .removexattr = ubifs_removexattr,
1526#endif
1527};
1528
1529struct inode_operations ubifs_symlink_inode_operations = {
1530 .readlink = generic_readlink,
1531 .follow_link = ubifs_follow_link,
1532 .setattr = ubifs_setattr,
1533 .getattr = ubifs_getattr,
1534};
1535
1536struct file_operations ubifs_file_operations = {
1537 .llseek = generic_file_llseek,
1538 .read = do_sync_read,
1539 .write = do_sync_write,
1540 .aio_read = generic_file_aio_read,
1541 .aio_write = ubifs_aio_write,
1542 .mmap = ubifs_file_mmap,
1543 .fsync = ubifs_fsync,
1544 .unlocked_ioctl = ubifs_ioctl,
1545 .splice_read = generic_file_splice_read,
22bc7fa8 1546 .splice_write = generic_file_splice_write,
1e51764a
AB
1547#ifdef CONFIG_COMPAT
1548 .compat_ioctl = ubifs_compat_ioctl,
1549#endif
1550};