Merge branch 'x86/ptrace-syscall-exit' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / ubifs / debug.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#define UBIFS_DBG_PRESERVE_UBI
31
32#include "ubifs.h"
33#include <linux/module.h>
34#include <linux/moduleparam.h>
552ff317 35#include <linux/debugfs.h>
4d61db4f 36#include <linux/math64.h>
1e51764a
AB
37
38#ifdef CONFIG_UBIFS_FS_DEBUG
39
40DEFINE_SPINLOCK(dbg_lock);
41
42static char dbg_key_buf0[128];
43static char dbg_key_buf1[128];
44
45unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47unsigned int ubifs_tst_flags;
48
49module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52
53MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54MODULE_PARM_DESC(debug_chks, "Debug check flags");
55MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56
57static const char *get_key_fmt(int fmt)
58{
59 switch (fmt) {
60 case UBIFS_SIMPLE_KEY_FMT:
61 return "simple";
62 default:
63 return "unknown/invalid format";
64 }
65}
66
67static const char *get_key_hash(int hash)
68{
69 switch (hash) {
70 case UBIFS_KEY_HASH_R5:
71 return "R5";
72 case UBIFS_KEY_HASH_TEST:
73 return "test";
74 default:
75 return "unknown/invalid name hash";
76 }
77}
78
79static const char *get_key_type(int type)
80{
81 switch (type) {
82 case UBIFS_INO_KEY:
83 return "inode";
84 case UBIFS_DENT_KEY:
85 return "direntry";
86 case UBIFS_XENT_KEY:
87 return "xentry";
88 case UBIFS_DATA_KEY:
89 return "data";
90 case UBIFS_TRUN_KEY:
91 return "truncate";
92 default:
93 return "unknown/invalid key";
94 }
95}
96
97static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 char *buffer)
99{
100 char *p = buffer;
101 int type = key_type(c, key);
102
103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 switch (type) {
105 case UBIFS_INO_KEY:
e84461ad 106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
1e51764a
AB
107 get_key_type(type));
108 break;
109 case UBIFS_DENT_KEY:
110 case UBIFS_XENT_KEY:
e84461ad
AB
111 sprintf(p, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c, key),
1e51764a
AB
113 get_key_type(type), key_hash(c, key));
114 break;
115 case UBIFS_DATA_KEY:
e84461ad
AB
116 sprintf(p, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c, key),
1e51764a
AB
118 get_key_type(type), key_block(c, key));
119 break;
120 case UBIFS_TRUN_KEY:
121 sprintf(p, "(%lu, %s)",
e84461ad
AB
122 (unsigned long)key_inum(c, key),
123 get_key_type(type));
1e51764a
AB
124 break;
125 default:
126 sprintf(p, "(bad key type: %#08x, %#08x)",
127 key->u32[0], key->u32[1]);
128 }
129 } else
130 sprintf(p, "bad key format %d", c->key_fmt);
131}
132
133const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134{
135 /* dbg_lock must be held */
136 sprintf_key(c, key, dbg_key_buf0);
137 return dbg_key_buf0;
138}
139
140const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141{
142 /* dbg_lock must be held */
143 sprintf_key(c, key, dbg_key_buf1);
144 return dbg_key_buf1;
145}
146
147const char *dbg_ntype(int type)
148{
149 switch (type) {
150 case UBIFS_PAD_NODE:
151 return "padding node";
152 case UBIFS_SB_NODE:
153 return "superblock node";
154 case UBIFS_MST_NODE:
155 return "master node";
156 case UBIFS_REF_NODE:
157 return "reference node";
158 case UBIFS_INO_NODE:
159 return "inode node";
160 case UBIFS_DENT_NODE:
161 return "direntry node";
162 case UBIFS_XENT_NODE:
163 return "xentry node";
164 case UBIFS_DATA_NODE:
165 return "data node";
166 case UBIFS_TRUN_NODE:
167 return "truncate node";
168 case UBIFS_IDX_NODE:
169 return "indexing node";
170 case UBIFS_CS_NODE:
171 return "commit start node";
172 case UBIFS_ORPH_NODE:
173 return "orphan node";
174 default:
175 return "unknown node";
176 }
177}
178
179static const char *dbg_gtype(int type)
180{
181 switch (type) {
182 case UBIFS_NO_NODE_GROUP:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP:
187 return "last of node group";
188 default:
189 return "unknown";
190 }
191}
192
193const char *dbg_cstate(int cmt_state)
194{
195 switch (cmt_state) {
196 case COMMIT_RESTING:
197 return "commit resting";
198 case COMMIT_BACKGROUND:
199 return "background commit requested";
200 case COMMIT_REQUIRED:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED:
205 return "commit running and required";
206 case COMMIT_BROKEN:
207 return "broken commit";
208 default:
209 return "unknown commit state";
210 }
211}
212
77a7ae58
AB
213const char *dbg_jhead(int jhead)
214{
215 switch (jhead) {
216 case GCHD:
217 return "0 (GC)";
218 case BASEHD:
219 return "1 (base)";
220 case DATAHD:
221 return "2 (data)";
222 default:
223 return "unknown journal head";
224 }
225}
226
1e51764a
AB
227static void dump_ch(const struct ubifs_ch *ch)
228{
229 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
230 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
231 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
232 dbg_ntype(ch->node_type));
233 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
234 dbg_gtype(ch->group_type));
235 printk(KERN_DEBUG "\tsqnum %llu\n",
236 (unsigned long long)le64_to_cpu(ch->sqnum));
237 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
238}
239
240void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
241{
242 const struct ubifs_inode *ui = ubifs_inode(inode);
243
b5e426e9
AB
244 printk(KERN_DEBUG "Dump in-memory inode:");
245 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
246 printk(KERN_DEBUG "\tsize %llu\n",
1e51764a 247 (unsigned long long)i_size_read(inode));
b5e426e9
AB
248 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
249 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
250 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
251 printk(KERN_DEBUG "\tatime %u.%u\n",
1e51764a
AB
252 (unsigned int)inode->i_atime.tv_sec,
253 (unsigned int)inode->i_atime.tv_nsec);
b5e426e9 254 printk(KERN_DEBUG "\tmtime %u.%u\n",
1e51764a
AB
255 (unsigned int)inode->i_mtime.tv_sec,
256 (unsigned int)inode->i_mtime.tv_nsec);
b5e426e9 257 printk(KERN_DEBUG "\tctime %u.%u\n",
1e51764a
AB
258 (unsigned int)inode->i_ctime.tv_sec,
259 (unsigned int)inode->i_ctime.tv_nsec);
b5e426e9
AB
260 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
261 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
262 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
263 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
264 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
265 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
266 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
267 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
268 (unsigned long long)ui->synced_i_size);
269 printk(KERN_DEBUG "\tui_size %llu\n",
270 (unsigned long long)ui->ui_size);
271 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
272 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
273 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
274 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
275 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
1e51764a
AB
276}
277
278void dbg_dump_node(const struct ubifs_info *c, const void *node)
279{
280 int i, n;
281 union ubifs_key key;
282 const struct ubifs_ch *ch = node;
283
284 if (dbg_failure_mode)
285 return;
286
287 /* If the magic is incorrect, just hexdump the first bytes */
288 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
289 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
290 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
291 (void *)node, UBIFS_CH_SZ, 1);
292 return;
293 }
294
295 spin_lock(&dbg_lock);
296 dump_ch(node);
297
298 switch (ch->node_type) {
299 case UBIFS_PAD_NODE:
300 {
301 const struct ubifs_pad_node *pad = node;
302
303 printk(KERN_DEBUG "\tpad_len %u\n",
304 le32_to_cpu(pad->pad_len));
305 break;
306 }
307 case UBIFS_SB_NODE:
308 {
309 const struct ubifs_sb_node *sup = node;
310 unsigned int sup_flags = le32_to_cpu(sup->flags);
311
312 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
313 (int)sup->key_hash, get_key_hash(sup->key_hash));
314 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
315 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
316 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
317 printk(KERN_DEBUG "\t big_lpt %u\n",
318 !!(sup_flags & UBIFS_FLG_BIGLPT));
319 printk(KERN_DEBUG "\tmin_io_size %u\n",
320 le32_to_cpu(sup->min_io_size));
321 printk(KERN_DEBUG "\tleb_size %u\n",
322 le32_to_cpu(sup->leb_size));
323 printk(KERN_DEBUG "\tleb_cnt %u\n",
324 le32_to_cpu(sup->leb_cnt));
325 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
326 le32_to_cpu(sup->max_leb_cnt));
327 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
328 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
329 printk(KERN_DEBUG "\tlog_lebs %u\n",
330 le32_to_cpu(sup->log_lebs));
331 printk(KERN_DEBUG "\tlpt_lebs %u\n",
332 le32_to_cpu(sup->lpt_lebs));
333 printk(KERN_DEBUG "\torph_lebs %u\n",
334 le32_to_cpu(sup->orph_lebs));
335 printk(KERN_DEBUG "\tjhead_cnt %u\n",
336 le32_to_cpu(sup->jhead_cnt));
337 printk(KERN_DEBUG "\tfanout %u\n",
338 le32_to_cpu(sup->fanout));
339 printk(KERN_DEBUG "\tlsave_cnt %u\n",
340 le32_to_cpu(sup->lsave_cnt));
341 printk(KERN_DEBUG "\tdefault_compr %u\n",
342 (int)le16_to_cpu(sup->default_compr));
343 printk(KERN_DEBUG "\trp_size %llu\n",
344 (unsigned long long)le64_to_cpu(sup->rp_size));
345 printk(KERN_DEBUG "\trp_uid %u\n",
346 le32_to_cpu(sup->rp_uid));
347 printk(KERN_DEBUG "\trp_gid %u\n",
348 le32_to_cpu(sup->rp_gid));
349 printk(KERN_DEBUG "\tfmt_version %u\n",
350 le32_to_cpu(sup->fmt_version));
351 printk(KERN_DEBUG "\ttime_gran %u\n",
352 le32_to_cpu(sup->time_gran));
353 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X"
354 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
355 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
356 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
357 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
358 sup->uuid[12], sup->uuid[13], sup->uuid[14],
359 sup->uuid[15]);
360 break;
361 }
362 case UBIFS_MST_NODE:
363 {
364 const struct ubifs_mst_node *mst = node;
365
366 printk(KERN_DEBUG "\thighest_inum %llu\n",
367 (unsigned long long)le64_to_cpu(mst->highest_inum));
368 printk(KERN_DEBUG "\tcommit number %llu\n",
369 (unsigned long long)le64_to_cpu(mst->cmt_no));
370 printk(KERN_DEBUG "\tflags %#x\n",
371 le32_to_cpu(mst->flags));
372 printk(KERN_DEBUG "\tlog_lnum %u\n",
373 le32_to_cpu(mst->log_lnum));
374 printk(KERN_DEBUG "\troot_lnum %u\n",
375 le32_to_cpu(mst->root_lnum));
376 printk(KERN_DEBUG "\troot_offs %u\n",
377 le32_to_cpu(mst->root_offs));
378 printk(KERN_DEBUG "\troot_len %u\n",
379 le32_to_cpu(mst->root_len));
380 printk(KERN_DEBUG "\tgc_lnum %u\n",
381 le32_to_cpu(mst->gc_lnum));
382 printk(KERN_DEBUG "\tihead_lnum %u\n",
383 le32_to_cpu(mst->ihead_lnum));
384 printk(KERN_DEBUG "\tihead_offs %u\n",
385 le32_to_cpu(mst->ihead_offs));
0ecb9529
HH
386 printk(KERN_DEBUG "\tindex_size %llu\n",
387 (unsigned long long)le64_to_cpu(mst->index_size));
1e51764a
AB
388 printk(KERN_DEBUG "\tlpt_lnum %u\n",
389 le32_to_cpu(mst->lpt_lnum));
390 printk(KERN_DEBUG "\tlpt_offs %u\n",
391 le32_to_cpu(mst->lpt_offs));
392 printk(KERN_DEBUG "\tnhead_lnum %u\n",
393 le32_to_cpu(mst->nhead_lnum));
394 printk(KERN_DEBUG "\tnhead_offs %u\n",
395 le32_to_cpu(mst->nhead_offs));
396 printk(KERN_DEBUG "\tltab_lnum %u\n",
397 le32_to_cpu(mst->ltab_lnum));
398 printk(KERN_DEBUG "\tltab_offs %u\n",
399 le32_to_cpu(mst->ltab_offs));
400 printk(KERN_DEBUG "\tlsave_lnum %u\n",
401 le32_to_cpu(mst->lsave_lnum));
402 printk(KERN_DEBUG "\tlsave_offs %u\n",
403 le32_to_cpu(mst->lsave_offs));
404 printk(KERN_DEBUG "\tlscan_lnum %u\n",
405 le32_to_cpu(mst->lscan_lnum));
406 printk(KERN_DEBUG "\tleb_cnt %u\n",
407 le32_to_cpu(mst->leb_cnt));
408 printk(KERN_DEBUG "\tempty_lebs %u\n",
409 le32_to_cpu(mst->empty_lebs));
410 printk(KERN_DEBUG "\tidx_lebs %u\n",
411 le32_to_cpu(mst->idx_lebs));
412 printk(KERN_DEBUG "\ttotal_free %llu\n",
413 (unsigned long long)le64_to_cpu(mst->total_free));
414 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
415 (unsigned long long)le64_to_cpu(mst->total_dirty));
416 printk(KERN_DEBUG "\ttotal_used %llu\n",
417 (unsigned long long)le64_to_cpu(mst->total_used));
418 printk(KERN_DEBUG "\ttotal_dead %llu\n",
419 (unsigned long long)le64_to_cpu(mst->total_dead));
420 printk(KERN_DEBUG "\ttotal_dark %llu\n",
421 (unsigned long long)le64_to_cpu(mst->total_dark));
422 break;
423 }
424 case UBIFS_REF_NODE:
425 {
426 const struct ubifs_ref_node *ref = node;
427
428 printk(KERN_DEBUG "\tlnum %u\n",
429 le32_to_cpu(ref->lnum));
430 printk(KERN_DEBUG "\toffs %u\n",
431 le32_to_cpu(ref->offs));
432 printk(KERN_DEBUG "\tjhead %u\n",
433 le32_to_cpu(ref->jhead));
434 break;
435 }
436 case UBIFS_INO_NODE:
437 {
438 const struct ubifs_ino_node *ino = node;
439
440 key_read(c, &ino->key, &key);
441 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
442 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
443 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
444 printk(KERN_DEBUG "\tsize %llu\n",
445 (unsigned long long)le64_to_cpu(ino->size));
446 printk(KERN_DEBUG "\tnlink %u\n",
447 le32_to_cpu(ino->nlink));
448 printk(KERN_DEBUG "\tatime %lld.%u\n",
449 (long long)le64_to_cpu(ino->atime_sec),
450 le32_to_cpu(ino->atime_nsec));
451 printk(KERN_DEBUG "\tmtime %lld.%u\n",
452 (long long)le64_to_cpu(ino->mtime_sec),
453 le32_to_cpu(ino->mtime_nsec));
454 printk(KERN_DEBUG "\tctime %lld.%u\n",
455 (long long)le64_to_cpu(ino->ctime_sec),
456 le32_to_cpu(ino->ctime_nsec));
457 printk(KERN_DEBUG "\tuid %u\n",
458 le32_to_cpu(ino->uid));
459 printk(KERN_DEBUG "\tgid %u\n",
460 le32_to_cpu(ino->gid));
461 printk(KERN_DEBUG "\tmode %u\n",
462 le32_to_cpu(ino->mode));
463 printk(KERN_DEBUG "\tflags %#x\n",
464 le32_to_cpu(ino->flags));
465 printk(KERN_DEBUG "\txattr_cnt %u\n",
466 le32_to_cpu(ino->xattr_cnt));
467 printk(KERN_DEBUG "\txattr_size %u\n",
468 le32_to_cpu(ino->xattr_size));
469 printk(KERN_DEBUG "\txattr_names %u\n",
470 le32_to_cpu(ino->xattr_names));
471 printk(KERN_DEBUG "\tcompr_type %#x\n",
472 (int)le16_to_cpu(ino->compr_type));
473 printk(KERN_DEBUG "\tdata len %u\n",
474 le32_to_cpu(ino->data_len));
475 break;
476 }
477 case UBIFS_DENT_NODE:
478 case UBIFS_XENT_NODE:
479 {
480 const struct ubifs_dent_node *dent = node;
481 int nlen = le16_to_cpu(dent->nlen);
482
483 key_read(c, &dent->key, &key);
484 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
485 printk(KERN_DEBUG "\tinum %llu\n",
486 (unsigned long long)le64_to_cpu(dent->inum));
487 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
488 printk(KERN_DEBUG "\tnlen %d\n", nlen);
489 printk(KERN_DEBUG "\tname ");
490
491 if (nlen > UBIFS_MAX_NLEN)
492 printk(KERN_DEBUG "(bad name length, not printing, "
493 "bad or corrupted node)");
494 else {
495 for (i = 0; i < nlen && dent->name[i]; i++)
c9927c3e 496 printk(KERN_CONT "%c", dent->name[i]);
1e51764a 497 }
c9927c3e 498 printk(KERN_CONT "\n");
1e51764a
AB
499
500 break;
501 }
502 case UBIFS_DATA_NODE:
503 {
504 const struct ubifs_data_node *dn = node;
505 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
506
507 key_read(c, &dn->key, &key);
508 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
509 printk(KERN_DEBUG "\tsize %u\n",
510 le32_to_cpu(dn->size));
511 printk(KERN_DEBUG "\tcompr_typ %d\n",
512 (int)le16_to_cpu(dn->compr_type));
513 printk(KERN_DEBUG "\tdata size %d\n",
514 dlen);
515 printk(KERN_DEBUG "\tdata:\n");
516 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
517 (void *)&dn->data, dlen, 0);
518 break;
519 }
520 case UBIFS_TRUN_NODE:
521 {
522 const struct ubifs_trun_node *trun = node;
523
524 printk(KERN_DEBUG "\tinum %u\n",
525 le32_to_cpu(trun->inum));
526 printk(KERN_DEBUG "\told_size %llu\n",
527 (unsigned long long)le64_to_cpu(trun->old_size));
528 printk(KERN_DEBUG "\tnew_size %llu\n",
529 (unsigned long long)le64_to_cpu(trun->new_size));
530 break;
531 }
532 case UBIFS_IDX_NODE:
533 {
534 const struct ubifs_idx_node *idx = node;
535
536 n = le16_to_cpu(idx->child_cnt);
537 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
538 printk(KERN_DEBUG "\tlevel %d\n",
539 (int)le16_to_cpu(idx->level));
540 printk(KERN_DEBUG "\tBranches:\n");
541
542 for (i = 0; i < n && i < c->fanout - 1; i++) {
543 const struct ubifs_branch *br;
544
545 br = ubifs_idx_branch(c, idx, i);
546 key_read(c, &br->key, &key);
547 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
548 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
549 le32_to_cpu(br->len), DBGKEY(&key));
550 }
551 break;
552 }
553 case UBIFS_CS_NODE:
554 break;
555 case UBIFS_ORPH_NODE:
556 {
557 const struct ubifs_orph_node *orph = node;
558
559 printk(KERN_DEBUG "\tcommit number %llu\n",
560 (unsigned long long)
561 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 printk(KERN_DEBUG "\tlast node flag %llu\n",
563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
565 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
566 for (i = 0; i < n; i++)
567 printk(KERN_DEBUG "\t ino %llu\n",
7424bac8 568 (unsigned long long)le64_to_cpu(orph->inos[i]));
1e51764a
AB
569 break;
570 }
571 default:
572 printk(KERN_DEBUG "node type %d was not recognized\n",
573 (int)ch->node_type);
574 }
575 spin_unlock(&dbg_lock);
576}
577
578void dbg_dump_budget_req(const struct ubifs_budget_req *req)
579{
580 spin_lock(&dbg_lock);
581 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
582 req->new_ino, req->dirtied_ino);
583 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
584 req->new_ino_d, req->dirtied_ino_d);
585 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
586 req->new_page, req->dirtied_page);
587 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
588 req->new_dent, req->mod_dent);
589 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
590 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
591 req->data_growth, req->dd_growth);
592 spin_unlock(&dbg_lock);
593}
594
595void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
596{
597 spin_lock(&dbg_lock);
1de94159
AB
598 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
599 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
1e51764a
AB
600 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
601 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
602 lst->total_dirty);
603 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
604 "total_dead %lld\n", lst->total_used, lst->total_dark,
605 lst->total_dead);
606 spin_unlock(&dbg_lock);
607}
608
609void dbg_dump_budg(struct ubifs_info *c)
610{
611 int i;
612 struct rb_node *rb;
613 struct ubifs_bud *bud;
614 struct ubifs_gced_idx_leb *idx_gc;
21a60258 615 long long available, outstanding, free;
1e51764a 616
21a60258 617 ubifs_assert(spin_is_locked(&c->space_lock));
1e51764a 618 spin_lock(&dbg_lock);
1de94159
AB
619 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
620 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
1e51764a
AB
621 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
622 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
623 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
624 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
625 c->freeable_cnt);
626 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
627 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
628 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
629 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
630 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
631 atomic_long_read(&c->dirty_zn_cnt),
632 atomic_long_read(&c->clean_zn_cnt));
633 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
634 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
635 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
636 c->gc_lnum, c->ihead_lnum);
84abf972
AB
637 /* If we are in R/O mode, journal heads do not exist */
638 if (c->jheads)
639 for (i = 0; i < c->jhead_cnt; i++)
77a7ae58
AB
640 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
641 dbg_jhead(c->jheads[i].wbuf.jhead),
642 c->jheads[i].wbuf.lnum);
1e51764a
AB
643 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
644 bud = rb_entry(rb, struct ubifs_bud, rb);
645 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
646 }
647 list_for_each_entry(bud, &c->old_buds, list)
648 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
649 list_for_each_entry(idx_gc, &c->idx_gc, list)
650 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
651 idx_gc->lnum, idx_gc->unmap);
652 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
21a60258
AB
653
654 /* Print budgeting predictions */
655 available = ubifs_calc_available(c, c->min_idx_lebs);
656 outstanding = c->budg_data_growth + c->budg_dd_growth;
84abf972 657 free = ubifs_get_free_space_nolock(c);
21a60258
AB
658 printk(KERN_DEBUG "Budgeting predictions:\n");
659 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
660 available, outstanding, free);
1e51764a
AB
661 spin_unlock(&dbg_lock);
662}
663
664void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
665{
be9e62a7
AB
666 int i, spc, dark = 0, dead = 0;
667 struct rb_node *rb;
668 struct ubifs_bud *bud;
669
670 spc = lp->free + lp->dirty;
671 if (spc < c->dead_wm)
672 dead = spc;
673 else
674 dark = ubifs_calc_dark(c, spc);
675
676 if (lp->flags & LPROPS_INDEX)
677 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
679 lp->dirty, c->leb_size - spc, spc, lp->flags);
680 else
681 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
682 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
683 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
684 c->leb_size - spc, spc, dark, dead,
685 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
686
687 if (lp->flags & LPROPS_TAKEN) {
688 if (lp->flags & LPROPS_INDEX)
689 printk(KERN_CONT "index, taken");
690 else
691 printk(KERN_CONT "taken");
692 } else {
693 const char *s;
694
695 if (lp->flags & LPROPS_INDEX) {
696 switch (lp->flags & LPROPS_CAT_MASK) {
697 case LPROPS_DIRTY_IDX:
698 s = "dirty index";
699 break;
700 case LPROPS_FRDI_IDX:
701 s = "freeable index";
702 break;
703 default:
704 s = "index";
705 }
706 } else {
707 switch (lp->flags & LPROPS_CAT_MASK) {
708 case LPROPS_UNCAT:
709 s = "not categorized";
710 break;
711 case LPROPS_DIRTY:
712 s = "dirty";
713 break;
714 case LPROPS_FREE:
715 s = "free";
716 break;
717 case LPROPS_EMPTY:
718 s = "empty";
719 break;
720 case LPROPS_FREEABLE:
721 s = "freeable";
722 break;
723 default:
724 s = NULL;
725 break;
726 }
727 }
728 printk(KERN_CONT "%s", s);
729 }
730
731 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
732 bud = rb_entry(rb, struct ubifs_bud, rb);
733 if (bud->lnum == lp->lnum) {
734 int head = 0;
735 for (i = 0; i < c->jhead_cnt; i++) {
736 if (lp->lnum == c->jheads[i].wbuf.lnum) {
737 printk(KERN_CONT ", jhead %s",
738 dbg_jhead(i));
739 head = 1;
740 }
741 }
742 if (!head)
743 printk(KERN_CONT ", bud of jhead %s",
744 dbg_jhead(bud->jhead));
745 }
746 }
747 if (lp->lnum == c->gc_lnum)
748 printk(KERN_CONT ", GC LEB");
749 printk(KERN_CONT ")\n");
1e51764a
AB
750}
751
752void dbg_dump_lprops(struct ubifs_info *c)
753{
754 int lnum, err;
755 struct ubifs_lprops lp;
756 struct ubifs_lp_stats lst;
757
2ba5f7ae
AB
758 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
759 current->pid);
1e51764a
AB
760 ubifs_get_lp_stats(c, &lst);
761 dbg_dump_lstats(&lst);
762
763 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
764 err = ubifs_read_one_lp(c, lnum, &lp);
765 if (err)
766 ubifs_err("cannot read lprops for LEB %d", lnum);
767
768 dbg_dump_lprop(c, &lp);
769 }
2ba5f7ae
AB
770 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
771 current->pid);
1e51764a
AB
772}
773
73944a6d
AH
774void dbg_dump_lpt_info(struct ubifs_info *c)
775{
776 int i;
777
778 spin_lock(&dbg_lock);
2ba5f7ae 779 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
73944a6d
AH
780 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
781 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
782 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
783 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
784 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
785 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
786 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
787 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
788 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
789 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
790 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
791 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
792 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
793 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
794 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
795 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
796 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
797 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
798 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
799 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
800 c->nhead_lnum, c->nhead_offs);
f92b9826
AB
801 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
802 c->ltab_lnum, c->ltab_offs);
73944a6d
AH
803 if (c->big_lpt)
804 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
805 c->lsave_lnum, c->lsave_offs);
806 for (i = 0; i < c->lpt_lebs; i++)
807 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
808 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
809 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
810 spin_unlock(&dbg_lock);
811}
812
1e51764a
AB
813void dbg_dump_leb(const struct ubifs_info *c, int lnum)
814{
815 struct ubifs_scan_leb *sleb;
816 struct ubifs_scan_node *snod;
817
818 if (dbg_failure_mode)
819 return;
820
2ba5f7ae
AB
821 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
822 current->pid, lnum);
348709ba 823 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
1e51764a
AB
824 if (IS_ERR(sleb)) {
825 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
826 return;
827 }
828
829 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
830 sleb->nodes_cnt, sleb->endpt);
831
832 list_for_each_entry(snod, &sleb->nodes, list) {
833 cond_resched();
834 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
835 snod->offs, snod->len);
836 dbg_dump_node(c, snod->node);
837 }
838
2ba5f7ae
AB
839 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
840 current->pid, lnum);
1e51764a
AB
841 ubifs_scan_destroy(sleb);
842 return;
843}
844
845void dbg_dump_znode(const struct ubifs_info *c,
846 const struct ubifs_znode *znode)
847{
848 int n;
849 const struct ubifs_zbranch *zbr;
850
851 spin_lock(&dbg_lock);
852 if (znode->parent)
853 zbr = &znode->parent->zbranch[znode->iip];
854 else
855 zbr = &c->zroot;
856
857 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
858 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
859 zbr->len, znode->parent, znode->iip, znode->level,
860 znode->child_cnt, znode->flags);
861
862 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
863 spin_unlock(&dbg_lock);
864 return;
865 }
866
867 printk(KERN_DEBUG "zbranches:\n");
868 for (n = 0; n < znode->child_cnt; n++) {
869 zbr = &znode->zbranch[n];
870 if (znode->level > 0)
871 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
872 "%s\n", n, zbr->znode, zbr->lnum,
873 zbr->offs, zbr->len,
874 DBGKEY(&zbr->key));
875 else
876 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
877 "%s\n", n, zbr->znode, zbr->lnum,
878 zbr->offs, zbr->len,
879 DBGKEY(&zbr->key));
880 }
881 spin_unlock(&dbg_lock);
882}
883
884void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
885{
886 int i;
887
2ba5f7ae 888 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
1de94159 889 current->pid, cat, heap->cnt);
1e51764a
AB
890 for (i = 0; i < heap->cnt; i++) {
891 struct ubifs_lprops *lprops = heap->arr[i];
892
893 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
894 "flags %d\n", i, lprops->lnum, lprops->hpos,
895 lprops->free, lprops->dirty, lprops->flags);
896 }
2ba5f7ae 897 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
1e51764a
AB
898}
899
900void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
901 struct ubifs_nnode *parent, int iip)
902{
903 int i;
904
2ba5f7ae 905 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
1e51764a
AB
906 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
907 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
908 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
909 pnode->flags, iip, pnode->level, pnode->num);
910 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
911 struct ubifs_lprops *lp = &pnode->lprops[i];
912
913 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
914 i, lp->free, lp->dirty, lp->flags, lp->lnum);
915 }
916}
917
918void dbg_dump_tnc(struct ubifs_info *c)
919{
920 struct ubifs_znode *znode;
921 int level;
922
923 printk(KERN_DEBUG "\n");
2ba5f7ae 924 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
1e51764a
AB
925 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
926 level = znode->level;
927 printk(KERN_DEBUG "== Level %d ==\n", level);
928 while (znode) {
929 if (level != znode->level) {
930 level = znode->level;
931 printk(KERN_DEBUG "== Level %d ==\n", level);
932 }
933 dbg_dump_znode(c, znode);
934 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
935 }
2ba5f7ae 936 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1e51764a
AB
937}
938
939static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
940 void *priv)
941{
942 dbg_dump_znode(c, znode);
943 return 0;
944}
945
946/**
947 * dbg_dump_index - dump the on-flash index.
948 * @c: UBIFS file-system description object
949 *
950 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
951 * which dumps only in-memory znodes and does not read znodes which from flash.
952 */
953void dbg_dump_index(struct ubifs_info *c)
954{
955 dbg_walk_index(c, NULL, dump_znode, NULL);
956}
957
84abf972
AB
958/**
959 * dbg_save_space_info - save information about flash space.
960 * @c: UBIFS file-system description object
961 *
962 * This function saves information about UBIFS free space, dirty space, etc, in
963 * order to check it later.
964 */
965void dbg_save_space_info(struct ubifs_info *c)
966{
967 struct ubifs_debug_info *d = c->dbg;
968
969 ubifs_get_lp_stats(c, &d->saved_lst);
970
971 spin_lock(&c->space_lock);
972 d->saved_free = ubifs_get_free_space_nolock(c);
973 spin_unlock(&c->space_lock);
974}
975
976/**
977 * dbg_check_space_info - check flash space information.
978 * @c: UBIFS file-system description object
979 *
980 * This function compares current flash space information with the information
981 * which was saved when the 'dbg_save_space_info()' function was called.
982 * Returns zero if the information has not changed, and %-EINVAL it it has
983 * changed.
984 */
985int dbg_check_space_info(struct ubifs_info *c)
986{
987 struct ubifs_debug_info *d = c->dbg;
988 struct ubifs_lp_stats lst;
989 long long avail, free;
990
991 spin_lock(&c->space_lock);
992 avail = ubifs_calc_available(c, c->min_idx_lebs);
993 spin_unlock(&c->space_lock);
994 free = ubifs_get_free_space(c);
995
996 if (free != d->saved_free) {
997 ubifs_err("free space changed from %lld to %lld",
998 d->saved_free, free);
999 goto out;
1000 }
1001
1002 return 0;
1003
1004out:
1005 ubifs_msg("saved lprops statistics dump");
1006 dbg_dump_lstats(&d->saved_lst);
1007 ubifs_get_lp_stats(c, &lst);
e055f7e8 1008
84abf972 1009 ubifs_msg("current lprops statistics dump");
e055f7e8
AB
1010 dbg_dump_lstats(&lst);
1011
84abf972
AB
1012 spin_lock(&c->space_lock);
1013 dbg_dump_budg(c);
1014 spin_unlock(&c->space_lock);
1015 dump_stack();
1016 return -EINVAL;
1017}
1018
1e51764a
AB
1019/**
1020 * dbg_check_synced_i_size - check synchronized inode size.
1021 * @inode: inode to check
1022 *
1023 * If inode is clean, synchronized inode size has to be equivalent to current
1024 * inode size. This function has to be called only for locked inodes (@i_mutex
1025 * has to be locked). Returns %0 if synchronized inode size if correct, and
1026 * %-EINVAL if not.
1027 */
1028int dbg_check_synced_i_size(struct inode *inode)
1029{
1030 int err = 0;
1031 struct ubifs_inode *ui = ubifs_inode(inode);
1032
1033 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1034 return 0;
1035 if (!S_ISREG(inode->i_mode))
1036 return 0;
1037
1038 mutex_lock(&ui->ui_mutex);
1039 spin_lock(&ui->ui_lock);
1040 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1041 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1042 "is clean", ui->ui_size, ui->synced_i_size);
1043 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1044 inode->i_mode, i_size_read(inode));
1045 dbg_dump_stack();
1046 err = -EINVAL;
1047 }
1048 spin_unlock(&ui->ui_lock);
1049 mutex_unlock(&ui->ui_mutex);
1050 return err;
1051}
1052
1053/*
1054 * dbg_check_dir - check directory inode size and link count.
1055 * @c: UBIFS file-system description object
1056 * @dir: the directory to calculate size for
1057 * @size: the result is returned here
1058 *
1059 * This function makes sure that directory size and link count are correct.
1060 * Returns zero in case of success and a negative error code in case of
1061 * failure.
1062 *
1063 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1064 * calling this function.
1065 */
1066int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1067{
1068 unsigned int nlink = 2;
1069 union ubifs_key key;
1070 struct ubifs_dent_node *dent, *pdent = NULL;
1071 struct qstr nm = { .name = NULL };
1072 loff_t size = UBIFS_INO_NODE_SZ;
1073
1074 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1075 return 0;
1076
1077 if (!S_ISDIR(dir->i_mode))
1078 return 0;
1079
1080 lowest_dent_key(c, &key, dir->i_ino);
1081 while (1) {
1082 int err;
1083
1084 dent = ubifs_tnc_next_ent(c, &key, &nm);
1085 if (IS_ERR(dent)) {
1086 err = PTR_ERR(dent);
1087 if (err == -ENOENT)
1088 break;
1089 return err;
1090 }
1091
1092 nm.name = dent->name;
1093 nm.len = le16_to_cpu(dent->nlen);
1094 size += CALC_DENT_SIZE(nm.len);
1095 if (dent->type == UBIFS_ITYPE_DIR)
1096 nlink += 1;
1097 kfree(pdent);
1098 pdent = dent;
1099 key_read(c, &dent->key, &key);
1100 }
1101 kfree(pdent);
1102
1103 if (i_size_read(dir) != size) {
1104 ubifs_err("directory inode %lu has size %llu, "
1105 "but calculated size is %llu", dir->i_ino,
1106 (unsigned long long)i_size_read(dir),
1107 (unsigned long long)size);
1108 dump_stack();
1109 return -EINVAL;
1110 }
1111 if (dir->i_nlink != nlink) {
1112 ubifs_err("directory inode %lu has nlink %u, but calculated "
1113 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1114 dump_stack();
1115 return -EINVAL;
1116 }
1117
1118 return 0;
1119}
1120
1121/**
1122 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1123 * @c: UBIFS file-system description object
1124 * @zbr1: first zbranch
1125 * @zbr2: following zbranch
1126 *
1127 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1128 * names of the direntries/xentries which are referred by the keys. This
1129 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1130 * sure the name of direntry/xentry referred by @zbr1 is less than
1131 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1132 * and a negative error code in case of failure.
1133 */
1134static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1135 struct ubifs_zbranch *zbr2)
1136{
1137 int err, nlen1, nlen2, cmp;
1138 struct ubifs_dent_node *dent1, *dent2;
1139 union ubifs_key key;
1140
1141 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1142 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1143 if (!dent1)
1144 return -ENOMEM;
1145 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1146 if (!dent2) {
1147 err = -ENOMEM;
1148 goto out_free;
1149 }
1150
1151 err = ubifs_tnc_read_node(c, zbr1, dent1);
1152 if (err)
1153 goto out_free;
1154 err = ubifs_validate_entry(c, dent1);
1155 if (err)
1156 goto out_free;
1157
1158 err = ubifs_tnc_read_node(c, zbr2, dent2);
1159 if (err)
1160 goto out_free;
1161 err = ubifs_validate_entry(c, dent2);
1162 if (err)
1163 goto out_free;
1164
1165 /* Make sure node keys are the same as in zbranch */
1166 err = 1;
1167 key_read(c, &dent1->key, &key);
1168 if (keys_cmp(c, &zbr1->key, &key)) {
5d38b3ac
AB
1169 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1170 zbr1->offs, DBGKEY(&key));
1171 dbg_err("but it should have key %s according to tnc",
1172 DBGKEY(&zbr1->key));
2ba5f7ae 1173 dbg_dump_node(c, dent1);
552ff317 1174 goto out_free;
1e51764a
AB
1175 }
1176
1177 key_read(c, &dent2->key, &key);
1178 if (keys_cmp(c, &zbr2->key, &key)) {
5d38b3ac
AB
1179 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1180 zbr1->offs, DBGKEY(&key));
1181 dbg_err("but it should have key %s according to tnc",
1182 DBGKEY(&zbr2->key));
2ba5f7ae 1183 dbg_dump_node(c, dent2);
552ff317 1184 goto out_free;
1e51764a
AB
1185 }
1186
1187 nlen1 = le16_to_cpu(dent1->nlen);
1188 nlen2 = le16_to_cpu(dent2->nlen);
1189
1190 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1191 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1192 err = 0;
1193 goto out_free;
1194 }
1195 if (cmp == 0 && nlen1 == nlen2)
5d38b3ac 1196 dbg_err("2 xent/dent nodes with the same name");
1e51764a 1197 else
5d38b3ac 1198 dbg_err("bad order of colliding key %s",
1e51764a
AB
1199 DBGKEY(&key));
1200
552ff317 1201 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1e51764a 1202 dbg_dump_node(c, dent1);
552ff317 1203 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1e51764a
AB
1204 dbg_dump_node(c, dent2);
1205
1206out_free:
1207 kfree(dent2);
1208 kfree(dent1);
1209 return err;
1210}
1211
1212/**
1213 * dbg_check_znode - check if znode is all right.
1214 * @c: UBIFS file-system description object
1215 * @zbr: zbranch which points to this znode
1216 *
1217 * This function makes sure that znode referred to by @zbr is all right.
1218 * Returns zero if it is, and %-EINVAL if it is not.
1219 */
1220static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1221{
1222 struct ubifs_znode *znode = zbr->znode;
1223 struct ubifs_znode *zp = znode->parent;
1224 int n, err, cmp;
1225
1226 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1227 err = 1;
1228 goto out;
1229 }
1230 if (znode->level < 0) {
1231 err = 2;
1232 goto out;
1233 }
1234 if (znode->iip < 0 || znode->iip >= c->fanout) {
1235 err = 3;
1236 goto out;
1237 }
1238
1239 if (zbr->len == 0)
1240 /* Only dirty zbranch may have no on-flash nodes */
1241 if (!ubifs_zn_dirty(znode)) {
1242 err = 4;
1243 goto out;
1244 }
1245
1246 if (ubifs_zn_dirty(znode)) {
1247 /*
1248 * If znode is dirty, its parent has to be dirty as well. The
1249 * order of the operation is important, so we have to have
1250 * memory barriers.
1251 */
1252 smp_mb();
1253 if (zp && !ubifs_zn_dirty(zp)) {
1254 /*
1255 * The dirty flag is atomic and is cleared outside the
1256 * TNC mutex, so znode's dirty flag may now have
1257 * been cleared. The child is always cleared before the
1258 * parent, so we just need to check again.
1259 */
1260 smp_mb();
1261 if (ubifs_zn_dirty(znode)) {
1262 err = 5;
1263 goto out;
1264 }
1265 }
1266 }
1267
1268 if (zp) {
1269 const union ubifs_key *min, *max;
1270
1271 if (znode->level != zp->level - 1) {
1272 err = 6;
1273 goto out;
1274 }
1275
1276 /* Make sure the 'parent' pointer in our znode is correct */
1277 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1278 if (!err) {
1279 /* This zbranch does not exist in the parent */
1280 err = 7;
1281 goto out;
1282 }
1283
1284 if (znode->iip >= zp->child_cnt) {
1285 err = 8;
1286 goto out;
1287 }
1288
1289 if (znode->iip != n) {
1290 /* This may happen only in case of collisions */
1291 if (keys_cmp(c, &zp->zbranch[n].key,
1292 &zp->zbranch[znode->iip].key)) {
1293 err = 9;
1294 goto out;
1295 }
1296 n = znode->iip;
1297 }
1298
1299 /*
1300 * Make sure that the first key in our znode is greater than or
1301 * equal to the key in the pointing zbranch.
1302 */
1303 min = &zbr->key;
1304 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1305 if (cmp == 1) {
1306 err = 10;
1307 goto out;
1308 }
1309
1310 if (n + 1 < zp->child_cnt) {
1311 max = &zp->zbranch[n + 1].key;
1312
1313 /*
1314 * Make sure the last key in our znode is less or
7d4e9ccb 1315 * equivalent than the key in the zbranch which goes
1e51764a
AB
1316 * after our pointing zbranch.
1317 */
1318 cmp = keys_cmp(c, max,
1319 &znode->zbranch[znode->child_cnt - 1].key);
1320 if (cmp == -1) {
1321 err = 11;
1322 goto out;
1323 }
1324 }
1325 } else {
1326 /* This may only be root znode */
1327 if (zbr != &c->zroot) {
1328 err = 12;
1329 goto out;
1330 }
1331 }
1332
1333 /*
1334 * Make sure that next key is greater or equivalent then the previous
1335 * one.
1336 */
1337 for (n = 1; n < znode->child_cnt; n++) {
1338 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1339 &znode->zbranch[n].key);
1340 if (cmp > 0) {
1341 err = 13;
1342 goto out;
1343 }
1344 if (cmp == 0) {
1345 /* This can only be keys with colliding hash */
1346 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1347 err = 14;
1348 goto out;
1349 }
1350
1351 if (znode->level != 0 || c->replaying)
1352 continue;
1353
1354 /*
1355 * Colliding keys should follow binary order of
1356 * corresponding xentry/dentry names.
1357 */
1358 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1359 &znode->zbranch[n]);
1360 if (err < 0)
1361 return err;
1362 if (err) {
1363 err = 15;
1364 goto out;
1365 }
1366 }
1367 }
1368
1369 for (n = 0; n < znode->child_cnt; n++) {
1370 if (!znode->zbranch[n].znode &&
1371 (znode->zbranch[n].lnum == 0 ||
1372 znode->zbranch[n].len == 0)) {
1373 err = 16;
1374 goto out;
1375 }
1376
1377 if (znode->zbranch[n].lnum != 0 &&
1378 znode->zbranch[n].len == 0) {
1379 err = 17;
1380 goto out;
1381 }
1382
1383 if (znode->zbranch[n].lnum == 0 &&
1384 znode->zbranch[n].len != 0) {
1385 err = 18;
1386 goto out;
1387 }
1388
1389 if (znode->zbranch[n].lnum == 0 &&
1390 znode->zbranch[n].offs != 0) {
1391 err = 19;
1392 goto out;
1393 }
1394
1395 if (znode->level != 0 && znode->zbranch[n].znode)
1396 if (znode->zbranch[n].znode->parent != znode) {
1397 err = 20;
1398 goto out;
1399 }
1400 }
1401
1402 return 0;
1403
1404out:
1405 ubifs_err("failed, error %d", err);
1406 ubifs_msg("dump of the znode");
1407 dbg_dump_znode(c, znode);
1408 if (zp) {
1409 ubifs_msg("dump of the parent znode");
1410 dbg_dump_znode(c, zp);
1411 }
1412 dump_stack();
1413 return -EINVAL;
1414}
1415
1416/**
1417 * dbg_check_tnc - check TNC tree.
1418 * @c: UBIFS file-system description object
1419 * @extra: do extra checks that are possible at start commit
1420 *
1421 * This function traverses whole TNC tree and checks every znode. Returns zero
1422 * if everything is all right and %-EINVAL if something is wrong with TNC.
1423 */
1424int dbg_check_tnc(struct ubifs_info *c, int extra)
1425{
1426 struct ubifs_znode *znode;
1427 long clean_cnt = 0, dirty_cnt = 0;
1428 int err, last;
1429
1430 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1431 return 0;
1432
1433 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1434 if (!c->zroot.znode)
1435 return 0;
1436
1437 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1438 while (1) {
1439 struct ubifs_znode *prev;
1440 struct ubifs_zbranch *zbr;
1441
1442 if (!znode->parent)
1443 zbr = &c->zroot;
1444 else
1445 zbr = &znode->parent->zbranch[znode->iip];
1446
1447 err = dbg_check_znode(c, zbr);
1448 if (err)
1449 return err;
1450
1451 if (extra) {
1452 if (ubifs_zn_dirty(znode))
1453 dirty_cnt += 1;
1454 else
1455 clean_cnt += 1;
1456 }
1457
1458 prev = znode;
1459 znode = ubifs_tnc_postorder_next(znode);
1460 if (!znode)
1461 break;
1462
1463 /*
1464 * If the last key of this znode is equivalent to the first key
1465 * of the next znode (collision), then check order of the keys.
1466 */
1467 last = prev->child_cnt - 1;
1468 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1469 !keys_cmp(c, &prev->zbranch[last].key,
1470 &znode->zbranch[0].key)) {
1471 err = dbg_check_key_order(c, &prev->zbranch[last],
1472 &znode->zbranch[0]);
1473 if (err < 0)
1474 return err;
1475 if (err) {
1476 ubifs_msg("first znode");
1477 dbg_dump_znode(c, prev);
1478 ubifs_msg("second znode");
1479 dbg_dump_znode(c, znode);
1480 return -EINVAL;
1481 }
1482 }
1483 }
1484
1485 if (extra) {
1486 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1487 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1488 atomic_long_read(&c->clean_zn_cnt),
1489 clean_cnt);
1490 return -EINVAL;
1491 }
1492 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1493 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1494 atomic_long_read(&c->dirty_zn_cnt),
1495 dirty_cnt);
1496 return -EINVAL;
1497 }
1498 }
1499
1500 return 0;
1501}
1502
1503/**
1504 * dbg_walk_index - walk the on-flash index.
1505 * @c: UBIFS file-system description object
1506 * @leaf_cb: called for each leaf node
1507 * @znode_cb: called for each indexing node
227c75c9 1508 * @priv: private data which is passed to callbacks
1e51764a
AB
1509 *
1510 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1511 * node and @znode_cb for each indexing node. Returns zero in case of success
1512 * and a negative error code in case of failure.
1513 *
1514 * It would be better if this function removed every znode it pulled to into
1515 * the TNC, so that the behavior more closely matched the non-debugging
1516 * behavior.
1517 */
1518int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1519 dbg_znode_callback znode_cb, void *priv)
1520{
1521 int err;
1522 struct ubifs_zbranch *zbr;
1523 struct ubifs_znode *znode, *child;
1524
1525 mutex_lock(&c->tnc_mutex);
1526 /* If the root indexing node is not in TNC - pull it */
1527 if (!c->zroot.znode) {
1528 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1529 if (IS_ERR(c->zroot.znode)) {
1530 err = PTR_ERR(c->zroot.znode);
1531 c->zroot.znode = NULL;
1532 goto out_unlock;
1533 }
1534 }
1535
1536 /*
1537 * We are going to traverse the indexing tree in the postorder manner.
1538 * Go down and find the leftmost indexing node where we are going to
1539 * start from.
1540 */
1541 znode = c->zroot.znode;
1542 while (znode->level > 0) {
1543 zbr = &znode->zbranch[0];
1544 child = zbr->znode;
1545 if (!child) {
1546 child = ubifs_load_znode(c, zbr, znode, 0);
1547 if (IS_ERR(child)) {
1548 err = PTR_ERR(child);
1549 goto out_unlock;
1550 }
1551 zbr->znode = child;
1552 }
1553
1554 znode = child;
1555 }
1556
1557 /* Iterate over all indexing nodes */
1558 while (1) {
1559 int idx;
1560
1561 cond_resched();
1562
1563 if (znode_cb) {
1564 err = znode_cb(c, znode, priv);
1565 if (err) {
1566 ubifs_err("znode checking function returned "
1567 "error %d", err);
1568 dbg_dump_znode(c, znode);
1569 goto out_dump;
1570 }
1571 }
1572 if (leaf_cb && znode->level == 0) {
1573 for (idx = 0; idx < znode->child_cnt; idx++) {
1574 zbr = &znode->zbranch[idx];
1575 err = leaf_cb(c, zbr, priv);
1576 if (err) {
1577 ubifs_err("leaf checking function "
1578 "returned error %d, for leaf "
1579 "at LEB %d:%d",
1580 err, zbr->lnum, zbr->offs);
1581 goto out_dump;
1582 }
1583 }
1584 }
1585
1586 if (!znode->parent)
1587 break;
1588
1589 idx = znode->iip + 1;
1590 znode = znode->parent;
1591 if (idx < znode->child_cnt) {
1592 /* Switch to the next index in the parent */
1593 zbr = &znode->zbranch[idx];
1594 child = zbr->znode;
1595 if (!child) {
1596 child = ubifs_load_znode(c, zbr, znode, idx);
1597 if (IS_ERR(child)) {
1598 err = PTR_ERR(child);
1599 goto out_unlock;
1600 }
1601 zbr->znode = child;
1602 }
1603 znode = child;
1604 } else
1605 /*
1606 * This is the last child, switch to the parent and
1607 * continue.
1608 */
1609 continue;
1610
1611 /* Go to the lowest leftmost znode in the new sub-tree */
1612 while (znode->level > 0) {
1613 zbr = &znode->zbranch[0];
1614 child = zbr->znode;
1615 if (!child) {
1616 child = ubifs_load_znode(c, zbr, znode, 0);
1617 if (IS_ERR(child)) {
1618 err = PTR_ERR(child);
1619 goto out_unlock;
1620 }
1621 zbr->znode = child;
1622 }
1623 znode = child;
1624 }
1625 }
1626
1627 mutex_unlock(&c->tnc_mutex);
1628 return 0;
1629
1630out_dump:
1631 if (znode->parent)
1632 zbr = &znode->parent->zbranch[znode->iip];
1633 else
1634 zbr = &c->zroot;
1635 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1636 dbg_dump_znode(c, znode);
1637out_unlock:
1638 mutex_unlock(&c->tnc_mutex);
1639 return err;
1640}
1641
1642/**
1643 * add_size - add znode size to partially calculated index size.
1644 * @c: UBIFS file-system description object
1645 * @znode: znode to add size for
1646 * @priv: partially calculated index size
1647 *
1648 * This is a helper function for 'dbg_check_idx_size()' which is called for
1649 * every indexing node and adds its size to the 'long long' variable pointed to
1650 * by @priv.
1651 */
1652static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1653{
1654 long long *idx_size = priv;
1655 int add;
1656
1657 add = ubifs_idx_node_sz(c, znode->child_cnt);
1658 add = ALIGN(add, 8);
1659 *idx_size += add;
1660 return 0;
1661}
1662
1663/**
1664 * dbg_check_idx_size - check index size.
1665 * @c: UBIFS file-system description object
1666 * @idx_size: size to check
1667 *
1668 * This function walks the UBIFS index, calculates its size and checks that the
1669 * size is equivalent to @idx_size. Returns zero in case of success and a
1670 * negative error code in case of failure.
1671 */
1672int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1673{
1674 int err;
1675 long long calc = 0;
1676
1677 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1678 return 0;
1679
1680 err = dbg_walk_index(c, NULL, add_size, &calc);
1681 if (err) {
1682 ubifs_err("error %d while walking the index", err);
1683 return err;
1684 }
1685
1686 if (calc != idx_size) {
1687 ubifs_err("index size check failed: calculated size is %lld, "
1688 "should be %lld", calc, idx_size);
1689 dump_stack();
1690 return -EINVAL;
1691 }
1692
1693 return 0;
1694}
1695
1696/**
1697 * struct fsck_inode - information about an inode used when checking the file-system.
1698 * @rb: link in the RB-tree of inodes
1699 * @inum: inode number
1700 * @mode: inode type, permissions, etc
1701 * @nlink: inode link count
1702 * @xattr_cnt: count of extended attributes
1703 * @references: how many directory/xattr entries refer this inode (calculated
1704 * while walking the index)
1705 * @calc_cnt: for directory inode count of child directories
1706 * @size: inode size (read from on-flash inode)
1707 * @xattr_sz: summary size of all extended attributes (read from on-flash
1708 * inode)
1709 * @calc_sz: for directories calculated directory size
1710 * @calc_xcnt: count of extended attributes
1711 * @calc_xsz: calculated summary size of all extended attributes
1712 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1713 * inode (read from on-flash inode)
1714 * @calc_xnms: calculated sum of lengths of all extended attribute names
1715 */
1716struct fsck_inode {
1717 struct rb_node rb;
1718 ino_t inum;
1719 umode_t mode;
1720 unsigned int nlink;
1721 unsigned int xattr_cnt;
1722 int references;
1723 int calc_cnt;
1724 long long size;
1725 unsigned int xattr_sz;
1726 long long calc_sz;
1727 long long calc_xcnt;
1728 long long calc_xsz;
1729 unsigned int xattr_nms;
1730 long long calc_xnms;
1731};
1732
1733/**
1734 * struct fsck_data - private FS checking information.
1735 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1736 */
1737struct fsck_data {
1738 struct rb_root inodes;
1739};
1740
1741/**
1742 * add_inode - add inode information to RB-tree of inodes.
1743 * @c: UBIFS file-system description object
1744 * @fsckd: FS checking information
1745 * @ino: raw UBIFS inode to add
1746 *
1747 * This is a helper function for 'check_leaf()' which adds information about
1748 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1749 * case of success and a negative error code in case of failure.
1750 */
1751static struct fsck_inode *add_inode(struct ubifs_info *c,
1752 struct fsck_data *fsckd,
1753 struct ubifs_ino_node *ino)
1754{
1755 struct rb_node **p, *parent = NULL;
1756 struct fsck_inode *fscki;
1757 ino_t inum = key_inum_flash(c, &ino->key);
1758
1759 p = &fsckd->inodes.rb_node;
1760 while (*p) {
1761 parent = *p;
1762 fscki = rb_entry(parent, struct fsck_inode, rb);
1763 if (inum < fscki->inum)
1764 p = &(*p)->rb_left;
1765 else if (inum > fscki->inum)
1766 p = &(*p)->rb_right;
1767 else
1768 return fscki;
1769 }
1770
1771 if (inum > c->highest_inum) {
1772 ubifs_err("too high inode number, max. is %lu",
e84461ad 1773 (unsigned long)c->highest_inum);
1e51764a
AB
1774 return ERR_PTR(-EINVAL);
1775 }
1776
1777 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1778 if (!fscki)
1779 return ERR_PTR(-ENOMEM);
1780
1781 fscki->inum = inum;
1782 fscki->nlink = le32_to_cpu(ino->nlink);
1783 fscki->size = le64_to_cpu(ino->size);
1784 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1785 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1786 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1787 fscki->mode = le32_to_cpu(ino->mode);
1788 if (S_ISDIR(fscki->mode)) {
1789 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1790 fscki->calc_cnt = 2;
1791 }
1792 rb_link_node(&fscki->rb, parent, p);
1793 rb_insert_color(&fscki->rb, &fsckd->inodes);
1794 return fscki;
1795}
1796
1797/**
1798 * search_inode - search inode in the RB-tree of inodes.
1799 * @fsckd: FS checking information
1800 * @inum: inode number to search
1801 *
1802 * This is a helper function for 'check_leaf()' which searches inode @inum in
1803 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1804 * the inode was not found.
1805 */
1806static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1807{
1808 struct rb_node *p;
1809 struct fsck_inode *fscki;
1810
1811 p = fsckd->inodes.rb_node;
1812 while (p) {
1813 fscki = rb_entry(p, struct fsck_inode, rb);
1814 if (inum < fscki->inum)
1815 p = p->rb_left;
1816 else if (inum > fscki->inum)
1817 p = p->rb_right;
1818 else
1819 return fscki;
1820 }
1821 return NULL;
1822}
1823
1824/**
1825 * read_add_inode - read inode node and add it to RB-tree of inodes.
1826 * @c: UBIFS file-system description object
1827 * @fsckd: FS checking information
1828 * @inum: inode number to read
1829 *
1830 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1831 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1832 * information pointer in case of success and a negative error code in case of
1833 * failure.
1834 */
1835static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1836 struct fsck_data *fsckd, ino_t inum)
1837{
1838 int n, err;
1839 union ubifs_key key;
1840 struct ubifs_znode *znode;
1841 struct ubifs_zbranch *zbr;
1842 struct ubifs_ino_node *ino;
1843 struct fsck_inode *fscki;
1844
1845 fscki = search_inode(fsckd, inum);
1846 if (fscki)
1847 return fscki;
1848
1849 ino_key_init(c, &key, inum);
1850 err = ubifs_lookup_level0(c, &key, &znode, &n);
1851 if (!err) {
e84461ad 1852 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1e51764a
AB
1853 return ERR_PTR(-ENOENT);
1854 } else if (err < 0) {
e84461ad
AB
1855 ubifs_err("error %d while looking up inode %lu",
1856 err, (unsigned long)inum);
1e51764a
AB
1857 return ERR_PTR(err);
1858 }
1859
1860 zbr = &znode->zbranch[n];
1861 if (zbr->len < UBIFS_INO_NODE_SZ) {
e84461ad
AB
1862 ubifs_err("bad node %lu node length %d",
1863 (unsigned long)inum, zbr->len);
1e51764a
AB
1864 return ERR_PTR(-EINVAL);
1865 }
1866
1867 ino = kmalloc(zbr->len, GFP_NOFS);
1868 if (!ino)
1869 return ERR_PTR(-ENOMEM);
1870
1871 err = ubifs_tnc_read_node(c, zbr, ino);
1872 if (err) {
1873 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1874 zbr->lnum, zbr->offs, err);
1875 kfree(ino);
1876 return ERR_PTR(err);
1877 }
1878
1879 fscki = add_inode(c, fsckd, ino);
1880 kfree(ino);
1881 if (IS_ERR(fscki)) {
1882 ubifs_err("error %ld while adding inode %lu node",
e84461ad 1883 PTR_ERR(fscki), (unsigned long)inum);
1e51764a
AB
1884 return fscki;
1885 }
1886
1887 return fscki;
1888}
1889
1890/**
1891 * check_leaf - check leaf node.
1892 * @c: UBIFS file-system description object
1893 * @zbr: zbranch of the leaf node to check
1894 * @priv: FS checking information
1895 *
1896 * This is a helper function for 'dbg_check_filesystem()' which is called for
1897 * every single leaf node while walking the indexing tree. It checks that the
1898 * leaf node referred from the indexing tree exists, has correct CRC, and does
1899 * some other basic validation. This function is also responsible for building
1900 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1901 * calculates reference count, size, etc for each inode in order to later
1902 * compare them to the information stored inside the inodes and detect possible
1903 * inconsistencies. Returns zero in case of success and a negative error code
1904 * in case of failure.
1905 */
1906static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1907 void *priv)
1908{
1909 ino_t inum;
1910 void *node;
1911 struct ubifs_ch *ch;
1912 int err, type = key_type(c, &zbr->key);
1913 struct fsck_inode *fscki;
1914
1915 if (zbr->len < UBIFS_CH_SZ) {
1916 ubifs_err("bad leaf length %d (LEB %d:%d)",
1917 zbr->len, zbr->lnum, zbr->offs);
1918 return -EINVAL;
1919 }
1920
1921 node = kmalloc(zbr->len, GFP_NOFS);
1922 if (!node)
1923 return -ENOMEM;
1924
1925 err = ubifs_tnc_read_node(c, zbr, node);
1926 if (err) {
1927 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1928 zbr->lnum, zbr->offs, err);
1929 goto out_free;
1930 }
1931
1932 /* If this is an inode node, add it to RB-tree of inodes */
1933 if (type == UBIFS_INO_KEY) {
1934 fscki = add_inode(c, priv, node);
1935 if (IS_ERR(fscki)) {
1936 err = PTR_ERR(fscki);
1937 ubifs_err("error %d while adding inode node", err);
1938 goto out_dump;
1939 }
1940 goto out;
1941 }
1942
1943 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1944 type != UBIFS_DATA_KEY) {
1945 ubifs_err("unexpected node type %d at LEB %d:%d",
1946 type, zbr->lnum, zbr->offs);
1947 err = -EINVAL;
1948 goto out_free;
1949 }
1950
1951 ch = node;
1952 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1953 ubifs_err("too high sequence number, max. is %llu",
1954 c->max_sqnum);
1955 err = -EINVAL;
1956 goto out_dump;
1957 }
1958
1959 if (type == UBIFS_DATA_KEY) {
1960 long long blk_offs;
1961 struct ubifs_data_node *dn = node;
1962
1963 /*
1964 * Search the inode node this data node belongs to and insert
1965 * it to the RB-tree of inodes.
1966 */
1967 inum = key_inum_flash(c, &dn->key);
1968 fscki = read_add_inode(c, priv, inum);
1969 if (IS_ERR(fscki)) {
1970 err = PTR_ERR(fscki);
1971 ubifs_err("error %d while processing data node and "
e84461ad
AB
1972 "trying to find inode node %lu",
1973 err, (unsigned long)inum);
1e51764a
AB
1974 goto out_dump;
1975 }
1976
1977 /* Make sure the data node is within inode size */
1978 blk_offs = key_block_flash(c, &dn->key);
1979 blk_offs <<= UBIFS_BLOCK_SHIFT;
1980 blk_offs += le32_to_cpu(dn->size);
1981 if (blk_offs > fscki->size) {
1982 ubifs_err("data node at LEB %d:%d is not within inode "
1983 "size %lld", zbr->lnum, zbr->offs,
1984 fscki->size);
1985 err = -EINVAL;
1986 goto out_dump;
1987 }
1988 } else {
1989 int nlen;
1990 struct ubifs_dent_node *dent = node;
1991 struct fsck_inode *fscki1;
1992
1993 err = ubifs_validate_entry(c, dent);
1994 if (err)
1995 goto out_dump;
1996
1997 /*
1998 * Search the inode node this entry refers to and the parent
1999 * inode node and insert them to the RB-tree of inodes.
2000 */
2001 inum = le64_to_cpu(dent->inum);
2002 fscki = read_add_inode(c, priv, inum);
2003 if (IS_ERR(fscki)) {
2004 err = PTR_ERR(fscki);
2005 ubifs_err("error %d while processing entry node and "
e84461ad
AB
2006 "trying to find inode node %lu",
2007 err, (unsigned long)inum);
1e51764a
AB
2008 goto out_dump;
2009 }
2010
2011 /* Count how many direntries or xentries refers this inode */
2012 fscki->references += 1;
2013
2014 inum = key_inum_flash(c, &dent->key);
2015 fscki1 = read_add_inode(c, priv, inum);
2016 if (IS_ERR(fscki1)) {
2017 err = PTR_ERR(fscki);
2018 ubifs_err("error %d while processing entry node and "
2019 "trying to find parent inode node %lu",
e84461ad 2020 err, (unsigned long)inum);
1e51764a
AB
2021 goto out_dump;
2022 }
2023
2024 nlen = le16_to_cpu(dent->nlen);
2025 if (type == UBIFS_XENT_KEY) {
2026 fscki1->calc_xcnt += 1;
2027 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2028 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2029 fscki1->calc_xnms += nlen;
2030 } else {
2031 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2032 if (dent->type == UBIFS_ITYPE_DIR)
2033 fscki1->calc_cnt += 1;
2034 }
2035 }
2036
2037out:
2038 kfree(node);
2039 return 0;
2040
2041out_dump:
2042 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2043 dbg_dump_node(c, node);
2044out_free:
2045 kfree(node);
2046 return err;
2047}
2048
2049/**
2050 * free_inodes - free RB-tree of inodes.
2051 * @fsckd: FS checking information
2052 */
2053static void free_inodes(struct fsck_data *fsckd)
2054{
2055 struct rb_node *this = fsckd->inodes.rb_node;
2056 struct fsck_inode *fscki;
2057
2058 while (this) {
2059 if (this->rb_left)
2060 this = this->rb_left;
2061 else if (this->rb_right)
2062 this = this->rb_right;
2063 else {
2064 fscki = rb_entry(this, struct fsck_inode, rb);
2065 this = rb_parent(this);
2066 if (this) {
2067 if (this->rb_left == &fscki->rb)
2068 this->rb_left = NULL;
2069 else
2070 this->rb_right = NULL;
2071 }
2072 kfree(fscki);
2073 }
2074 }
2075}
2076
2077/**
2078 * check_inodes - checks all inodes.
2079 * @c: UBIFS file-system description object
2080 * @fsckd: FS checking information
2081 *
2082 * This is a helper function for 'dbg_check_filesystem()' which walks the
2083 * RB-tree of inodes after the index scan has been finished, and checks that
2084 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2085 * %-EINVAL if not, and a negative error code in case of failure.
2086 */
2087static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2088{
2089 int n, err;
2090 union ubifs_key key;
2091 struct ubifs_znode *znode;
2092 struct ubifs_zbranch *zbr;
2093 struct ubifs_ino_node *ino;
2094 struct fsck_inode *fscki;
2095 struct rb_node *this = rb_first(&fsckd->inodes);
2096
2097 while (this) {
2098 fscki = rb_entry(this, struct fsck_inode, rb);
2099 this = rb_next(this);
2100
2101 if (S_ISDIR(fscki->mode)) {
2102 /*
2103 * Directories have to have exactly one reference (they
2104 * cannot have hardlinks), although root inode is an
2105 * exception.
2106 */
2107 if (fscki->inum != UBIFS_ROOT_INO &&
2108 fscki->references != 1) {
2109 ubifs_err("directory inode %lu has %d "
2110 "direntries which refer it, but "
e84461ad
AB
2111 "should be 1",
2112 (unsigned long)fscki->inum,
1e51764a
AB
2113 fscki->references);
2114 goto out_dump;
2115 }
2116 if (fscki->inum == UBIFS_ROOT_INO &&
2117 fscki->references != 0) {
2118 ubifs_err("root inode %lu has non-zero (%d) "
2119 "direntries which refer it",
e84461ad
AB
2120 (unsigned long)fscki->inum,
2121 fscki->references);
1e51764a
AB
2122 goto out_dump;
2123 }
2124 if (fscki->calc_sz != fscki->size) {
2125 ubifs_err("directory inode %lu size is %lld, "
2126 "but calculated size is %lld",
e84461ad
AB
2127 (unsigned long)fscki->inum,
2128 fscki->size, fscki->calc_sz);
1e51764a
AB
2129 goto out_dump;
2130 }
2131 if (fscki->calc_cnt != fscki->nlink) {
2132 ubifs_err("directory inode %lu nlink is %d, "
2133 "but calculated nlink is %d",
e84461ad
AB
2134 (unsigned long)fscki->inum,
2135 fscki->nlink, fscki->calc_cnt);
1e51764a
AB
2136 goto out_dump;
2137 }
2138 } else {
2139 if (fscki->references != fscki->nlink) {
2140 ubifs_err("inode %lu nlink is %d, but "
e84461ad
AB
2141 "calculated nlink is %d",
2142 (unsigned long)fscki->inum,
1e51764a
AB
2143 fscki->nlink, fscki->references);
2144 goto out_dump;
2145 }
2146 }
2147 if (fscki->xattr_sz != fscki->calc_xsz) {
2148 ubifs_err("inode %lu has xattr size %u, but "
2149 "calculated size is %lld",
e84461ad 2150 (unsigned long)fscki->inum, fscki->xattr_sz,
1e51764a
AB
2151 fscki->calc_xsz);
2152 goto out_dump;
2153 }
2154 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2155 ubifs_err("inode %lu has %u xattrs, but "
e84461ad
AB
2156 "calculated count is %lld",
2157 (unsigned long)fscki->inum,
1e51764a
AB
2158 fscki->xattr_cnt, fscki->calc_xcnt);
2159 goto out_dump;
2160 }
2161 if (fscki->xattr_nms != fscki->calc_xnms) {
2162 ubifs_err("inode %lu has xattr names' size %u, but "
2163 "calculated names' size is %lld",
e84461ad 2164 (unsigned long)fscki->inum, fscki->xattr_nms,
1e51764a
AB
2165 fscki->calc_xnms);
2166 goto out_dump;
2167 }
2168 }
2169
2170 return 0;
2171
2172out_dump:
2173 /* Read the bad inode and dump it */
2174 ino_key_init(c, &key, fscki->inum);
2175 err = ubifs_lookup_level0(c, &key, &znode, &n);
2176 if (!err) {
e84461ad
AB
2177 ubifs_err("inode %lu not found in index",
2178 (unsigned long)fscki->inum);
1e51764a
AB
2179 return -ENOENT;
2180 } else if (err < 0) {
2181 ubifs_err("error %d while looking up inode %lu",
e84461ad 2182 err, (unsigned long)fscki->inum);
1e51764a
AB
2183 return err;
2184 }
2185
2186 zbr = &znode->zbranch[n];
2187 ino = kmalloc(zbr->len, GFP_NOFS);
2188 if (!ino)
2189 return -ENOMEM;
2190
2191 err = ubifs_tnc_read_node(c, zbr, ino);
2192 if (err) {
2193 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2194 zbr->lnum, zbr->offs, err);
2195 kfree(ino);
2196 return err;
2197 }
2198
2199 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
e84461ad 2200 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
1e51764a
AB
2201 dbg_dump_node(c, ino);
2202 kfree(ino);
2203 return -EINVAL;
2204}
2205
2206/**
2207 * dbg_check_filesystem - check the file-system.
2208 * @c: UBIFS file-system description object
2209 *
2210 * This function checks the file system, namely:
2211 * o makes sure that all leaf nodes exist and their CRCs are correct;
2212 * o makes sure inode nlink, size, xattr size/count are correct (for all
2213 * inodes).
2214 *
2215 * The function reads whole indexing tree and all nodes, so it is pretty
2216 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2217 * not, and a negative error code in case of failure.
2218 */
2219int dbg_check_filesystem(struct ubifs_info *c)
2220{
2221 int err;
2222 struct fsck_data fsckd;
2223
2224 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2225 return 0;
2226
2227 fsckd.inodes = RB_ROOT;
2228 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2229 if (err)
2230 goto out_free;
2231
2232 err = check_inodes(c, &fsckd);
2233 if (err)
2234 goto out_free;
2235
2236 free_inodes(&fsckd);
2237 return 0;
2238
2239out_free:
2240 ubifs_err("file-system check failed with error %d", err);
2241 dump_stack();
2242 free_inodes(&fsckd);
2243 return err;
2244}
2245
2246static int invocation_cnt;
2247
2248int dbg_force_in_the_gaps(void)
2249{
2250 if (!dbg_force_in_the_gaps_enabled)
2251 return 0;
2252 /* Force in-the-gaps every 8th commit */
2253 return !((invocation_cnt++) & 0x7);
2254}
2255
2256/* Failure mode for recovery testing */
2257
2258#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2259
2260struct failure_mode_info {
2261 struct list_head list;
2262 struct ubifs_info *c;
2263};
2264
2265static LIST_HEAD(fmi_list);
2266static DEFINE_SPINLOCK(fmi_lock);
2267
2268static unsigned int next;
2269
2270static int simple_rand(void)
2271{
2272 if (next == 0)
2273 next = current->pid;
2274 next = next * 1103515245 + 12345;
2275 return (next >> 16) & 32767;
2276}
2277
17c2f9f8 2278static void failure_mode_init(struct ubifs_info *c)
1e51764a
AB
2279{
2280 struct failure_mode_info *fmi;
2281
2282 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2283 if (!fmi) {
552ff317 2284 ubifs_err("Failed to register failure mode - no memory");
1e51764a
AB
2285 return;
2286 }
2287 fmi->c = c;
2288 spin_lock(&fmi_lock);
2289 list_add_tail(&fmi->list, &fmi_list);
2290 spin_unlock(&fmi_lock);
2291}
2292
17c2f9f8 2293static void failure_mode_exit(struct ubifs_info *c)
1e51764a
AB
2294{
2295 struct failure_mode_info *fmi, *tmp;
2296
2297 spin_lock(&fmi_lock);
2298 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2299 if (fmi->c == c) {
2300 list_del(&fmi->list);
2301 kfree(fmi);
2302 }
2303 spin_unlock(&fmi_lock);
2304}
2305
2306static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2307{
2308 struct failure_mode_info *fmi;
2309
2310 spin_lock(&fmi_lock);
2311 list_for_each_entry(fmi, &fmi_list, list)
2312 if (fmi->c->ubi == desc) {
2313 struct ubifs_info *c = fmi->c;
2314
2315 spin_unlock(&fmi_lock);
2316 return c;
2317 }
2318 spin_unlock(&fmi_lock);
2319 return NULL;
2320}
2321
2322static int in_failure_mode(struct ubi_volume_desc *desc)
2323{
2324 struct ubifs_info *c = dbg_find_info(desc);
2325
2326 if (c && dbg_failure_mode)
17c2f9f8 2327 return c->dbg->failure_mode;
1e51764a
AB
2328 return 0;
2329}
2330
2331static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2332{
2333 struct ubifs_info *c = dbg_find_info(desc);
17c2f9f8 2334 struct ubifs_debug_info *d;
1e51764a
AB
2335
2336 if (!c || !dbg_failure_mode)
2337 return 0;
17c2f9f8
AB
2338 d = c->dbg;
2339 if (d->failure_mode)
1e51764a 2340 return 1;
17c2f9f8 2341 if (!d->fail_cnt) {
1e51764a
AB
2342 /* First call - decide delay to failure */
2343 if (chance(1, 2)) {
2344 unsigned int delay = 1 << (simple_rand() >> 11);
2345
2346 if (chance(1, 2)) {
17c2f9f8
AB
2347 d->fail_delay = 1;
2348 d->fail_timeout = jiffies +
1e51764a
AB
2349 msecs_to_jiffies(delay);
2350 dbg_rcvry("failing after %ums", delay);
2351 } else {
17c2f9f8
AB
2352 d->fail_delay = 2;
2353 d->fail_cnt_max = delay;
1e51764a
AB
2354 dbg_rcvry("failing after %u calls", delay);
2355 }
2356 }
17c2f9f8 2357 d->fail_cnt += 1;
1e51764a
AB
2358 }
2359 /* Determine if failure delay has expired */
17c2f9f8
AB
2360 if (d->fail_delay == 1) {
2361 if (time_before(jiffies, d->fail_timeout))
1e51764a 2362 return 0;
17c2f9f8
AB
2363 } else if (d->fail_delay == 2)
2364 if (d->fail_cnt++ < d->fail_cnt_max)
1e51764a
AB
2365 return 0;
2366 if (lnum == UBIFS_SB_LNUM) {
2367 if (write) {
2368 if (chance(1, 2))
2369 return 0;
2370 } else if (chance(19, 20))
2371 return 0;
2372 dbg_rcvry("failing in super block LEB %d", lnum);
2373 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2374 if (chance(19, 20))
2375 return 0;
2376 dbg_rcvry("failing in master LEB %d", lnum);
2377 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2378 if (write) {
2379 if (chance(99, 100))
2380 return 0;
2381 } else if (chance(399, 400))
2382 return 0;
2383 dbg_rcvry("failing in log LEB %d", lnum);
2384 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2385 if (write) {
2386 if (chance(7, 8))
2387 return 0;
2388 } else if (chance(19, 20))
2389 return 0;
2390 dbg_rcvry("failing in LPT LEB %d", lnum);
2391 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2392 if (write) {
2393 if (chance(1, 2))
2394 return 0;
2395 } else if (chance(9, 10))
2396 return 0;
2397 dbg_rcvry("failing in orphan LEB %d", lnum);
2398 } else if (lnum == c->ihead_lnum) {
2399 if (chance(99, 100))
2400 return 0;
2401 dbg_rcvry("failing in index head LEB %d", lnum);
2402 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2403 if (chance(9, 10))
2404 return 0;
2405 dbg_rcvry("failing in GC head LEB %d", lnum);
2406 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2407 !ubifs_search_bud(c, lnum)) {
2408 if (chance(19, 20))
2409 return 0;
2410 dbg_rcvry("failing in non-bud LEB %d", lnum);
2411 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2412 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2413 if (chance(999, 1000))
2414 return 0;
2415 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2416 } else {
2417 if (chance(9999, 10000))
2418 return 0;
2419 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2420 }
2421 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
17c2f9f8 2422 d->failure_mode = 1;
1e51764a
AB
2423 dump_stack();
2424 return 1;
2425}
2426
2427static void cut_data(const void *buf, int len)
2428{
2429 int flen, i;
2430 unsigned char *p = (void *)buf;
2431
2432 flen = (len * (long long)simple_rand()) >> 15;
2433 for (i = flen; i < len; i++)
2434 p[i] = 0xff;
2435}
2436
2437int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2438 int len, int check)
2439{
2440 if (in_failure_mode(desc))
2441 return -EIO;
2442 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2443}
2444
2445int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2446 int offset, int len, int dtype)
2447{
16dfd804 2448 int err, failing;
1e51764a
AB
2449
2450 if (in_failure_mode(desc))
2451 return -EIO;
16dfd804
AH
2452 failing = do_fail(desc, lnum, 1);
2453 if (failing)
1e51764a
AB
2454 cut_data(buf, len);
2455 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2456 if (err)
2457 return err;
16dfd804 2458 if (failing)
1e51764a
AB
2459 return -EIO;
2460 return 0;
2461}
2462
2463int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2464 int len, int dtype)
2465{
2466 int err;
2467
2468 if (do_fail(desc, lnum, 1))
2469 return -EIO;
2470 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2471 if (err)
2472 return err;
2473 if (do_fail(desc, lnum, 1))
2474 return -EIO;
2475 return 0;
2476}
2477
2478int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2479{
2480 int err;
2481
2482 if (do_fail(desc, lnum, 0))
2483 return -EIO;
2484 err = ubi_leb_erase(desc, lnum);
2485 if (err)
2486 return err;
2487 if (do_fail(desc, lnum, 0))
2488 return -EIO;
2489 return 0;
2490}
2491
2492int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2493{
2494 int err;
2495
2496 if (do_fail(desc, lnum, 0))
2497 return -EIO;
2498 err = ubi_leb_unmap(desc, lnum);
2499 if (err)
2500 return err;
2501 if (do_fail(desc, lnum, 0))
2502 return -EIO;
2503 return 0;
2504}
2505
2506int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2507{
2508 if (in_failure_mode(desc))
2509 return -EIO;
2510 return ubi_is_mapped(desc, lnum);
2511}
2512
2513int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2514{
2515 int err;
2516
2517 if (do_fail(desc, lnum, 0))
2518 return -EIO;
2519 err = ubi_leb_map(desc, lnum, dtype);
2520 if (err)
2521 return err;
2522 if (do_fail(desc, lnum, 0))
2523 return -EIO;
2524 return 0;
2525}
2526
17c2f9f8
AB
2527/**
2528 * ubifs_debugging_init - initialize UBIFS debugging.
2529 * @c: UBIFS file-system description object
2530 *
2531 * This function initializes debugging-related data for the file system.
2532 * Returns zero in case of success and a negative error code in case of
2533 * failure.
2534 */
2535int ubifs_debugging_init(struct ubifs_info *c)
2536{
2537 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2538 if (!c->dbg)
2539 return -ENOMEM;
2540
2541 c->dbg->buf = vmalloc(c->leb_size);
2542 if (!c->dbg->buf)
2543 goto out;
2544
2545 failure_mode_init(c);
2546 return 0;
2547
2548out:
2549 kfree(c->dbg);
2550 return -ENOMEM;
2551}
2552
2553/**
2554 * ubifs_debugging_exit - free debugging data.
2555 * @c: UBIFS file-system description object
2556 */
2557void ubifs_debugging_exit(struct ubifs_info *c)
2558{
2559 failure_mode_exit(c);
2560 vfree(c->dbg->buf);
2561 kfree(c->dbg);
2562}
2563
552ff317
AB
2564/*
2565 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2566 * contain the stuff specific to particular file-system mounts.
2567 */
84abf972 2568static struct dentry *dfs_rootdir;
552ff317
AB
2569
2570/**
2571 * dbg_debugfs_init - initialize debugfs file-system.
2572 *
2573 * UBIFS uses debugfs file-system to expose various debugging knobs to
2574 * user-space. This function creates "ubifs" directory in the debugfs
2575 * file-system. Returns zero in case of success and a negative error code in
2576 * case of failure.
2577 */
2578int dbg_debugfs_init(void)
2579{
84abf972
AB
2580 dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2581 if (IS_ERR(dfs_rootdir)) {
2582 int err = PTR_ERR(dfs_rootdir);
552ff317
AB
2583 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2584 "error %d\n", err);
2585 return err;
2586 }
2587
2588 return 0;
2589}
2590
2591/**
2592 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2593 */
2594void dbg_debugfs_exit(void)
2595{
84abf972 2596 debugfs_remove(dfs_rootdir);
552ff317
AB
2597}
2598
2599static int open_debugfs_file(struct inode *inode, struct file *file)
2600{
2601 file->private_data = inode->i_private;
2602 return 0;
2603}
2604
2605static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2606 size_t count, loff_t *ppos)
2607{
2608 struct ubifs_info *c = file->private_data;
2609 struct ubifs_debug_info *d = c->dbg;
2610
84abf972 2611 if (file->f_path.dentry == d->dfs_dump_lprops)
552ff317 2612 dbg_dump_lprops(c);
84abf972 2613 else if (file->f_path.dentry == d->dfs_dump_budg) {
552ff317
AB
2614 spin_lock(&c->space_lock);
2615 dbg_dump_budg(c);
2616 spin_unlock(&c->space_lock);
84abf972 2617 } else if (file->f_path.dentry == d->dfs_dump_tnc) {
552ff317
AB
2618 mutex_lock(&c->tnc_mutex);
2619 dbg_dump_tnc(c);
2620 mutex_unlock(&c->tnc_mutex);
2621 } else
2622 return -EINVAL;
2623
2624 *ppos += count;
2625 return count;
2626}
2627
84abf972 2628static const struct file_operations dfs_fops = {
552ff317
AB
2629 .open = open_debugfs_file,
2630 .write = write_debugfs_file,
2631 .owner = THIS_MODULE,
2632};
2633
2634/**
2635 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2636 * @c: UBIFS file-system description object
2637 *
2638 * This function creates all debugfs files for this instance of UBIFS. Returns
2639 * zero in case of success and a negative error code in case of failure.
2640 *
2641 * Note, the only reason we have not merged this function with the
2642 * 'ubifs_debugging_init()' function is because it is better to initialize
2643 * debugfs interfaces at the very end of the mount process, and remove them at
2644 * the very beginning of the mount process.
2645 */
2646int dbg_debugfs_init_fs(struct ubifs_info *c)
2647{
2648 int err;
2649 const char *fname;
2650 struct dentry *dent;
2651 struct ubifs_debug_info *d = c->dbg;
2652
84abf972
AB
2653 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2654 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2655 if (IS_ERR(d->dfs_dir)) {
2656 err = PTR_ERR(d->dfs_dir);
552ff317 2657 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
84abf972 2658 d->dfs_dir_name, err);
552ff317
AB
2659 goto out;
2660 }
2661
2662 fname = "dump_lprops";
84abf972 2663 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
552ff317
AB
2664 if (IS_ERR(dent))
2665 goto out_remove;
84abf972 2666 d->dfs_dump_lprops = dent;
552ff317
AB
2667
2668 fname = "dump_budg";
84abf972 2669 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
552ff317
AB
2670 if (IS_ERR(dent))
2671 goto out_remove;
84abf972 2672 d->dfs_dump_budg = dent;
552ff317
AB
2673
2674 fname = "dump_tnc";
84abf972 2675 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
552ff317
AB
2676 if (IS_ERR(dent))
2677 goto out_remove;
84abf972 2678 d->dfs_dump_tnc = dent;
552ff317
AB
2679
2680 return 0;
2681
2682out_remove:
2683 err = PTR_ERR(dent);
2684 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2685 fname, err);
84abf972 2686 debugfs_remove_recursive(d->dfs_dir);
552ff317
AB
2687out:
2688 return err;
2689}
2690
2691/**
2692 * dbg_debugfs_exit_fs - remove all debugfs files.
2693 * @c: UBIFS file-system description object
2694 */
2695void dbg_debugfs_exit_fs(struct ubifs_info *c)
2696{
84abf972 2697 debugfs_remove_recursive(c->dbg->dfs_dir);
552ff317
AB
2698}
2699
1e51764a 2700#endif /* CONFIG_UBIFS_FS_DEBUG */