ocfs2: use smaller counters in ocfs2_remove_xattr_clusters_from_cache
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
ccd979bd
MF
30
31#define MLOG_MASK_PREFIX ML_FILE_IO
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
46
47#include "buffer_head_io.h"
48
49static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 struct buffer_head *bh_result, int create)
51{
52 int err = -EIO;
53 int status;
54 struct ocfs2_dinode *fe = NULL;
55 struct buffer_head *bh = NULL;
56 struct buffer_head *buffer_cache_bh = NULL;
57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 void *kaddr;
59
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 (unsigned long long)iblock, bh_result, create);
62
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock);
68 goto bail;
69 }
70
71 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72 OCFS2_I(inode)->ip_blkno,
73 &bh, OCFS2_BH_CACHED, inode);
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
77 }
78 fe = (struct ocfs2_dinode *) bh->b_data;
79
80 if (!OCFS2_IS_VALID_DINODE(fe)) {
b0697053 81 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
1ca1a111
MF
82 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83 fe->i_signature);
ccd979bd
MF
84 goto bail;
85 }
86
87 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88 le32_to_cpu(fe->i_clusters))) {
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 goto bail;
103 }
104
105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh)
110 && ocfs2_inode_is_new(inode)) {
111 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112 if (!kaddr) {
113 mlog(ML_ERROR, "couldn't kmap!\n");
114 goto bail;
115 }
116 memcpy(kaddr + (bh_result->b_size * iblock),
117 buffer_cache_bh->b_data,
118 bh_result->b_size);
119 kunmap_atomic(kaddr, KM_USER0);
120 set_buffer_uptodate(bh_result);
121 }
122 brelse(buffer_cache_bh);
123 }
124
125 map_bh(bh_result, inode->i_sb,
126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128 err = 0;
129
130bail:
131 if (bh)
132 brelse(bh);
133
134 mlog_exit(err);
135 return err;
136}
137
138static int ocfs2_get_block(struct inode *inode, sector_t iblock,
139 struct buffer_head *bh_result, int create)
140{
141 int err = 0;
49cb8d2d 142 unsigned int ext_flags;
628a24f5
MF
143 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
144 u64 p_blkno, count, past_eof;
25baf2da 145 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
146
147 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
148 (unsigned long long)iblock, bh_result, create);
149
150 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
151 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
152 inode, inode->i_ino);
153
154 if (S_ISLNK(inode->i_mode)) {
155 /* this always does I/O for some reason. */
156 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157 goto bail;
158 }
159
628a24f5 160 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 161 &ext_flags);
ccd979bd
MF
162 if (err) {
163 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
164 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
165 (unsigned long long)p_blkno);
ccd979bd
MF
166 goto bail;
167 }
168
628a24f5
MF
169 if (max_blocks < count)
170 count = max_blocks;
171
25baf2da
MF
172 /*
173 * ocfs2 never allocates in this function - the only time we
174 * need to use BH_New is when we're extending i_size on a file
175 * system which doesn't support holes, in which case BH_New
176 * allows block_prepare_write() to zero.
c0420ad2
CL
177 *
178 * If we see this on a sparse file system, then a truncate has
179 * raced us and removed the cluster. In this case, we clear
180 * the buffers dirty and uptodate bits and let the buffer code
181 * ignore it as a hole.
25baf2da 182 */
c0420ad2
CL
183 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
184 clear_buffer_dirty(bh_result);
185 clear_buffer_uptodate(bh_result);
186 goto bail;
187 }
25baf2da 188
49cb8d2d
MF
189 /* Treat the unwritten extent as a hole for zeroing purposes. */
190 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
191 map_bh(bh_result, inode->i_sb, p_blkno);
192
628a24f5
MF
193 bh_result->b_size = count << inode->i_blkbits;
194
25baf2da
MF
195 if (!ocfs2_sparse_alloc(osb)) {
196 if (p_blkno == 0) {
197 err = -EIO;
198 mlog(ML_ERROR,
199 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
200 (unsigned long long)iblock,
201 (unsigned long long)p_blkno,
202 (unsigned long long)OCFS2_I(inode)->ip_blkno);
203 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
204 dump_stack();
205 }
ccd979bd 206
25baf2da
MF
207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
209 (unsigned long long)past_eof);
ccd979bd 210
25baf2da
MF
211 if (create && (iblock >= past_eof))
212 set_buffer_new(bh_result);
213 }
ccd979bd
MF
214
215bail:
216 if (err < 0)
217 err = -EIO;
218
219 mlog_exit(err);
220 return err;
221}
222
1afc32b9
MF
223int ocfs2_read_inline_data(struct inode *inode, struct page *page,
224 struct buffer_head *di_bh)
6798d35a
MF
225{
226 void *kaddr;
d2849fb2 227 loff_t size;
6798d35a
MF
228 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
229
230 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
231 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
232 (unsigned long long)OCFS2_I(inode)->ip_blkno);
233 return -EROFS;
234 }
235
236 size = i_size_read(inode);
237
238 if (size > PAGE_CACHE_SIZE ||
239 size > ocfs2_max_inline_data(inode->i_sb)) {
240 ocfs2_error(inode->i_sb,
d2849fb2
JK
241 "Inode %llu has with inline data has bad size: %Lu",
242 (unsigned long long)OCFS2_I(inode)->ip_blkno,
243 (unsigned long long)size);
6798d35a
MF
244 return -EROFS;
245 }
246
247 kaddr = kmap_atomic(page, KM_USER0);
248 if (size)
249 memcpy(kaddr, di->id2.i_data.id_data, size);
250 /* Clear the remaining part of the page */
251 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
252 flush_dcache_page(page);
253 kunmap_atomic(kaddr, KM_USER0);
254
255 SetPageUptodate(page);
256
257 return 0;
258}
259
260static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
261{
262 int ret;
263 struct buffer_head *di_bh = NULL;
264 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
265
266 BUG_ON(!PageLocked(page));
86c838b0 267 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a
MF
268
269 ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
270 OCFS2_BH_CACHED, inode);
271 if (ret) {
272 mlog_errno(ret);
273 goto out;
274 }
275
276 ret = ocfs2_read_inline_data(inode, page, di_bh);
277out:
278 unlock_page(page);
279
280 brelse(di_bh);
281 return ret;
282}
283
ccd979bd
MF
284static int ocfs2_readpage(struct file *file, struct page *page)
285{
286 struct inode *inode = page->mapping->host;
6798d35a 287 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
288 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
289 int ret, unlock = 1;
290
291 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
292
e63aecb6 293 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
294 if (ret != 0) {
295 if (ret == AOP_TRUNCATED_PAGE)
296 unlock = 0;
297 mlog_errno(ret);
298 goto out;
299 }
300
6798d35a 301 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 302 ret = AOP_TRUNCATED_PAGE;
e63aecb6 303 goto out_inode_unlock;
e9dfc0b2 304 }
ccd979bd
MF
305
306 /*
307 * i_size might have just been updated as we grabed the meta lock. We
308 * might now be discovering a truncate that hit on another node.
309 * block_read_full_page->get_block freaks out if it is asked to read
310 * beyond the end of a file, so we check here. Callers
54cb8821 311 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
312 * and notice that the page they just read isn't needed.
313 *
314 * XXX sys_readahead() seems to get that wrong?
315 */
316 if (start >= i_size_read(inode)) {
eebd2aa3 317 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
318 SetPageUptodate(page);
319 ret = 0;
320 goto out_alloc;
321 }
322
6798d35a
MF
323 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
324 ret = ocfs2_readpage_inline(inode, page);
325 else
326 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
327 unlock = 0;
328
ccd979bd
MF
329out_alloc:
330 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
331out_inode_unlock:
332 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
333out:
334 if (unlock)
335 unlock_page(page);
336 mlog_exit(ret);
337 return ret;
338}
339
628a24f5
MF
340/*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
349static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
351{
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
357
358 /*
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
361 */
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
365
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
369 }
370
371 /*
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
374 */
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
377
378 /*
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
381 */
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
386
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
392
393 return err;
394}
395
ccd979bd
MF
396/* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
400 *
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
406 */
407static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408{
409 int ret;
410
411 mlog_entry("(0x%p)\n", page);
412
413 ret = block_write_full_page(page, ocfs2_get_block, wbc);
414
415 mlog_exit(ret);
416
417 return ret;
418}
419
5069120b
MF
420/*
421 * This is called from ocfs2_write_zero_page() which has handled it's
422 * own cluster locking and has ensured allocation exists for those
423 * blocks to be written.
424 */
53013cba
MF
425int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
426 unsigned from, unsigned to)
427{
428 int ret;
429
53013cba
MF
430 ret = block_prepare_write(page, from, to, ocfs2_get_block);
431
53013cba
MF
432 return ret;
433}
434
ccd979bd
MF
435/* Taken from ext3. We don't necessarily need the full blown
436 * functionality yet, but IMHO it's better to cut and paste the whole
437 * thing so we can avoid introducing our own bugs (and easily pick up
438 * their fixes when they happen) --Mark */
60b11392
MF
439int walk_page_buffers( handle_t *handle,
440 struct buffer_head *head,
441 unsigned from,
442 unsigned to,
443 int *partial,
444 int (*fn)( handle_t *handle,
445 struct buffer_head *bh))
ccd979bd
MF
446{
447 struct buffer_head *bh;
448 unsigned block_start, block_end;
449 unsigned blocksize = head->b_size;
450 int err, ret = 0;
451 struct buffer_head *next;
452
453 for ( bh = head, block_start = 0;
454 ret == 0 && (bh != head || !block_start);
455 block_start = block_end, bh = next)
456 {
457 next = bh->b_this_page;
458 block_end = block_start + blocksize;
459 if (block_end <= from || block_start >= to) {
460 if (partial && !buffer_uptodate(bh))
461 *partial = 1;
462 continue;
463 }
464 err = (*fn)(handle, bh);
465 if (!ret)
466 ret = err;
467 }
468 return ret;
469}
470
1fabe148 471handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
472 struct page *page,
473 unsigned from,
474 unsigned to)
475{
476 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58dadcdb 477 handle_t *handle;
ccd979bd
MF
478 int ret = 0;
479
65eff9cc 480 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
58dadcdb 481 if (IS_ERR(handle)) {
ccd979bd
MF
482 ret = -ENOMEM;
483 mlog_errno(ret);
484 goto out;
485 }
486
487 if (ocfs2_should_order_data(inode)) {
2b4e30fb
JB
488 ret = ocfs2_jbd2_file_inode(handle, inode);
489#ifdef CONFIG_OCFS2_COMPAT_JBD
1fabe148 490 ret = walk_page_buffers(handle,
ccd979bd
MF
491 page_buffers(page),
492 from, to, NULL,
493 ocfs2_journal_dirty_data);
2b4e30fb
JB
494#endif
495 if (ret < 0)
ccd979bd
MF
496 mlog_errno(ret);
497 }
498out:
499 if (ret) {
58dadcdb 500 if (!IS_ERR(handle))
02dc1af4 501 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
502 handle = ERR_PTR(ret);
503 }
504 return handle;
505}
506
ccd979bd
MF
507static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
508{
509 sector_t status;
510 u64 p_blkno = 0;
511 int err = 0;
512 struct inode *inode = mapping->host;
513
514 mlog_entry("(block = %llu)\n", (unsigned long long)block);
515
516 /* We don't need to lock journal system files, since they aren't
517 * accessed concurrently from multiple nodes.
518 */
519 if (!INODE_JOURNAL(inode)) {
e63aecb6 520 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
521 if (err) {
522 if (err != -ENOENT)
523 mlog_errno(err);
524 goto bail;
525 }
526 down_read(&OCFS2_I(inode)->ip_alloc_sem);
527 }
528
6798d35a
MF
529 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
530 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
531 NULL);
ccd979bd
MF
532
533 if (!INODE_JOURNAL(inode)) {
534 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 535 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
536 }
537
538 if (err) {
539 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
540 (unsigned long long)block);
541 mlog_errno(err);
542 goto bail;
543 }
544
ccd979bd
MF
545bail:
546 status = err ? 0 : p_blkno;
547
548 mlog_exit((int)status);
549
550 return status;
551}
552
553/*
554 * TODO: Make this into a generic get_blocks function.
555 *
556 * From do_direct_io in direct-io.c:
557 * "So what we do is to permit the ->get_blocks function to populate
558 * bh.b_size with the size of IO which is permitted at this offset and
559 * this i_blkbits."
560 *
561 * This function is called directly from get_more_blocks in direct-io.c.
562 *
563 * called like this: dio->get_blocks(dio->inode, fs_startblk,
564 * fs_count, map_bh, dio->rw == WRITE);
565 */
566static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
567 struct buffer_head *bh_result, int create)
568{
569 int ret;
4f902c37 570 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 571 unsigned int ext_flags;
184d7d20 572 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 573 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 574
ccd979bd
MF
575 /* This function won't even be called if the request isn't all
576 * nicely aligned and of the right size, so there's no need
577 * for us to check any of that. */
578
25baf2da 579 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
580
581 /*
582 * Any write past EOF is not allowed because we'd be extending.
583 */
584 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
585 ret = -EIO;
586 goto bail;
587 }
ccd979bd
MF
588
589 /* This figures out the size of the next contiguous block, and
590 * our logical offset */
363041a5 591 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 592 &contig_blocks, &ext_flags);
ccd979bd
MF
593 if (ret) {
594 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
595 (unsigned long long)iblock);
596 ret = -EIO;
597 goto bail;
598 }
599
0e116227 600 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
25baf2da
MF
601 ocfs2_error(inode->i_sb,
602 "Inode %llu has a hole at block %llu\n",
603 (unsigned long long)OCFS2_I(inode)->ip_blkno,
604 (unsigned long long)iblock);
605 ret = -EROFS;
606 goto bail;
607 }
608
609 /*
610 * get_more_blocks() expects us to describe a hole by clearing
611 * the mapped bit on bh_result().
49cb8d2d
MF
612 *
613 * Consider an unwritten extent as a hole.
25baf2da 614 */
49cb8d2d 615 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
616 map_bh(bh_result, inode->i_sb, p_blkno);
617 else {
618 /*
619 * ocfs2_prepare_inode_for_write() should have caught
620 * the case where we'd be filling a hole and triggered
621 * a buffered write instead.
622 */
623 if (create) {
624 ret = -EIO;
625 mlog_errno(ret);
626 goto bail;
627 }
628
629 clear_buffer_mapped(bh_result);
630 }
ccd979bd
MF
631
632 /* make sure we don't map more than max_blocks blocks here as
633 that's all the kernel will handle at this point. */
634 if (max_blocks < contig_blocks)
635 contig_blocks = max_blocks;
636 bh_result->b_size = contig_blocks << blocksize_bits;
637bail:
638 return ret;
639}
640
641/*
642 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
643 * particularly interested in the aio/dio case. Like the core uses
644 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
645 * truncation on another.
646 */
647static void ocfs2_dio_end_io(struct kiocb *iocb,
648 loff_t offset,
649 ssize_t bytes,
650 void *private)
651{
d28c9174 652 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 653 int level;
ccd979bd
MF
654
655 /* this io's submitter should not have unlocked this before we could */
656 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 657
ccd979bd 658 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
659
660 level = ocfs2_iocb_rw_locked_level(iocb);
661 if (!level)
662 up_read(&inode->i_alloc_sem);
663 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
664}
665
03f981cf
JB
666/*
667 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
668 * from ext3. PageChecked() bits have been removed as OCFS2 does not
669 * do journalled data.
670 */
671static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
672{
673 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
674
2b4e30fb 675 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
676}
677
678static int ocfs2_releasepage(struct page *page, gfp_t wait)
679{
680 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
681
682 if (!page_has_buffers(page))
683 return 0;
2b4e30fb 684 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
685}
686
ccd979bd
MF
687static ssize_t ocfs2_direct_IO(int rw,
688 struct kiocb *iocb,
689 const struct iovec *iov,
690 loff_t offset,
691 unsigned long nr_segs)
692{
693 struct file *file = iocb->ki_filp;
d28c9174 694 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
695 int ret;
696
697 mlog_entry_void();
53013cba 698
6798d35a
MF
699 /*
700 * Fallback to buffered I/O if we see an inode without
701 * extents.
702 */
703 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
704 return 0;
705
ccd979bd
MF
706 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
707 inode->i_sb->s_bdev, iov, offset,
708 nr_segs,
709 ocfs2_direct_IO_get_blocks,
710 ocfs2_dio_end_io);
c934a92d 711
ccd979bd
MF
712 mlog_exit(ret);
713 return ret;
714}
715
9517bac6
MF
716static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
717 u32 cpos,
718 unsigned int *start,
719 unsigned int *end)
720{
721 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
722
723 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
724 unsigned int cpp;
725
726 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
727
728 cluster_start = cpos % cpp;
729 cluster_start = cluster_start << osb->s_clustersize_bits;
730
731 cluster_end = cluster_start + osb->s_clustersize;
732 }
733
734 BUG_ON(cluster_start > PAGE_SIZE);
735 BUG_ON(cluster_end > PAGE_SIZE);
736
737 if (start)
738 *start = cluster_start;
739 if (end)
740 *end = cluster_end;
741}
742
743/*
744 * 'from' and 'to' are the region in the page to avoid zeroing.
745 *
746 * If pagesize > clustersize, this function will avoid zeroing outside
747 * of the cluster boundary.
748 *
749 * from == to == 0 is code for "zero the entire cluster region"
750 */
751static void ocfs2_clear_page_regions(struct page *page,
752 struct ocfs2_super *osb, u32 cpos,
753 unsigned from, unsigned to)
754{
755 void *kaddr;
756 unsigned int cluster_start, cluster_end;
757
758 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
759
760 kaddr = kmap_atomic(page, KM_USER0);
761
762 if (from || to) {
763 if (from > cluster_start)
764 memset(kaddr + cluster_start, 0, from - cluster_start);
765 if (to < cluster_end)
766 memset(kaddr + to, 0, cluster_end - to);
767 } else {
768 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
769 }
770
771 kunmap_atomic(kaddr, KM_USER0);
772}
773
4e9563fd
MF
774/*
775 * Nonsparse file systems fully allocate before we get to the write
776 * code. This prevents ocfs2_write() from tagging the write as an
777 * allocating one, which means ocfs2_map_page_blocks() might try to
778 * read-in the blocks at the tail of our file. Avoid reading them by
779 * testing i_size against each block offset.
780 */
781static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
782 unsigned int block_start)
783{
784 u64 offset = page_offset(page) + block_start;
785
786 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
787 return 1;
788
789 if (i_size_read(inode) > offset)
790 return 1;
791
792 return 0;
793}
794
9517bac6
MF
795/*
796 * Some of this taken from block_prepare_write(). We already have our
797 * mapping by now though, and the entire write will be allocating or
798 * it won't, so not much need to use BH_New.
799 *
800 * This will also skip zeroing, which is handled externally.
801 */
60b11392
MF
802int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
803 struct inode *inode, unsigned int from,
804 unsigned int to, int new)
9517bac6
MF
805{
806 int ret = 0;
807 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
808 unsigned int block_end, block_start;
809 unsigned int bsize = 1 << inode->i_blkbits;
810
811 if (!page_has_buffers(page))
812 create_empty_buffers(page, bsize, 0);
813
814 head = page_buffers(page);
815 for (bh = head, block_start = 0; bh != head || !block_start;
816 bh = bh->b_this_page, block_start += bsize) {
817 block_end = block_start + bsize;
818
3a307ffc
MF
819 clear_buffer_new(bh);
820
9517bac6
MF
821 /*
822 * Ignore blocks outside of our i/o range -
823 * they may belong to unallocated clusters.
824 */
60b11392 825 if (block_start >= to || block_end <= from) {
9517bac6
MF
826 if (PageUptodate(page))
827 set_buffer_uptodate(bh);
828 continue;
829 }
830
831 /*
832 * For an allocating write with cluster size >= page
833 * size, we always write the entire page.
834 */
3a307ffc
MF
835 if (new)
836 set_buffer_new(bh);
9517bac6
MF
837
838 if (!buffer_mapped(bh)) {
839 map_bh(bh, inode->i_sb, *p_blkno);
840 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
841 }
842
843 if (PageUptodate(page)) {
844 if (!buffer_uptodate(bh))
845 set_buffer_uptodate(bh);
846 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 847 !buffer_new(bh) &&
4e9563fd 848 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 849 (block_start < from || block_end > to)) {
9517bac6
MF
850 ll_rw_block(READ, 1, &bh);
851 *wait_bh++=bh;
852 }
853
854 *p_blkno = *p_blkno + 1;
855 }
856
857 /*
858 * If we issued read requests - let them complete.
859 */
860 while(wait_bh > wait) {
861 wait_on_buffer(*--wait_bh);
862 if (!buffer_uptodate(*wait_bh))
863 ret = -EIO;
864 }
865
866 if (ret == 0 || !new)
867 return ret;
868
869 /*
870 * If we get -EIO above, zero out any newly allocated blocks
871 * to avoid exposing stale data.
872 */
873 bh = head;
874 block_start = 0;
875 do {
9517bac6
MF
876 block_end = block_start + bsize;
877 if (block_end <= from)
878 goto next_bh;
879 if (block_start >= to)
880 break;
881
eebd2aa3 882 zero_user(page, block_start, bh->b_size);
9517bac6
MF
883 set_buffer_uptodate(bh);
884 mark_buffer_dirty(bh);
885
886next_bh:
887 block_start = block_end;
888 bh = bh->b_this_page;
889 } while (bh != head);
890
891 return ret;
892}
893
3a307ffc
MF
894#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
895#define OCFS2_MAX_CTXT_PAGES 1
896#else
897#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
898#endif
899
900#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
901
6af67d82 902/*
3a307ffc 903 * Describe the state of a single cluster to be written to.
6af67d82 904 */
3a307ffc
MF
905struct ocfs2_write_cluster_desc {
906 u32 c_cpos;
907 u32 c_phys;
908 /*
909 * Give this a unique field because c_phys eventually gets
910 * filled.
911 */
912 unsigned c_new;
b27b7cbc 913 unsigned c_unwritten;
3a307ffc 914};
6af67d82 915
b27b7cbc
MF
916static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
917{
918 return d->c_new || d->c_unwritten;
919}
920
3a307ffc
MF
921struct ocfs2_write_ctxt {
922 /* Logical cluster position / len of write */
923 u32 w_cpos;
924 u32 w_clen;
6af67d82 925
3a307ffc 926 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 927
3a307ffc
MF
928 /*
929 * This is true if page_size > cluster_size.
930 *
931 * It triggers a set of special cases during write which might
932 * have to deal with allocating writes to partial pages.
933 */
934 unsigned int w_large_pages;
6af67d82 935
3a307ffc
MF
936 /*
937 * Pages involved in this write.
938 *
939 * w_target_page is the page being written to by the user.
940 *
941 * w_pages is an array of pages which always contains
942 * w_target_page, and in the case of an allocating write with
943 * page_size < cluster size, it will contain zero'd and mapped
944 * pages adjacent to w_target_page which need to be written
945 * out in so that future reads from that region will get
946 * zero's.
947 */
948 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
949 unsigned int w_num_pages;
950 struct page *w_target_page;
eeb47d12 951
3a307ffc
MF
952 /*
953 * ocfs2_write_end() uses this to know what the real range to
954 * write in the target should be.
955 */
956 unsigned int w_target_from;
957 unsigned int w_target_to;
958
959 /*
960 * We could use journal_current_handle() but this is cleaner,
961 * IMHO -Mark
962 */
963 handle_t *w_handle;
964
965 struct buffer_head *w_di_bh;
b27b7cbc
MF
966
967 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
968};
969
1d410a6e 970void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
971{
972 int i;
973
1d410a6e
MF
974 for(i = 0; i < num_pages; i++) {
975 if (pages[i]) {
976 unlock_page(pages[i]);
977 mark_page_accessed(pages[i]);
978 page_cache_release(pages[i]);
979 }
6af67d82 980 }
1d410a6e
MF
981}
982
983static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
984{
985 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 986
3a307ffc
MF
987 brelse(wc->w_di_bh);
988 kfree(wc);
989}
990
991static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
992 struct ocfs2_super *osb, loff_t pos,
607d44aa 993 unsigned len, struct buffer_head *di_bh)
3a307ffc 994{
30b8548f 995 u32 cend;
3a307ffc
MF
996 struct ocfs2_write_ctxt *wc;
997
998 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
999 if (!wc)
1000 return -ENOMEM;
6af67d82 1001
3a307ffc 1002 wc->w_cpos = pos >> osb->s_clustersize_bits;
30b8548f 1003 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1004 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1005 get_bh(di_bh);
1006 wc->w_di_bh = di_bh;
6af67d82 1007
3a307ffc
MF
1008 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1009 wc->w_large_pages = 1;
1010 else
1011 wc->w_large_pages = 0;
1012
b27b7cbc
MF
1013 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1014
3a307ffc 1015 *wcp = wc;
6af67d82 1016
3a307ffc 1017 return 0;
6af67d82
MF
1018}
1019
9517bac6 1020/*
3a307ffc
MF
1021 * If a page has any new buffers, zero them out here, and mark them uptodate
1022 * and dirty so they'll be written out (in order to prevent uninitialised
1023 * block data from leaking). And clear the new bit.
9517bac6 1024 */
3a307ffc 1025static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1026{
3a307ffc
MF
1027 unsigned int block_start, block_end;
1028 struct buffer_head *head, *bh;
9517bac6 1029
3a307ffc
MF
1030 BUG_ON(!PageLocked(page));
1031 if (!page_has_buffers(page))
1032 return;
9517bac6 1033
3a307ffc
MF
1034 bh = head = page_buffers(page);
1035 block_start = 0;
1036 do {
1037 block_end = block_start + bh->b_size;
1038
1039 if (buffer_new(bh)) {
1040 if (block_end > from && block_start < to) {
1041 if (!PageUptodate(page)) {
1042 unsigned start, end;
3a307ffc
MF
1043
1044 start = max(from, block_start);
1045 end = min(to, block_end);
1046
eebd2aa3 1047 zero_user_segment(page, start, end);
3a307ffc
MF
1048 set_buffer_uptodate(bh);
1049 }
1050
1051 clear_buffer_new(bh);
1052 mark_buffer_dirty(bh);
1053 }
1054 }
9517bac6 1055
3a307ffc
MF
1056 block_start = block_end;
1057 bh = bh->b_this_page;
1058 } while (bh != head);
1059}
1060
1061/*
1062 * Only called when we have a failure during allocating write to write
1063 * zero's to the newly allocated region.
1064 */
1065static void ocfs2_write_failure(struct inode *inode,
1066 struct ocfs2_write_ctxt *wc,
1067 loff_t user_pos, unsigned user_len)
1068{
1069 int i;
5c26a7b7
MF
1070 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1071 to = user_pos + user_len;
3a307ffc
MF
1072 struct page *tmppage;
1073
5c26a7b7 1074 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1075
3a307ffc
MF
1076 for(i = 0; i < wc->w_num_pages; i++) {
1077 tmppage = wc->w_pages[i];
9517bac6 1078
961cecbe 1079 if (page_has_buffers(tmppage)) {
2b4e30fb
JB
1080 if (ocfs2_should_order_data(inode)) {
1081 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1082#ifdef CONFIG_OCFS2_COMPAT_JBD
961cecbe
SM
1083 walk_page_buffers(wc->w_handle,
1084 page_buffers(tmppage),
1085 from, to, NULL,
1086 ocfs2_journal_dirty_data);
2b4e30fb
JB
1087#endif
1088 }
961cecbe
SM
1089
1090 block_commit_write(tmppage, from, to);
1091 }
9517bac6 1092 }
9517bac6
MF
1093}
1094
3a307ffc
MF
1095static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1096 struct ocfs2_write_ctxt *wc,
1097 struct page *page, u32 cpos,
1098 loff_t user_pos, unsigned user_len,
1099 int new)
9517bac6 1100{
3a307ffc
MF
1101 int ret;
1102 unsigned int map_from = 0, map_to = 0;
9517bac6 1103 unsigned int cluster_start, cluster_end;
3a307ffc 1104 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1105
3a307ffc 1106 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1107 &cluster_start, &cluster_end);
1108
3a307ffc
MF
1109 if (page == wc->w_target_page) {
1110 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1111 map_to = map_from + user_len;
1112
1113 if (new)
1114 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1115 cluster_start, cluster_end,
1116 new);
1117 else
1118 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1119 map_from, map_to, new);
1120 if (ret) {
9517bac6
MF
1121 mlog_errno(ret);
1122 goto out;
1123 }
1124
3a307ffc
MF
1125 user_data_from = map_from;
1126 user_data_to = map_to;
9517bac6 1127 if (new) {
3a307ffc
MF
1128 map_from = cluster_start;
1129 map_to = cluster_end;
9517bac6
MF
1130 }
1131 } else {
1132 /*
1133 * If we haven't allocated the new page yet, we
1134 * shouldn't be writing it out without copying user
1135 * data. This is likely a math error from the caller.
1136 */
1137 BUG_ON(!new);
1138
3a307ffc
MF
1139 map_from = cluster_start;
1140 map_to = cluster_end;
9517bac6
MF
1141
1142 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1143 cluster_start, cluster_end, new);
9517bac6
MF
1144 if (ret) {
1145 mlog_errno(ret);
1146 goto out;
1147 }
1148 }
1149
1150 /*
1151 * Parts of newly allocated pages need to be zero'd.
1152 *
1153 * Above, we have also rewritten 'to' and 'from' - as far as
1154 * the rest of the function is concerned, the entire cluster
1155 * range inside of a page needs to be written.
1156 *
1157 * We can skip this if the page is up to date - it's already
1158 * been zero'd from being read in as a hole.
1159 */
1160 if (new && !PageUptodate(page))
1161 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1162 cpos, user_data_from, user_data_to);
9517bac6
MF
1163
1164 flush_dcache_page(page);
1165
9517bac6 1166out:
3a307ffc 1167 return ret;
9517bac6
MF
1168}
1169
1170/*
3a307ffc 1171 * This function will only grab one clusters worth of pages.
9517bac6 1172 */
3a307ffc
MF
1173static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1174 struct ocfs2_write_ctxt *wc,
7307de80
MF
1175 u32 cpos, loff_t user_pos, int new,
1176 struct page *mmap_page)
9517bac6 1177{
3a307ffc
MF
1178 int ret = 0, i;
1179 unsigned long start, target_index, index;
9517bac6 1180 struct inode *inode = mapping->host;
9517bac6 1181
3a307ffc 1182 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1183
1184 /*
1185 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1186 * non allocating write, we just change the one
1187 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1188 */
9517bac6 1189 if (new) {
3a307ffc
MF
1190 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1191 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1192 } else {
3a307ffc
MF
1193 wc->w_num_pages = 1;
1194 start = target_index;
9517bac6
MF
1195 }
1196
3a307ffc 1197 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1198 index = start + i;
1199
7307de80
MF
1200 if (index == target_index && mmap_page) {
1201 /*
1202 * ocfs2_pagemkwrite() is a little different
1203 * and wants us to directly use the page
1204 * passed in.
1205 */
1206 lock_page(mmap_page);
1207
1208 if (mmap_page->mapping != mapping) {
1209 unlock_page(mmap_page);
1210 /*
1211 * Sanity check - the locking in
1212 * ocfs2_pagemkwrite() should ensure
1213 * that this code doesn't trigger.
1214 */
1215 ret = -EINVAL;
1216 mlog_errno(ret);
1217 goto out;
1218 }
1219
1220 page_cache_get(mmap_page);
1221 wc->w_pages[i] = mmap_page;
1222 } else {
1223 wc->w_pages[i] = find_or_create_page(mapping, index,
1224 GFP_NOFS);
1225 if (!wc->w_pages[i]) {
1226 ret = -ENOMEM;
1227 mlog_errno(ret);
1228 goto out;
1229 }
9517bac6 1230 }
3a307ffc
MF
1231
1232 if (index == target_index)
1233 wc->w_target_page = wc->w_pages[i];
9517bac6 1234 }
3a307ffc
MF
1235out:
1236 return ret;
1237}
1238
1239/*
1240 * Prepare a single cluster for write one cluster into the file.
1241 */
1242static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc
MF
1243 u32 phys, unsigned int unwritten,
1244 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1245 struct ocfs2_alloc_context *meta_ac,
1246 struct ocfs2_write_ctxt *wc, u32 cpos,
1247 loff_t user_pos, unsigned user_len)
1248{
b27b7cbc 1249 int ret, i, new, should_zero = 0;
3a307ffc
MF
1250 u64 v_blkno, p_blkno;
1251 struct inode *inode = mapping->host;
f99b9b7c 1252 struct ocfs2_extent_tree et;
3a307ffc
MF
1253
1254 new = phys == 0 ? 1 : 0;
b27b7cbc
MF
1255 if (new || unwritten)
1256 should_zero = 1;
9517bac6
MF
1257
1258 if (new) {
3a307ffc
MF
1259 u32 tmp_pos;
1260
9517bac6
MF
1261 /*
1262 * This is safe to call with the page locks - it won't take
1263 * any additional semaphores or cluster locks.
1264 */
3a307ffc 1265 tmp_pos = cpos;
0eb8d47e
TM
1266 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1267 &tmp_pos, 1, 0, wc->w_di_bh,
1268 wc->w_handle, data_ac,
1269 meta_ac, NULL);
9517bac6
MF
1270 /*
1271 * This shouldn't happen because we must have already
1272 * calculated the correct meta data allocation required. The
1273 * internal tree allocation code should know how to increase
1274 * transaction credits itself.
1275 *
1276 * If need be, we could handle -EAGAIN for a
1277 * RESTART_TRANS here.
1278 */
1279 mlog_bug_on_msg(ret == -EAGAIN,
1280 "Inode %llu: EAGAIN return during allocation.\n",
1281 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1282 if (ret < 0) {
1283 mlog_errno(ret);
1284 goto out;
1285 }
b27b7cbc 1286 } else if (unwritten) {
8d6220d6 1287 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1288 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1289 wc->w_handle, cpos, 1, phys,
f99b9b7c 1290 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1291 if (ret < 0) {
1292 mlog_errno(ret);
1293 goto out;
1294 }
1295 }
3a307ffc 1296
b27b7cbc 1297 if (should_zero)
3a307ffc 1298 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1299 else
3a307ffc 1300 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1301
3a307ffc
MF
1302 /*
1303 * The only reason this should fail is due to an inability to
1304 * find the extent added.
1305 */
49cb8d2d
MF
1306 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1307 NULL);
9517bac6 1308 if (ret < 0) {
3a307ffc
MF
1309 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1310 "at logical block %llu",
1311 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1312 (unsigned long long)v_blkno);
9517bac6
MF
1313 goto out;
1314 }
1315
1316 BUG_ON(p_blkno == 0);
1317
3a307ffc
MF
1318 for(i = 0; i < wc->w_num_pages; i++) {
1319 int tmpret;
9517bac6 1320
3a307ffc
MF
1321 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1322 wc->w_pages[i], cpos,
b27b7cbc
MF
1323 user_pos, user_len,
1324 should_zero);
3a307ffc
MF
1325 if (tmpret) {
1326 mlog_errno(tmpret);
1327 if (ret == 0)
1328 tmpret = ret;
1329 }
9517bac6
MF
1330 }
1331
3a307ffc
MF
1332 /*
1333 * We only have cleanup to do in case of allocating write.
1334 */
1335 if (ret && new)
1336 ocfs2_write_failure(inode, wc, user_pos, user_len);
1337
9517bac6 1338out:
9517bac6 1339
3a307ffc 1340 return ret;
9517bac6
MF
1341}
1342
0d172baa
MF
1343static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1344 struct ocfs2_alloc_context *data_ac,
1345 struct ocfs2_alloc_context *meta_ac,
1346 struct ocfs2_write_ctxt *wc,
1347 loff_t pos, unsigned len)
1348{
1349 int ret, i;
db56246c
MF
1350 loff_t cluster_off;
1351 unsigned int local_len = len;
0d172baa 1352 struct ocfs2_write_cluster_desc *desc;
db56246c 1353 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1354
1355 for (i = 0; i < wc->w_clen; i++) {
1356 desc = &wc->w_desc[i];
1357
db56246c
MF
1358 /*
1359 * We have to make sure that the total write passed in
1360 * doesn't extend past a single cluster.
1361 */
1362 local_len = len;
1363 cluster_off = pos & (osb->s_clustersize - 1);
1364 if ((cluster_off + local_len) > osb->s_clustersize)
1365 local_len = osb->s_clustersize - cluster_off;
1366
b27b7cbc
MF
1367 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1368 desc->c_unwritten, data_ac, meta_ac,
db56246c 1369 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1370 if (ret) {
1371 mlog_errno(ret);
1372 goto out;
1373 }
db56246c
MF
1374
1375 len -= local_len;
1376 pos += local_len;
0d172baa
MF
1377 }
1378
1379 ret = 0;
1380out:
1381 return ret;
1382}
1383
3a307ffc
MF
1384/*
1385 * ocfs2_write_end() wants to know which parts of the target page it
1386 * should complete the write on. It's easiest to compute them ahead of
1387 * time when a more complete view of the write is available.
1388 */
1389static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1390 struct ocfs2_write_ctxt *wc,
1391 loff_t pos, unsigned len, int alloc)
9517bac6 1392{
3a307ffc 1393 struct ocfs2_write_cluster_desc *desc;
9517bac6 1394
3a307ffc
MF
1395 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1396 wc->w_target_to = wc->w_target_from + len;
1397
1398 if (alloc == 0)
1399 return;
1400
1401 /*
1402 * Allocating write - we may have different boundaries based
1403 * on page size and cluster size.
1404 *
1405 * NOTE: We can no longer compute one value from the other as
1406 * the actual write length and user provided length may be
1407 * different.
1408 */
9517bac6 1409
3a307ffc
MF
1410 if (wc->w_large_pages) {
1411 /*
1412 * We only care about the 1st and last cluster within
b27b7cbc 1413 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1414 * value may be extended out to the start/end of a
1415 * newly allocated cluster.
1416 */
1417 desc = &wc->w_desc[0];
b27b7cbc 1418 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1419 ocfs2_figure_cluster_boundaries(osb,
1420 desc->c_cpos,
1421 &wc->w_target_from,
1422 NULL);
1423
1424 desc = &wc->w_desc[wc->w_clen - 1];
b27b7cbc 1425 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1426 ocfs2_figure_cluster_boundaries(osb,
1427 desc->c_cpos,
1428 NULL,
1429 &wc->w_target_to);
1430 } else {
1431 wc->w_target_from = 0;
1432 wc->w_target_to = PAGE_CACHE_SIZE;
1433 }
9517bac6
MF
1434}
1435
0d172baa
MF
1436/*
1437 * Populate each single-cluster write descriptor in the write context
1438 * with information about the i/o to be done.
b27b7cbc
MF
1439 *
1440 * Returns the number of clusters that will have to be allocated, as
1441 * well as a worst case estimate of the number of extent records that
1442 * would have to be created during a write to an unwritten region.
0d172baa
MF
1443 */
1444static int ocfs2_populate_write_desc(struct inode *inode,
1445 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1446 unsigned int *clusters_to_alloc,
1447 unsigned int *extents_to_split)
9517bac6 1448{
0d172baa 1449 int ret;
3a307ffc 1450 struct ocfs2_write_cluster_desc *desc;
0d172baa 1451 unsigned int num_clusters = 0;
b27b7cbc 1452 unsigned int ext_flags = 0;
0d172baa
MF
1453 u32 phys = 0;
1454 int i;
9517bac6 1455
b27b7cbc
MF
1456 *clusters_to_alloc = 0;
1457 *extents_to_split = 0;
1458
3a307ffc
MF
1459 for (i = 0; i < wc->w_clen; i++) {
1460 desc = &wc->w_desc[i];
1461 desc->c_cpos = wc->w_cpos + i;
1462
1463 if (num_clusters == 0) {
b27b7cbc
MF
1464 /*
1465 * Need to look up the next extent record.
1466 */
3a307ffc 1467 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1468 &num_clusters, &ext_flags);
3a307ffc
MF
1469 if (ret) {
1470 mlog_errno(ret);
607d44aa 1471 goto out;
3a307ffc 1472 }
b27b7cbc
MF
1473
1474 /*
1475 * Assume worst case - that we're writing in
1476 * the middle of the extent.
1477 *
1478 * We can assume that the write proceeds from
1479 * left to right, in which case the extent
1480 * insert code is smart enough to coalesce the
1481 * next splits into the previous records created.
1482 */
1483 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1484 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1485 } else if (phys) {
1486 /*
1487 * Only increment phys if it doesn't describe
1488 * a hole.
1489 */
1490 phys++;
1491 }
1492
1493 desc->c_phys = phys;
1494 if (phys == 0) {
1495 desc->c_new = 1;
0d172baa 1496 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1497 }
b27b7cbc
MF
1498 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1499 desc->c_unwritten = 1;
3a307ffc
MF
1500
1501 num_clusters--;
9517bac6
MF
1502 }
1503
0d172baa
MF
1504 ret = 0;
1505out:
1506 return ret;
1507}
1508
1afc32b9
MF
1509static int ocfs2_write_begin_inline(struct address_space *mapping,
1510 struct inode *inode,
1511 struct ocfs2_write_ctxt *wc)
1512{
1513 int ret;
1514 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1515 struct page *page;
1516 handle_t *handle;
1517 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1518
1519 page = find_or_create_page(mapping, 0, GFP_NOFS);
1520 if (!page) {
1521 ret = -ENOMEM;
1522 mlog_errno(ret);
1523 goto out;
1524 }
1525 /*
1526 * If we don't set w_num_pages then this page won't get unlocked
1527 * and freed on cleanup of the write context.
1528 */
1529 wc->w_pages[0] = wc->w_target_page = page;
1530 wc->w_num_pages = 1;
1531
1532 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1533 if (IS_ERR(handle)) {
1534 ret = PTR_ERR(handle);
1535 mlog_errno(ret);
1536 goto out;
1537 }
1538
1539 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1540 OCFS2_JOURNAL_ACCESS_WRITE);
1541 if (ret) {
1542 ocfs2_commit_trans(osb, handle);
1543
1544 mlog_errno(ret);
1545 goto out;
1546 }
1547
1548 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1549 ocfs2_set_inode_data_inline(inode, di);
1550
1551 if (!PageUptodate(page)) {
1552 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1553 if (ret) {
1554 ocfs2_commit_trans(osb, handle);
1555
1556 goto out;
1557 }
1558 }
1559
1560 wc->w_handle = handle;
1561out:
1562 return ret;
1563}
1564
1565int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1566{
1567 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1568
0d8a4e0c 1569 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1570 return 1;
1571 return 0;
1572}
1573
1574static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1575 struct inode *inode, loff_t pos,
1576 unsigned len, struct page *mmap_page,
1577 struct ocfs2_write_ctxt *wc)
1578{
1579 int ret, written = 0;
1580 loff_t end = pos + len;
1581 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1582
1583 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1584 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1585 oi->ip_dyn_features);
1586
1587 /*
1588 * Handle inodes which already have inline data 1st.
1589 */
1590 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1591 if (mmap_page == NULL &&
1592 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1593 goto do_inline_write;
1594
1595 /*
1596 * The write won't fit - we have to give this inode an
1597 * inline extent list now.
1598 */
1599 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1600 if (ret)
1601 mlog_errno(ret);
1602 goto out;
1603 }
1604
1605 /*
1606 * Check whether the inode can accept inline data.
1607 */
1608 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1609 return 0;
1610
1611 /*
1612 * Check whether the write can fit.
1613 */
1614 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1615 return 0;
1616
1617do_inline_write:
1618 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1619 if (ret) {
1620 mlog_errno(ret);
1621 goto out;
1622 }
1623
1624 /*
1625 * This signals to the caller that the data can be written
1626 * inline.
1627 */
1628 written = 1;
1629out:
1630 return written ? written : ret;
1631}
1632
65ed39d6
MF
1633/*
1634 * This function only does anything for file systems which can't
1635 * handle sparse files.
1636 *
1637 * What we want to do here is fill in any hole between the current end
1638 * of allocation and the end of our write. That way the rest of the
1639 * write path can treat it as an non-allocating write, which has no
1640 * special case code for sparse/nonsparse files.
1641 */
1642static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1643 unsigned len,
1644 struct ocfs2_write_ctxt *wc)
1645{
1646 int ret;
1647 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1648 loff_t newsize = pos + len;
1649
1650 if (ocfs2_sparse_alloc(osb))
1651 return 0;
1652
1653 if (newsize <= i_size_read(inode))
1654 return 0;
1655
1656 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1657 if (ret)
1658 mlog_errno(ret);
1659
1660 return ret;
1661}
1662
0d172baa
MF
1663int ocfs2_write_begin_nolock(struct address_space *mapping,
1664 loff_t pos, unsigned len, unsigned flags,
1665 struct page **pagep, void **fsdata,
1666 struct buffer_head *di_bh, struct page *mmap_page)
1667{
1668 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1669 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1670 struct ocfs2_write_ctxt *wc;
1671 struct inode *inode = mapping->host;
1672 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1673 struct ocfs2_dinode *di;
1674 struct ocfs2_alloc_context *data_ac = NULL;
1675 struct ocfs2_alloc_context *meta_ac = NULL;
1676 handle_t *handle;
f99b9b7c 1677 struct ocfs2_extent_tree et;
0d172baa
MF
1678
1679 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1680 if (ret) {
1681 mlog_errno(ret);
1682 return ret;
1683 }
1684
1afc32b9
MF
1685 if (ocfs2_supports_inline_data(osb)) {
1686 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1687 mmap_page, wc);
1688 if (ret == 1) {
1689 ret = 0;
1690 goto success;
1691 }
1692 if (ret < 0) {
1693 mlog_errno(ret);
1694 goto out;
1695 }
1696 }
1697
65ed39d6
MF
1698 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1699 if (ret) {
1700 mlog_errno(ret);
1701 goto out;
1702 }
1703
b27b7cbc
MF
1704 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1705 &extents_to_split);
0d172baa
MF
1706 if (ret) {
1707 mlog_errno(ret);
1708 goto out;
1709 }
1710
1711 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1712
3a307ffc
MF
1713 /*
1714 * We set w_target_from, w_target_to here so that
1715 * ocfs2_write_end() knows which range in the target page to
1716 * write out. An allocation requires that we write the entire
1717 * cluster range.
1718 */
b27b7cbc 1719 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1720 /*
1721 * XXX: We are stretching the limits of
b27b7cbc 1722 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1723 * the work to be done.
1724 */
e7d4cb6b
TM
1725 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1726 " clusters_to_add = %u, extents_to_split = %u\n",
1727 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1728 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1729 clusters_to_alloc, extents_to_split);
1730
8d6220d6 1731 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1732 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1733 clusters_to_alloc, extents_to_split,
f99b9b7c 1734 &data_ac, &meta_ac);
9517bac6
MF
1735 if (ret) {
1736 mlog_errno(ret);
607d44aa 1737 goto out;
9517bac6
MF
1738 }
1739
811f933d
TM
1740 credits = ocfs2_calc_extend_credits(inode->i_sb,
1741 &di->id2.i_list,
3a307ffc
MF
1742 clusters_to_alloc);
1743
9517bac6
MF
1744 }
1745
b27b7cbc
MF
1746 ocfs2_set_target_boundaries(osb, wc, pos, len,
1747 clusters_to_alloc + extents_to_split);
3a307ffc 1748
9517bac6
MF
1749 handle = ocfs2_start_trans(osb, credits);
1750 if (IS_ERR(handle)) {
1751 ret = PTR_ERR(handle);
1752 mlog_errno(ret);
607d44aa 1753 goto out;
9517bac6
MF
1754 }
1755
3a307ffc
MF
1756 wc->w_handle = handle;
1757
1758 /*
1759 * We don't want this to fail in ocfs2_write_end(), so do it
1760 * here.
1761 */
1762 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1763 OCFS2_JOURNAL_ACCESS_WRITE);
1764 if (ret) {
9517bac6
MF
1765 mlog_errno(ret);
1766 goto out_commit;
1767 }
1768
3a307ffc
MF
1769 /*
1770 * Fill our page array first. That way we've grabbed enough so
1771 * that we can zero and flush if we error after adding the
1772 * extent.
1773 */
1774 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
b27b7cbc
MF
1775 clusters_to_alloc + extents_to_split,
1776 mmap_page);
9517bac6
MF
1777 if (ret) {
1778 mlog_errno(ret);
1779 goto out_commit;
1780 }
1781
0d172baa
MF
1782 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1783 len);
1784 if (ret) {
1785 mlog_errno(ret);
1786 goto out_commit;
9517bac6 1787 }
9517bac6 1788
3a307ffc
MF
1789 if (data_ac)
1790 ocfs2_free_alloc_context(data_ac);
1791 if (meta_ac)
1792 ocfs2_free_alloc_context(meta_ac);
9517bac6 1793
1afc32b9 1794success:
3a307ffc
MF
1795 *pagep = wc->w_target_page;
1796 *fsdata = wc;
1797 return 0;
9517bac6
MF
1798out_commit:
1799 ocfs2_commit_trans(osb, handle);
1800
9517bac6 1801out:
3a307ffc
MF
1802 ocfs2_free_write_ctxt(wc);
1803
9517bac6
MF
1804 if (data_ac)
1805 ocfs2_free_alloc_context(data_ac);
1806 if (meta_ac)
1807 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1808 return ret;
1809}
1810
b6af1bcd
NP
1811static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1812 loff_t pos, unsigned len, unsigned flags,
1813 struct page **pagep, void **fsdata)
607d44aa
MF
1814{
1815 int ret;
1816 struct buffer_head *di_bh = NULL;
1817 struct inode *inode = mapping->host;
1818
e63aecb6 1819 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1820 if (ret) {
1821 mlog_errno(ret);
1822 return ret;
1823 }
1824
1825 /*
1826 * Take alloc sem here to prevent concurrent lookups. That way
1827 * the mapping, zeroing and tree manipulation within
1828 * ocfs2_write() will be safe against ->readpage(). This
1829 * should also serve to lock out allocation from a shared
1830 * writeable region.
1831 */
1832 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1833
607d44aa 1834 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1835 fsdata, di_bh, NULL);
607d44aa
MF
1836 if (ret) {
1837 mlog_errno(ret);
c934a92d 1838 goto out_fail;
607d44aa
MF
1839 }
1840
1841 brelse(di_bh);
1842
1843 return 0;
1844
607d44aa
MF
1845out_fail:
1846 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1847
1848 brelse(di_bh);
e63aecb6 1849 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1850
1851 return ret;
1852}
1853
1afc32b9
MF
1854static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1855 unsigned len, unsigned *copied,
1856 struct ocfs2_dinode *di,
1857 struct ocfs2_write_ctxt *wc)
1858{
1859 void *kaddr;
1860
1861 if (unlikely(*copied < len)) {
1862 if (!PageUptodate(wc->w_target_page)) {
1863 *copied = 0;
1864 return;
1865 }
1866 }
1867
1868 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1869 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1870 kunmap_atomic(kaddr, KM_USER0);
1871
1872 mlog(0, "Data written to inode at offset %llu. "
1873 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1874 (unsigned long long)pos, *copied,
1875 le16_to_cpu(di->id2.i_data.id_count),
1876 le16_to_cpu(di->i_dyn_features));
1877}
1878
7307de80
MF
1879int ocfs2_write_end_nolock(struct address_space *mapping,
1880 loff_t pos, unsigned len, unsigned copied,
1881 struct page *page, void *fsdata)
3a307ffc
MF
1882{
1883 int i;
1884 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1885 struct inode *inode = mapping->host;
1886 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1887 struct ocfs2_write_ctxt *wc = fsdata;
1888 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1889 handle_t *handle = wc->w_handle;
1890 struct page *tmppage;
1891
1afc32b9
MF
1892 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1893 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1894 goto out_write_size;
1895 }
1896
3a307ffc
MF
1897 if (unlikely(copied < len)) {
1898 if (!PageUptodate(wc->w_target_page))
1899 copied = 0;
1900
1901 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1902 start+len);
1903 }
1904 flush_dcache_page(wc->w_target_page);
1905
1906 for(i = 0; i < wc->w_num_pages; i++) {
1907 tmppage = wc->w_pages[i];
1908
1909 if (tmppage == wc->w_target_page) {
1910 from = wc->w_target_from;
1911 to = wc->w_target_to;
1912
1913 BUG_ON(from > PAGE_CACHE_SIZE ||
1914 to > PAGE_CACHE_SIZE ||
1915 to < from);
1916 } else {
1917 /*
1918 * Pages adjacent to the target (if any) imply
1919 * a hole-filling write in which case we want
1920 * to flush their entire range.
1921 */
1922 from = 0;
1923 to = PAGE_CACHE_SIZE;
1924 }
1925
961cecbe 1926 if (page_has_buffers(tmppage)) {
2b4e30fb
JB
1927 if (ocfs2_should_order_data(inode)) {
1928 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1929#ifdef CONFIG_OCFS2_COMPAT_JBD
961cecbe
SM
1930 walk_page_buffers(wc->w_handle,
1931 page_buffers(tmppage),
1932 from, to, NULL,
1933 ocfs2_journal_dirty_data);
2b4e30fb
JB
1934#endif
1935 }
961cecbe
SM
1936 block_commit_write(tmppage, from, to);
1937 }
3a307ffc
MF
1938 }
1939
1afc32b9 1940out_write_size:
3a307ffc
MF
1941 pos += copied;
1942 if (pos > inode->i_size) {
1943 i_size_write(inode, pos);
1944 mark_inode_dirty(inode);
1945 }
1946 inode->i_blocks = ocfs2_inode_sector_count(inode);
1947 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1948 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1949 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1950 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1951 ocfs2_journal_dirty(handle, wc->w_di_bh);
1952
1953 ocfs2_commit_trans(osb, handle);
59a5e416 1954
b27b7cbc
MF
1955 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1956
607d44aa
MF
1957 ocfs2_free_write_ctxt(wc);
1958
1959 return copied;
1960}
1961
b6af1bcd
NP
1962static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1963 loff_t pos, unsigned len, unsigned copied,
1964 struct page *page, void *fsdata)
607d44aa
MF
1965{
1966 int ret;
1967 struct inode *inode = mapping->host;
1968
1969 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1970
3a307ffc 1971 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 1972 ocfs2_inode_unlock(inode, 1);
9517bac6 1973
607d44aa 1974 return ret;
9517bac6
MF
1975}
1976
f5e54d6e 1977const struct address_space_operations ocfs2_aops = {
ccd979bd 1978 .readpage = ocfs2_readpage,
628a24f5 1979 .readpages = ocfs2_readpages,
ccd979bd 1980 .writepage = ocfs2_writepage,
b6af1bcd
NP
1981 .write_begin = ocfs2_write_begin,
1982 .write_end = ocfs2_write_end,
ccd979bd
MF
1983 .bmap = ocfs2_bmap,
1984 .sync_page = block_sync_page,
03f981cf
JB
1985 .direct_IO = ocfs2_direct_IO,
1986 .invalidatepage = ocfs2_invalidatepage,
1987 .releasepage = ocfs2_releasepage,
1988 .migratepage = buffer_migrate_page,
ccd979bd 1989};