ocfs2: Remove ENTRY from masklog.
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd
MF
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
293b2f70 47#include "refcounttree.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
ef6b689b
TM
62 mlog(0, "(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
64
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
71 }
72
b657c95c 73 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
77 }
78 fe = (struct ocfs2_dinode *) bh->b_data;
79
ccd979bd
MF
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
85 }
86
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
96 }
97
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
108 }
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
114 }
115 brelse(buffer_cache_bh);
116 }
117
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121 err = 0;
122
123bail:
a81cb88b 124 brelse(bh);
ccd979bd
MF
125
126 mlog_exit(err);
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 138
ef6b689b
TM
139 mlog(0, "(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
ebdec241 168 * allows __block_write_begin() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
25baf2da 199 }
ccd979bd 200
5693486b
JB
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
206
ccd979bd
MF
207bail:
208 if (err < 0)
209 err = -EIO;
210
211 mlog_exit(err);
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
ef6b689b 281 mlog(0, "(0x%p, %lu)\n", file, (page ? page->index : 0));
ccd979bd 282
e63aecb6 283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
284 if (ret != 0) {
285 if (ret == AOP_TRUNCATED_PAGE)
286 unlock = 0;
287 mlog_errno(ret);
288 goto out;
289 }
290
6798d35a 291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 292 ret = AOP_TRUNCATED_PAGE;
e63aecb6 293 goto out_inode_unlock;
e9dfc0b2 294 }
ccd979bd
MF
295
296 /*
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
54cb8821 301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
302 * and notice that the page they just read isn't needed.
303 *
304 * XXX sys_readahead() seems to get that wrong?
305 */
306 if (start >= i_size_read(inode)) {
eebd2aa3 307 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
308 SetPageUptodate(page);
309 ret = 0;
310 goto out_alloc;
311 }
312
6798d35a
MF
313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 ret = ocfs2_readpage_inline(inode, page);
315 else
316 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
317 unlock = 0;
318
ccd979bd
MF
319out_alloc:
320 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
321out_inode_unlock:
322 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
323out:
324 if (unlock)
325 unlock_page(page);
326 mlog_exit(ret);
327 return ret;
328}
329
628a24f5
MF
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341{
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384}
385
ccd979bd
MF
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
399 int ret;
400
ef6b689b 401 mlog(0, "(0x%p)\n", page);
ccd979bd
MF
402
403 ret = block_write_full_page(page, ocfs2_get_block, wbc);
404
405 mlog_exit(ret);
406
407 return ret;
408}
409
ccd979bd
MF
410/* Taken from ext3. We don't necessarily need the full blown
411 * functionality yet, but IMHO it's better to cut and paste the whole
412 * thing so we can avoid introducing our own bugs (and easily pick up
413 * their fixes when they happen) --Mark */
60b11392
MF
414int walk_page_buffers( handle_t *handle,
415 struct buffer_head *head,
416 unsigned from,
417 unsigned to,
418 int *partial,
419 int (*fn)( handle_t *handle,
420 struct buffer_head *bh))
ccd979bd
MF
421{
422 struct buffer_head *bh;
423 unsigned block_start, block_end;
424 unsigned blocksize = head->b_size;
425 int err, ret = 0;
426 struct buffer_head *next;
427
428 for ( bh = head, block_start = 0;
429 ret == 0 && (bh != head || !block_start);
430 block_start = block_end, bh = next)
431 {
432 next = bh->b_this_page;
433 block_end = block_start + blocksize;
434 if (block_end <= from || block_start >= to) {
435 if (partial && !buffer_uptodate(bh))
436 *partial = 1;
437 continue;
438 }
439 err = (*fn)(handle, bh);
440 if (!ret)
441 ret = err;
442 }
443 return ret;
444}
445
ccd979bd
MF
446static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
447{
448 sector_t status;
449 u64 p_blkno = 0;
450 int err = 0;
451 struct inode *inode = mapping->host;
452
ef6b689b 453 mlog(0, "(block = %llu)\n", (unsigned long long)block);
ccd979bd
MF
454
455 /* We don't need to lock journal system files, since they aren't
456 * accessed concurrently from multiple nodes.
457 */
458 if (!INODE_JOURNAL(inode)) {
e63aecb6 459 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
460 if (err) {
461 if (err != -ENOENT)
462 mlog_errno(err);
463 goto bail;
464 }
465 down_read(&OCFS2_I(inode)->ip_alloc_sem);
466 }
467
6798d35a
MF
468 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
469 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
470 NULL);
ccd979bd
MF
471
472 if (!INODE_JOURNAL(inode)) {
473 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 474 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
475 }
476
477 if (err) {
478 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
479 (unsigned long long)block);
480 mlog_errno(err);
481 goto bail;
482 }
483
ccd979bd
MF
484bail:
485 status = err ? 0 : p_blkno;
486
487 mlog_exit((int)status);
488
489 return status;
490}
491
492/*
493 * TODO: Make this into a generic get_blocks function.
494 *
495 * From do_direct_io in direct-io.c:
496 * "So what we do is to permit the ->get_blocks function to populate
497 * bh.b_size with the size of IO which is permitted at this offset and
498 * this i_blkbits."
499 *
500 * This function is called directly from get_more_blocks in direct-io.c.
501 *
502 * called like this: dio->get_blocks(dio->inode, fs_startblk,
503 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
504 *
505 * Note that we never bother to allocate blocks here, and thus ignore the
506 * create argument.
ccd979bd
MF
507 */
508static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
509 struct buffer_head *bh_result, int create)
510{
511 int ret;
4f902c37 512 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 513 unsigned int ext_flags;
184d7d20 514 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 515 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 516
ccd979bd
MF
517 /* This function won't even be called if the request isn't all
518 * nicely aligned and of the right size, so there's no need
519 * for us to check any of that. */
520
25baf2da 521 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 522
ccd979bd
MF
523 /* This figures out the size of the next contiguous block, and
524 * our logical offset */
363041a5 525 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 526 &contig_blocks, &ext_flags);
ccd979bd
MF
527 if (ret) {
528 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
529 (unsigned long long)iblock);
530 ret = -EIO;
531 goto bail;
532 }
533
cbaee472
TM
534 /* We should already CoW the refcounted extent in case of create. */
535 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
536
25baf2da
MF
537 /*
538 * get_more_blocks() expects us to describe a hole by clearing
539 * the mapped bit on bh_result().
49cb8d2d
MF
540 *
541 * Consider an unwritten extent as a hole.
25baf2da 542 */
49cb8d2d 543 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 544 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 545 else
25baf2da 546 clear_buffer_mapped(bh_result);
ccd979bd
MF
547
548 /* make sure we don't map more than max_blocks blocks here as
549 that's all the kernel will handle at this point. */
550 if (max_blocks < contig_blocks)
551 contig_blocks = max_blocks;
552 bh_result->b_size = contig_blocks << blocksize_bits;
553bail:
554 return ret;
555}
556
2bd63216 557/*
ccd979bd
MF
558 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
559 * particularly interested in the aio/dio case. Like the core uses
560 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
561 * truncation on another.
562 */
563static void ocfs2_dio_end_io(struct kiocb *iocb,
564 loff_t offset,
565 ssize_t bytes,
40e2e973
CH
566 void *private,
567 int ret,
568 bool is_async)
ccd979bd 569{
d28c9174 570 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 571 int level;
ccd979bd
MF
572
573 /* this io's submitter should not have unlocked this before we could */
574 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 575
39c99f12
TY
576 if (ocfs2_iocb_is_sem_locked(iocb)) {
577 up_read(&inode->i_alloc_sem);
578 ocfs2_iocb_clear_sem_locked(iocb);
579 }
580
ccd979bd 581 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
582
583 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 584 ocfs2_rw_unlock(inode, level);
40e2e973
CH
585
586 if (is_async)
587 aio_complete(iocb, ret, 0);
ccd979bd
MF
588}
589
03f981cf
JB
590/*
591 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
592 * from ext3. PageChecked() bits have been removed as OCFS2 does not
593 * do journalled data.
594 */
595static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
596{
597 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598
2b4e30fb 599 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
600}
601
602static int ocfs2_releasepage(struct page *page, gfp_t wait)
603{
604 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
605
606 if (!page_has_buffers(page))
607 return 0;
2b4e30fb 608 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
609}
610
ccd979bd
MF
611static ssize_t ocfs2_direct_IO(int rw,
612 struct kiocb *iocb,
613 const struct iovec *iov,
614 loff_t offset,
615 unsigned long nr_segs)
616{
617 struct file *file = iocb->ki_filp;
d28c9174 618 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
619 int ret;
620
6798d35a
MF
621 /*
622 * Fallback to buffered I/O if we see an inode without
623 * extents.
624 */
625 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
626 return 0;
627
b80474b4
TM
628 /* Fallback to buffered I/O if we are appending. */
629 if (i_size_read(inode) <= offset)
630 return 0;
631
eafdc7d1
CH
632 ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
633 iov, offset, nr_segs,
634 ocfs2_direct_IO_get_blocks,
635 ocfs2_dio_end_io, NULL, 0);
c934a92d 636
ccd979bd
MF
637 mlog_exit(ret);
638 return ret;
639}
640
9517bac6
MF
641static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
642 u32 cpos,
643 unsigned int *start,
644 unsigned int *end)
645{
646 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
647
648 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
649 unsigned int cpp;
650
651 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
652
653 cluster_start = cpos % cpp;
654 cluster_start = cluster_start << osb->s_clustersize_bits;
655
656 cluster_end = cluster_start + osb->s_clustersize;
657 }
658
659 BUG_ON(cluster_start > PAGE_SIZE);
660 BUG_ON(cluster_end > PAGE_SIZE);
661
662 if (start)
663 *start = cluster_start;
664 if (end)
665 *end = cluster_end;
666}
667
668/*
669 * 'from' and 'to' are the region in the page to avoid zeroing.
670 *
671 * If pagesize > clustersize, this function will avoid zeroing outside
672 * of the cluster boundary.
673 *
674 * from == to == 0 is code for "zero the entire cluster region"
675 */
676static void ocfs2_clear_page_regions(struct page *page,
677 struct ocfs2_super *osb, u32 cpos,
678 unsigned from, unsigned to)
679{
680 void *kaddr;
681 unsigned int cluster_start, cluster_end;
682
683 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
684
685 kaddr = kmap_atomic(page, KM_USER0);
686
687 if (from || to) {
688 if (from > cluster_start)
689 memset(kaddr + cluster_start, 0, from - cluster_start);
690 if (to < cluster_end)
691 memset(kaddr + to, 0, cluster_end - to);
692 } else {
693 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
694 }
695
696 kunmap_atomic(kaddr, KM_USER0);
697}
698
4e9563fd
MF
699/*
700 * Nonsparse file systems fully allocate before we get to the write
701 * code. This prevents ocfs2_write() from tagging the write as an
702 * allocating one, which means ocfs2_map_page_blocks() might try to
703 * read-in the blocks at the tail of our file. Avoid reading them by
704 * testing i_size against each block offset.
705 */
706static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
707 unsigned int block_start)
708{
709 u64 offset = page_offset(page) + block_start;
710
711 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
712 return 1;
713
714 if (i_size_read(inode) > offset)
715 return 1;
716
717 return 0;
718}
719
9517bac6 720/*
ebdec241 721 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
722 * mapping by now though, and the entire write will be allocating or
723 * it won't, so not much need to use BH_New.
724 *
725 * This will also skip zeroing, which is handled externally.
726 */
60b11392
MF
727int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
728 struct inode *inode, unsigned int from,
729 unsigned int to, int new)
9517bac6
MF
730{
731 int ret = 0;
732 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
733 unsigned int block_end, block_start;
734 unsigned int bsize = 1 << inode->i_blkbits;
735
736 if (!page_has_buffers(page))
737 create_empty_buffers(page, bsize, 0);
738
739 head = page_buffers(page);
740 for (bh = head, block_start = 0; bh != head || !block_start;
741 bh = bh->b_this_page, block_start += bsize) {
742 block_end = block_start + bsize;
743
3a307ffc
MF
744 clear_buffer_new(bh);
745
9517bac6
MF
746 /*
747 * Ignore blocks outside of our i/o range -
748 * they may belong to unallocated clusters.
749 */
60b11392 750 if (block_start >= to || block_end <= from) {
9517bac6
MF
751 if (PageUptodate(page))
752 set_buffer_uptodate(bh);
753 continue;
754 }
755
756 /*
757 * For an allocating write with cluster size >= page
758 * size, we always write the entire page.
759 */
3a307ffc
MF
760 if (new)
761 set_buffer_new(bh);
9517bac6
MF
762
763 if (!buffer_mapped(bh)) {
764 map_bh(bh, inode->i_sb, *p_blkno);
765 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
766 }
767
768 if (PageUptodate(page)) {
769 if (!buffer_uptodate(bh))
770 set_buffer_uptodate(bh);
771 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 772 !buffer_new(bh) &&
4e9563fd 773 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 774 (block_start < from || block_end > to)) {
9517bac6
MF
775 ll_rw_block(READ, 1, &bh);
776 *wait_bh++=bh;
777 }
778
779 *p_blkno = *p_blkno + 1;
780 }
781
782 /*
783 * If we issued read requests - let them complete.
784 */
785 while(wait_bh > wait) {
786 wait_on_buffer(*--wait_bh);
787 if (!buffer_uptodate(*wait_bh))
788 ret = -EIO;
789 }
790
791 if (ret == 0 || !new)
792 return ret;
793
794 /*
795 * If we get -EIO above, zero out any newly allocated blocks
796 * to avoid exposing stale data.
797 */
798 bh = head;
799 block_start = 0;
800 do {
9517bac6
MF
801 block_end = block_start + bsize;
802 if (block_end <= from)
803 goto next_bh;
804 if (block_start >= to)
805 break;
806
eebd2aa3 807 zero_user(page, block_start, bh->b_size);
9517bac6
MF
808 set_buffer_uptodate(bh);
809 mark_buffer_dirty(bh);
810
811next_bh:
812 block_start = block_end;
813 bh = bh->b_this_page;
814 } while (bh != head);
815
816 return ret;
817}
818
3a307ffc
MF
819#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
820#define OCFS2_MAX_CTXT_PAGES 1
821#else
822#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
823#endif
824
825#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
826
6af67d82 827/*
3a307ffc 828 * Describe the state of a single cluster to be written to.
6af67d82 829 */
3a307ffc
MF
830struct ocfs2_write_cluster_desc {
831 u32 c_cpos;
832 u32 c_phys;
833 /*
834 * Give this a unique field because c_phys eventually gets
835 * filled.
836 */
837 unsigned c_new;
b27b7cbc 838 unsigned c_unwritten;
e7432675 839 unsigned c_needs_zero;
3a307ffc 840};
6af67d82 841
3a307ffc
MF
842struct ocfs2_write_ctxt {
843 /* Logical cluster position / len of write */
844 u32 w_cpos;
845 u32 w_clen;
6af67d82 846
e7432675
SM
847 /* First cluster allocated in a nonsparse extend */
848 u32 w_first_new_cpos;
849
3a307ffc 850 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 851
3a307ffc
MF
852 /*
853 * This is true if page_size > cluster_size.
854 *
855 * It triggers a set of special cases during write which might
856 * have to deal with allocating writes to partial pages.
857 */
858 unsigned int w_large_pages;
6af67d82 859
3a307ffc
MF
860 /*
861 * Pages involved in this write.
862 *
863 * w_target_page is the page being written to by the user.
864 *
865 * w_pages is an array of pages which always contains
866 * w_target_page, and in the case of an allocating write with
867 * page_size < cluster size, it will contain zero'd and mapped
868 * pages adjacent to w_target_page which need to be written
869 * out in so that future reads from that region will get
870 * zero's.
871 */
3a307ffc 872 unsigned int w_num_pages;
83fd9c7f 873 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 874 struct page *w_target_page;
eeb47d12 875
3a307ffc
MF
876 /*
877 * ocfs2_write_end() uses this to know what the real range to
878 * write in the target should be.
879 */
880 unsigned int w_target_from;
881 unsigned int w_target_to;
882
883 /*
884 * We could use journal_current_handle() but this is cleaner,
885 * IMHO -Mark
886 */
887 handle_t *w_handle;
888
889 struct buffer_head *w_di_bh;
b27b7cbc
MF
890
891 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
892};
893
1d410a6e 894void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
895{
896 int i;
897
1d410a6e
MF
898 for(i = 0; i < num_pages; i++) {
899 if (pages[i]) {
900 unlock_page(pages[i]);
901 mark_page_accessed(pages[i]);
902 page_cache_release(pages[i]);
903 }
6af67d82 904 }
1d410a6e
MF
905}
906
907static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
908{
909 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 910
3a307ffc
MF
911 brelse(wc->w_di_bh);
912 kfree(wc);
913}
914
915static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
916 struct ocfs2_super *osb, loff_t pos,
607d44aa 917 unsigned len, struct buffer_head *di_bh)
3a307ffc 918{
30b8548f 919 u32 cend;
3a307ffc
MF
920 struct ocfs2_write_ctxt *wc;
921
922 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
923 if (!wc)
924 return -ENOMEM;
6af67d82 925
3a307ffc 926 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 927 wc->w_first_new_cpos = UINT_MAX;
30b8548f 928 cend = (pos + len - 1) >> osb->s_clustersize_bits;
929 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
930 get_bh(di_bh);
931 wc->w_di_bh = di_bh;
6af67d82 932
3a307ffc
MF
933 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
934 wc->w_large_pages = 1;
935 else
936 wc->w_large_pages = 0;
937
b27b7cbc
MF
938 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
939
3a307ffc 940 *wcp = wc;
6af67d82 941
3a307ffc 942 return 0;
6af67d82
MF
943}
944
9517bac6 945/*
3a307ffc
MF
946 * If a page has any new buffers, zero them out here, and mark them uptodate
947 * and dirty so they'll be written out (in order to prevent uninitialised
948 * block data from leaking). And clear the new bit.
9517bac6 949 */
3a307ffc 950static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 951{
3a307ffc
MF
952 unsigned int block_start, block_end;
953 struct buffer_head *head, *bh;
9517bac6 954
3a307ffc
MF
955 BUG_ON(!PageLocked(page));
956 if (!page_has_buffers(page))
957 return;
9517bac6 958
3a307ffc
MF
959 bh = head = page_buffers(page);
960 block_start = 0;
961 do {
962 block_end = block_start + bh->b_size;
963
964 if (buffer_new(bh)) {
965 if (block_end > from && block_start < to) {
966 if (!PageUptodate(page)) {
967 unsigned start, end;
3a307ffc
MF
968
969 start = max(from, block_start);
970 end = min(to, block_end);
971
eebd2aa3 972 zero_user_segment(page, start, end);
3a307ffc
MF
973 set_buffer_uptodate(bh);
974 }
975
976 clear_buffer_new(bh);
977 mark_buffer_dirty(bh);
978 }
979 }
9517bac6 980
3a307ffc
MF
981 block_start = block_end;
982 bh = bh->b_this_page;
983 } while (bh != head);
984}
985
986/*
987 * Only called when we have a failure during allocating write to write
988 * zero's to the newly allocated region.
989 */
990static void ocfs2_write_failure(struct inode *inode,
991 struct ocfs2_write_ctxt *wc,
992 loff_t user_pos, unsigned user_len)
993{
994 int i;
5c26a7b7
MF
995 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
996 to = user_pos + user_len;
3a307ffc
MF
997 struct page *tmppage;
998
5c26a7b7 999 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1000
3a307ffc
MF
1001 for(i = 0; i < wc->w_num_pages; i++) {
1002 tmppage = wc->w_pages[i];
9517bac6 1003
961cecbe 1004 if (page_has_buffers(tmppage)) {
53ef99ca 1005 if (ocfs2_should_order_data(inode))
2b4e30fb 1006 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1007
1008 block_commit_write(tmppage, from, to);
1009 }
9517bac6 1010 }
9517bac6
MF
1011}
1012
3a307ffc
MF
1013static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1014 struct ocfs2_write_ctxt *wc,
1015 struct page *page, u32 cpos,
1016 loff_t user_pos, unsigned user_len,
1017 int new)
9517bac6 1018{
3a307ffc
MF
1019 int ret;
1020 unsigned int map_from = 0, map_to = 0;
9517bac6 1021 unsigned int cluster_start, cluster_end;
3a307ffc 1022 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1023
3a307ffc 1024 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1025 &cluster_start, &cluster_end);
1026
3a307ffc
MF
1027 if (page == wc->w_target_page) {
1028 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1029 map_to = map_from + user_len;
1030
1031 if (new)
1032 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1033 cluster_start, cluster_end,
1034 new);
1035 else
1036 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1037 map_from, map_to, new);
1038 if (ret) {
9517bac6
MF
1039 mlog_errno(ret);
1040 goto out;
1041 }
1042
3a307ffc
MF
1043 user_data_from = map_from;
1044 user_data_to = map_to;
9517bac6 1045 if (new) {
3a307ffc
MF
1046 map_from = cluster_start;
1047 map_to = cluster_end;
9517bac6
MF
1048 }
1049 } else {
1050 /*
1051 * If we haven't allocated the new page yet, we
1052 * shouldn't be writing it out without copying user
1053 * data. This is likely a math error from the caller.
1054 */
1055 BUG_ON(!new);
1056
3a307ffc
MF
1057 map_from = cluster_start;
1058 map_to = cluster_end;
9517bac6
MF
1059
1060 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1061 cluster_start, cluster_end, new);
9517bac6
MF
1062 if (ret) {
1063 mlog_errno(ret);
1064 goto out;
1065 }
1066 }
1067
1068 /*
1069 * Parts of newly allocated pages need to be zero'd.
1070 *
1071 * Above, we have also rewritten 'to' and 'from' - as far as
1072 * the rest of the function is concerned, the entire cluster
1073 * range inside of a page needs to be written.
1074 *
1075 * We can skip this if the page is up to date - it's already
1076 * been zero'd from being read in as a hole.
1077 */
1078 if (new && !PageUptodate(page))
1079 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1080 cpos, user_data_from, user_data_to);
9517bac6
MF
1081
1082 flush_dcache_page(page);
1083
9517bac6 1084out:
3a307ffc 1085 return ret;
9517bac6
MF
1086}
1087
1088/*
3a307ffc 1089 * This function will only grab one clusters worth of pages.
9517bac6 1090 */
3a307ffc
MF
1091static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1092 struct ocfs2_write_ctxt *wc,
693c241a
JB
1093 u32 cpos, loff_t user_pos,
1094 unsigned user_len, int new,
7307de80 1095 struct page *mmap_page)
9517bac6 1096{
3a307ffc 1097 int ret = 0, i;
693c241a 1098 unsigned long start, target_index, end_index, index;
9517bac6 1099 struct inode *inode = mapping->host;
693c241a 1100 loff_t last_byte;
9517bac6 1101
3a307ffc 1102 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1103
1104 /*
1105 * Figure out how many pages we'll be manipulating here. For
60b11392 1106 * non allocating write, we just change the one
693c241a
JB
1107 * page. Otherwise, we'll need a whole clusters worth. If we're
1108 * writing past i_size, we only need enough pages to cover the
1109 * last page of the write.
9517bac6 1110 */
9517bac6 1111 if (new) {
3a307ffc
MF
1112 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1113 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1114 /*
1115 * We need the index *past* the last page we could possibly
1116 * touch. This is the page past the end of the write or
1117 * i_size, whichever is greater.
1118 */
1119 last_byte = max(user_pos + user_len, i_size_read(inode));
1120 BUG_ON(last_byte < 1);
1121 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1122 if ((start + wc->w_num_pages) > end_index)
1123 wc->w_num_pages = end_index - start;
9517bac6 1124 } else {
3a307ffc
MF
1125 wc->w_num_pages = 1;
1126 start = target_index;
9517bac6
MF
1127 }
1128
3a307ffc 1129 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1130 index = start + i;
1131
7307de80
MF
1132 if (index == target_index && mmap_page) {
1133 /*
1134 * ocfs2_pagemkwrite() is a little different
1135 * and wants us to directly use the page
1136 * passed in.
1137 */
1138 lock_page(mmap_page);
1139
1140 if (mmap_page->mapping != mapping) {
1141 unlock_page(mmap_page);
1142 /*
1143 * Sanity check - the locking in
1144 * ocfs2_pagemkwrite() should ensure
1145 * that this code doesn't trigger.
1146 */
1147 ret = -EINVAL;
1148 mlog_errno(ret);
1149 goto out;
1150 }
1151
1152 page_cache_get(mmap_page);
1153 wc->w_pages[i] = mmap_page;
1154 } else {
1155 wc->w_pages[i] = find_or_create_page(mapping, index,
1156 GFP_NOFS);
1157 if (!wc->w_pages[i]) {
1158 ret = -ENOMEM;
1159 mlog_errno(ret);
1160 goto out;
1161 }
9517bac6 1162 }
3a307ffc
MF
1163
1164 if (index == target_index)
1165 wc->w_target_page = wc->w_pages[i];
9517bac6 1166 }
3a307ffc
MF
1167out:
1168 return ret;
1169}
1170
1171/*
1172 * Prepare a single cluster for write one cluster into the file.
1173 */
1174static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1175 u32 phys, unsigned int unwritten,
e7432675 1176 unsigned int should_zero,
b27b7cbc 1177 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1178 struct ocfs2_alloc_context *meta_ac,
1179 struct ocfs2_write_ctxt *wc, u32 cpos,
1180 loff_t user_pos, unsigned user_len)
1181{
e7432675 1182 int ret, i, new;
3a307ffc
MF
1183 u64 v_blkno, p_blkno;
1184 struct inode *inode = mapping->host;
f99b9b7c 1185 struct ocfs2_extent_tree et;
3a307ffc
MF
1186
1187 new = phys == 0 ? 1 : 0;
9517bac6 1188 if (new) {
3a307ffc
MF
1189 u32 tmp_pos;
1190
9517bac6
MF
1191 /*
1192 * This is safe to call with the page locks - it won't take
1193 * any additional semaphores or cluster locks.
1194 */
3a307ffc 1195 tmp_pos = cpos;
0eb8d47e
TM
1196 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1197 &tmp_pos, 1, 0, wc->w_di_bh,
1198 wc->w_handle, data_ac,
1199 meta_ac, NULL);
9517bac6
MF
1200 /*
1201 * This shouldn't happen because we must have already
1202 * calculated the correct meta data allocation required. The
1203 * internal tree allocation code should know how to increase
1204 * transaction credits itself.
1205 *
1206 * If need be, we could handle -EAGAIN for a
1207 * RESTART_TRANS here.
1208 */
1209 mlog_bug_on_msg(ret == -EAGAIN,
1210 "Inode %llu: EAGAIN return during allocation.\n",
1211 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1212 if (ret < 0) {
1213 mlog_errno(ret);
1214 goto out;
1215 }
b27b7cbc 1216 } else if (unwritten) {
5e404e9e
JB
1217 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1218 wc->w_di_bh);
f99b9b7c 1219 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1220 wc->w_handle, cpos, 1, phys,
f99b9b7c 1221 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1222 if (ret < 0) {
1223 mlog_errno(ret);
1224 goto out;
1225 }
1226 }
3a307ffc 1227
b27b7cbc 1228 if (should_zero)
3a307ffc 1229 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1230 else
3a307ffc 1231 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1232
3a307ffc
MF
1233 /*
1234 * The only reason this should fail is due to an inability to
1235 * find the extent added.
1236 */
49cb8d2d
MF
1237 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1238 NULL);
9517bac6 1239 if (ret < 0) {
3a307ffc
MF
1240 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1241 "at logical block %llu",
1242 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1243 (unsigned long long)v_blkno);
9517bac6
MF
1244 goto out;
1245 }
1246
1247 BUG_ON(p_blkno == 0);
1248
3a307ffc
MF
1249 for(i = 0; i < wc->w_num_pages; i++) {
1250 int tmpret;
9517bac6 1251
3a307ffc
MF
1252 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1253 wc->w_pages[i], cpos,
b27b7cbc
MF
1254 user_pos, user_len,
1255 should_zero);
3a307ffc
MF
1256 if (tmpret) {
1257 mlog_errno(tmpret);
1258 if (ret == 0)
cbfa9639 1259 ret = tmpret;
3a307ffc 1260 }
9517bac6
MF
1261 }
1262
3a307ffc
MF
1263 /*
1264 * We only have cleanup to do in case of allocating write.
1265 */
1266 if (ret && new)
1267 ocfs2_write_failure(inode, wc, user_pos, user_len);
1268
9517bac6 1269out:
9517bac6 1270
3a307ffc 1271 return ret;
9517bac6
MF
1272}
1273
0d172baa
MF
1274static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1275 struct ocfs2_alloc_context *data_ac,
1276 struct ocfs2_alloc_context *meta_ac,
1277 struct ocfs2_write_ctxt *wc,
1278 loff_t pos, unsigned len)
1279{
1280 int ret, i;
db56246c
MF
1281 loff_t cluster_off;
1282 unsigned int local_len = len;
0d172baa 1283 struct ocfs2_write_cluster_desc *desc;
db56246c 1284 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1285
1286 for (i = 0; i < wc->w_clen; i++) {
1287 desc = &wc->w_desc[i];
1288
db56246c
MF
1289 /*
1290 * We have to make sure that the total write passed in
1291 * doesn't extend past a single cluster.
1292 */
1293 local_len = len;
1294 cluster_off = pos & (osb->s_clustersize - 1);
1295 if ((cluster_off + local_len) > osb->s_clustersize)
1296 local_len = osb->s_clustersize - cluster_off;
1297
b27b7cbc 1298 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1299 desc->c_unwritten,
1300 desc->c_needs_zero,
1301 data_ac, meta_ac,
db56246c 1302 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1303 if (ret) {
1304 mlog_errno(ret);
1305 goto out;
1306 }
db56246c
MF
1307
1308 len -= local_len;
1309 pos += local_len;
0d172baa
MF
1310 }
1311
1312 ret = 0;
1313out:
1314 return ret;
1315}
1316
3a307ffc
MF
1317/*
1318 * ocfs2_write_end() wants to know which parts of the target page it
1319 * should complete the write on. It's easiest to compute them ahead of
1320 * time when a more complete view of the write is available.
1321 */
1322static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1323 struct ocfs2_write_ctxt *wc,
1324 loff_t pos, unsigned len, int alloc)
9517bac6 1325{
3a307ffc 1326 struct ocfs2_write_cluster_desc *desc;
9517bac6 1327
3a307ffc
MF
1328 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1329 wc->w_target_to = wc->w_target_from + len;
1330
1331 if (alloc == 0)
1332 return;
1333
1334 /*
1335 * Allocating write - we may have different boundaries based
1336 * on page size and cluster size.
1337 *
1338 * NOTE: We can no longer compute one value from the other as
1339 * the actual write length and user provided length may be
1340 * different.
1341 */
9517bac6 1342
3a307ffc
MF
1343 if (wc->w_large_pages) {
1344 /*
1345 * We only care about the 1st and last cluster within
b27b7cbc 1346 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1347 * value may be extended out to the start/end of a
1348 * newly allocated cluster.
1349 */
1350 desc = &wc->w_desc[0];
e7432675 1351 if (desc->c_needs_zero)
3a307ffc
MF
1352 ocfs2_figure_cluster_boundaries(osb,
1353 desc->c_cpos,
1354 &wc->w_target_from,
1355 NULL);
1356
1357 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1358 if (desc->c_needs_zero)
3a307ffc
MF
1359 ocfs2_figure_cluster_boundaries(osb,
1360 desc->c_cpos,
1361 NULL,
1362 &wc->w_target_to);
1363 } else {
1364 wc->w_target_from = 0;
1365 wc->w_target_to = PAGE_CACHE_SIZE;
1366 }
9517bac6
MF
1367}
1368
0d172baa
MF
1369/*
1370 * Populate each single-cluster write descriptor in the write context
1371 * with information about the i/o to be done.
b27b7cbc
MF
1372 *
1373 * Returns the number of clusters that will have to be allocated, as
1374 * well as a worst case estimate of the number of extent records that
1375 * would have to be created during a write to an unwritten region.
0d172baa
MF
1376 */
1377static int ocfs2_populate_write_desc(struct inode *inode,
1378 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1379 unsigned int *clusters_to_alloc,
1380 unsigned int *extents_to_split)
9517bac6 1381{
0d172baa 1382 int ret;
3a307ffc 1383 struct ocfs2_write_cluster_desc *desc;
0d172baa 1384 unsigned int num_clusters = 0;
b27b7cbc 1385 unsigned int ext_flags = 0;
0d172baa
MF
1386 u32 phys = 0;
1387 int i;
9517bac6 1388
b27b7cbc
MF
1389 *clusters_to_alloc = 0;
1390 *extents_to_split = 0;
1391
3a307ffc
MF
1392 for (i = 0; i < wc->w_clen; i++) {
1393 desc = &wc->w_desc[i];
1394 desc->c_cpos = wc->w_cpos + i;
1395
1396 if (num_clusters == 0) {
b27b7cbc
MF
1397 /*
1398 * Need to look up the next extent record.
1399 */
3a307ffc 1400 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1401 &num_clusters, &ext_flags);
3a307ffc
MF
1402 if (ret) {
1403 mlog_errno(ret);
607d44aa 1404 goto out;
3a307ffc 1405 }
b27b7cbc 1406
293b2f70
TM
1407 /* We should already CoW the refcountd extent. */
1408 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1409
b27b7cbc
MF
1410 /*
1411 * Assume worst case - that we're writing in
1412 * the middle of the extent.
1413 *
1414 * We can assume that the write proceeds from
1415 * left to right, in which case the extent
1416 * insert code is smart enough to coalesce the
1417 * next splits into the previous records created.
1418 */
1419 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1420 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1421 } else if (phys) {
1422 /*
1423 * Only increment phys if it doesn't describe
1424 * a hole.
1425 */
1426 phys++;
1427 }
1428
e7432675
SM
1429 /*
1430 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1431 * file that got extended. w_first_new_cpos tells us
1432 * where the newly allocated clusters are so we can
1433 * zero them.
1434 */
1435 if (desc->c_cpos >= wc->w_first_new_cpos) {
1436 BUG_ON(phys == 0);
1437 desc->c_needs_zero = 1;
1438 }
1439
3a307ffc
MF
1440 desc->c_phys = phys;
1441 if (phys == 0) {
1442 desc->c_new = 1;
e7432675 1443 desc->c_needs_zero = 1;
0d172baa 1444 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1445 }
e7432675
SM
1446
1447 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1448 desc->c_unwritten = 1;
e7432675
SM
1449 desc->c_needs_zero = 1;
1450 }
3a307ffc
MF
1451
1452 num_clusters--;
9517bac6
MF
1453 }
1454
0d172baa
MF
1455 ret = 0;
1456out:
1457 return ret;
1458}
1459
1afc32b9
MF
1460static int ocfs2_write_begin_inline(struct address_space *mapping,
1461 struct inode *inode,
1462 struct ocfs2_write_ctxt *wc)
1463{
1464 int ret;
1465 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1466 struct page *page;
1467 handle_t *handle;
1468 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1469
1470 page = find_or_create_page(mapping, 0, GFP_NOFS);
1471 if (!page) {
1472 ret = -ENOMEM;
1473 mlog_errno(ret);
1474 goto out;
1475 }
1476 /*
1477 * If we don't set w_num_pages then this page won't get unlocked
1478 * and freed on cleanup of the write context.
1479 */
1480 wc->w_pages[0] = wc->w_target_page = page;
1481 wc->w_num_pages = 1;
1482
1483 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1484 if (IS_ERR(handle)) {
1485 ret = PTR_ERR(handle);
1486 mlog_errno(ret);
1487 goto out;
1488 }
1489
0cf2f763 1490 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1491 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1492 if (ret) {
1493 ocfs2_commit_trans(osb, handle);
1494
1495 mlog_errno(ret);
1496 goto out;
1497 }
1498
1499 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1500 ocfs2_set_inode_data_inline(inode, di);
1501
1502 if (!PageUptodate(page)) {
1503 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1504 if (ret) {
1505 ocfs2_commit_trans(osb, handle);
1506
1507 goto out;
1508 }
1509 }
1510
1511 wc->w_handle = handle;
1512out:
1513 return ret;
1514}
1515
1516int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1517{
1518 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1519
0d8a4e0c 1520 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1521 return 1;
1522 return 0;
1523}
1524
1525static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1526 struct inode *inode, loff_t pos,
1527 unsigned len, struct page *mmap_page,
1528 struct ocfs2_write_ctxt *wc)
1529{
1530 int ret, written = 0;
1531 loff_t end = pos + len;
1532 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1533 struct ocfs2_dinode *di = NULL;
1afc32b9
MF
1534
1535 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1536 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1537 oi->ip_dyn_features);
1538
1539 /*
1540 * Handle inodes which already have inline data 1st.
1541 */
1542 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1543 if (mmap_page == NULL &&
1544 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1545 goto do_inline_write;
1546
1547 /*
1548 * The write won't fit - we have to give this inode an
1549 * inline extent list now.
1550 */
1551 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1552 if (ret)
1553 mlog_errno(ret);
1554 goto out;
1555 }
1556
1557 /*
1558 * Check whether the inode can accept inline data.
1559 */
1560 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1561 return 0;
1562
1563 /*
1564 * Check whether the write can fit.
1565 */
d9ae49d6
TY
1566 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1567 if (mmap_page ||
1568 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1569 return 0;
1570
1571do_inline_write:
1572 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1573 if (ret) {
1574 mlog_errno(ret);
1575 goto out;
1576 }
1577
1578 /*
1579 * This signals to the caller that the data can be written
1580 * inline.
1581 */
1582 written = 1;
1583out:
1584 return written ? written : ret;
1585}
1586
65ed39d6
MF
1587/*
1588 * This function only does anything for file systems which can't
1589 * handle sparse files.
1590 *
1591 * What we want to do here is fill in any hole between the current end
1592 * of allocation and the end of our write. That way the rest of the
1593 * write path can treat it as an non-allocating write, which has no
1594 * special case code for sparse/nonsparse files.
1595 */
5693486b
JB
1596static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1597 struct buffer_head *di_bh,
1598 loff_t pos, unsigned len,
65ed39d6
MF
1599 struct ocfs2_write_ctxt *wc)
1600{
1601 int ret;
65ed39d6
MF
1602 loff_t newsize = pos + len;
1603
5693486b 1604 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1605
1606 if (newsize <= i_size_read(inode))
1607 return 0;
1608
5693486b 1609 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1610 if (ret)
1611 mlog_errno(ret);
1612
e7432675
SM
1613 wc->w_first_new_cpos =
1614 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1615
65ed39d6
MF
1616 return ret;
1617}
1618
5693486b
JB
1619static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1620 loff_t pos)
1621{
1622 int ret = 0;
1623
1624 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1625 if (pos > i_size_read(inode))
1626 ret = ocfs2_zero_extend(inode, di_bh, pos);
1627
1628 return ret;
1629}
1630
50308d81
TM
1631/*
1632 * Try to flush truncate logs if we can free enough clusters from it.
1633 * As for return value, "< 0" means error, "0" no space and "1" means
1634 * we have freed enough spaces and let the caller try to allocate again.
1635 */
1636static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1637 unsigned int needed)
1638{
1639 tid_t target;
1640 int ret = 0;
1641 unsigned int truncated_clusters;
1642
1643 mutex_lock(&osb->osb_tl_inode->i_mutex);
1644 truncated_clusters = osb->truncated_clusters;
1645 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1646
1647 /*
1648 * Check whether we can succeed in allocating if we free
1649 * the truncate log.
1650 */
1651 if (truncated_clusters < needed)
1652 goto out;
1653
1654 ret = ocfs2_flush_truncate_log(osb);
1655 if (ret) {
1656 mlog_errno(ret);
1657 goto out;
1658 }
1659
1660 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1661 jbd2_log_wait_commit(osb->journal->j_journal, target);
1662 ret = 1;
1663 }
1664out:
1665 return ret;
1666}
1667
0378da0f
TM
1668int ocfs2_write_begin_nolock(struct file *filp,
1669 struct address_space *mapping,
0d172baa
MF
1670 loff_t pos, unsigned len, unsigned flags,
1671 struct page **pagep, void **fsdata,
1672 struct buffer_head *di_bh, struct page *mmap_page)
1673{
e7432675 1674 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1675 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1676 struct ocfs2_write_ctxt *wc;
1677 struct inode *inode = mapping->host;
1678 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1679 struct ocfs2_dinode *di;
1680 struct ocfs2_alloc_context *data_ac = NULL;
1681 struct ocfs2_alloc_context *meta_ac = NULL;
1682 handle_t *handle;
f99b9b7c 1683 struct ocfs2_extent_tree et;
50308d81 1684 int try_free = 1, ret1;
0d172baa 1685
50308d81 1686try_again:
0d172baa
MF
1687 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1688 if (ret) {
1689 mlog_errno(ret);
1690 return ret;
1691 }
1692
1afc32b9
MF
1693 if (ocfs2_supports_inline_data(osb)) {
1694 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1695 mmap_page, wc);
1696 if (ret == 1) {
1697 ret = 0;
1698 goto success;
1699 }
1700 if (ret < 0) {
1701 mlog_errno(ret);
1702 goto out;
1703 }
1704 }
1705
5693486b
JB
1706 if (ocfs2_sparse_alloc(osb))
1707 ret = ocfs2_zero_tail(inode, di_bh, pos);
1708 else
1709 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1710 wc);
65ed39d6
MF
1711 if (ret) {
1712 mlog_errno(ret);
1713 goto out;
1714 }
1715
293b2f70
TM
1716 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1717 if (ret < 0) {
1718 mlog_errno(ret);
1719 goto out;
1720 } else if (ret == 1) {
50308d81 1721 clusters_need = wc->w_clen;
15502712 1722 ret = ocfs2_refcount_cow(inode, filp, di_bh,
37f8a2bf 1723 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1724 if (ret) {
1725 mlog_errno(ret);
1726 goto out;
1727 }
1728 }
1729
b27b7cbc
MF
1730 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1731 &extents_to_split);
0d172baa
MF
1732 if (ret) {
1733 mlog_errno(ret);
1734 goto out;
1735 }
50308d81 1736 clusters_need += clusters_to_alloc;
0d172baa
MF
1737
1738 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1739
3a307ffc
MF
1740 /*
1741 * We set w_target_from, w_target_to here so that
1742 * ocfs2_write_end() knows which range in the target page to
1743 * write out. An allocation requires that we write the entire
1744 * cluster range.
1745 */
b27b7cbc 1746 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1747 /*
1748 * XXX: We are stretching the limits of
b27b7cbc 1749 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1750 * the work to be done.
1751 */
e7d4cb6b
TM
1752 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1753 " clusters_to_add = %u, extents_to_split = %u\n",
1754 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1755 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1756 clusters_to_alloc, extents_to_split);
1757
5e404e9e
JB
1758 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1759 wc->w_di_bh);
f99b9b7c 1760 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1761 clusters_to_alloc, extents_to_split,
f99b9b7c 1762 &data_ac, &meta_ac);
9517bac6
MF
1763 if (ret) {
1764 mlog_errno(ret);
607d44aa 1765 goto out;
9517bac6
MF
1766 }
1767
4fe370af
MF
1768 if (data_ac)
1769 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1770
811f933d
TM
1771 credits = ocfs2_calc_extend_credits(inode->i_sb,
1772 &di->id2.i_list,
3a307ffc
MF
1773 clusters_to_alloc);
1774
9517bac6
MF
1775 }
1776
e7432675
SM
1777 /*
1778 * We have to zero sparse allocated clusters, unwritten extent clusters,
1779 * and non-sparse clusters we just extended. For non-sparse writes,
1780 * we know zeros will only be needed in the first and/or last cluster.
1781 */
1782 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1783 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1784 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1785 cluster_of_pages = 1;
1786 else
1787 cluster_of_pages = 0;
1788
1789 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1790
9517bac6
MF
1791 handle = ocfs2_start_trans(osb, credits);
1792 if (IS_ERR(handle)) {
1793 ret = PTR_ERR(handle);
1794 mlog_errno(ret);
607d44aa 1795 goto out;
9517bac6
MF
1796 }
1797
3a307ffc
MF
1798 wc->w_handle = handle;
1799
5dd4056d
CH
1800 if (clusters_to_alloc) {
1801 ret = dquot_alloc_space_nodirty(inode,
1802 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1803 if (ret)
1804 goto out_commit;
a90714c1 1805 }
3a307ffc
MF
1806 /*
1807 * We don't want this to fail in ocfs2_write_end(), so do it
1808 * here.
1809 */
0cf2f763 1810 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1811 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1812 if (ret) {
9517bac6 1813 mlog_errno(ret);
a90714c1 1814 goto out_quota;
9517bac6
MF
1815 }
1816
3a307ffc
MF
1817 /*
1818 * Fill our page array first. That way we've grabbed enough so
1819 * that we can zero and flush if we error after adding the
1820 * extent.
1821 */
693c241a 1822 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1823 cluster_of_pages, mmap_page);
9517bac6
MF
1824 if (ret) {
1825 mlog_errno(ret);
a90714c1 1826 goto out_quota;
9517bac6
MF
1827 }
1828
0d172baa
MF
1829 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1830 len);
1831 if (ret) {
1832 mlog_errno(ret);
a90714c1 1833 goto out_quota;
9517bac6 1834 }
9517bac6 1835
3a307ffc
MF
1836 if (data_ac)
1837 ocfs2_free_alloc_context(data_ac);
1838 if (meta_ac)
1839 ocfs2_free_alloc_context(meta_ac);
9517bac6 1840
1afc32b9 1841success:
3a307ffc
MF
1842 *pagep = wc->w_target_page;
1843 *fsdata = wc;
1844 return 0;
a90714c1
JK
1845out_quota:
1846 if (clusters_to_alloc)
5dd4056d 1847 dquot_free_space(inode,
a90714c1 1848 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1849out_commit:
1850 ocfs2_commit_trans(osb, handle);
1851
9517bac6 1852out:
3a307ffc
MF
1853 ocfs2_free_write_ctxt(wc);
1854
9517bac6
MF
1855 if (data_ac)
1856 ocfs2_free_alloc_context(data_ac);
1857 if (meta_ac)
1858 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1859
1860 if (ret == -ENOSPC && try_free) {
1861 /*
1862 * Try to free some truncate log so that we can have enough
1863 * clusters to allocate.
1864 */
1865 try_free = 0;
1866
1867 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1868 if (ret1 == 1)
1869 goto try_again;
1870
1871 if (ret1 < 0)
1872 mlog_errno(ret1);
1873 }
1874
3a307ffc
MF
1875 return ret;
1876}
1877
b6af1bcd
NP
1878static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1879 loff_t pos, unsigned len, unsigned flags,
1880 struct page **pagep, void **fsdata)
607d44aa
MF
1881{
1882 int ret;
1883 struct buffer_head *di_bh = NULL;
1884 struct inode *inode = mapping->host;
1885
e63aecb6 1886 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1887 if (ret) {
1888 mlog_errno(ret);
1889 return ret;
1890 }
1891
1892 /*
1893 * Take alloc sem here to prevent concurrent lookups. That way
1894 * the mapping, zeroing and tree manipulation within
1895 * ocfs2_write() will be safe against ->readpage(). This
1896 * should also serve to lock out allocation from a shared
1897 * writeable region.
1898 */
1899 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1900
0378da0f 1901 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1902 fsdata, di_bh, NULL);
607d44aa
MF
1903 if (ret) {
1904 mlog_errno(ret);
c934a92d 1905 goto out_fail;
607d44aa
MF
1906 }
1907
1908 brelse(di_bh);
1909
1910 return 0;
1911
607d44aa
MF
1912out_fail:
1913 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1914
1915 brelse(di_bh);
e63aecb6 1916 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1917
1918 return ret;
1919}
1920
1afc32b9
MF
1921static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1922 unsigned len, unsigned *copied,
1923 struct ocfs2_dinode *di,
1924 struct ocfs2_write_ctxt *wc)
1925{
1926 void *kaddr;
1927
1928 if (unlikely(*copied < len)) {
1929 if (!PageUptodate(wc->w_target_page)) {
1930 *copied = 0;
1931 return;
1932 }
1933 }
1934
1935 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1936 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1937 kunmap_atomic(kaddr, KM_USER0);
1938
1939 mlog(0, "Data written to inode at offset %llu. "
1940 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1941 (unsigned long long)pos, *copied,
1942 le16_to_cpu(di->id2.i_data.id_count),
1943 le16_to_cpu(di->i_dyn_features));
1944}
1945
7307de80
MF
1946int ocfs2_write_end_nolock(struct address_space *mapping,
1947 loff_t pos, unsigned len, unsigned copied,
1948 struct page *page, void *fsdata)
3a307ffc
MF
1949{
1950 int i;
1951 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1952 struct inode *inode = mapping->host;
1953 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1954 struct ocfs2_write_ctxt *wc = fsdata;
1955 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1956 handle_t *handle = wc->w_handle;
1957 struct page *tmppage;
1958
1afc32b9
MF
1959 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1960 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1961 goto out_write_size;
1962 }
1963
3a307ffc
MF
1964 if (unlikely(copied < len)) {
1965 if (!PageUptodate(wc->w_target_page))
1966 copied = 0;
1967
1968 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1969 start+len);
1970 }
1971 flush_dcache_page(wc->w_target_page);
1972
1973 for(i = 0; i < wc->w_num_pages; i++) {
1974 tmppage = wc->w_pages[i];
1975
1976 if (tmppage == wc->w_target_page) {
1977 from = wc->w_target_from;
1978 to = wc->w_target_to;
1979
1980 BUG_ON(from > PAGE_CACHE_SIZE ||
1981 to > PAGE_CACHE_SIZE ||
1982 to < from);
1983 } else {
1984 /*
1985 * Pages adjacent to the target (if any) imply
1986 * a hole-filling write in which case we want
1987 * to flush their entire range.
1988 */
1989 from = 0;
1990 to = PAGE_CACHE_SIZE;
1991 }
1992
961cecbe 1993 if (page_has_buffers(tmppage)) {
53ef99ca 1994 if (ocfs2_should_order_data(inode))
2b4e30fb 1995 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1996 block_commit_write(tmppage, from, to);
1997 }
3a307ffc
MF
1998 }
1999
1afc32b9 2000out_write_size:
3a307ffc
MF
2001 pos += copied;
2002 if (pos > inode->i_size) {
2003 i_size_write(inode, pos);
2004 mark_inode_dirty(inode);
2005 }
2006 inode->i_blocks = ocfs2_inode_sector_count(inode);
2007 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2008 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2009 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2010 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2011 ocfs2_journal_dirty(handle, wc->w_di_bh);
2012
2013 ocfs2_commit_trans(osb, handle);
59a5e416 2014
b27b7cbc
MF
2015 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2016
607d44aa
MF
2017 ocfs2_free_write_ctxt(wc);
2018
2019 return copied;
2020}
2021
b6af1bcd
NP
2022static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2023 loff_t pos, unsigned len, unsigned copied,
2024 struct page *page, void *fsdata)
607d44aa
MF
2025{
2026 int ret;
2027 struct inode *inode = mapping->host;
2028
2029 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2030
3a307ffc 2031 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2032 ocfs2_inode_unlock(inode, 1);
9517bac6 2033
607d44aa 2034 return ret;
9517bac6
MF
2035}
2036
f5e54d6e 2037const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2038 .readpage = ocfs2_readpage,
2039 .readpages = ocfs2_readpages,
2040 .writepage = ocfs2_writepage,
2041 .write_begin = ocfs2_write_begin,
2042 .write_end = ocfs2_write_end,
2043 .bmap = ocfs2_bmap,
2044 .sync_page = block_sync_page,
2045 .direct_IO = ocfs2_direct_IO,
2046 .invalidatepage = ocfs2_invalidatepage,
2047 .releasepage = ocfs2_releasepage,
2048 .migratepage = buffer_migrate_page,
2049 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2050 .error_remove_page = generic_error_remove_page,
ccd979bd 2051};