ocfs2: allocation reservations
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd
MF
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
293b2f70 47#include "refcounttree.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
64
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
71 }
72
b657c95c 73 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
77 }
78 fe = (struct ocfs2_dinode *) bh->b_data;
79
ccd979bd
MF
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
85 }
86
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
96 }
97
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
108 }
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
114 }
115 brelse(buffer_cache_bh);
116 }
117
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121 err = 0;
122
123bail:
a81cb88b 124 brelse(bh);
ccd979bd
MF
125
126 mlog_exit(err);
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
138
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
ccd979bd 199
25baf2da
MF
200 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202 (unsigned long long)past_eof);
ccd979bd 203
25baf2da
MF
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
206 }
ccd979bd
MF
207
208bail:
209 if (err < 0)
210 err = -EIO;
211
212 mlog_exit(err);
213 return err;
214}
215
1afc32b9
MF
216int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217 struct buffer_head *di_bh)
6798d35a
MF
218{
219 void *kaddr;
d2849fb2 220 loff_t size;
6798d35a
MF
221 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
222
223 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225 (unsigned long long)OCFS2_I(inode)->ip_blkno);
226 return -EROFS;
227 }
228
229 size = i_size_read(inode);
230
231 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 232 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 233 ocfs2_error(inode->i_sb,
d2849fb2
JK
234 "Inode %llu has with inline data has bad size: %Lu",
235 (unsigned long long)OCFS2_I(inode)->ip_blkno,
236 (unsigned long long)size);
6798d35a
MF
237 return -EROFS;
238 }
239
240 kaddr = kmap_atomic(page, KM_USER0);
241 if (size)
242 memcpy(kaddr, di->id2.i_data.id_data, size);
243 /* Clear the remaining part of the page */
244 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245 flush_dcache_page(page);
246 kunmap_atomic(kaddr, KM_USER0);
247
248 SetPageUptodate(page);
249
250 return 0;
251}
252
253static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254{
255 int ret;
256 struct buffer_head *di_bh = NULL;
6798d35a
MF
257
258 BUG_ON(!PageLocked(page));
86c838b0 259 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 260
b657c95c 261 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
262 if (ret) {
263 mlog_errno(ret);
264 goto out;
265 }
266
267 ret = ocfs2_read_inline_data(inode, page, di_bh);
268out:
269 unlock_page(page);
270
271 brelse(di_bh);
272 return ret;
273}
274
ccd979bd
MF
275static int ocfs2_readpage(struct file *file, struct page *page)
276{
277 struct inode *inode = page->mapping->host;
6798d35a 278 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
279 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280 int ret, unlock = 1;
281
282 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
283
e63aecb6 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
6798d35a 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 293 ret = AOP_TRUNCATED_PAGE;
e63aecb6 294 goto out_inode_unlock;
e9dfc0b2 295 }
ccd979bd
MF
296
297 /*
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
54cb8821 302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
303 * and notice that the page they just read isn't needed.
304 *
305 * XXX sys_readahead() seems to get that wrong?
306 */
307 if (start >= i_size_read(inode)) {
eebd2aa3 308 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
312 }
313
6798d35a
MF
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
318 unlock = 0;
319
ccd979bd
MF
320out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
322out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
324out:
325 if (unlock)
326 unlock_page(page);
327 mlog_exit(ret);
328 return ret;
329}
330
628a24f5
MF
331/*
332 * This is used only for read-ahead. Failures or difficult to handle
333 * situations are safe to ignore.
334 *
335 * Right now, we don't bother with BH_Boundary - in-inode extent lists
336 * are quite large (243 extents on 4k blocks), so most inodes don't
337 * grow out to a tree. If need be, detecting boundary extents could
338 * trivially be added in a future version of ocfs2_get_block().
339 */
340static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341 struct list_head *pages, unsigned nr_pages)
342{
343 int ret, err = -EIO;
344 struct inode *inode = mapping->host;
345 struct ocfs2_inode_info *oi = OCFS2_I(inode);
346 loff_t start;
347 struct page *last;
348
349 /*
350 * Use the nonblocking flag for the dlm code to avoid page
351 * lock inversion, but don't bother with retrying.
352 */
353 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354 if (ret)
355 return err;
356
357 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358 ocfs2_inode_unlock(inode, 0);
359 return err;
360 }
361
362 /*
363 * Don't bother with inline-data. There isn't anything
364 * to read-ahead in that case anyway...
365 */
366 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367 goto out_unlock;
368
369 /*
370 * Check whether a remote node truncated this file - we just
371 * drop out in that case as it's not worth handling here.
372 */
373 last = list_entry(pages->prev, struct page, lru);
374 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375 if (start >= i_size_read(inode))
376 goto out_unlock;
377
378 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379
380out_unlock:
381 up_read(&oi->ip_alloc_sem);
382 ocfs2_inode_unlock(inode, 0);
383
384 return err;
385}
386
ccd979bd
MF
387/* Note: Because we don't support holes, our allocation has
388 * already happened (allocation writes zeros to the file data)
389 * so we don't have to worry about ordered writes in
390 * ocfs2_writepage.
391 *
392 * ->writepage is called during the process of invalidating the page cache
393 * during blocked lock processing. It can't block on any cluster locks
394 * to during block mapping. It's relying on the fact that the block
395 * mapping can't have disappeared under the dirty pages that it is
396 * being asked to write back.
397 */
398static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
399{
400 int ret;
401
402 mlog_entry("(0x%p)\n", page);
403
404 ret = block_write_full_page(page, ocfs2_get_block, wbc);
405
406 mlog_exit(ret);
407
408 return ret;
409}
410
5069120b
MF
411/*
412 * This is called from ocfs2_write_zero_page() which has handled it's
413 * own cluster locking and has ensured allocation exists for those
414 * blocks to be written.
415 */
53013cba
MF
416int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417 unsigned from, unsigned to)
418{
419 int ret;
420
53013cba
MF
421 ret = block_prepare_write(page, from, to, ocfs2_get_block);
422
53013cba
MF
423 return ret;
424}
425
ccd979bd
MF
426/* Taken from ext3. We don't necessarily need the full blown
427 * functionality yet, but IMHO it's better to cut and paste the whole
428 * thing so we can avoid introducing our own bugs (and easily pick up
429 * their fixes when they happen) --Mark */
60b11392
MF
430int walk_page_buffers( handle_t *handle,
431 struct buffer_head *head,
432 unsigned from,
433 unsigned to,
434 int *partial,
435 int (*fn)( handle_t *handle,
436 struct buffer_head *bh))
ccd979bd
MF
437{
438 struct buffer_head *bh;
439 unsigned block_start, block_end;
440 unsigned blocksize = head->b_size;
441 int err, ret = 0;
442 struct buffer_head *next;
443
444 for ( bh = head, block_start = 0;
445 ret == 0 && (bh != head || !block_start);
446 block_start = block_end, bh = next)
447 {
448 next = bh->b_this_page;
449 block_end = block_start + blocksize;
450 if (block_end <= from || block_start >= to) {
451 if (partial && !buffer_uptodate(bh))
452 *partial = 1;
453 continue;
454 }
455 err = (*fn)(handle, bh);
456 if (!ret)
457 ret = err;
458 }
459 return ret;
460}
461
1fabe148 462handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
463 struct page *page,
464 unsigned from,
465 unsigned to)
466{
467 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58dadcdb 468 handle_t *handle;
ccd979bd
MF
469 int ret = 0;
470
65eff9cc 471 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
58dadcdb 472 if (IS_ERR(handle)) {
ccd979bd
MF
473 ret = -ENOMEM;
474 mlog_errno(ret);
475 goto out;
476 }
477
478 if (ocfs2_should_order_data(inode)) {
2b4e30fb 479 ret = ocfs2_jbd2_file_inode(handle, inode);
2b4e30fb 480 if (ret < 0)
ccd979bd
MF
481 mlog_errno(ret);
482 }
483out:
484 if (ret) {
58dadcdb 485 if (!IS_ERR(handle))
02dc1af4 486 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
487 handle = ERR_PTR(ret);
488 }
489 return handle;
490}
491
ccd979bd
MF
492static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
493{
494 sector_t status;
495 u64 p_blkno = 0;
496 int err = 0;
497 struct inode *inode = mapping->host;
498
499 mlog_entry("(block = %llu)\n", (unsigned long long)block);
500
501 /* We don't need to lock journal system files, since they aren't
502 * accessed concurrently from multiple nodes.
503 */
504 if (!INODE_JOURNAL(inode)) {
e63aecb6 505 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
506 if (err) {
507 if (err != -ENOENT)
508 mlog_errno(err);
509 goto bail;
510 }
511 down_read(&OCFS2_I(inode)->ip_alloc_sem);
512 }
513
6798d35a
MF
514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
515 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516 NULL);
ccd979bd
MF
517
518 if (!INODE_JOURNAL(inode)) {
519 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 520 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
521 }
522
523 if (err) {
524 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
525 (unsigned long long)block);
526 mlog_errno(err);
527 goto bail;
528 }
529
ccd979bd
MF
530bail:
531 status = err ? 0 : p_blkno;
532
533 mlog_exit((int)status);
534
535 return status;
536}
537
538/*
539 * TODO: Make this into a generic get_blocks function.
540 *
541 * From do_direct_io in direct-io.c:
542 * "So what we do is to permit the ->get_blocks function to populate
543 * bh.b_size with the size of IO which is permitted at this offset and
544 * this i_blkbits."
545 *
546 * This function is called directly from get_more_blocks in direct-io.c.
547 *
548 * called like this: dio->get_blocks(dio->inode, fs_startblk,
549 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
550 *
551 * Note that we never bother to allocate blocks here, and thus ignore the
552 * create argument.
ccd979bd
MF
553 */
554static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
555 struct buffer_head *bh_result, int create)
556{
557 int ret;
4f902c37 558 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 559 unsigned int ext_flags;
184d7d20 560 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 561 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 562
ccd979bd
MF
563 /* This function won't even be called if the request isn't all
564 * nicely aligned and of the right size, so there's no need
565 * for us to check any of that. */
566
25baf2da 567 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 568
ccd979bd
MF
569 /* This figures out the size of the next contiguous block, and
570 * our logical offset */
363041a5 571 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 572 &contig_blocks, &ext_flags);
ccd979bd
MF
573 if (ret) {
574 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
575 (unsigned long long)iblock);
576 ret = -EIO;
577 goto bail;
578 }
579
cbaee472
TM
580 /* We should already CoW the refcounted extent in case of create. */
581 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
582
25baf2da
MF
583 /*
584 * get_more_blocks() expects us to describe a hole by clearing
585 * the mapped bit on bh_result().
49cb8d2d
MF
586 *
587 * Consider an unwritten extent as a hole.
25baf2da 588 */
49cb8d2d 589 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 590 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 591 else
25baf2da 592 clear_buffer_mapped(bh_result);
ccd979bd
MF
593
594 /* make sure we don't map more than max_blocks blocks here as
595 that's all the kernel will handle at this point. */
596 if (max_blocks < contig_blocks)
597 contig_blocks = max_blocks;
598 bh_result->b_size = contig_blocks << blocksize_bits;
599bail:
600 return ret;
601}
602
2bd63216 603/*
ccd979bd
MF
604 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
605 * particularly interested in the aio/dio case. Like the core uses
606 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
607 * truncation on another.
608 */
609static void ocfs2_dio_end_io(struct kiocb *iocb,
610 loff_t offset,
611 ssize_t bytes,
612 void *private)
613{
d28c9174 614 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 615 int level;
ccd979bd
MF
616
617 /* this io's submitter should not have unlocked this before we could */
618 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 619
ccd979bd 620 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
621
622 level = ocfs2_iocb_rw_locked_level(iocb);
623 if (!level)
624 up_read(&inode->i_alloc_sem);
625 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
626}
627
03f981cf
JB
628/*
629 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
630 * from ext3. PageChecked() bits have been removed as OCFS2 does not
631 * do journalled data.
632 */
633static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
634{
635 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
636
2b4e30fb 637 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
638}
639
640static int ocfs2_releasepage(struct page *page, gfp_t wait)
641{
642 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
643
644 if (!page_has_buffers(page))
645 return 0;
2b4e30fb 646 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
647}
648
ccd979bd
MF
649static ssize_t ocfs2_direct_IO(int rw,
650 struct kiocb *iocb,
651 const struct iovec *iov,
652 loff_t offset,
653 unsigned long nr_segs)
654{
655 struct file *file = iocb->ki_filp;
d28c9174 656 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
657 int ret;
658
659 mlog_entry_void();
53013cba 660
6798d35a
MF
661 /*
662 * Fallback to buffered I/O if we see an inode without
663 * extents.
664 */
665 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
666 return 0;
667
b80474b4
TM
668 /* Fallback to buffered I/O if we are appending. */
669 if (i_size_read(inode) <= offset)
670 return 0;
671
ccd979bd
MF
672 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
673 inode->i_sb->s_bdev, iov, offset,
2bd63216 674 nr_segs,
ccd979bd
MF
675 ocfs2_direct_IO_get_blocks,
676 ocfs2_dio_end_io);
c934a92d 677
ccd979bd
MF
678 mlog_exit(ret);
679 return ret;
680}
681
9517bac6
MF
682static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
683 u32 cpos,
684 unsigned int *start,
685 unsigned int *end)
686{
687 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
688
689 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
690 unsigned int cpp;
691
692 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
693
694 cluster_start = cpos % cpp;
695 cluster_start = cluster_start << osb->s_clustersize_bits;
696
697 cluster_end = cluster_start + osb->s_clustersize;
698 }
699
700 BUG_ON(cluster_start > PAGE_SIZE);
701 BUG_ON(cluster_end > PAGE_SIZE);
702
703 if (start)
704 *start = cluster_start;
705 if (end)
706 *end = cluster_end;
707}
708
709/*
710 * 'from' and 'to' are the region in the page to avoid zeroing.
711 *
712 * If pagesize > clustersize, this function will avoid zeroing outside
713 * of the cluster boundary.
714 *
715 * from == to == 0 is code for "zero the entire cluster region"
716 */
717static void ocfs2_clear_page_regions(struct page *page,
718 struct ocfs2_super *osb, u32 cpos,
719 unsigned from, unsigned to)
720{
721 void *kaddr;
722 unsigned int cluster_start, cluster_end;
723
724 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
725
726 kaddr = kmap_atomic(page, KM_USER0);
727
728 if (from || to) {
729 if (from > cluster_start)
730 memset(kaddr + cluster_start, 0, from - cluster_start);
731 if (to < cluster_end)
732 memset(kaddr + to, 0, cluster_end - to);
733 } else {
734 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
735 }
736
737 kunmap_atomic(kaddr, KM_USER0);
738}
739
4e9563fd
MF
740/*
741 * Nonsparse file systems fully allocate before we get to the write
742 * code. This prevents ocfs2_write() from tagging the write as an
743 * allocating one, which means ocfs2_map_page_blocks() might try to
744 * read-in the blocks at the tail of our file. Avoid reading them by
745 * testing i_size against each block offset.
746 */
747static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
748 unsigned int block_start)
749{
750 u64 offset = page_offset(page) + block_start;
751
752 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
753 return 1;
754
755 if (i_size_read(inode) > offset)
756 return 1;
757
758 return 0;
759}
760
9517bac6
MF
761/*
762 * Some of this taken from block_prepare_write(). We already have our
763 * mapping by now though, and the entire write will be allocating or
764 * it won't, so not much need to use BH_New.
765 *
766 * This will also skip zeroing, which is handled externally.
767 */
60b11392
MF
768int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
769 struct inode *inode, unsigned int from,
770 unsigned int to, int new)
9517bac6
MF
771{
772 int ret = 0;
773 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
774 unsigned int block_end, block_start;
775 unsigned int bsize = 1 << inode->i_blkbits;
776
777 if (!page_has_buffers(page))
778 create_empty_buffers(page, bsize, 0);
779
780 head = page_buffers(page);
781 for (bh = head, block_start = 0; bh != head || !block_start;
782 bh = bh->b_this_page, block_start += bsize) {
783 block_end = block_start + bsize;
784
3a307ffc
MF
785 clear_buffer_new(bh);
786
9517bac6
MF
787 /*
788 * Ignore blocks outside of our i/o range -
789 * they may belong to unallocated clusters.
790 */
60b11392 791 if (block_start >= to || block_end <= from) {
9517bac6
MF
792 if (PageUptodate(page))
793 set_buffer_uptodate(bh);
794 continue;
795 }
796
797 /*
798 * For an allocating write with cluster size >= page
799 * size, we always write the entire page.
800 */
3a307ffc
MF
801 if (new)
802 set_buffer_new(bh);
9517bac6
MF
803
804 if (!buffer_mapped(bh)) {
805 map_bh(bh, inode->i_sb, *p_blkno);
806 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
807 }
808
809 if (PageUptodate(page)) {
810 if (!buffer_uptodate(bh))
811 set_buffer_uptodate(bh);
812 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 813 !buffer_new(bh) &&
4e9563fd 814 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 815 (block_start < from || block_end > to)) {
9517bac6
MF
816 ll_rw_block(READ, 1, &bh);
817 *wait_bh++=bh;
818 }
819
820 *p_blkno = *p_blkno + 1;
821 }
822
823 /*
824 * If we issued read requests - let them complete.
825 */
826 while(wait_bh > wait) {
827 wait_on_buffer(*--wait_bh);
828 if (!buffer_uptodate(*wait_bh))
829 ret = -EIO;
830 }
831
832 if (ret == 0 || !new)
833 return ret;
834
835 /*
836 * If we get -EIO above, zero out any newly allocated blocks
837 * to avoid exposing stale data.
838 */
839 bh = head;
840 block_start = 0;
841 do {
9517bac6
MF
842 block_end = block_start + bsize;
843 if (block_end <= from)
844 goto next_bh;
845 if (block_start >= to)
846 break;
847
eebd2aa3 848 zero_user(page, block_start, bh->b_size);
9517bac6
MF
849 set_buffer_uptodate(bh);
850 mark_buffer_dirty(bh);
851
852next_bh:
853 block_start = block_end;
854 bh = bh->b_this_page;
855 } while (bh != head);
856
857 return ret;
858}
859
3a307ffc
MF
860#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
861#define OCFS2_MAX_CTXT_PAGES 1
862#else
863#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
864#endif
865
866#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
867
6af67d82 868/*
3a307ffc 869 * Describe the state of a single cluster to be written to.
6af67d82 870 */
3a307ffc
MF
871struct ocfs2_write_cluster_desc {
872 u32 c_cpos;
873 u32 c_phys;
874 /*
875 * Give this a unique field because c_phys eventually gets
876 * filled.
877 */
878 unsigned c_new;
b27b7cbc 879 unsigned c_unwritten;
e7432675 880 unsigned c_needs_zero;
3a307ffc 881};
6af67d82 882
3a307ffc
MF
883struct ocfs2_write_ctxt {
884 /* Logical cluster position / len of write */
885 u32 w_cpos;
886 u32 w_clen;
6af67d82 887
e7432675
SM
888 /* First cluster allocated in a nonsparse extend */
889 u32 w_first_new_cpos;
890
3a307ffc 891 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 892
3a307ffc
MF
893 /*
894 * This is true if page_size > cluster_size.
895 *
896 * It triggers a set of special cases during write which might
897 * have to deal with allocating writes to partial pages.
898 */
899 unsigned int w_large_pages;
6af67d82 900
3a307ffc
MF
901 /*
902 * Pages involved in this write.
903 *
904 * w_target_page is the page being written to by the user.
905 *
906 * w_pages is an array of pages which always contains
907 * w_target_page, and in the case of an allocating write with
908 * page_size < cluster size, it will contain zero'd and mapped
909 * pages adjacent to w_target_page which need to be written
910 * out in so that future reads from that region will get
911 * zero's.
912 */
913 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
914 unsigned int w_num_pages;
915 struct page *w_target_page;
eeb47d12 916
3a307ffc
MF
917 /*
918 * ocfs2_write_end() uses this to know what the real range to
919 * write in the target should be.
920 */
921 unsigned int w_target_from;
922 unsigned int w_target_to;
923
924 /*
925 * We could use journal_current_handle() but this is cleaner,
926 * IMHO -Mark
927 */
928 handle_t *w_handle;
929
930 struct buffer_head *w_di_bh;
b27b7cbc
MF
931
932 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
933};
934
1d410a6e 935void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
936{
937 int i;
938
1d410a6e
MF
939 for(i = 0; i < num_pages; i++) {
940 if (pages[i]) {
941 unlock_page(pages[i]);
942 mark_page_accessed(pages[i]);
943 page_cache_release(pages[i]);
944 }
6af67d82 945 }
1d410a6e
MF
946}
947
948static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
949{
950 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 951
3a307ffc
MF
952 brelse(wc->w_di_bh);
953 kfree(wc);
954}
955
956static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
957 struct ocfs2_super *osb, loff_t pos,
607d44aa 958 unsigned len, struct buffer_head *di_bh)
3a307ffc 959{
30b8548f 960 u32 cend;
3a307ffc
MF
961 struct ocfs2_write_ctxt *wc;
962
963 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
964 if (!wc)
965 return -ENOMEM;
6af67d82 966
3a307ffc 967 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 968 wc->w_first_new_cpos = UINT_MAX;
30b8548f 969 cend = (pos + len - 1) >> osb->s_clustersize_bits;
970 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
971 get_bh(di_bh);
972 wc->w_di_bh = di_bh;
6af67d82 973
3a307ffc
MF
974 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
975 wc->w_large_pages = 1;
976 else
977 wc->w_large_pages = 0;
978
b27b7cbc
MF
979 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
980
3a307ffc 981 *wcp = wc;
6af67d82 982
3a307ffc 983 return 0;
6af67d82
MF
984}
985
9517bac6 986/*
3a307ffc
MF
987 * If a page has any new buffers, zero them out here, and mark them uptodate
988 * and dirty so they'll be written out (in order to prevent uninitialised
989 * block data from leaking). And clear the new bit.
9517bac6 990 */
3a307ffc 991static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 992{
3a307ffc
MF
993 unsigned int block_start, block_end;
994 struct buffer_head *head, *bh;
9517bac6 995
3a307ffc
MF
996 BUG_ON(!PageLocked(page));
997 if (!page_has_buffers(page))
998 return;
9517bac6 999
3a307ffc
MF
1000 bh = head = page_buffers(page);
1001 block_start = 0;
1002 do {
1003 block_end = block_start + bh->b_size;
1004
1005 if (buffer_new(bh)) {
1006 if (block_end > from && block_start < to) {
1007 if (!PageUptodate(page)) {
1008 unsigned start, end;
3a307ffc
MF
1009
1010 start = max(from, block_start);
1011 end = min(to, block_end);
1012
eebd2aa3 1013 zero_user_segment(page, start, end);
3a307ffc
MF
1014 set_buffer_uptodate(bh);
1015 }
1016
1017 clear_buffer_new(bh);
1018 mark_buffer_dirty(bh);
1019 }
1020 }
9517bac6 1021
3a307ffc
MF
1022 block_start = block_end;
1023 bh = bh->b_this_page;
1024 } while (bh != head);
1025}
1026
1027/*
1028 * Only called when we have a failure during allocating write to write
1029 * zero's to the newly allocated region.
1030 */
1031static void ocfs2_write_failure(struct inode *inode,
1032 struct ocfs2_write_ctxt *wc,
1033 loff_t user_pos, unsigned user_len)
1034{
1035 int i;
5c26a7b7
MF
1036 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1037 to = user_pos + user_len;
3a307ffc
MF
1038 struct page *tmppage;
1039
5c26a7b7 1040 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1041
3a307ffc
MF
1042 for(i = 0; i < wc->w_num_pages; i++) {
1043 tmppage = wc->w_pages[i];
9517bac6 1044
961cecbe 1045 if (page_has_buffers(tmppage)) {
53ef99ca 1046 if (ocfs2_should_order_data(inode))
2b4e30fb 1047 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1048
1049 block_commit_write(tmppage, from, to);
1050 }
9517bac6 1051 }
9517bac6
MF
1052}
1053
3a307ffc
MF
1054static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1055 struct ocfs2_write_ctxt *wc,
1056 struct page *page, u32 cpos,
1057 loff_t user_pos, unsigned user_len,
1058 int new)
9517bac6 1059{
3a307ffc
MF
1060 int ret;
1061 unsigned int map_from = 0, map_to = 0;
9517bac6 1062 unsigned int cluster_start, cluster_end;
3a307ffc 1063 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1064
3a307ffc 1065 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1066 &cluster_start, &cluster_end);
1067
3a307ffc
MF
1068 if (page == wc->w_target_page) {
1069 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1070 map_to = map_from + user_len;
1071
1072 if (new)
1073 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074 cluster_start, cluster_end,
1075 new);
1076 else
1077 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1078 map_from, map_to, new);
1079 if (ret) {
9517bac6
MF
1080 mlog_errno(ret);
1081 goto out;
1082 }
1083
3a307ffc
MF
1084 user_data_from = map_from;
1085 user_data_to = map_to;
9517bac6 1086 if (new) {
3a307ffc
MF
1087 map_from = cluster_start;
1088 map_to = cluster_end;
9517bac6
MF
1089 }
1090 } else {
1091 /*
1092 * If we haven't allocated the new page yet, we
1093 * shouldn't be writing it out without copying user
1094 * data. This is likely a math error from the caller.
1095 */
1096 BUG_ON(!new);
1097
3a307ffc
MF
1098 map_from = cluster_start;
1099 map_to = cluster_end;
9517bac6
MF
1100
1101 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1102 cluster_start, cluster_end, new);
9517bac6
MF
1103 if (ret) {
1104 mlog_errno(ret);
1105 goto out;
1106 }
1107 }
1108
1109 /*
1110 * Parts of newly allocated pages need to be zero'd.
1111 *
1112 * Above, we have also rewritten 'to' and 'from' - as far as
1113 * the rest of the function is concerned, the entire cluster
1114 * range inside of a page needs to be written.
1115 *
1116 * We can skip this if the page is up to date - it's already
1117 * been zero'd from being read in as a hole.
1118 */
1119 if (new && !PageUptodate(page))
1120 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1121 cpos, user_data_from, user_data_to);
9517bac6
MF
1122
1123 flush_dcache_page(page);
1124
9517bac6 1125out:
3a307ffc 1126 return ret;
9517bac6
MF
1127}
1128
1129/*
3a307ffc 1130 * This function will only grab one clusters worth of pages.
9517bac6 1131 */
3a307ffc
MF
1132static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1133 struct ocfs2_write_ctxt *wc,
7307de80
MF
1134 u32 cpos, loff_t user_pos, int new,
1135 struct page *mmap_page)
9517bac6 1136{
3a307ffc
MF
1137 int ret = 0, i;
1138 unsigned long start, target_index, index;
9517bac6 1139 struct inode *inode = mapping->host;
9517bac6 1140
3a307ffc 1141 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1142
1143 /*
1144 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1145 * non allocating write, we just change the one
1146 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1147 */
9517bac6 1148 if (new) {
3a307ffc
MF
1149 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1151 } else {
3a307ffc
MF
1152 wc->w_num_pages = 1;
1153 start = target_index;
9517bac6
MF
1154 }
1155
3a307ffc 1156 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1157 index = start + i;
1158
7307de80
MF
1159 if (index == target_index && mmap_page) {
1160 /*
1161 * ocfs2_pagemkwrite() is a little different
1162 * and wants us to directly use the page
1163 * passed in.
1164 */
1165 lock_page(mmap_page);
1166
1167 if (mmap_page->mapping != mapping) {
1168 unlock_page(mmap_page);
1169 /*
1170 * Sanity check - the locking in
1171 * ocfs2_pagemkwrite() should ensure
1172 * that this code doesn't trigger.
1173 */
1174 ret = -EINVAL;
1175 mlog_errno(ret);
1176 goto out;
1177 }
1178
1179 page_cache_get(mmap_page);
1180 wc->w_pages[i] = mmap_page;
1181 } else {
1182 wc->w_pages[i] = find_or_create_page(mapping, index,
1183 GFP_NOFS);
1184 if (!wc->w_pages[i]) {
1185 ret = -ENOMEM;
1186 mlog_errno(ret);
1187 goto out;
1188 }
9517bac6 1189 }
3a307ffc
MF
1190
1191 if (index == target_index)
1192 wc->w_target_page = wc->w_pages[i];
9517bac6 1193 }
3a307ffc
MF
1194out:
1195 return ret;
1196}
1197
1198/*
1199 * Prepare a single cluster for write one cluster into the file.
1200 */
1201static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1202 u32 phys, unsigned int unwritten,
e7432675 1203 unsigned int should_zero,
b27b7cbc 1204 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1205 struct ocfs2_alloc_context *meta_ac,
1206 struct ocfs2_write_ctxt *wc, u32 cpos,
1207 loff_t user_pos, unsigned user_len)
1208{
e7432675 1209 int ret, i, new;
3a307ffc
MF
1210 u64 v_blkno, p_blkno;
1211 struct inode *inode = mapping->host;
f99b9b7c 1212 struct ocfs2_extent_tree et;
3a307ffc
MF
1213
1214 new = phys == 0 ? 1 : 0;
9517bac6 1215 if (new) {
3a307ffc
MF
1216 u32 tmp_pos;
1217
9517bac6
MF
1218 /*
1219 * This is safe to call with the page locks - it won't take
1220 * any additional semaphores or cluster locks.
1221 */
3a307ffc 1222 tmp_pos = cpos;
0eb8d47e
TM
1223 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1224 &tmp_pos, 1, 0, wc->w_di_bh,
1225 wc->w_handle, data_ac,
1226 meta_ac, NULL);
9517bac6
MF
1227 /*
1228 * This shouldn't happen because we must have already
1229 * calculated the correct meta data allocation required. The
1230 * internal tree allocation code should know how to increase
1231 * transaction credits itself.
1232 *
1233 * If need be, we could handle -EAGAIN for a
1234 * RESTART_TRANS here.
1235 */
1236 mlog_bug_on_msg(ret == -EAGAIN,
1237 "Inode %llu: EAGAIN return during allocation.\n",
1238 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1239 if (ret < 0) {
1240 mlog_errno(ret);
1241 goto out;
1242 }
b27b7cbc 1243 } else if (unwritten) {
5e404e9e
JB
1244 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1245 wc->w_di_bh);
f99b9b7c 1246 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1247 wc->w_handle, cpos, 1, phys,
f99b9b7c 1248 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1249 if (ret < 0) {
1250 mlog_errno(ret);
1251 goto out;
1252 }
1253 }
3a307ffc 1254
b27b7cbc 1255 if (should_zero)
3a307ffc 1256 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1257 else
3a307ffc 1258 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1259
3a307ffc
MF
1260 /*
1261 * The only reason this should fail is due to an inability to
1262 * find the extent added.
1263 */
49cb8d2d
MF
1264 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1265 NULL);
9517bac6 1266 if (ret < 0) {
3a307ffc
MF
1267 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1268 "at logical block %llu",
1269 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1270 (unsigned long long)v_blkno);
9517bac6
MF
1271 goto out;
1272 }
1273
1274 BUG_ON(p_blkno == 0);
1275
3a307ffc
MF
1276 for(i = 0; i < wc->w_num_pages; i++) {
1277 int tmpret;
9517bac6 1278
3a307ffc
MF
1279 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1280 wc->w_pages[i], cpos,
b27b7cbc
MF
1281 user_pos, user_len,
1282 should_zero);
3a307ffc
MF
1283 if (tmpret) {
1284 mlog_errno(tmpret);
1285 if (ret == 0)
cbfa9639 1286 ret = tmpret;
3a307ffc 1287 }
9517bac6
MF
1288 }
1289
3a307ffc
MF
1290 /*
1291 * We only have cleanup to do in case of allocating write.
1292 */
1293 if (ret && new)
1294 ocfs2_write_failure(inode, wc, user_pos, user_len);
1295
9517bac6 1296out:
9517bac6 1297
3a307ffc 1298 return ret;
9517bac6
MF
1299}
1300
0d172baa
MF
1301static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1302 struct ocfs2_alloc_context *data_ac,
1303 struct ocfs2_alloc_context *meta_ac,
1304 struct ocfs2_write_ctxt *wc,
1305 loff_t pos, unsigned len)
1306{
1307 int ret, i;
db56246c
MF
1308 loff_t cluster_off;
1309 unsigned int local_len = len;
0d172baa 1310 struct ocfs2_write_cluster_desc *desc;
db56246c 1311 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1312
1313 for (i = 0; i < wc->w_clen; i++) {
1314 desc = &wc->w_desc[i];
1315
db56246c
MF
1316 /*
1317 * We have to make sure that the total write passed in
1318 * doesn't extend past a single cluster.
1319 */
1320 local_len = len;
1321 cluster_off = pos & (osb->s_clustersize - 1);
1322 if ((cluster_off + local_len) > osb->s_clustersize)
1323 local_len = osb->s_clustersize - cluster_off;
1324
b27b7cbc 1325 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1326 desc->c_unwritten,
1327 desc->c_needs_zero,
1328 data_ac, meta_ac,
db56246c 1329 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1330 if (ret) {
1331 mlog_errno(ret);
1332 goto out;
1333 }
db56246c
MF
1334
1335 len -= local_len;
1336 pos += local_len;
0d172baa
MF
1337 }
1338
1339 ret = 0;
1340out:
1341 return ret;
1342}
1343
3a307ffc
MF
1344/*
1345 * ocfs2_write_end() wants to know which parts of the target page it
1346 * should complete the write on. It's easiest to compute them ahead of
1347 * time when a more complete view of the write is available.
1348 */
1349static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1350 struct ocfs2_write_ctxt *wc,
1351 loff_t pos, unsigned len, int alloc)
9517bac6 1352{
3a307ffc 1353 struct ocfs2_write_cluster_desc *desc;
9517bac6 1354
3a307ffc
MF
1355 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1356 wc->w_target_to = wc->w_target_from + len;
1357
1358 if (alloc == 0)
1359 return;
1360
1361 /*
1362 * Allocating write - we may have different boundaries based
1363 * on page size and cluster size.
1364 *
1365 * NOTE: We can no longer compute one value from the other as
1366 * the actual write length and user provided length may be
1367 * different.
1368 */
9517bac6 1369
3a307ffc
MF
1370 if (wc->w_large_pages) {
1371 /*
1372 * We only care about the 1st and last cluster within
b27b7cbc 1373 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1374 * value may be extended out to the start/end of a
1375 * newly allocated cluster.
1376 */
1377 desc = &wc->w_desc[0];
e7432675 1378 if (desc->c_needs_zero)
3a307ffc
MF
1379 ocfs2_figure_cluster_boundaries(osb,
1380 desc->c_cpos,
1381 &wc->w_target_from,
1382 NULL);
1383
1384 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1385 if (desc->c_needs_zero)
3a307ffc
MF
1386 ocfs2_figure_cluster_boundaries(osb,
1387 desc->c_cpos,
1388 NULL,
1389 &wc->w_target_to);
1390 } else {
1391 wc->w_target_from = 0;
1392 wc->w_target_to = PAGE_CACHE_SIZE;
1393 }
9517bac6
MF
1394}
1395
0d172baa
MF
1396/*
1397 * Populate each single-cluster write descriptor in the write context
1398 * with information about the i/o to be done.
b27b7cbc
MF
1399 *
1400 * Returns the number of clusters that will have to be allocated, as
1401 * well as a worst case estimate of the number of extent records that
1402 * would have to be created during a write to an unwritten region.
0d172baa
MF
1403 */
1404static int ocfs2_populate_write_desc(struct inode *inode,
1405 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1406 unsigned int *clusters_to_alloc,
1407 unsigned int *extents_to_split)
9517bac6 1408{
0d172baa 1409 int ret;
3a307ffc 1410 struct ocfs2_write_cluster_desc *desc;
0d172baa 1411 unsigned int num_clusters = 0;
b27b7cbc 1412 unsigned int ext_flags = 0;
0d172baa
MF
1413 u32 phys = 0;
1414 int i;
9517bac6 1415
b27b7cbc
MF
1416 *clusters_to_alloc = 0;
1417 *extents_to_split = 0;
1418
3a307ffc
MF
1419 for (i = 0; i < wc->w_clen; i++) {
1420 desc = &wc->w_desc[i];
1421 desc->c_cpos = wc->w_cpos + i;
1422
1423 if (num_clusters == 0) {
b27b7cbc
MF
1424 /*
1425 * Need to look up the next extent record.
1426 */
3a307ffc 1427 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1428 &num_clusters, &ext_flags);
3a307ffc
MF
1429 if (ret) {
1430 mlog_errno(ret);
607d44aa 1431 goto out;
3a307ffc 1432 }
b27b7cbc 1433
293b2f70
TM
1434 /* We should already CoW the refcountd extent. */
1435 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1436
b27b7cbc
MF
1437 /*
1438 * Assume worst case - that we're writing in
1439 * the middle of the extent.
1440 *
1441 * We can assume that the write proceeds from
1442 * left to right, in which case the extent
1443 * insert code is smart enough to coalesce the
1444 * next splits into the previous records created.
1445 */
1446 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1447 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1448 } else if (phys) {
1449 /*
1450 * Only increment phys if it doesn't describe
1451 * a hole.
1452 */
1453 phys++;
1454 }
1455
e7432675
SM
1456 /*
1457 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1458 * file that got extended. w_first_new_cpos tells us
1459 * where the newly allocated clusters are so we can
1460 * zero them.
1461 */
1462 if (desc->c_cpos >= wc->w_first_new_cpos) {
1463 BUG_ON(phys == 0);
1464 desc->c_needs_zero = 1;
1465 }
1466
3a307ffc
MF
1467 desc->c_phys = phys;
1468 if (phys == 0) {
1469 desc->c_new = 1;
e7432675 1470 desc->c_needs_zero = 1;
0d172baa 1471 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1472 }
e7432675
SM
1473
1474 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1475 desc->c_unwritten = 1;
e7432675
SM
1476 desc->c_needs_zero = 1;
1477 }
3a307ffc
MF
1478
1479 num_clusters--;
9517bac6
MF
1480 }
1481
0d172baa
MF
1482 ret = 0;
1483out:
1484 return ret;
1485}
1486
1afc32b9
MF
1487static int ocfs2_write_begin_inline(struct address_space *mapping,
1488 struct inode *inode,
1489 struct ocfs2_write_ctxt *wc)
1490{
1491 int ret;
1492 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1493 struct page *page;
1494 handle_t *handle;
1495 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1496
1497 page = find_or_create_page(mapping, 0, GFP_NOFS);
1498 if (!page) {
1499 ret = -ENOMEM;
1500 mlog_errno(ret);
1501 goto out;
1502 }
1503 /*
1504 * If we don't set w_num_pages then this page won't get unlocked
1505 * and freed on cleanup of the write context.
1506 */
1507 wc->w_pages[0] = wc->w_target_page = page;
1508 wc->w_num_pages = 1;
1509
1510 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1511 if (IS_ERR(handle)) {
1512 ret = PTR_ERR(handle);
1513 mlog_errno(ret);
1514 goto out;
1515 }
1516
0cf2f763 1517 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1518 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1519 if (ret) {
1520 ocfs2_commit_trans(osb, handle);
1521
1522 mlog_errno(ret);
1523 goto out;
1524 }
1525
1526 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1527 ocfs2_set_inode_data_inline(inode, di);
1528
1529 if (!PageUptodate(page)) {
1530 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1531 if (ret) {
1532 ocfs2_commit_trans(osb, handle);
1533
1534 goto out;
1535 }
1536 }
1537
1538 wc->w_handle = handle;
1539out:
1540 return ret;
1541}
1542
1543int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1544{
1545 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1546
0d8a4e0c 1547 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1548 return 1;
1549 return 0;
1550}
1551
1552static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1553 struct inode *inode, loff_t pos,
1554 unsigned len, struct page *mmap_page,
1555 struct ocfs2_write_ctxt *wc)
1556{
1557 int ret, written = 0;
1558 loff_t end = pos + len;
1559 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1560 struct ocfs2_dinode *di = NULL;
1afc32b9
MF
1561
1562 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1563 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1564 oi->ip_dyn_features);
1565
1566 /*
1567 * Handle inodes which already have inline data 1st.
1568 */
1569 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1570 if (mmap_page == NULL &&
1571 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1572 goto do_inline_write;
1573
1574 /*
1575 * The write won't fit - we have to give this inode an
1576 * inline extent list now.
1577 */
1578 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1579 if (ret)
1580 mlog_errno(ret);
1581 goto out;
1582 }
1583
1584 /*
1585 * Check whether the inode can accept inline data.
1586 */
1587 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1588 return 0;
1589
1590 /*
1591 * Check whether the write can fit.
1592 */
d9ae49d6
TY
1593 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1594 if (mmap_page ||
1595 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1596 return 0;
1597
1598do_inline_write:
1599 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1600 if (ret) {
1601 mlog_errno(ret);
1602 goto out;
1603 }
1604
1605 /*
1606 * This signals to the caller that the data can be written
1607 * inline.
1608 */
1609 written = 1;
1610out:
1611 return written ? written : ret;
1612}
1613
65ed39d6
MF
1614/*
1615 * This function only does anything for file systems which can't
1616 * handle sparse files.
1617 *
1618 * What we want to do here is fill in any hole between the current end
1619 * of allocation and the end of our write. That way the rest of the
1620 * write path can treat it as an non-allocating write, which has no
1621 * special case code for sparse/nonsparse files.
1622 */
1623static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1624 unsigned len,
1625 struct ocfs2_write_ctxt *wc)
1626{
1627 int ret;
1628 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1629 loff_t newsize = pos + len;
1630
1631 if (ocfs2_sparse_alloc(osb))
1632 return 0;
1633
1634 if (newsize <= i_size_read(inode))
1635 return 0;
1636
e7432675 1637 ret = ocfs2_extend_no_holes(inode, newsize, pos);
65ed39d6
MF
1638 if (ret)
1639 mlog_errno(ret);
1640
e7432675
SM
1641 wc->w_first_new_cpos =
1642 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643
65ed39d6
MF
1644 return ret;
1645}
1646
0d172baa
MF
1647int ocfs2_write_begin_nolock(struct address_space *mapping,
1648 loff_t pos, unsigned len, unsigned flags,
1649 struct page **pagep, void **fsdata,
1650 struct buffer_head *di_bh, struct page *mmap_page)
1651{
e7432675 1652 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1653 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1654 struct ocfs2_write_ctxt *wc;
1655 struct inode *inode = mapping->host;
1656 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1657 struct ocfs2_dinode *di;
1658 struct ocfs2_alloc_context *data_ac = NULL;
1659 struct ocfs2_alloc_context *meta_ac = NULL;
1660 handle_t *handle;
f99b9b7c 1661 struct ocfs2_extent_tree et;
0d172baa
MF
1662
1663 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1664 if (ret) {
1665 mlog_errno(ret);
1666 return ret;
1667 }
1668
1afc32b9
MF
1669 if (ocfs2_supports_inline_data(osb)) {
1670 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1671 mmap_page, wc);
1672 if (ret == 1) {
1673 ret = 0;
1674 goto success;
1675 }
1676 if (ret < 0) {
1677 mlog_errno(ret);
1678 goto out;
1679 }
1680 }
1681
65ed39d6
MF
1682 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1683 if (ret) {
1684 mlog_errno(ret);
1685 goto out;
1686 }
1687
293b2f70
TM
1688 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1689 if (ret < 0) {
1690 mlog_errno(ret);
1691 goto out;
1692 } else if (ret == 1) {
1693 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1694 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1695 if (ret) {
1696 mlog_errno(ret);
1697 goto out;
1698 }
1699 }
1700
b27b7cbc
MF
1701 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1702 &extents_to_split);
0d172baa
MF
1703 if (ret) {
1704 mlog_errno(ret);
1705 goto out;
1706 }
1707
1708 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1709
3a307ffc
MF
1710 /*
1711 * We set w_target_from, w_target_to here so that
1712 * ocfs2_write_end() knows which range in the target page to
1713 * write out. An allocation requires that we write the entire
1714 * cluster range.
1715 */
b27b7cbc 1716 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1717 /*
1718 * XXX: We are stretching the limits of
b27b7cbc 1719 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1720 * the work to be done.
1721 */
e7d4cb6b
TM
1722 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1723 " clusters_to_add = %u, extents_to_split = %u\n",
1724 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1725 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1726 clusters_to_alloc, extents_to_split);
1727
5e404e9e
JB
1728 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1729 wc->w_di_bh);
f99b9b7c 1730 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1731 clusters_to_alloc, extents_to_split,
f99b9b7c 1732 &data_ac, &meta_ac);
9517bac6
MF
1733 if (ret) {
1734 mlog_errno(ret);
607d44aa 1735 goto out;
9517bac6
MF
1736 }
1737
811f933d
TM
1738 credits = ocfs2_calc_extend_credits(inode->i_sb,
1739 &di->id2.i_list,
3a307ffc
MF
1740 clusters_to_alloc);
1741
9517bac6
MF
1742 }
1743
e7432675
SM
1744 /*
1745 * We have to zero sparse allocated clusters, unwritten extent clusters,
1746 * and non-sparse clusters we just extended. For non-sparse writes,
1747 * we know zeros will only be needed in the first and/or last cluster.
1748 */
1749 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1750 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1751 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1752 cluster_of_pages = 1;
1753 else
1754 cluster_of_pages = 0;
1755
1756 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1757
9517bac6
MF
1758 handle = ocfs2_start_trans(osb, credits);
1759 if (IS_ERR(handle)) {
1760 ret = PTR_ERR(handle);
1761 mlog_errno(ret);
607d44aa 1762 goto out;
9517bac6
MF
1763 }
1764
3a307ffc
MF
1765 wc->w_handle = handle;
1766
5dd4056d
CH
1767 if (clusters_to_alloc) {
1768 ret = dquot_alloc_space_nodirty(inode,
1769 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1770 if (ret)
1771 goto out_commit;
a90714c1 1772 }
3a307ffc
MF
1773 /*
1774 * We don't want this to fail in ocfs2_write_end(), so do it
1775 * here.
1776 */
0cf2f763 1777 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1778 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1779 if (ret) {
9517bac6 1780 mlog_errno(ret);
a90714c1 1781 goto out_quota;
9517bac6
MF
1782 }
1783
3a307ffc
MF
1784 /*
1785 * Fill our page array first. That way we've grabbed enough so
1786 * that we can zero and flush if we error after adding the
1787 * extent.
1788 */
1789 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
e7432675 1790 cluster_of_pages, mmap_page);
9517bac6
MF
1791 if (ret) {
1792 mlog_errno(ret);
a90714c1 1793 goto out_quota;
9517bac6
MF
1794 }
1795
0d172baa
MF
1796 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1797 len);
1798 if (ret) {
1799 mlog_errno(ret);
a90714c1 1800 goto out_quota;
9517bac6 1801 }
9517bac6 1802
3a307ffc
MF
1803 if (data_ac)
1804 ocfs2_free_alloc_context(data_ac);
1805 if (meta_ac)
1806 ocfs2_free_alloc_context(meta_ac);
9517bac6 1807
1afc32b9 1808success:
3a307ffc
MF
1809 *pagep = wc->w_target_page;
1810 *fsdata = wc;
1811 return 0;
a90714c1
JK
1812out_quota:
1813 if (clusters_to_alloc)
5dd4056d 1814 dquot_free_space(inode,
a90714c1 1815 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1816out_commit:
1817 ocfs2_commit_trans(osb, handle);
1818
9517bac6 1819out:
3a307ffc
MF
1820 ocfs2_free_write_ctxt(wc);
1821
9517bac6
MF
1822 if (data_ac)
1823 ocfs2_free_alloc_context(data_ac);
1824 if (meta_ac)
1825 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1826 return ret;
1827}
1828
b6af1bcd
NP
1829static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1830 loff_t pos, unsigned len, unsigned flags,
1831 struct page **pagep, void **fsdata)
607d44aa
MF
1832{
1833 int ret;
1834 struct buffer_head *di_bh = NULL;
1835 struct inode *inode = mapping->host;
1836
e63aecb6 1837 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1838 if (ret) {
1839 mlog_errno(ret);
1840 return ret;
1841 }
1842
1843 /*
1844 * Take alloc sem here to prevent concurrent lookups. That way
1845 * the mapping, zeroing and tree manipulation within
1846 * ocfs2_write() will be safe against ->readpage(). This
1847 * should also serve to lock out allocation from a shared
1848 * writeable region.
1849 */
1850 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1851
607d44aa 1852 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1853 fsdata, di_bh, NULL);
607d44aa
MF
1854 if (ret) {
1855 mlog_errno(ret);
c934a92d 1856 goto out_fail;
607d44aa
MF
1857 }
1858
1859 brelse(di_bh);
1860
1861 return 0;
1862
607d44aa
MF
1863out_fail:
1864 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1865
1866 brelse(di_bh);
e63aecb6 1867 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1868
1869 return ret;
1870}
1871
1afc32b9
MF
1872static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1873 unsigned len, unsigned *copied,
1874 struct ocfs2_dinode *di,
1875 struct ocfs2_write_ctxt *wc)
1876{
1877 void *kaddr;
1878
1879 if (unlikely(*copied < len)) {
1880 if (!PageUptodate(wc->w_target_page)) {
1881 *copied = 0;
1882 return;
1883 }
1884 }
1885
1886 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1887 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1888 kunmap_atomic(kaddr, KM_USER0);
1889
1890 mlog(0, "Data written to inode at offset %llu. "
1891 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1892 (unsigned long long)pos, *copied,
1893 le16_to_cpu(di->id2.i_data.id_count),
1894 le16_to_cpu(di->i_dyn_features));
1895}
1896
7307de80
MF
1897int ocfs2_write_end_nolock(struct address_space *mapping,
1898 loff_t pos, unsigned len, unsigned copied,
1899 struct page *page, void *fsdata)
3a307ffc
MF
1900{
1901 int i;
1902 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1903 struct inode *inode = mapping->host;
1904 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1905 struct ocfs2_write_ctxt *wc = fsdata;
1906 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1907 handle_t *handle = wc->w_handle;
1908 struct page *tmppage;
1909
1afc32b9
MF
1910 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1911 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1912 goto out_write_size;
1913 }
1914
3a307ffc
MF
1915 if (unlikely(copied < len)) {
1916 if (!PageUptodate(wc->w_target_page))
1917 copied = 0;
1918
1919 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1920 start+len);
1921 }
1922 flush_dcache_page(wc->w_target_page);
1923
1924 for(i = 0; i < wc->w_num_pages; i++) {
1925 tmppage = wc->w_pages[i];
1926
1927 if (tmppage == wc->w_target_page) {
1928 from = wc->w_target_from;
1929 to = wc->w_target_to;
1930
1931 BUG_ON(from > PAGE_CACHE_SIZE ||
1932 to > PAGE_CACHE_SIZE ||
1933 to < from);
1934 } else {
1935 /*
1936 * Pages adjacent to the target (if any) imply
1937 * a hole-filling write in which case we want
1938 * to flush their entire range.
1939 */
1940 from = 0;
1941 to = PAGE_CACHE_SIZE;
1942 }
1943
961cecbe 1944 if (page_has_buffers(tmppage)) {
53ef99ca 1945 if (ocfs2_should_order_data(inode))
2b4e30fb 1946 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1947 block_commit_write(tmppage, from, to);
1948 }
3a307ffc
MF
1949 }
1950
1afc32b9 1951out_write_size:
3a307ffc
MF
1952 pos += copied;
1953 if (pos > inode->i_size) {
1954 i_size_write(inode, pos);
1955 mark_inode_dirty(inode);
1956 }
1957 inode->i_blocks = ocfs2_inode_sector_count(inode);
1958 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1959 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1960 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1961 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1962 ocfs2_journal_dirty(handle, wc->w_di_bh);
1963
1964 ocfs2_commit_trans(osb, handle);
59a5e416 1965
b27b7cbc
MF
1966 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1967
607d44aa
MF
1968 ocfs2_free_write_ctxt(wc);
1969
1970 return copied;
1971}
1972
b6af1bcd
NP
1973static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1974 loff_t pos, unsigned len, unsigned copied,
1975 struct page *page, void *fsdata)
607d44aa
MF
1976{
1977 int ret;
1978 struct inode *inode = mapping->host;
1979
1980 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1981
3a307ffc 1982 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 1983 ocfs2_inode_unlock(inode, 1);
9517bac6 1984
607d44aa 1985 return ret;
9517bac6
MF
1986}
1987
f5e54d6e 1988const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
1989 .readpage = ocfs2_readpage,
1990 .readpages = ocfs2_readpages,
1991 .writepage = ocfs2_writepage,
1992 .write_begin = ocfs2_write_begin,
1993 .write_end = ocfs2_write_end,
1994 .bmap = ocfs2_bmap,
1995 .sync_page = block_sync_page,
1996 .direct_IO = ocfs2_direct_IO,
1997 .invalidatepage = ocfs2_invalidatepage,
1998 .releasepage = ocfs2_releasepage,
1999 .migratepage = buffer_migrate_page,
2000 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2001 .error_remove_page = generic_error_remove_page,
ccd979bd 2002};