new helper: iov_iter_rw()
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
9517bac6 45#include "suballoc.h"
ccd979bd
MF
46#include "super.h"
47#include "symlink.h"
293b2f70 48#include "refcounttree.h"
9558156b 49#include "ocfs2_trace.h"
ccd979bd
MF
50
51#include "buffer_head_io.h"
24c40b32
JQ
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
ccd979bd
MF
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
9558156b
TM
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
b657c95c 79 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
ccd979bd
MF
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
7391a294 88 err = -ENOMEM;
ccd979bd
MF
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
7391a294 101 err = -ENOMEM;
ccd979bd
MF
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 112 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
c4bc8dcb 120 kunmap_atomic(kaddr);
ccd979bd
MF
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
a81cb88b 132 brelse(bh);
ccd979bd 133
ccd979bd
MF
134 return err;
135}
136
6f70fa51
TM
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
ccd979bd
MF
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
628a24f5
MF
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
25baf2da 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 145
9558156b
TM
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
628a24f5 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 160 &ext_flags);
ccd979bd
MF
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
ccd979bd
MF
165 goto bail;
166 }
167
628a24f5
MF
168 if (max_blocks < count)
169 count = max_blocks;
170
25baf2da
MF
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
ebdec241 175 * allows __block_write_begin() to zero.
c0420ad2
CL
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
25baf2da 181 */
c0420ad2
CL
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
25baf2da 187
49cb8d2d
MF
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
628a24f5
MF
192 bh_result->b_size = count << inode->i_blkbits;
193
25baf2da
MF
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
1f4cea37 204 goto bail;
25baf2da 205 }
25baf2da 206 }
ccd979bd 207
5693486b 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
5693486b
JB
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
ccd979bd
MF
215bail:
216 if (err < 0)
217 err = -EIO;
218
ccd979bd
MF
219 return err;
220}
221
1afc32b9
MF
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
6798d35a
MF
224{
225 void *kaddr;
d2849fb2 226 loff_t size;
6798d35a
MF
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 239 ocfs2_error(inode->i_sb,
d2849fb2
JK
240 "Inode %llu has with inline data has bad size: %Lu",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
6798d35a
MF
243 return -EROFS;
244 }
245
c4bc8dcb 246 kaddr = kmap_atomic(page);
6798d35a
MF
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
c4bc8dcb 252 kunmap_atomic(kaddr);
6798d35a
MF
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
6798d35a
MF
263
264 BUG_ON(!PageLocked(page));
86c838b0 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 266
b657c95c 267 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
ccd979bd
MF
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
6798d35a 284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
9558156b
TM
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
ccd979bd 290
e63aecb6 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
6798d35a 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
e9dfc0b2 304 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
e63aecb6 309 goto out_inode_unlock;
e9dfc0b2 310 }
ccd979bd
MF
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
54cb8821 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
eebd2aa3 323 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
6798d35a
MF
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
333 unlock = 0;
334
ccd979bd
MF
335out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
339out:
340 if (unlock)
341 unlock_page(page);
ccd979bd
MF
342 return ret;
343}
344
628a24f5
MF
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
ccd979bd
MF
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
9558156b
TM
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
ccd979bd 417
9558156b 418 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
419}
420
ccd979bd
MF
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
60b11392
MF
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
ccd979bd
MF
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
ccd979bd
MF
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
9558156b
TM
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
ccd979bd
MF
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
e63aecb6 471 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
6798d35a
MF
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
ccd979bd
MF
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 486 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
ccd979bd
MF
496bail:
497 status = err ? 0 : p_blkno;
498
ccd979bd
MF
499 return status;
500}
501
502/*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
516 struct buffer_head *bh_result, int create)
517{
518 int ret;
49255dce
JQ
519 u32 cpos = 0;
520 int alloc_locked = 0;
4f902c37 521 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 522 unsigned int ext_flags;
184d7d20 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
49255dce
JQ
525 unsigned long len = bh_result->b_size;
526 unsigned int clusters_to_alloc = 0;
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
ccd979bd 529
ccd979bd
MF
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
25baf2da 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 535
ccd979bd
MF
536 /* This figures out the size of the next contiguous block, and
537 * our logical offset */
363041a5 538 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 539 &contig_blocks, &ext_flags);
ccd979bd
MF
540 if (ret) {
541 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 (unsigned long long)iblock);
543 ret = -EIO;
544 goto bail;
545 }
546
cbaee472
TM
547 /* We should already CoW the refcounted extent in case of create. */
548 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
49255dce
JQ
550 /* allocate blocks if no p_blkno is found, and create == 1 */
551 if (!p_blkno && create) {
552 ret = ocfs2_inode_lock(inode, NULL, 1);
553 if (ret < 0) {
554 mlog_errno(ret);
555 goto bail;
556 }
557
558 alloc_locked = 1;
559
560 /* fill hole, allocate blocks can't be larger than the size
561 * of the hole */
562 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563 if (clusters_to_alloc > contig_blocks)
564 clusters_to_alloc = contig_blocks;
565
566 /* allocate extent and insert them into the extent tree */
567 ret = ocfs2_extend_allocation(inode, cpos,
568 clusters_to_alloc, 0);
569 if (ret < 0) {
570 mlog_errno(ret);
571 goto bail;
572 }
573
574 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575 &contig_blocks, &ext_flags);
576 if (ret < 0) {
577 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578 (unsigned long long)iblock);
579 ret = -EIO;
580 goto bail;
581 }
582 }
583
25baf2da
MF
584 /*
585 * get_more_blocks() expects us to describe a hole by clearing
586 * the mapped bit on bh_result().
49cb8d2d
MF
587 *
588 * Consider an unwritten extent as a hole.
25baf2da 589 */
49cb8d2d 590 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 591 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 592 else
25baf2da 593 clear_buffer_mapped(bh_result);
ccd979bd
MF
594
595 /* make sure we don't map more than max_blocks blocks here as
596 that's all the kernel will handle at this point. */
597 if (max_blocks < contig_blocks)
598 contig_blocks = max_blocks;
599 bh_result->b_size = contig_blocks << blocksize_bits;
600bail:
49255dce
JQ
601 if (alloc_locked)
602 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
603 return ret;
604}
605
2bd63216 606/*
ccd979bd 607 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
608 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
609 * to protect io on one node from truncation on another.
ccd979bd
MF
610 */
611static void ocfs2_dio_end_io(struct kiocb *iocb,
612 loff_t offset,
613 ssize_t bytes,
7b7a8665 614 void *private)
ccd979bd 615{
496ad9aa 616 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 617 int level;
ccd979bd
MF
618
619 /* this io's submitter should not have unlocked this before we could */
620 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 621
df2d6f26 622 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 623 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 624
a11f7e63
MF
625 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626 ocfs2_iocb_clear_unaligned_aio(iocb);
627
c18ceab0 628 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
629 }
630
ccd979bd 631 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
632
633 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 634 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
635}
636
03f981cf
JB
637static int ocfs2_releasepage(struct page *page, gfp_t wait)
638{
03f981cf
JB
639 if (!page_has_buffers(page))
640 return 0;
41ecc345 641 return try_to_free_buffers(page);
03f981cf
JB
642}
643
24c40b32
JQ
644static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645 struct inode *inode, loff_t offset)
646{
647 int ret = 0;
648 u32 v_cpos = 0;
649 u32 p_cpos = 0;
650 unsigned int num_clusters = 0;
651 unsigned int ext_flags = 0;
652
653 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655 &num_clusters, &ext_flags);
656 if (ret < 0) {
657 mlog_errno(ret);
658 return ret;
659 }
660
661 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662 return 1;
663
664 return 0;
665}
666
667static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
668 struct iov_iter *iter,
669 loff_t offset)
670{
671 ssize_t ret = 0;
672 ssize_t written = 0;
673 bool orphaned = false;
674 int is_overwrite = 0;
675 struct file *file = iocb->ki_filp;
676 struct inode *inode = file_inode(file)->i_mapping->host;
677 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
678 struct buffer_head *di_bh = NULL;
679 size_t count = iter->count;
680 journal_t *journal = osb->journal->j_journal;
681 u32 zero_len;
682 int cluster_align;
683 loff_t final_size = offset + count;
684 int append_write = offset >= i_size_read(inode) ? 1 : 0;
685 unsigned int num_clusters = 0;
686 unsigned int ext_flags = 0;
687
688 {
689 u64 o = offset;
690
691 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
692 cluster_align = !zero_len;
693 }
694
695 /*
696 * when final_size > inode->i_size, inode->i_size will be
697 * updated after direct write, so add the inode to orphan
698 * dir first.
699 */
700 if (final_size > i_size_read(inode)) {
701 ret = ocfs2_add_inode_to_orphan(osb, inode);
702 if (ret < 0) {
703 mlog_errno(ret);
704 goto out;
705 }
706 orphaned = true;
707 }
708
709 if (append_write) {
710 ret = ocfs2_inode_lock(inode, &di_bh, 1);
711 if (ret < 0) {
712 mlog_errno(ret);
713 goto clean_orphan;
714 }
715
716 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
717 ret = ocfs2_zero_extend(inode, di_bh, offset);
718 else
719 ret = ocfs2_extend_no_holes(inode, di_bh, offset,
720 offset);
721 if (ret < 0) {
722 mlog_errno(ret);
723 ocfs2_inode_unlock(inode, 1);
724 brelse(di_bh);
725 goto clean_orphan;
726 }
727
728 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
729 if (is_overwrite < 0) {
730 mlog_errno(is_overwrite);
731 ocfs2_inode_unlock(inode, 1);
732 brelse(di_bh);
733 goto clean_orphan;
734 }
735
736 ocfs2_inode_unlock(inode, 1);
737 brelse(di_bh);
738 di_bh = NULL;
739 }
740
741 written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
742 iter, offset,
743 ocfs2_direct_IO_get_blocks,
744 ocfs2_dio_end_io, NULL, 0);
745 if (unlikely(written < 0)) {
746 loff_t i_size = i_size_read(inode);
747
748 if (offset + count > i_size) {
749 ret = ocfs2_inode_lock(inode, &di_bh, 1);
750 if (ret < 0) {
751 mlog_errno(ret);
752 goto clean_orphan;
753 }
754
755 if (i_size == i_size_read(inode)) {
756 ret = ocfs2_truncate_file(inode, di_bh,
757 i_size);
758 if (ret < 0) {
759 if (ret != -ENOSPC)
760 mlog_errno(ret);
761
762 ocfs2_inode_unlock(inode, 1);
763 brelse(di_bh);
764 goto clean_orphan;
765 }
766 }
767
768 ocfs2_inode_unlock(inode, 1);
769 brelse(di_bh);
770
771 ret = jbd2_journal_force_commit(journal);
772 if (ret < 0)
773 mlog_errno(ret);
774 }
775 } else if (written < 0 && append_write && !is_overwrite &&
776 !cluster_align) {
777 u32 p_cpos = 0;
778 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
779
780 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
781 &num_clusters, &ext_flags);
782 if (ret < 0) {
783 mlog_errno(ret);
784 goto clean_orphan;
785 }
786
787 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
788
789 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
790 p_cpos << (osb->s_clustersize_bits - 9),
791 zero_len >> 9, GFP_KERNEL, false);
792 if (ret < 0)
793 mlog_errno(ret);
794 }
795
796clean_orphan:
797 if (orphaned) {
798 int tmp_ret;
799 int update_isize = written > 0 ? 1 : 0;
800 loff_t end = update_isize ? offset + written : 0;
801
802 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
803 update_isize, end);
804 if (tmp_ret < 0) {
805 ret = tmp_ret;
806 goto out;
807 }
808
809 tmp_ret = jbd2_journal_force_commit(journal);
810 if (tmp_ret < 0) {
811 ret = tmp_ret;
812 mlog_errno(tmp_ret);
813 }
814 }
815
816out:
817 if (ret >= 0)
818 ret = written;
819 return ret;
820}
821
ccd979bd
MF
822static ssize_t ocfs2_direct_IO(int rw,
823 struct kiocb *iocb,
d8d3d94b
AV
824 struct iov_iter *iter,
825 loff_t offset)
ccd979bd
MF
826{
827 struct file *file = iocb->ki_filp;
496ad9aa 828 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
829 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
830 int full_coherency = !(osb->s_mount_opt &
831 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 832
6798d35a
MF
833 /*
834 * Fallback to buffered I/O if we see an inode without
835 * extents.
836 */
837 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
838 return 0;
839
24c40b32
JQ
840 /* Fallback to buffered I/O if we are appending and
841 * concurrent O_DIRECT writes are allowed.
842 */
843 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
844 return 0;
845
24c40b32
JQ
846 if (rw == READ)
847 return __blockdev_direct_IO(rw, iocb, inode,
848 inode->i_sb->s_bdev,
31b14039 849 iter, offset,
c1e8d35e
TM
850 ocfs2_direct_IO_get_blocks,
851 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
852 else
853 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
854}
855
9517bac6
MF
856static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
857 u32 cpos,
858 unsigned int *start,
859 unsigned int *end)
860{
861 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
862
863 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
864 unsigned int cpp;
865
866 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
867
868 cluster_start = cpos % cpp;
869 cluster_start = cluster_start << osb->s_clustersize_bits;
870
871 cluster_end = cluster_start + osb->s_clustersize;
872 }
873
874 BUG_ON(cluster_start > PAGE_SIZE);
875 BUG_ON(cluster_end > PAGE_SIZE);
876
877 if (start)
878 *start = cluster_start;
879 if (end)
880 *end = cluster_end;
881}
882
883/*
884 * 'from' and 'to' are the region in the page to avoid zeroing.
885 *
886 * If pagesize > clustersize, this function will avoid zeroing outside
887 * of the cluster boundary.
888 *
889 * from == to == 0 is code for "zero the entire cluster region"
890 */
891static void ocfs2_clear_page_regions(struct page *page,
892 struct ocfs2_super *osb, u32 cpos,
893 unsigned from, unsigned to)
894{
895 void *kaddr;
896 unsigned int cluster_start, cluster_end;
897
898 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
899
c4bc8dcb 900 kaddr = kmap_atomic(page);
9517bac6
MF
901
902 if (from || to) {
903 if (from > cluster_start)
904 memset(kaddr + cluster_start, 0, from - cluster_start);
905 if (to < cluster_end)
906 memset(kaddr + to, 0, cluster_end - to);
907 } else {
908 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
909 }
910
c4bc8dcb 911 kunmap_atomic(kaddr);
9517bac6
MF
912}
913
4e9563fd
MF
914/*
915 * Nonsparse file systems fully allocate before we get to the write
916 * code. This prevents ocfs2_write() from tagging the write as an
917 * allocating one, which means ocfs2_map_page_blocks() might try to
918 * read-in the blocks at the tail of our file. Avoid reading them by
919 * testing i_size against each block offset.
920 */
921static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
922 unsigned int block_start)
923{
924 u64 offset = page_offset(page) + block_start;
925
926 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
927 return 1;
928
929 if (i_size_read(inode) > offset)
930 return 1;
931
932 return 0;
933}
934
9517bac6 935/*
ebdec241 936 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
937 * mapping by now though, and the entire write will be allocating or
938 * it won't, so not much need to use BH_New.
939 *
940 * This will also skip zeroing, which is handled externally.
941 */
60b11392
MF
942int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
943 struct inode *inode, unsigned int from,
944 unsigned int to, int new)
9517bac6
MF
945{
946 int ret = 0;
947 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
948 unsigned int block_end, block_start;
949 unsigned int bsize = 1 << inode->i_blkbits;
950
951 if (!page_has_buffers(page))
952 create_empty_buffers(page, bsize, 0);
953
954 head = page_buffers(page);
955 for (bh = head, block_start = 0; bh != head || !block_start;
956 bh = bh->b_this_page, block_start += bsize) {
957 block_end = block_start + bsize;
958
3a307ffc
MF
959 clear_buffer_new(bh);
960
9517bac6
MF
961 /*
962 * Ignore blocks outside of our i/o range -
963 * they may belong to unallocated clusters.
964 */
60b11392 965 if (block_start >= to || block_end <= from) {
9517bac6
MF
966 if (PageUptodate(page))
967 set_buffer_uptodate(bh);
968 continue;
969 }
970
971 /*
972 * For an allocating write with cluster size >= page
973 * size, we always write the entire page.
974 */
3a307ffc
MF
975 if (new)
976 set_buffer_new(bh);
9517bac6
MF
977
978 if (!buffer_mapped(bh)) {
979 map_bh(bh, inode->i_sb, *p_blkno);
980 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
981 }
982
983 if (PageUptodate(page)) {
984 if (!buffer_uptodate(bh))
985 set_buffer_uptodate(bh);
986 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 987 !buffer_new(bh) &&
4e9563fd 988 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 989 (block_start < from || block_end > to)) {
9517bac6
MF
990 ll_rw_block(READ, 1, &bh);
991 *wait_bh++=bh;
992 }
993
994 *p_blkno = *p_blkno + 1;
995 }
996
997 /*
998 * If we issued read requests - let them complete.
999 */
1000 while(wait_bh > wait) {
1001 wait_on_buffer(*--wait_bh);
1002 if (!buffer_uptodate(*wait_bh))
1003 ret = -EIO;
1004 }
1005
1006 if (ret == 0 || !new)
1007 return ret;
1008
1009 /*
1010 * If we get -EIO above, zero out any newly allocated blocks
1011 * to avoid exposing stale data.
1012 */
1013 bh = head;
1014 block_start = 0;
1015 do {
9517bac6
MF
1016 block_end = block_start + bsize;
1017 if (block_end <= from)
1018 goto next_bh;
1019 if (block_start >= to)
1020 break;
1021
eebd2aa3 1022 zero_user(page, block_start, bh->b_size);
9517bac6
MF
1023 set_buffer_uptodate(bh);
1024 mark_buffer_dirty(bh);
1025
1026next_bh:
1027 block_start = block_end;
1028 bh = bh->b_this_page;
1029 } while (bh != head);
1030
1031 return ret;
1032}
1033
3a307ffc
MF
1034#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1035#define OCFS2_MAX_CTXT_PAGES 1
1036#else
1037#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1038#endif
1039
1040#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1041
6af67d82 1042/*
3a307ffc 1043 * Describe the state of a single cluster to be written to.
6af67d82 1044 */
3a307ffc
MF
1045struct ocfs2_write_cluster_desc {
1046 u32 c_cpos;
1047 u32 c_phys;
1048 /*
1049 * Give this a unique field because c_phys eventually gets
1050 * filled.
1051 */
1052 unsigned c_new;
b27b7cbc 1053 unsigned c_unwritten;
e7432675 1054 unsigned c_needs_zero;
3a307ffc 1055};
6af67d82 1056
3a307ffc
MF
1057struct ocfs2_write_ctxt {
1058 /* Logical cluster position / len of write */
1059 u32 w_cpos;
1060 u32 w_clen;
6af67d82 1061
e7432675
SM
1062 /* First cluster allocated in a nonsparse extend */
1063 u32 w_first_new_cpos;
1064
3a307ffc 1065 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1066
3a307ffc
MF
1067 /*
1068 * This is true if page_size > cluster_size.
1069 *
1070 * It triggers a set of special cases during write which might
1071 * have to deal with allocating writes to partial pages.
1072 */
1073 unsigned int w_large_pages;
6af67d82 1074
3a307ffc
MF
1075 /*
1076 * Pages involved in this write.
1077 *
1078 * w_target_page is the page being written to by the user.
1079 *
1080 * w_pages is an array of pages which always contains
1081 * w_target_page, and in the case of an allocating write with
1082 * page_size < cluster size, it will contain zero'd and mapped
1083 * pages adjacent to w_target_page which need to be written
1084 * out in so that future reads from that region will get
1085 * zero's.
1086 */
3a307ffc 1087 unsigned int w_num_pages;
83fd9c7f 1088 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1089 struct page *w_target_page;
eeb47d12 1090
5cffff9e
WW
1091 /*
1092 * w_target_locked is used for page_mkwrite path indicating no unlocking
1093 * against w_target_page in ocfs2_write_end_nolock.
1094 */
1095 unsigned int w_target_locked:1;
1096
3a307ffc
MF
1097 /*
1098 * ocfs2_write_end() uses this to know what the real range to
1099 * write in the target should be.
1100 */
1101 unsigned int w_target_from;
1102 unsigned int w_target_to;
1103
1104 /*
1105 * We could use journal_current_handle() but this is cleaner,
1106 * IMHO -Mark
1107 */
1108 handle_t *w_handle;
1109
1110 struct buffer_head *w_di_bh;
b27b7cbc
MF
1111
1112 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
1113};
1114
1d410a6e 1115void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1116{
1117 int i;
1118
1d410a6e
MF
1119 for(i = 0; i < num_pages; i++) {
1120 if (pages[i]) {
1121 unlock_page(pages[i]);
1122 mark_page_accessed(pages[i]);
1123 page_cache_release(pages[i]);
1124 }
6af67d82 1125 }
1d410a6e
MF
1126}
1127
136f49b9 1128static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1129{
5cffff9e
WW
1130 int i;
1131
1132 /*
1133 * w_target_locked is only set to true in the page_mkwrite() case.
1134 * The intent is to allow us to lock the target page from write_begin()
1135 * to write_end(). The caller must hold a ref on w_target_page.
1136 */
1137 if (wc->w_target_locked) {
1138 BUG_ON(!wc->w_target_page);
1139 for (i = 0; i < wc->w_num_pages; i++) {
1140 if (wc->w_target_page == wc->w_pages[i]) {
1141 wc->w_pages[i] = NULL;
1142 break;
1143 }
1144 }
1145 mark_page_accessed(wc->w_target_page);
1146 page_cache_release(wc->w_target_page);
1147 }
1d410a6e 1148 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1149}
6af67d82 1150
136f49b9
JB
1151static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1152{
1153 ocfs2_unlock_pages(wc);
3a307ffc
MF
1154 brelse(wc->w_di_bh);
1155 kfree(wc);
1156}
1157
1158static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1159 struct ocfs2_super *osb, loff_t pos,
607d44aa 1160 unsigned len, struct buffer_head *di_bh)
3a307ffc 1161{
30b8548f 1162 u32 cend;
3a307ffc
MF
1163 struct ocfs2_write_ctxt *wc;
1164
1165 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1166 if (!wc)
1167 return -ENOMEM;
6af67d82 1168
3a307ffc 1169 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1170 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1171 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1172 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1173 get_bh(di_bh);
1174 wc->w_di_bh = di_bh;
6af67d82 1175
3a307ffc
MF
1176 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1177 wc->w_large_pages = 1;
1178 else
1179 wc->w_large_pages = 0;
1180
b27b7cbc
MF
1181 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1182
3a307ffc 1183 *wcp = wc;
6af67d82 1184
3a307ffc 1185 return 0;
6af67d82
MF
1186}
1187
9517bac6 1188/*
3a307ffc
MF
1189 * If a page has any new buffers, zero them out here, and mark them uptodate
1190 * and dirty so they'll be written out (in order to prevent uninitialised
1191 * block data from leaking). And clear the new bit.
9517bac6 1192 */
3a307ffc 1193static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1194{
3a307ffc
MF
1195 unsigned int block_start, block_end;
1196 struct buffer_head *head, *bh;
9517bac6 1197
3a307ffc
MF
1198 BUG_ON(!PageLocked(page));
1199 if (!page_has_buffers(page))
1200 return;
9517bac6 1201
3a307ffc
MF
1202 bh = head = page_buffers(page);
1203 block_start = 0;
1204 do {
1205 block_end = block_start + bh->b_size;
1206
1207 if (buffer_new(bh)) {
1208 if (block_end > from && block_start < to) {
1209 if (!PageUptodate(page)) {
1210 unsigned start, end;
3a307ffc
MF
1211
1212 start = max(from, block_start);
1213 end = min(to, block_end);
1214
eebd2aa3 1215 zero_user_segment(page, start, end);
3a307ffc
MF
1216 set_buffer_uptodate(bh);
1217 }
1218
1219 clear_buffer_new(bh);
1220 mark_buffer_dirty(bh);
1221 }
1222 }
9517bac6 1223
3a307ffc
MF
1224 block_start = block_end;
1225 bh = bh->b_this_page;
1226 } while (bh != head);
1227}
1228
1229/*
1230 * Only called when we have a failure during allocating write to write
1231 * zero's to the newly allocated region.
1232 */
1233static void ocfs2_write_failure(struct inode *inode,
1234 struct ocfs2_write_ctxt *wc,
1235 loff_t user_pos, unsigned user_len)
1236{
1237 int i;
5c26a7b7
MF
1238 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1239 to = user_pos + user_len;
3a307ffc
MF
1240 struct page *tmppage;
1241
5c26a7b7 1242 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1243
3a307ffc
MF
1244 for(i = 0; i < wc->w_num_pages; i++) {
1245 tmppage = wc->w_pages[i];
9517bac6 1246
961cecbe 1247 if (page_has_buffers(tmppage)) {
53ef99ca 1248 if (ocfs2_should_order_data(inode))
2b4e30fb 1249 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1250
1251 block_commit_write(tmppage, from, to);
1252 }
9517bac6 1253 }
9517bac6
MF
1254}
1255
3a307ffc
MF
1256static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1257 struct ocfs2_write_ctxt *wc,
1258 struct page *page, u32 cpos,
1259 loff_t user_pos, unsigned user_len,
1260 int new)
9517bac6 1261{
3a307ffc
MF
1262 int ret;
1263 unsigned int map_from = 0, map_to = 0;
9517bac6 1264 unsigned int cluster_start, cluster_end;
3a307ffc 1265 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1266
3a307ffc 1267 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1268 &cluster_start, &cluster_end);
1269
272b62c1
GR
1270 /* treat the write as new if the a hole/lseek spanned across
1271 * the page boundary.
1272 */
1273 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1274 (page_offset(page) <= user_pos));
1275
3a307ffc
MF
1276 if (page == wc->w_target_page) {
1277 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1278 map_to = map_from + user_len;
1279
1280 if (new)
1281 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1282 cluster_start, cluster_end,
1283 new);
1284 else
1285 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1286 map_from, map_to, new);
1287 if (ret) {
9517bac6
MF
1288 mlog_errno(ret);
1289 goto out;
1290 }
1291
3a307ffc
MF
1292 user_data_from = map_from;
1293 user_data_to = map_to;
9517bac6 1294 if (new) {
3a307ffc
MF
1295 map_from = cluster_start;
1296 map_to = cluster_end;
9517bac6
MF
1297 }
1298 } else {
1299 /*
1300 * If we haven't allocated the new page yet, we
1301 * shouldn't be writing it out without copying user
1302 * data. This is likely a math error from the caller.
1303 */
1304 BUG_ON(!new);
1305
3a307ffc
MF
1306 map_from = cluster_start;
1307 map_to = cluster_end;
9517bac6
MF
1308
1309 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1310 cluster_start, cluster_end, new);
9517bac6
MF
1311 if (ret) {
1312 mlog_errno(ret);
1313 goto out;
1314 }
1315 }
1316
1317 /*
1318 * Parts of newly allocated pages need to be zero'd.
1319 *
1320 * Above, we have also rewritten 'to' and 'from' - as far as
1321 * the rest of the function is concerned, the entire cluster
1322 * range inside of a page needs to be written.
1323 *
1324 * We can skip this if the page is up to date - it's already
1325 * been zero'd from being read in as a hole.
1326 */
1327 if (new && !PageUptodate(page))
1328 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1329 cpos, user_data_from, user_data_to);
9517bac6
MF
1330
1331 flush_dcache_page(page);
1332
9517bac6 1333out:
3a307ffc 1334 return ret;
9517bac6
MF
1335}
1336
1337/*
3a307ffc 1338 * This function will only grab one clusters worth of pages.
9517bac6 1339 */
3a307ffc
MF
1340static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1341 struct ocfs2_write_ctxt *wc,
693c241a
JB
1342 u32 cpos, loff_t user_pos,
1343 unsigned user_len, int new,
7307de80 1344 struct page *mmap_page)
9517bac6 1345{
3a307ffc 1346 int ret = 0, i;
693c241a 1347 unsigned long start, target_index, end_index, index;
9517bac6 1348 struct inode *inode = mapping->host;
693c241a 1349 loff_t last_byte;
9517bac6 1350
3a307ffc 1351 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1352
1353 /*
1354 * Figure out how many pages we'll be manipulating here. For
60b11392 1355 * non allocating write, we just change the one
693c241a
JB
1356 * page. Otherwise, we'll need a whole clusters worth. If we're
1357 * writing past i_size, we only need enough pages to cover the
1358 * last page of the write.
9517bac6 1359 */
9517bac6 1360 if (new) {
3a307ffc
MF
1361 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1362 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1363 /*
1364 * We need the index *past* the last page we could possibly
1365 * touch. This is the page past the end of the write or
1366 * i_size, whichever is greater.
1367 */
1368 last_byte = max(user_pos + user_len, i_size_read(inode));
1369 BUG_ON(last_byte < 1);
1370 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1371 if ((start + wc->w_num_pages) > end_index)
1372 wc->w_num_pages = end_index - start;
9517bac6 1373 } else {
3a307ffc
MF
1374 wc->w_num_pages = 1;
1375 start = target_index;
9517bac6
MF
1376 }
1377
3a307ffc 1378 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1379 index = start + i;
1380
7307de80
MF
1381 if (index == target_index && mmap_page) {
1382 /*
1383 * ocfs2_pagemkwrite() is a little different
1384 * and wants us to directly use the page
1385 * passed in.
1386 */
1387 lock_page(mmap_page);
1388
5cffff9e 1389 /* Exit and let the caller retry */
7307de80 1390 if (mmap_page->mapping != mapping) {
5cffff9e 1391 WARN_ON(mmap_page->mapping);
7307de80 1392 unlock_page(mmap_page);
5cffff9e 1393 ret = -EAGAIN;
7307de80
MF
1394 goto out;
1395 }
1396
1397 page_cache_get(mmap_page);
1398 wc->w_pages[i] = mmap_page;
5cffff9e 1399 wc->w_target_locked = true;
7307de80
MF
1400 } else {
1401 wc->w_pages[i] = find_or_create_page(mapping, index,
1402 GFP_NOFS);
1403 if (!wc->w_pages[i]) {
1404 ret = -ENOMEM;
1405 mlog_errno(ret);
1406 goto out;
1407 }
9517bac6 1408 }
1269529b 1409 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1410
1411 if (index == target_index)
1412 wc->w_target_page = wc->w_pages[i];
9517bac6 1413 }
3a307ffc 1414out:
5cffff9e
WW
1415 if (ret)
1416 wc->w_target_locked = false;
3a307ffc
MF
1417 return ret;
1418}
1419
1420/*
1421 * Prepare a single cluster for write one cluster into the file.
1422 */
1423static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1424 u32 phys, unsigned int unwritten,
e7432675 1425 unsigned int should_zero,
b27b7cbc 1426 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1427 struct ocfs2_alloc_context *meta_ac,
1428 struct ocfs2_write_ctxt *wc, u32 cpos,
1429 loff_t user_pos, unsigned user_len)
1430{
e7432675 1431 int ret, i, new;
3a307ffc
MF
1432 u64 v_blkno, p_blkno;
1433 struct inode *inode = mapping->host;
f99b9b7c 1434 struct ocfs2_extent_tree et;
3a307ffc
MF
1435
1436 new = phys == 0 ? 1 : 0;
9517bac6 1437 if (new) {
3a307ffc
MF
1438 u32 tmp_pos;
1439
9517bac6
MF
1440 /*
1441 * This is safe to call with the page locks - it won't take
1442 * any additional semaphores or cluster locks.
1443 */
3a307ffc 1444 tmp_pos = cpos;
0eb8d47e
TM
1445 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1446 &tmp_pos, 1, 0, wc->w_di_bh,
1447 wc->w_handle, data_ac,
1448 meta_ac, NULL);
9517bac6
MF
1449 /*
1450 * This shouldn't happen because we must have already
1451 * calculated the correct meta data allocation required. The
1452 * internal tree allocation code should know how to increase
1453 * transaction credits itself.
1454 *
1455 * If need be, we could handle -EAGAIN for a
1456 * RESTART_TRANS here.
1457 */
1458 mlog_bug_on_msg(ret == -EAGAIN,
1459 "Inode %llu: EAGAIN return during allocation.\n",
1460 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1461 if (ret < 0) {
1462 mlog_errno(ret);
1463 goto out;
1464 }
b27b7cbc 1465 } else if (unwritten) {
5e404e9e
JB
1466 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1467 wc->w_di_bh);
f99b9b7c 1468 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1469 wc->w_handle, cpos, 1, phys,
f99b9b7c 1470 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1471 if (ret < 0) {
1472 mlog_errno(ret);
1473 goto out;
1474 }
1475 }
3a307ffc 1476
b27b7cbc 1477 if (should_zero)
3a307ffc 1478 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1479 else
3a307ffc 1480 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1481
3a307ffc
MF
1482 /*
1483 * The only reason this should fail is due to an inability to
1484 * find the extent added.
1485 */
49cb8d2d
MF
1486 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1487 NULL);
9517bac6 1488 if (ret < 0) {
61fb9ea4 1489 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
3a307ffc
MF
1490 "at logical block %llu",
1491 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1492 (unsigned long long)v_blkno);
9517bac6
MF
1493 goto out;
1494 }
1495
1496 BUG_ON(p_blkno == 0);
1497
3a307ffc
MF
1498 for(i = 0; i < wc->w_num_pages; i++) {
1499 int tmpret;
9517bac6 1500
3a307ffc
MF
1501 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1502 wc->w_pages[i], cpos,
b27b7cbc
MF
1503 user_pos, user_len,
1504 should_zero);
3a307ffc
MF
1505 if (tmpret) {
1506 mlog_errno(tmpret);
1507 if (ret == 0)
cbfa9639 1508 ret = tmpret;
3a307ffc 1509 }
9517bac6
MF
1510 }
1511
3a307ffc
MF
1512 /*
1513 * We only have cleanup to do in case of allocating write.
1514 */
1515 if (ret && new)
1516 ocfs2_write_failure(inode, wc, user_pos, user_len);
1517
9517bac6 1518out:
9517bac6 1519
3a307ffc 1520 return ret;
9517bac6
MF
1521}
1522
0d172baa
MF
1523static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1524 struct ocfs2_alloc_context *data_ac,
1525 struct ocfs2_alloc_context *meta_ac,
1526 struct ocfs2_write_ctxt *wc,
1527 loff_t pos, unsigned len)
1528{
1529 int ret, i;
db56246c
MF
1530 loff_t cluster_off;
1531 unsigned int local_len = len;
0d172baa 1532 struct ocfs2_write_cluster_desc *desc;
db56246c 1533 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1534
1535 for (i = 0; i < wc->w_clen; i++) {
1536 desc = &wc->w_desc[i];
1537
db56246c
MF
1538 /*
1539 * We have to make sure that the total write passed in
1540 * doesn't extend past a single cluster.
1541 */
1542 local_len = len;
1543 cluster_off = pos & (osb->s_clustersize - 1);
1544 if ((cluster_off + local_len) > osb->s_clustersize)
1545 local_len = osb->s_clustersize - cluster_off;
1546
b27b7cbc 1547 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1548 desc->c_unwritten,
1549 desc->c_needs_zero,
1550 data_ac, meta_ac,
db56246c 1551 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1552 if (ret) {
1553 mlog_errno(ret);
1554 goto out;
1555 }
db56246c
MF
1556
1557 len -= local_len;
1558 pos += local_len;
0d172baa
MF
1559 }
1560
1561 ret = 0;
1562out:
1563 return ret;
1564}
1565
3a307ffc
MF
1566/*
1567 * ocfs2_write_end() wants to know which parts of the target page it
1568 * should complete the write on. It's easiest to compute them ahead of
1569 * time when a more complete view of the write is available.
1570 */
1571static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1572 struct ocfs2_write_ctxt *wc,
1573 loff_t pos, unsigned len, int alloc)
9517bac6 1574{
3a307ffc 1575 struct ocfs2_write_cluster_desc *desc;
9517bac6 1576
3a307ffc
MF
1577 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1578 wc->w_target_to = wc->w_target_from + len;
1579
1580 if (alloc == 0)
1581 return;
1582
1583 /*
1584 * Allocating write - we may have different boundaries based
1585 * on page size and cluster size.
1586 *
1587 * NOTE: We can no longer compute one value from the other as
1588 * the actual write length and user provided length may be
1589 * different.
1590 */
9517bac6 1591
3a307ffc
MF
1592 if (wc->w_large_pages) {
1593 /*
1594 * We only care about the 1st and last cluster within
b27b7cbc 1595 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1596 * value may be extended out to the start/end of a
1597 * newly allocated cluster.
1598 */
1599 desc = &wc->w_desc[0];
e7432675 1600 if (desc->c_needs_zero)
3a307ffc
MF
1601 ocfs2_figure_cluster_boundaries(osb,
1602 desc->c_cpos,
1603 &wc->w_target_from,
1604 NULL);
1605
1606 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1607 if (desc->c_needs_zero)
3a307ffc
MF
1608 ocfs2_figure_cluster_boundaries(osb,
1609 desc->c_cpos,
1610 NULL,
1611 &wc->w_target_to);
1612 } else {
1613 wc->w_target_from = 0;
1614 wc->w_target_to = PAGE_CACHE_SIZE;
1615 }
9517bac6
MF
1616}
1617
0d172baa
MF
1618/*
1619 * Populate each single-cluster write descriptor in the write context
1620 * with information about the i/o to be done.
b27b7cbc
MF
1621 *
1622 * Returns the number of clusters that will have to be allocated, as
1623 * well as a worst case estimate of the number of extent records that
1624 * would have to be created during a write to an unwritten region.
0d172baa
MF
1625 */
1626static int ocfs2_populate_write_desc(struct inode *inode,
1627 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1628 unsigned int *clusters_to_alloc,
1629 unsigned int *extents_to_split)
9517bac6 1630{
0d172baa 1631 int ret;
3a307ffc 1632 struct ocfs2_write_cluster_desc *desc;
0d172baa 1633 unsigned int num_clusters = 0;
b27b7cbc 1634 unsigned int ext_flags = 0;
0d172baa
MF
1635 u32 phys = 0;
1636 int i;
9517bac6 1637
b27b7cbc
MF
1638 *clusters_to_alloc = 0;
1639 *extents_to_split = 0;
1640
3a307ffc
MF
1641 for (i = 0; i < wc->w_clen; i++) {
1642 desc = &wc->w_desc[i];
1643 desc->c_cpos = wc->w_cpos + i;
1644
1645 if (num_clusters == 0) {
b27b7cbc
MF
1646 /*
1647 * Need to look up the next extent record.
1648 */
3a307ffc 1649 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1650 &num_clusters, &ext_flags);
3a307ffc
MF
1651 if (ret) {
1652 mlog_errno(ret);
607d44aa 1653 goto out;
3a307ffc 1654 }
b27b7cbc 1655
293b2f70
TM
1656 /* We should already CoW the refcountd extent. */
1657 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1658
b27b7cbc
MF
1659 /*
1660 * Assume worst case - that we're writing in
1661 * the middle of the extent.
1662 *
1663 * We can assume that the write proceeds from
1664 * left to right, in which case the extent
1665 * insert code is smart enough to coalesce the
1666 * next splits into the previous records created.
1667 */
1668 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1669 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1670 } else if (phys) {
1671 /*
1672 * Only increment phys if it doesn't describe
1673 * a hole.
1674 */
1675 phys++;
1676 }
1677
e7432675
SM
1678 /*
1679 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1680 * file that got extended. w_first_new_cpos tells us
1681 * where the newly allocated clusters are so we can
1682 * zero them.
1683 */
1684 if (desc->c_cpos >= wc->w_first_new_cpos) {
1685 BUG_ON(phys == 0);
1686 desc->c_needs_zero = 1;
1687 }
1688
3a307ffc
MF
1689 desc->c_phys = phys;
1690 if (phys == 0) {
1691 desc->c_new = 1;
e7432675 1692 desc->c_needs_zero = 1;
0d172baa 1693 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1694 }
e7432675
SM
1695
1696 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1697 desc->c_unwritten = 1;
e7432675
SM
1698 desc->c_needs_zero = 1;
1699 }
3a307ffc
MF
1700
1701 num_clusters--;
9517bac6
MF
1702 }
1703
0d172baa
MF
1704 ret = 0;
1705out:
1706 return ret;
1707}
1708
1afc32b9
MF
1709static int ocfs2_write_begin_inline(struct address_space *mapping,
1710 struct inode *inode,
1711 struct ocfs2_write_ctxt *wc)
1712{
1713 int ret;
1714 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1715 struct page *page;
1716 handle_t *handle;
1717 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1718
f775da2f
JB
1719 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1720 if (IS_ERR(handle)) {
1721 ret = PTR_ERR(handle);
1722 mlog_errno(ret);
1723 goto out;
1724 }
1725
1afc32b9
MF
1726 page = find_or_create_page(mapping, 0, GFP_NOFS);
1727 if (!page) {
f775da2f 1728 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1729 ret = -ENOMEM;
1730 mlog_errno(ret);
1731 goto out;
1732 }
1733 /*
1734 * If we don't set w_num_pages then this page won't get unlocked
1735 * and freed on cleanup of the write context.
1736 */
1737 wc->w_pages[0] = wc->w_target_page = page;
1738 wc->w_num_pages = 1;
1739
0cf2f763 1740 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1741 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1742 if (ret) {
1743 ocfs2_commit_trans(osb, handle);
1744
1745 mlog_errno(ret);
1746 goto out;
1747 }
1748
1749 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1750 ocfs2_set_inode_data_inline(inode, di);
1751
1752 if (!PageUptodate(page)) {
1753 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1754 if (ret) {
1755 ocfs2_commit_trans(osb, handle);
1756
1757 goto out;
1758 }
1759 }
1760
1761 wc->w_handle = handle;
1762out:
1763 return ret;
1764}
1765
1766int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1767{
1768 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1769
0d8a4e0c 1770 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1771 return 1;
1772 return 0;
1773}
1774
1775static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1776 struct inode *inode, loff_t pos,
1777 unsigned len, struct page *mmap_page,
1778 struct ocfs2_write_ctxt *wc)
1779{
1780 int ret, written = 0;
1781 loff_t end = pos + len;
1782 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1783 struct ocfs2_dinode *di = NULL;
1afc32b9 1784
9558156b
TM
1785 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1786 len, (unsigned long long)pos,
1787 oi->ip_dyn_features);
1afc32b9
MF
1788
1789 /*
1790 * Handle inodes which already have inline data 1st.
1791 */
1792 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1793 if (mmap_page == NULL &&
1794 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1795 goto do_inline_write;
1796
1797 /*
1798 * The write won't fit - we have to give this inode an
1799 * inline extent list now.
1800 */
1801 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1802 if (ret)
1803 mlog_errno(ret);
1804 goto out;
1805 }
1806
1807 /*
1808 * Check whether the inode can accept inline data.
1809 */
1810 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1811 return 0;
1812
1813 /*
1814 * Check whether the write can fit.
1815 */
d9ae49d6
TY
1816 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1817 if (mmap_page ||
1818 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1819 return 0;
1820
1821do_inline_write:
1822 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1823 if (ret) {
1824 mlog_errno(ret);
1825 goto out;
1826 }
1827
1828 /*
1829 * This signals to the caller that the data can be written
1830 * inline.
1831 */
1832 written = 1;
1833out:
1834 return written ? written : ret;
1835}
1836
65ed39d6
MF
1837/*
1838 * This function only does anything for file systems which can't
1839 * handle sparse files.
1840 *
1841 * What we want to do here is fill in any hole between the current end
1842 * of allocation and the end of our write. That way the rest of the
1843 * write path can treat it as an non-allocating write, which has no
1844 * special case code for sparse/nonsparse files.
1845 */
5693486b
JB
1846static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1847 struct buffer_head *di_bh,
1848 loff_t pos, unsigned len,
65ed39d6
MF
1849 struct ocfs2_write_ctxt *wc)
1850{
1851 int ret;
65ed39d6
MF
1852 loff_t newsize = pos + len;
1853
5693486b 1854 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1855
1856 if (newsize <= i_size_read(inode))
1857 return 0;
1858
5693486b 1859 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1860 if (ret)
1861 mlog_errno(ret);
1862
e7432675
SM
1863 wc->w_first_new_cpos =
1864 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1865
65ed39d6
MF
1866 return ret;
1867}
1868
5693486b
JB
1869static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1870 loff_t pos)
1871{
1872 int ret = 0;
1873
1874 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1875 if (pos > i_size_read(inode))
1876 ret = ocfs2_zero_extend(inode, di_bh, pos);
1877
1878 return ret;
1879}
1880
50308d81
TM
1881/*
1882 * Try to flush truncate logs if we can free enough clusters from it.
1883 * As for return value, "< 0" means error, "0" no space and "1" means
1884 * we have freed enough spaces and let the caller try to allocate again.
1885 */
1886static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1887 unsigned int needed)
1888{
1889 tid_t target;
1890 int ret = 0;
1891 unsigned int truncated_clusters;
1892
1893 mutex_lock(&osb->osb_tl_inode->i_mutex);
1894 truncated_clusters = osb->truncated_clusters;
1895 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1896
1897 /*
1898 * Check whether we can succeed in allocating if we free
1899 * the truncate log.
1900 */
1901 if (truncated_clusters < needed)
1902 goto out;
1903
1904 ret = ocfs2_flush_truncate_log(osb);
1905 if (ret) {
1906 mlog_errno(ret);
1907 goto out;
1908 }
1909
1910 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1911 jbd2_log_wait_commit(osb->journal->j_journal, target);
1912 ret = 1;
1913 }
1914out:
1915 return ret;
1916}
1917
0378da0f
TM
1918int ocfs2_write_begin_nolock(struct file *filp,
1919 struct address_space *mapping,
0d172baa
MF
1920 loff_t pos, unsigned len, unsigned flags,
1921 struct page **pagep, void **fsdata,
1922 struct buffer_head *di_bh, struct page *mmap_page)
1923{
e7432675 1924 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1925 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1926 struct ocfs2_write_ctxt *wc;
1927 struct inode *inode = mapping->host;
1928 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1929 struct ocfs2_dinode *di;
1930 struct ocfs2_alloc_context *data_ac = NULL;
1931 struct ocfs2_alloc_context *meta_ac = NULL;
1932 handle_t *handle;
f99b9b7c 1933 struct ocfs2_extent_tree et;
50308d81 1934 int try_free = 1, ret1;
0d172baa 1935
50308d81 1936try_again:
0d172baa
MF
1937 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1938 if (ret) {
1939 mlog_errno(ret);
1940 return ret;
1941 }
1942
1afc32b9
MF
1943 if (ocfs2_supports_inline_data(osb)) {
1944 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1945 mmap_page, wc);
1946 if (ret == 1) {
1947 ret = 0;
1948 goto success;
1949 }
1950 if (ret < 0) {
1951 mlog_errno(ret);
1952 goto out;
1953 }
1954 }
1955
5693486b
JB
1956 if (ocfs2_sparse_alloc(osb))
1957 ret = ocfs2_zero_tail(inode, di_bh, pos);
1958 else
1959 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1960 wc);
65ed39d6
MF
1961 if (ret) {
1962 mlog_errno(ret);
1963 goto out;
1964 }
1965
293b2f70
TM
1966 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1967 if (ret < 0) {
1968 mlog_errno(ret);
1969 goto out;
1970 } else if (ret == 1) {
50308d81 1971 clusters_need = wc->w_clen;
c7dd3392 1972 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1973 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1974 if (ret) {
1975 mlog_errno(ret);
1976 goto out;
1977 }
1978 }
1979
b27b7cbc
MF
1980 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1981 &extents_to_split);
0d172baa
MF
1982 if (ret) {
1983 mlog_errno(ret);
1984 goto out;
1985 }
50308d81 1986 clusters_need += clusters_to_alloc;
0d172baa
MF
1987
1988 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1989
9558156b
TM
1990 trace_ocfs2_write_begin_nolock(
1991 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1992 (long long)i_size_read(inode),
1993 le32_to_cpu(di->i_clusters),
1994 pos, len, flags, mmap_page,
1995 clusters_to_alloc, extents_to_split);
1996
3a307ffc
MF
1997 /*
1998 * We set w_target_from, w_target_to here so that
1999 * ocfs2_write_end() knows which range in the target page to
2000 * write out. An allocation requires that we write the entire
2001 * cluster range.
2002 */
b27b7cbc 2003 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
2004 /*
2005 * XXX: We are stretching the limits of
b27b7cbc 2006 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
2007 * the work to be done.
2008 */
5e404e9e
JB
2009 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2010 wc->w_di_bh);
f99b9b7c 2011 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 2012 clusters_to_alloc, extents_to_split,
f99b9b7c 2013 &data_ac, &meta_ac);
9517bac6
MF
2014 if (ret) {
2015 mlog_errno(ret);
607d44aa 2016 goto out;
9517bac6
MF
2017 }
2018
4fe370af
MF
2019 if (data_ac)
2020 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2021
811f933d 2022 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 2023 &di->id2.i_list);
3a307ffc 2024
9517bac6
MF
2025 }
2026
e7432675
SM
2027 /*
2028 * We have to zero sparse allocated clusters, unwritten extent clusters,
2029 * and non-sparse clusters we just extended. For non-sparse writes,
2030 * we know zeros will only be needed in the first and/or last cluster.
2031 */
2032 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
2033 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2034 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
2035 cluster_of_pages = 1;
2036 else
2037 cluster_of_pages = 0;
2038
2039 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2040
9517bac6
MF
2041 handle = ocfs2_start_trans(osb, credits);
2042 if (IS_ERR(handle)) {
2043 ret = PTR_ERR(handle);
2044 mlog_errno(ret);
607d44aa 2045 goto out;
9517bac6
MF
2046 }
2047
3a307ffc
MF
2048 wc->w_handle = handle;
2049
5dd4056d
CH
2050 if (clusters_to_alloc) {
2051 ret = dquot_alloc_space_nodirty(inode,
2052 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2053 if (ret)
2054 goto out_commit;
a90714c1 2055 }
3a307ffc
MF
2056 /*
2057 * We don't want this to fail in ocfs2_write_end(), so do it
2058 * here.
2059 */
0cf2f763 2060 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2061 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2062 if (ret) {
9517bac6 2063 mlog_errno(ret);
a90714c1 2064 goto out_quota;
9517bac6
MF
2065 }
2066
3a307ffc
MF
2067 /*
2068 * Fill our page array first. That way we've grabbed enough so
2069 * that we can zero and flush if we error after adding the
2070 * extent.
2071 */
693c241a 2072 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2073 cluster_of_pages, mmap_page);
5cffff9e 2074 if (ret && ret != -EAGAIN) {
9517bac6 2075 mlog_errno(ret);
a90714c1 2076 goto out_quota;
9517bac6
MF
2077 }
2078
5cffff9e
WW
2079 /*
2080 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2081 * the target page. In this case, we exit with no error and no target
2082 * page. This will trigger the caller, page_mkwrite(), to re-try
2083 * the operation.
2084 */
2085 if (ret == -EAGAIN) {
2086 BUG_ON(wc->w_target_page);
2087 ret = 0;
2088 goto out_quota;
2089 }
2090
0d172baa
MF
2091 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2092 len);
2093 if (ret) {
2094 mlog_errno(ret);
a90714c1 2095 goto out_quota;
9517bac6 2096 }
9517bac6 2097
3a307ffc
MF
2098 if (data_ac)
2099 ocfs2_free_alloc_context(data_ac);
2100 if (meta_ac)
2101 ocfs2_free_alloc_context(meta_ac);
9517bac6 2102
1afc32b9 2103success:
3a307ffc
MF
2104 *pagep = wc->w_target_page;
2105 *fsdata = wc;
2106 return 0;
a90714c1
JK
2107out_quota:
2108 if (clusters_to_alloc)
5dd4056d 2109 dquot_free_space(inode,
a90714c1 2110 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2111out_commit:
2112 ocfs2_commit_trans(osb, handle);
2113
9517bac6 2114out:
3a307ffc
MF
2115 ocfs2_free_write_ctxt(wc);
2116
b1214e47 2117 if (data_ac) {
9517bac6 2118 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2119 data_ac = NULL;
2120 }
2121 if (meta_ac) {
9517bac6 2122 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2123 meta_ac = NULL;
2124 }
50308d81
TM
2125
2126 if (ret == -ENOSPC && try_free) {
2127 /*
2128 * Try to free some truncate log so that we can have enough
2129 * clusters to allocate.
2130 */
2131 try_free = 0;
2132
2133 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2134 if (ret1 == 1)
2135 goto try_again;
2136
2137 if (ret1 < 0)
2138 mlog_errno(ret1);
2139 }
2140
3a307ffc
MF
2141 return ret;
2142}
2143
b6af1bcd
NP
2144static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2145 loff_t pos, unsigned len, unsigned flags,
2146 struct page **pagep, void **fsdata)
607d44aa
MF
2147{
2148 int ret;
2149 struct buffer_head *di_bh = NULL;
2150 struct inode *inode = mapping->host;
2151
e63aecb6 2152 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2153 if (ret) {
2154 mlog_errno(ret);
2155 return ret;
2156 }
2157
2158 /*
2159 * Take alloc sem here to prevent concurrent lookups. That way
2160 * the mapping, zeroing and tree manipulation within
2161 * ocfs2_write() will be safe against ->readpage(). This
2162 * should also serve to lock out allocation from a shared
2163 * writeable region.
2164 */
2165 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2166
0378da0f 2167 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 2168 fsdata, di_bh, NULL);
607d44aa
MF
2169 if (ret) {
2170 mlog_errno(ret);
c934a92d 2171 goto out_fail;
607d44aa
MF
2172 }
2173
2174 brelse(di_bh);
2175
2176 return 0;
2177
607d44aa
MF
2178out_fail:
2179 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2180
2181 brelse(di_bh);
e63aecb6 2182 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2183
2184 return ret;
2185}
2186
1afc32b9
MF
2187static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2188 unsigned len, unsigned *copied,
2189 struct ocfs2_dinode *di,
2190 struct ocfs2_write_ctxt *wc)
2191{
2192 void *kaddr;
2193
2194 if (unlikely(*copied < len)) {
2195 if (!PageUptodate(wc->w_target_page)) {
2196 *copied = 0;
2197 return;
2198 }
2199 }
2200
c4bc8dcb 2201 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2202 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2203 kunmap_atomic(kaddr);
1afc32b9 2204
9558156b
TM
2205 trace_ocfs2_write_end_inline(
2206 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2207 (unsigned long long)pos, *copied,
2208 le16_to_cpu(di->id2.i_data.id_count),
2209 le16_to_cpu(di->i_dyn_features));
2210}
2211
7307de80
MF
2212int ocfs2_write_end_nolock(struct address_space *mapping,
2213 loff_t pos, unsigned len, unsigned copied,
2214 struct page *page, void *fsdata)
3a307ffc
MF
2215{
2216 int i;
2217 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2218 struct inode *inode = mapping->host;
2219 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2220 struct ocfs2_write_ctxt *wc = fsdata;
2221 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2222 handle_t *handle = wc->w_handle;
2223 struct page *tmppage;
2224
1afc32b9
MF
2225 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2226 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2227 goto out_write_size;
2228 }
2229
3a307ffc
MF
2230 if (unlikely(copied < len)) {
2231 if (!PageUptodate(wc->w_target_page))
2232 copied = 0;
2233
2234 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2235 start+len);
2236 }
2237 flush_dcache_page(wc->w_target_page);
2238
2239 for(i = 0; i < wc->w_num_pages; i++) {
2240 tmppage = wc->w_pages[i];
2241
2242 if (tmppage == wc->w_target_page) {
2243 from = wc->w_target_from;
2244 to = wc->w_target_to;
2245
2246 BUG_ON(from > PAGE_CACHE_SIZE ||
2247 to > PAGE_CACHE_SIZE ||
2248 to < from);
2249 } else {
2250 /*
2251 * Pages adjacent to the target (if any) imply
2252 * a hole-filling write in which case we want
2253 * to flush their entire range.
2254 */
2255 from = 0;
2256 to = PAGE_CACHE_SIZE;
2257 }
2258
961cecbe 2259 if (page_has_buffers(tmppage)) {
53ef99ca 2260 if (ocfs2_should_order_data(inode))
2b4e30fb 2261 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2262 block_commit_write(tmppage, from, to);
2263 }
3a307ffc
MF
2264 }
2265
1afc32b9 2266out_write_size:
3a307ffc 2267 pos += copied;
f17c20dd 2268 if (pos > i_size_read(inode)) {
3a307ffc
MF
2269 i_size_write(inode, pos);
2270 mark_inode_dirty(inode);
2271 }
2272 inode->i_blocks = ocfs2_inode_sector_count(inode);
2273 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2274 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2275 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2276 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2931cdcb 2277 ocfs2_update_inode_fsync_trans(handle, inode, 1);
3a307ffc
MF
2278 ocfs2_journal_dirty(handle, wc->w_di_bh);
2279
136f49b9
JB
2280 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2281 * lock, or it will cause a deadlock since journal commit threads holds
2282 * this lock and will ask for the page lock when flushing the data.
2283 * put it here to preserve the unlock order.
2284 */
2285 ocfs2_unlock_pages(wc);
2286
3a307ffc 2287 ocfs2_commit_trans(osb, handle);
59a5e416 2288
b27b7cbc
MF
2289 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2290
136f49b9
JB
2291 brelse(wc->w_di_bh);
2292 kfree(wc);
607d44aa
MF
2293
2294 return copied;
2295}
2296
b6af1bcd
NP
2297static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2298 loff_t pos, unsigned len, unsigned copied,
2299 struct page *page, void *fsdata)
607d44aa
MF
2300{
2301 int ret;
2302 struct inode *inode = mapping->host;
2303
2304 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2305
3a307ffc 2306 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2307 ocfs2_inode_unlock(inode, 1);
9517bac6 2308
607d44aa 2309 return ret;
9517bac6
MF
2310}
2311
f5e54d6e 2312const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2313 .readpage = ocfs2_readpage,
2314 .readpages = ocfs2_readpages,
2315 .writepage = ocfs2_writepage,
2316 .write_begin = ocfs2_write_begin,
2317 .write_end = ocfs2_write_end,
2318 .bmap = ocfs2_bmap,
1fca3a05 2319 .direct_IO = ocfs2_direct_IO,
41ecc345 2320 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2321 .releasepage = ocfs2_releasepage,
2322 .migratepage = buffer_migrate_page,
2323 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2324 .error_remove_page = generic_error_remove_page,
ccd979bd 2325};