ocfs2: serialize unaligned aio
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd 31
ccd979bd
MF
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
293b2f70 46#include "refcounttree.h"
9558156b 47#include "ocfs2_trace.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
9558156b
TM
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
b657c95c 74 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
ccd979bd
MF
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr, KM_USER0);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
a81cb88b 125 brelse(bh);
ccd979bd 126
ccd979bd
MF
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 138
9558156b
TM
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
ebdec241 168 * allows __block_write_begin() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
25baf2da 199 }
ccd979bd 200
5693486b 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
5693486b
JB
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
ccd979bd
MF
208bail:
209 if (err < 0)
210 err = -EIO;
211
ccd979bd
MF
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
9558156b
TM
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
ccd979bd 283
e63aecb6 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
6798d35a 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 293 ret = AOP_TRUNCATED_PAGE;
e63aecb6 294 goto out_inode_unlock;
e9dfc0b2 295 }
ccd979bd
MF
296
297 /*
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
54cb8821 302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
303 * and notice that the page they just read isn't needed.
304 *
305 * XXX sys_readahead() seems to get that wrong?
306 */
307 if (start >= i_size_read(inode)) {
eebd2aa3 308 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
312 }
313
6798d35a
MF
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
318 unlock = 0;
319
ccd979bd
MF
320out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
322out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
324out:
325 if (unlock)
326 unlock_page(page);
ccd979bd
MF
327 return ret;
328}
329
628a24f5
MF
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341{
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384}
385
ccd979bd
MF
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
9558156b
TM
399 trace_ocfs2_writepage(
400 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401 page->index);
ccd979bd 402
9558156b 403 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
404}
405
ccd979bd
MF
406/* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
60b11392
MF
410int walk_page_buffers( handle_t *handle,
411 struct buffer_head *head,
412 unsigned from,
413 unsigned to,
414 int *partial,
415 int (*fn)( handle_t *handle,
416 struct buffer_head *bh))
ccd979bd
MF
417{
418 struct buffer_head *bh;
419 unsigned block_start, block_end;
420 unsigned blocksize = head->b_size;
421 int err, ret = 0;
422 struct buffer_head *next;
423
424 for ( bh = head, block_start = 0;
425 ret == 0 && (bh != head || !block_start);
426 block_start = block_end, bh = next)
427 {
428 next = bh->b_this_page;
429 block_end = block_start + blocksize;
430 if (block_end <= from || block_start >= to) {
431 if (partial && !buffer_uptodate(bh))
432 *partial = 1;
433 continue;
434 }
435 err = (*fn)(handle, bh);
436 if (!ret)
437 ret = err;
438 }
439 return ret;
440}
441
ccd979bd
MF
442static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443{
444 sector_t status;
445 u64 p_blkno = 0;
446 int err = 0;
447 struct inode *inode = mapping->host;
448
9558156b
TM
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 (unsigned long long)block);
ccd979bd
MF
451
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
454 */
455 if (!INODE_JOURNAL(inode)) {
e63aecb6 456 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
457 if (err) {
458 if (err != -ENOENT)
459 mlog_errno(err);
460 goto bail;
461 }
462 down_read(&OCFS2_I(inode)->ip_alloc_sem);
463 }
464
6798d35a
MF
465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 NULL);
ccd979bd
MF
468
469 if (!INODE_JOURNAL(inode)) {
470 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 471 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
472 }
473
474 if (err) {
475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block);
477 mlog_errno(err);
478 goto bail;
479 }
480
ccd979bd
MF
481bail:
482 status = err ? 0 : p_blkno;
483
ccd979bd
MF
484 return status;
485}
486
487/*
488 * TODO: Make this into a generic get_blocks function.
489 *
490 * From do_direct_io in direct-io.c:
491 * "So what we do is to permit the ->get_blocks function to populate
492 * bh.b_size with the size of IO which is permitted at this offset and
493 * this i_blkbits."
494 *
495 * This function is called directly from get_more_blocks in direct-io.c.
496 *
497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
498 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
499 *
500 * Note that we never bother to allocate blocks here, and thus ignore the
501 * create argument.
ccd979bd
MF
502 */
503static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
504 struct buffer_head *bh_result, int create)
505{
506 int ret;
4f902c37 507 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 508 unsigned int ext_flags;
184d7d20 509 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 510 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 511
ccd979bd
MF
512 /* This function won't even be called if the request isn't all
513 * nicely aligned and of the right size, so there's no need
514 * for us to check any of that. */
515
25baf2da 516 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 517
ccd979bd
MF
518 /* This figures out the size of the next contiguous block, and
519 * our logical offset */
363041a5 520 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 521 &contig_blocks, &ext_flags);
ccd979bd
MF
522 if (ret) {
523 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524 (unsigned long long)iblock);
525 ret = -EIO;
526 goto bail;
527 }
528
cbaee472
TM
529 /* We should already CoW the refcounted extent in case of create. */
530 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
531
25baf2da
MF
532 /*
533 * get_more_blocks() expects us to describe a hole by clearing
534 * the mapped bit on bh_result().
49cb8d2d
MF
535 *
536 * Consider an unwritten extent as a hole.
25baf2da 537 */
49cb8d2d 538 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 539 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 540 else
25baf2da 541 clear_buffer_mapped(bh_result);
ccd979bd
MF
542
543 /* make sure we don't map more than max_blocks blocks here as
544 that's all the kernel will handle at this point. */
545 if (max_blocks < contig_blocks)
546 contig_blocks = max_blocks;
547 bh_result->b_size = contig_blocks << blocksize_bits;
548bail:
549 return ret;
550}
551
2bd63216 552/*
ccd979bd
MF
553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
554 * particularly interested in the aio/dio case. Like the core uses
555 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
556 * truncation on another.
557 */
558static void ocfs2_dio_end_io(struct kiocb *iocb,
559 loff_t offset,
560 ssize_t bytes,
40e2e973
CH
561 void *private,
562 int ret,
563 bool is_async)
ccd979bd 564{
d28c9174 565 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 566 int level;
a11f7e63 567 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
ccd979bd
MF
568
569 /* this io's submitter should not have unlocked this before we could */
570 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 571
39c99f12
TY
572 if (ocfs2_iocb_is_sem_locked(iocb)) {
573 up_read(&inode->i_alloc_sem);
574 ocfs2_iocb_clear_sem_locked(iocb);
575 }
576
a11f7e63
MF
577 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
578 ocfs2_iocb_clear_unaligned_aio(iocb);
579
580 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
581 waitqueue_active(wq)) {
582 wake_up_all(wq);
583 }
584 }
585
ccd979bd 586 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
587
588 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 589 ocfs2_rw_unlock(inode, level);
40e2e973
CH
590
591 if (is_async)
592 aio_complete(iocb, ret, 0);
ccd979bd
MF
593}
594
03f981cf
JB
595/*
596 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
597 * from ext3. PageChecked() bits have been removed as OCFS2 does not
598 * do journalled data.
599 */
600static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
601{
602 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
603
2b4e30fb 604 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
605}
606
607static int ocfs2_releasepage(struct page *page, gfp_t wait)
608{
609 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610
611 if (!page_has_buffers(page))
612 return 0;
2b4e30fb 613 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
614}
615
ccd979bd
MF
616static ssize_t ocfs2_direct_IO(int rw,
617 struct kiocb *iocb,
618 const struct iovec *iov,
619 loff_t offset,
620 unsigned long nr_segs)
621{
622 struct file *file = iocb->ki_filp;
d28c9174 623 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
53013cba 624
6798d35a
MF
625 /*
626 * Fallback to buffered I/O if we see an inode without
627 * extents.
628 */
629 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
630 return 0;
631
b80474b4
TM
632 /* Fallback to buffered I/O if we are appending. */
633 if (i_size_read(inode) <= offset)
634 return 0;
635
c1e8d35e
TM
636 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
637 iov, offset, nr_segs,
638 ocfs2_direct_IO_get_blocks,
639 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
640}
641
9517bac6
MF
642static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
643 u32 cpos,
644 unsigned int *start,
645 unsigned int *end)
646{
647 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
648
649 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
650 unsigned int cpp;
651
652 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
653
654 cluster_start = cpos % cpp;
655 cluster_start = cluster_start << osb->s_clustersize_bits;
656
657 cluster_end = cluster_start + osb->s_clustersize;
658 }
659
660 BUG_ON(cluster_start > PAGE_SIZE);
661 BUG_ON(cluster_end > PAGE_SIZE);
662
663 if (start)
664 *start = cluster_start;
665 if (end)
666 *end = cluster_end;
667}
668
669/*
670 * 'from' and 'to' are the region in the page to avoid zeroing.
671 *
672 * If pagesize > clustersize, this function will avoid zeroing outside
673 * of the cluster boundary.
674 *
675 * from == to == 0 is code for "zero the entire cluster region"
676 */
677static void ocfs2_clear_page_regions(struct page *page,
678 struct ocfs2_super *osb, u32 cpos,
679 unsigned from, unsigned to)
680{
681 void *kaddr;
682 unsigned int cluster_start, cluster_end;
683
684 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
685
686 kaddr = kmap_atomic(page, KM_USER0);
687
688 if (from || to) {
689 if (from > cluster_start)
690 memset(kaddr + cluster_start, 0, from - cluster_start);
691 if (to < cluster_end)
692 memset(kaddr + to, 0, cluster_end - to);
693 } else {
694 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
695 }
696
697 kunmap_atomic(kaddr, KM_USER0);
698}
699
4e9563fd
MF
700/*
701 * Nonsparse file systems fully allocate before we get to the write
702 * code. This prevents ocfs2_write() from tagging the write as an
703 * allocating one, which means ocfs2_map_page_blocks() might try to
704 * read-in the blocks at the tail of our file. Avoid reading them by
705 * testing i_size against each block offset.
706 */
707static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
708 unsigned int block_start)
709{
710 u64 offset = page_offset(page) + block_start;
711
712 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
713 return 1;
714
715 if (i_size_read(inode) > offset)
716 return 1;
717
718 return 0;
719}
720
9517bac6 721/*
ebdec241 722 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
723 * mapping by now though, and the entire write will be allocating or
724 * it won't, so not much need to use BH_New.
725 *
726 * This will also skip zeroing, which is handled externally.
727 */
60b11392
MF
728int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
729 struct inode *inode, unsigned int from,
730 unsigned int to, int new)
9517bac6
MF
731{
732 int ret = 0;
733 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
734 unsigned int block_end, block_start;
735 unsigned int bsize = 1 << inode->i_blkbits;
736
737 if (!page_has_buffers(page))
738 create_empty_buffers(page, bsize, 0);
739
740 head = page_buffers(page);
741 for (bh = head, block_start = 0; bh != head || !block_start;
742 bh = bh->b_this_page, block_start += bsize) {
743 block_end = block_start + bsize;
744
3a307ffc
MF
745 clear_buffer_new(bh);
746
9517bac6
MF
747 /*
748 * Ignore blocks outside of our i/o range -
749 * they may belong to unallocated clusters.
750 */
60b11392 751 if (block_start >= to || block_end <= from) {
9517bac6
MF
752 if (PageUptodate(page))
753 set_buffer_uptodate(bh);
754 continue;
755 }
756
757 /*
758 * For an allocating write with cluster size >= page
759 * size, we always write the entire page.
760 */
3a307ffc
MF
761 if (new)
762 set_buffer_new(bh);
9517bac6
MF
763
764 if (!buffer_mapped(bh)) {
765 map_bh(bh, inode->i_sb, *p_blkno);
766 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
767 }
768
769 if (PageUptodate(page)) {
770 if (!buffer_uptodate(bh))
771 set_buffer_uptodate(bh);
772 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 773 !buffer_new(bh) &&
4e9563fd 774 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 775 (block_start < from || block_end > to)) {
9517bac6
MF
776 ll_rw_block(READ, 1, &bh);
777 *wait_bh++=bh;
778 }
779
780 *p_blkno = *p_blkno + 1;
781 }
782
783 /*
784 * If we issued read requests - let them complete.
785 */
786 while(wait_bh > wait) {
787 wait_on_buffer(*--wait_bh);
788 if (!buffer_uptodate(*wait_bh))
789 ret = -EIO;
790 }
791
792 if (ret == 0 || !new)
793 return ret;
794
795 /*
796 * If we get -EIO above, zero out any newly allocated blocks
797 * to avoid exposing stale data.
798 */
799 bh = head;
800 block_start = 0;
801 do {
9517bac6
MF
802 block_end = block_start + bsize;
803 if (block_end <= from)
804 goto next_bh;
805 if (block_start >= to)
806 break;
807
eebd2aa3 808 zero_user(page, block_start, bh->b_size);
9517bac6
MF
809 set_buffer_uptodate(bh);
810 mark_buffer_dirty(bh);
811
812next_bh:
813 block_start = block_end;
814 bh = bh->b_this_page;
815 } while (bh != head);
816
817 return ret;
818}
819
3a307ffc
MF
820#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
821#define OCFS2_MAX_CTXT_PAGES 1
822#else
823#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
824#endif
825
826#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
827
6af67d82 828/*
3a307ffc 829 * Describe the state of a single cluster to be written to.
6af67d82 830 */
3a307ffc
MF
831struct ocfs2_write_cluster_desc {
832 u32 c_cpos;
833 u32 c_phys;
834 /*
835 * Give this a unique field because c_phys eventually gets
836 * filled.
837 */
838 unsigned c_new;
b27b7cbc 839 unsigned c_unwritten;
e7432675 840 unsigned c_needs_zero;
3a307ffc 841};
6af67d82 842
3a307ffc
MF
843struct ocfs2_write_ctxt {
844 /* Logical cluster position / len of write */
845 u32 w_cpos;
846 u32 w_clen;
6af67d82 847
e7432675
SM
848 /* First cluster allocated in a nonsparse extend */
849 u32 w_first_new_cpos;
850
3a307ffc 851 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 852
3a307ffc
MF
853 /*
854 * This is true if page_size > cluster_size.
855 *
856 * It triggers a set of special cases during write which might
857 * have to deal with allocating writes to partial pages.
858 */
859 unsigned int w_large_pages;
6af67d82 860
3a307ffc
MF
861 /*
862 * Pages involved in this write.
863 *
864 * w_target_page is the page being written to by the user.
865 *
866 * w_pages is an array of pages which always contains
867 * w_target_page, and in the case of an allocating write with
868 * page_size < cluster size, it will contain zero'd and mapped
869 * pages adjacent to w_target_page which need to be written
870 * out in so that future reads from that region will get
871 * zero's.
872 */
3a307ffc 873 unsigned int w_num_pages;
83fd9c7f 874 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 875 struct page *w_target_page;
eeb47d12 876
3a307ffc
MF
877 /*
878 * ocfs2_write_end() uses this to know what the real range to
879 * write in the target should be.
880 */
881 unsigned int w_target_from;
882 unsigned int w_target_to;
883
884 /*
885 * We could use journal_current_handle() but this is cleaner,
886 * IMHO -Mark
887 */
888 handle_t *w_handle;
889
890 struct buffer_head *w_di_bh;
b27b7cbc
MF
891
892 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
893};
894
1d410a6e 895void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
896{
897 int i;
898
1d410a6e
MF
899 for(i = 0; i < num_pages; i++) {
900 if (pages[i]) {
901 unlock_page(pages[i]);
902 mark_page_accessed(pages[i]);
903 page_cache_release(pages[i]);
904 }
6af67d82 905 }
1d410a6e
MF
906}
907
908static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
909{
910 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 911
3a307ffc
MF
912 brelse(wc->w_di_bh);
913 kfree(wc);
914}
915
916static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
917 struct ocfs2_super *osb, loff_t pos,
607d44aa 918 unsigned len, struct buffer_head *di_bh)
3a307ffc 919{
30b8548f 920 u32 cend;
3a307ffc
MF
921 struct ocfs2_write_ctxt *wc;
922
923 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
924 if (!wc)
925 return -ENOMEM;
6af67d82 926
3a307ffc 927 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 928 wc->w_first_new_cpos = UINT_MAX;
30b8548f 929 cend = (pos + len - 1) >> osb->s_clustersize_bits;
930 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
931 get_bh(di_bh);
932 wc->w_di_bh = di_bh;
6af67d82 933
3a307ffc
MF
934 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
935 wc->w_large_pages = 1;
936 else
937 wc->w_large_pages = 0;
938
b27b7cbc
MF
939 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
940
3a307ffc 941 *wcp = wc;
6af67d82 942
3a307ffc 943 return 0;
6af67d82
MF
944}
945
9517bac6 946/*
3a307ffc
MF
947 * If a page has any new buffers, zero them out here, and mark them uptodate
948 * and dirty so they'll be written out (in order to prevent uninitialised
949 * block data from leaking). And clear the new bit.
9517bac6 950 */
3a307ffc 951static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 952{
3a307ffc
MF
953 unsigned int block_start, block_end;
954 struct buffer_head *head, *bh;
9517bac6 955
3a307ffc
MF
956 BUG_ON(!PageLocked(page));
957 if (!page_has_buffers(page))
958 return;
9517bac6 959
3a307ffc
MF
960 bh = head = page_buffers(page);
961 block_start = 0;
962 do {
963 block_end = block_start + bh->b_size;
964
965 if (buffer_new(bh)) {
966 if (block_end > from && block_start < to) {
967 if (!PageUptodate(page)) {
968 unsigned start, end;
3a307ffc
MF
969
970 start = max(from, block_start);
971 end = min(to, block_end);
972
eebd2aa3 973 zero_user_segment(page, start, end);
3a307ffc
MF
974 set_buffer_uptodate(bh);
975 }
976
977 clear_buffer_new(bh);
978 mark_buffer_dirty(bh);
979 }
980 }
9517bac6 981
3a307ffc
MF
982 block_start = block_end;
983 bh = bh->b_this_page;
984 } while (bh != head);
985}
986
987/*
988 * Only called when we have a failure during allocating write to write
989 * zero's to the newly allocated region.
990 */
991static void ocfs2_write_failure(struct inode *inode,
992 struct ocfs2_write_ctxt *wc,
993 loff_t user_pos, unsigned user_len)
994{
995 int i;
5c26a7b7
MF
996 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
997 to = user_pos + user_len;
3a307ffc
MF
998 struct page *tmppage;
999
5c26a7b7 1000 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1001
3a307ffc
MF
1002 for(i = 0; i < wc->w_num_pages; i++) {
1003 tmppage = wc->w_pages[i];
9517bac6 1004
961cecbe 1005 if (page_has_buffers(tmppage)) {
53ef99ca 1006 if (ocfs2_should_order_data(inode))
2b4e30fb 1007 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1008
1009 block_commit_write(tmppage, from, to);
1010 }
9517bac6 1011 }
9517bac6
MF
1012}
1013
3a307ffc
MF
1014static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1015 struct ocfs2_write_ctxt *wc,
1016 struct page *page, u32 cpos,
1017 loff_t user_pos, unsigned user_len,
1018 int new)
9517bac6 1019{
3a307ffc
MF
1020 int ret;
1021 unsigned int map_from = 0, map_to = 0;
9517bac6 1022 unsigned int cluster_start, cluster_end;
3a307ffc 1023 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1024
3a307ffc 1025 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1026 &cluster_start, &cluster_end);
1027
272b62c1
GR
1028 /* treat the write as new if the a hole/lseek spanned across
1029 * the page boundary.
1030 */
1031 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1032 (page_offset(page) <= user_pos));
1033
3a307ffc
MF
1034 if (page == wc->w_target_page) {
1035 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1036 map_to = map_from + user_len;
1037
1038 if (new)
1039 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1040 cluster_start, cluster_end,
1041 new);
1042 else
1043 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1044 map_from, map_to, new);
1045 if (ret) {
9517bac6
MF
1046 mlog_errno(ret);
1047 goto out;
1048 }
1049
3a307ffc
MF
1050 user_data_from = map_from;
1051 user_data_to = map_to;
9517bac6 1052 if (new) {
3a307ffc
MF
1053 map_from = cluster_start;
1054 map_to = cluster_end;
9517bac6
MF
1055 }
1056 } else {
1057 /*
1058 * If we haven't allocated the new page yet, we
1059 * shouldn't be writing it out without copying user
1060 * data. This is likely a math error from the caller.
1061 */
1062 BUG_ON(!new);
1063
3a307ffc
MF
1064 map_from = cluster_start;
1065 map_to = cluster_end;
9517bac6
MF
1066
1067 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1068 cluster_start, cluster_end, new);
9517bac6
MF
1069 if (ret) {
1070 mlog_errno(ret);
1071 goto out;
1072 }
1073 }
1074
1075 /*
1076 * Parts of newly allocated pages need to be zero'd.
1077 *
1078 * Above, we have also rewritten 'to' and 'from' - as far as
1079 * the rest of the function is concerned, the entire cluster
1080 * range inside of a page needs to be written.
1081 *
1082 * We can skip this if the page is up to date - it's already
1083 * been zero'd from being read in as a hole.
1084 */
1085 if (new && !PageUptodate(page))
1086 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1087 cpos, user_data_from, user_data_to);
9517bac6
MF
1088
1089 flush_dcache_page(page);
1090
9517bac6 1091out:
3a307ffc 1092 return ret;
9517bac6
MF
1093}
1094
1095/*
3a307ffc 1096 * This function will only grab one clusters worth of pages.
9517bac6 1097 */
3a307ffc
MF
1098static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1099 struct ocfs2_write_ctxt *wc,
693c241a
JB
1100 u32 cpos, loff_t user_pos,
1101 unsigned user_len, int new,
7307de80 1102 struct page *mmap_page)
9517bac6 1103{
3a307ffc 1104 int ret = 0, i;
693c241a 1105 unsigned long start, target_index, end_index, index;
9517bac6 1106 struct inode *inode = mapping->host;
693c241a 1107 loff_t last_byte;
9517bac6 1108
3a307ffc 1109 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1110
1111 /*
1112 * Figure out how many pages we'll be manipulating here. For
60b11392 1113 * non allocating write, we just change the one
693c241a
JB
1114 * page. Otherwise, we'll need a whole clusters worth. If we're
1115 * writing past i_size, we only need enough pages to cover the
1116 * last page of the write.
9517bac6 1117 */
9517bac6 1118 if (new) {
3a307ffc
MF
1119 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1120 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1121 /*
1122 * We need the index *past* the last page we could possibly
1123 * touch. This is the page past the end of the write or
1124 * i_size, whichever is greater.
1125 */
1126 last_byte = max(user_pos + user_len, i_size_read(inode));
1127 BUG_ON(last_byte < 1);
1128 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1129 if ((start + wc->w_num_pages) > end_index)
1130 wc->w_num_pages = end_index - start;
9517bac6 1131 } else {
3a307ffc
MF
1132 wc->w_num_pages = 1;
1133 start = target_index;
9517bac6
MF
1134 }
1135
3a307ffc 1136 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1137 index = start + i;
1138
7307de80
MF
1139 if (index == target_index && mmap_page) {
1140 /*
1141 * ocfs2_pagemkwrite() is a little different
1142 * and wants us to directly use the page
1143 * passed in.
1144 */
1145 lock_page(mmap_page);
1146
1147 if (mmap_page->mapping != mapping) {
1148 unlock_page(mmap_page);
1149 /*
1150 * Sanity check - the locking in
1151 * ocfs2_pagemkwrite() should ensure
1152 * that this code doesn't trigger.
1153 */
1154 ret = -EINVAL;
1155 mlog_errno(ret);
1156 goto out;
1157 }
1158
1159 page_cache_get(mmap_page);
1160 wc->w_pages[i] = mmap_page;
1161 } else {
1162 wc->w_pages[i] = find_or_create_page(mapping, index,
1163 GFP_NOFS);
1164 if (!wc->w_pages[i]) {
1165 ret = -ENOMEM;
1166 mlog_errno(ret);
1167 goto out;
1168 }
9517bac6 1169 }
3a307ffc
MF
1170
1171 if (index == target_index)
1172 wc->w_target_page = wc->w_pages[i];
9517bac6 1173 }
3a307ffc
MF
1174out:
1175 return ret;
1176}
1177
1178/*
1179 * Prepare a single cluster for write one cluster into the file.
1180 */
1181static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1182 u32 phys, unsigned int unwritten,
e7432675 1183 unsigned int should_zero,
b27b7cbc 1184 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1185 struct ocfs2_alloc_context *meta_ac,
1186 struct ocfs2_write_ctxt *wc, u32 cpos,
1187 loff_t user_pos, unsigned user_len)
1188{
e7432675 1189 int ret, i, new;
3a307ffc
MF
1190 u64 v_blkno, p_blkno;
1191 struct inode *inode = mapping->host;
f99b9b7c 1192 struct ocfs2_extent_tree et;
3a307ffc
MF
1193
1194 new = phys == 0 ? 1 : 0;
9517bac6 1195 if (new) {
3a307ffc
MF
1196 u32 tmp_pos;
1197
9517bac6
MF
1198 /*
1199 * This is safe to call with the page locks - it won't take
1200 * any additional semaphores or cluster locks.
1201 */
3a307ffc 1202 tmp_pos = cpos;
0eb8d47e
TM
1203 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1204 &tmp_pos, 1, 0, wc->w_di_bh,
1205 wc->w_handle, data_ac,
1206 meta_ac, NULL);
9517bac6
MF
1207 /*
1208 * This shouldn't happen because we must have already
1209 * calculated the correct meta data allocation required. The
1210 * internal tree allocation code should know how to increase
1211 * transaction credits itself.
1212 *
1213 * If need be, we could handle -EAGAIN for a
1214 * RESTART_TRANS here.
1215 */
1216 mlog_bug_on_msg(ret == -EAGAIN,
1217 "Inode %llu: EAGAIN return during allocation.\n",
1218 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1219 if (ret < 0) {
1220 mlog_errno(ret);
1221 goto out;
1222 }
b27b7cbc 1223 } else if (unwritten) {
5e404e9e
JB
1224 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1225 wc->w_di_bh);
f99b9b7c 1226 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1227 wc->w_handle, cpos, 1, phys,
f99b9b7c 1228 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1229 if (ret < 0) {
1230 mlog_errno(ret);
1231 goto out;
1232 }
1233 }
3a307ffc 1234
b27b7cbc 1235 if (should_zero)
3a307ffc 1236 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1237 else
3a307ffc 1238 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1239
3a307ffc
MF
1240 /*
1241 * The only reason this should fail is due to an inability to
1242 * find the extent added.
1243 */
49cb8d2d
MF
1244 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1245 NULL);
9517bac6 1246 if (ret < 0) {
3a307ffc
MF
1247 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1248 "at logical block %llu",
1249 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1250 (unsigned long long)v_blkno);
9517bac6
MF
1251 goto out;
1252 }
1253
1254 BUG_ON(p_blkno == 0);
1255
3a307ffc
MF
1256 for(i = 0; i < wc->w_num_pages; i++) {
1257 int tmpret;
9517bac6 1258
3a307ffc
MF
1259 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1260 wc->w_pages[i], cpos,
b27b7cbc
MF
1261 user_pos, user_len,
1262 should_zero);
3a307ffc
MF
1263 if (tmpret) {
1264 mlog_errno(tmpret);
1265 if (ret == 0)
cbfa9639 1266 ret = tmpret;
3a307ffc 1267 }
9517bac6
MF
1268 }
1269
3a307ffc
MF
1270 /*
1271 * We only have cleanup to do in case of allocating write.
1272 */
1273 if (ret && new)
1274 ocfs2_write_failure(inode, wc, user_pos, user_len);
1275
9517bac6 1276out:
9517bac6 1277
3a307ffc 1278 return ret;
9517bac6
MF
1279}
1280
0d172baa
MF
1281static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1282 struct ocfs2_alloc_context *data_ac,
1283 struct ocfs2_alloc_context *meta_ac,
1284 struct ocfs2_write_ctxt *wc,
1285 loff_t pos, unsigned len)
1286{
1287 int ret, i;
db56246c
MF
1288 loff_t cluster_off;
1289 unsigned int local_len = len;
0d172baa 1290 struct ocfs2_write_cluster_desc *desc;
db56246c 1291 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1292
1293 for (i = 0; i < wc->w_clen; i++) {
1294 desc = &wc->w_desc[i];
1295
db56246c
MF
1296 /*
1297 * We have to make sure that the total write passed in
1298 * doesn't extend past a single cluster.
1299 */
1300 local_len = len;
1301 cluster_off = pos & (osb->s_clustersize - 1);
1302 if ((cluster_off + local_len) > osb->s_clustersize)
1303 local_len = osb->s_clustersize - cluster_off;
1304
b27b7cbc 1305 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1306 desc->c_unwritten,
1307 desc->c_needs_zero,
1308 data_ac, meta_ac,
db56246c 1309 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1310 if (ret) {
1311 mlog_errno(ret);
1312 goto out;
1313 }
db56246c
MF
1314
1315 len -= local_len;
1316 pos += local_len;
0d172baa
MF
1317 }
1318
1319 ret = 0;
1320out:
1321 return ret;
1322}
1323
3a307ffc
MF
1324/*
1325 * ocfs2_write_end() wants to know which parts of the target page it
1326 * should complete the write on. It's easiest to compute them ahead of
1327 * time when a more complete view of the write is available.
1328 */
1329static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1330 struct ocfs2_write_ctxt *wc,
1331 loff_t pos, unsigned len, int alloc)
9517bac6 1332{
3a307ffc 1333 struct ocfs2_write_cluster_desc *desc;
9517bac6 1334
3a307ffc
MF
1335 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1336 wc->w_target_to = wc->w_target_from + len;
1337
1338 if (alloc == 0)
1339 return;
1340
1341 /*
1342 * Allocating write - we may have different boundaries based
1343 * on page size and cluster size.
1344 *
1345 * NOTE: We can no longer compute one value from the other as
1346 * the actual write length and user provided length may be
1347 * different.
1348 */
9517bac6 1349
3a307ffc
MF
1350 if (wc->w_large_pages) {
1351 /*
1352 * We only care about the 1st and last cluster within
b27b7cbc 1353 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1354 * value may be extended out to the start/end of a
1355 * newly allocated cluster.
1356 */
1357 desc = &wc->w_desc[0];
e7432675 1358 if (desc->c_needs_zero)
3a307ffc
MF
1359 ocfs2_figure_cluster_boundaries(osb,
1360 desc->c_cpos,
1361 &wc->w_target_from,
1362 NULL);
1363
1364 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1365 if (desc->c_needs_zero)
3a307ffc
MF
1366 ocfs2_figure_cluster_boundaries(osb,
1367 desc->c_cpos,
1368 NULL,
1369 &wc->w_target_to);
1370 } else {
1371 wc->w_target_from = 0;
1372 wc->w_target_to = PAGE_CACHE_SIZE;
1373 }
9517bac6
MF
1374}
1375
0d172baa
MF
1376/*
1377 * Populate each single-cluster write descriptor in the write context
1378 * with information about the i/o to be done.
b27b7cbc
MF
1379 *
1380 * Returns the number of clusters that will have to be allocated, as
1381 * well as a worst case estimate of the number of extent records that
1382 * would have to be created during a write to an unwritten region.
0d172baa
MF
1383 */
1384static int ocfs2_populate_write_desc(struct inode *inode,
1385 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1386 unsigned int *clusters_to_alloc,
1387 unsigned int *extents_to_split)
9517bac6 1388{
0d172baa 1389 int ret;
3a307ffc 1390 struct ocfs2_write_cluster_desc *desc;
0d172baa 1391 unsigned int num_clusters = 0;
b27b7cbc 1392 unsigned int ext_flags = 0;
0d172baa
MF
1393 u32 phys = 0;
1394 int i;
9517bac6 1395
b27b7cbc
MF
1396 *clusters_to_alloc = 0;
1397 *extents_to_split = 0;
1398
3a307ffc
MF
1399 for (i = 0; i < wc->w_clen; i++) {
1400 desc = &wc->w_desc[i];
1401 desc->c_cpos = wc->w_cpos + i;
1402
1403 if (num_clusters == 0) {
b27b7cbc
MF
1404 /*
1405 * Need to look up the next extent record.
1406 */
3a307ffc 1407 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1408 &num_clusters, &ext_flags);
3a307ffc
MF
1409 if (ret) {
1410 mlog_errno(ret);
607d44aa 1411 goto out;
3a307ffc 1412 }
b27b7cbc 1413
293b2f70
TM
1414 /* We should already CoW the refcountd extent. */
1415 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1416
b27b7cbc
MF
1417 /*
1418 * Assume worst case - that we're writing in
1419 * the middle of the extent.
1420 *
1421 * We can assume that the write proceeds from
1422 * left to right, in which case the extent
1423 * insert code is smart enough to coalesce the
1424 * next splits into the previous records created.
1425 */
1426 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1428 } else if (phys) {
1429 /*
1430 * Only increment phys if it doesn't describe
1431 * a hole.
1432 */
1433 phys++;
1434 }
1435
e7432675
SM
1436 /*
1437 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438 * file that got extended. w_first_new_cpos tells us
1439 * where the newly allocated clusters are so we can
1440 * zero them.
1441 */
1442 if (desc->c_cpos >= wc->w_first_new_cpos) {
1443 BUG_ON(phys == 0);
1444 desc->c_needs_zero = 1;
1445 }
1446
3a307ffc
MF
1447 desc->c_phys = phys;
1448 if (phys == 0) {
1449 desc->c_new = 1;
e7432675 1450 desc->c_needs_zero = 1;
0d172baa 1451 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1452 }
e7432675
SM
1453
1454 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1455 desc->c_unwritten = 1;
e7432675
SM
1456 desc->c_needs_zero = 1;
1457 }
3a307ffc
MF
1458
1459 num_clusters--;
9517bac6
MF
1460 }
1461
0d172baa
MF
1462 ret = 0;
1463out:
1464 return ret;
1465}
1466
1afc32b9
MF
1467static int ocfs2_write_begin_inline(struct address_space *mapping,
1468 struct inode *inode,
1469 struct ocfs2_write_ctxt *wc)
1470{
1471 int ret;
1472 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1473 struct page *page;
1474 handle_t *handle;
1475 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1476
1477 page = find_or_create_page(mapping, 0, GFP_NOFS);
1478 if (!page) {
1479 ret = -ENOMEM;
1480 mlog_errno(ret);
1481 goto out;
1482 }
1483 /*
1484 * If we don't set w_num_pages then this page won't get unlocked
1485 * and freed on cleanup of the write context.
1486 */
1487 wc->w_pages[0] = wc->w_target_page = page;
1488 wc->w_num_pages = 1;
1489
1490 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1491 if (IS_ERR(handle)) {
1492 ret = PTR_ERR(handle);
1493 mlog_errno(ret);
1494 goto out;
1495 }
1496
0cf2f763 1497 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1498 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1499 if (ret) {
1500 ocfs2_commit_trans(osb, handle);
1501
1502 mlog_errno(ret);
1503 goto out;
1504 }
1505
1506 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1507 ocfs2_set_inode_data_inline(inode, di);
1508
1509 if (!PageUptodate(page)) {
1510 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1511 if (ret) {
1512 ocfs2_commit_trans(osb, handle);
1513
1514 goto out;
1515 }
1516 }
1517
1518 wc->w_handle = handle;
1519out:
1520 return ret;
1521}
1522
1523int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1524{
1525 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1526
0d8a4e0c 1527 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1528 return 1;
1529 return 0;
1530}
1531
1532static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1533 struct inode *inode, loff_t pos,
1534 unsigned len, struct page *mmap_page,
1535 struct ocfs2_write_ctxt *wc)
1536{
1537 int ret, written = 0;
1538 loff_t end = pos + len;
1539 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1540 struct ocfs2_dinode *di = NULL;
1afc32b9 1541
9558156b
TM
1542 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1543 len, (unsigned long long)pos,
1544 oi->ip_dyn_features);
1afc32b9
MF
1545
1546 /*
1547 * Handle inodes which already have inline data 1st.
1548 */
1549 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1550 if (mmap_page == NULL &&
1551 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1552 goto do_inline_write;
1553
1554 /*
1555 * The write won't fit - we have to give this inode an
1556 * inline extent list now.
1557 */
1558 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1559 if (ret)
1560 mlog_errno(ret);
1561 goto out;
1562 }
1563
1564 /*
1565 * Check whether the inode can accept inline data.
1566 */
1567 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1568 return 0;
1569
1570 /*
1571 * Check whether the write can fit.
1572 */
d9ae49d6
TY
1573 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1574 if (mmap_page ||
1575 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1576 return 0;
1577
1578do_inline_write:
1579 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1580 if (ret) {
1581 mlog_errno(ret);
1582 goto out;
1583 }
1584
1585 /*
1586 * This signals to the caller that the data can be written
1587 * inline.
1588 */
1589 written = 1;
1590out:
1591 return written ? written : ret;
1592}
1593
65ed39d6
MF
1594/*
1595 * This function only does anything for file systems which can't
1596 * handle sparse files.
1597 *
1598 * What we want to do here is fill in any hole between the current end
1599 * of allocation and the end of our write. That way the rest of the
1600 * write path can treat it as an non-allocating write, which has no
1601 * special case code for sparse/nonsparse files.
1602 */
5693486b
JB
1603static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1604 struct buffer_head *di_bh,
1605 loff_t pos, unsigned len,
65ed39d6
MF
1606 struct ocfs2_write_ctxt *wc)
1607{
1608 int ret;
65ed39d6
MF
1609 loff_t newsize = pos + len;
1610
5693486b 1611 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1612
1613 if (newsize <= i_size_read(inode))
1614 return 0;
1615
5693486b 1616 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1617 if (ret)
1618 mlog_errno(ret);
1619
e7432675
SM
1620 wc->w_first_new_cpos =
1621 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1622
65ed39d6
MF
1623 return ret;
1624}
1625
5693486b
JB
1626static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1627 loff_t pos)
1628{
1629 int ret = 0;
1630
1631 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1632 if (pos > i_size_read(inode))
1633 ret = ocfs2_zero_extend(inode, di_bh, pos);
1634
1635 return ret;
1636}
1637
50308d81
TM
1638/*
1639 * Try to flush truncate logs if we can free enough clusters from it.
1640 * As for return value, "< 0" means error, "0" no space and "1" means
1641 * we have freed enough spaces and let the caller try to allocate again.
1642 */
1643static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1644 unsigned int needed)
1645{
1646 tid_t target;
1647 int ret = 0;
1648 unsigned int truncated_clusters;
1649
1650 mutex_lock(&osb->osb_tl_inode->i_mutex);
1651 truncated_clusters = osb->truncated_clusters;
1652 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1653
1654 /*
1655 * Check whether we can succeed in allocating if we free
1656 * the truncate log.
1657 */
1658 if (truncated_clusters < needed)
1659 goto out;
1660
1661 ret = ocfs2_flush_truncate_log(osb);
1662 if (ret) {
1663 mlog_errno(ret);
1664 goto out;
1665 }
1666
1667 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1668 jbd2_log_wait_commit(osb->journal->j_journal, target);
1669 ret = 1;
1670 }
1671out:
1672 return ret;
1673}
1674
0378da0f
TM
1675int ocfs2_write_begin_nolock(struct file *filp,
1676 struct address_space *mapping,
0d172baa
MF
1677 loff_t pos, unsigned len, unsigned flags,
1678 struct page **pagep, void **fsdata,
1679 struct buffer_head *di_bh, struct page *mmap_page)
1680{
e7432675 1681 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1682 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1683 struct ocfs2_write_ctxt *wc;
1684 struct inode *inode = mapping->host;
1685 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1686 struct ocfs2_dinode *di;
1687 struct ocfs2_alloc_context *data_ac = NULL;
1688 struct ocfs2_alloc_context *meta_ac = NULL;
1689 handle_t *handle;
f99b9b7c 1690 struct ocfs2_extent_tree et;
50308d81 1691 int try_free = 1, ret1;
0d172baa 1692
50308d81 1693try_again:
0d172baa
MF
1694 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1695 if (ret) {
1696 mlog_errno(ret);
1697 return ret;
1698 }
1699
1afc32b9
MF
1700 if (ocfs2_supports_inline_data(osb)) {
1701 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1702 mmap_page, wc);
1703 if (ret == 1) {
1704 ret = 0;
1705 goto success;
1706 }
1707 if (ret < 0) {
1708 mlog_errno(ret);
1709 goto out;
1710 }
1711 }
1712
5693486b
JB
1713 if (ocfs2_sparse_alloc(osb))
1714 ret = ocfs2_zero_tail(inode, di_bh, pos);
1715 else
1716 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1717 wc);
65ed39d6
MF
1718 if (ret) {
1719 mlog_errno(ret);
1720 goto out;
1721 }
1722
293b2f70
TM
1723 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1724 if (ret < 0) {
1725 mlog_errno(ret);
1726 goto out;
1727 } else if (ret == 1) {
50308d81 1728 clusters_need = wc->w_clen;
15502712 1729 ret = ocfs2_refcount_cow(inode, filp, di_bh,
37f8a2bf 1730 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1731 if (ret) {
1732 mlog_errno(ret);
1733 goto out;
1734 }
1735 }
1736
b27b7cbc
MF
1737 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1738 &extents_to_split);
0d172baa
MF
1739 if (ret) {
1740 mlog_errno(ret);
1741 goto out;
1742 }
50308d81 1743 clusters_need += clusters_to_alloc;
0d172baa
MF
1744
1745 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1746
9558156b
TM
1747 trace_ocfs2_write_begin_nolock(
1748 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1749 (long long)i_size_read(inode),
1750 le32_to_cpu(di->i_clusters),
1751 pos, len, flags, mmap_page,
1752 clusters_to_alloc, extents_to_split);
1753
3a307ffc
MF
1754 /*
1755 * We set w_target_from, w_target_to here so that
1756 * ocfs2_write_end() knows which range in the target page to
1757 * write out. An allocation requires that we write the entire
1758 * cluster range.
1759 */
b27b7cbc 1760 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1761 /*
1762 * XXX: We are stretching the limits of
b27b7cbc 1763 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1764 * the work to be done.
1765 */
5e404e9e
JB
1766 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1767 wc->w_di_bh);
f99b9b7c 1768 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1769 clusters_to_alloc, extents_to_split,
f99b9b7c 1770 &data_ac, &meta_ac);
9517bac6
MF
1771 if (ret) {
1772 mlog_errno(ret);
607d44aa 1773 goto out;
9517bac6
MF
1774 }
1775
4fe370af
MF
1776 if (data_ac)
1777 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1778
811f933d
TM
1779 credits = ocfs2_calc_extend_credits(inode->i_sb,
1780 &di->id2.i_list,
3a307ffc
MF
1781 clusters_to_alloc);
1782
9517bac6
MF
1783 }
1784
e7432675
SM
1785 /*
1786 * We have to zero sparse allocated clusters, unwritten extent clusters,
1787 * and non-sparse clusters we just extended. For non-sparse writes,
1788 * we know zeros will only be needed in the first and/or last cluster.
1789 */
1790 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1791 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1792 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1793 cluster_of_pages = 1;
1794 else
1795 cluster_of_pages = 0;
1796
1797 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1798
9517bac6
MF
1799 handle = ocfs2_start_trans(osb, credits);
1800 if (IS_ERR(handle)) {
1801 ret = PTR_ERR(handle);
1802 mlog_errno(ret);
607d44aa 1803 goto out;
9517bac6
MF
1804 }
1805
3a307ffc
MF
1806 wc->w_handle = handle;
1807
5dd4056d
CH
1808 if (clusters_to_alloc) {
1809 ret = dquot_alloc_space_nodirty(inode,
1810 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1811 if (ret)
1812 goto out_commit;
a90714c1 1813 }
3a307ffc
MF
1814 /*
1815 * We don't want this to fail in ocfs2_write_end(), so do it
1816 * here.
1817 */
0cf2f763 1818 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1819 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1820 if (ret) {
9517bac6 1821 mlog_errno(ret);
a90714c1 1822 goto out_quota;
9517bac6
MF
1823 }
1824
3a307ffc
MF
1825 /*
1826 * Fill our page array first. That way we've grabbed enough so
1827 * that we can zero and flush if we error after adding the
1828 * extent.
1829 */
693c241a 1830 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1831 cluster_of_pages, mmap_page);
9517bac6
MF
1832 if (ret) {
1833 mlog_errno(ret);
a90714c1 1834 goto out_quota;
9517bac6
MF
1835 }
1836
0d172baa
MF
1837 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1838 len);
1839 if (ret) {
1840 mlog_errno(ret);
a90714c1 1841 goto out_quota;
9517bac6 1842 }
9517bac6 1843
3a307ffc
MF
1844 if (data_ac)
1845 ocfs2_free_alloc_context(data_ac);
1846 if (meta_ac)
1847 ocfs2_free_alloc_context(meta_ac);
9517bac6 1848
1afc32b9 1849success:
3a307ffc
MF
1850 *pagep = wc->w_target_page;
1851 *fsdata = wc;
1852 return 0;
a90714c1
JK
1853out_quota:
1854 if (clusters_to_alloc)
5dd4056d 1855 dquot_free_space(inode,
a90714c1 1856 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1857out_commit:
1858 ocfs2_commit_trans(osb, handle);
1859
9517bac6 1860out:
3a307ffc
MF
1861 ocfs2_free_write_ctxt(wc);
1862
9517bac6
MF
1863 if (data_ac)
1864 ocfs2_free_alloc_context(data_ac);
1865 if (meta_ac)
1866 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1867
1868 if (ret == -ENOSPC && try_free) {
1869 /*
1870 * Try to free some truncate log so that we can have enough
1871 * clusters to allocate.
1872 */
1873 try_free = 0;
1874
1875 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1876 if (ret1 == 1)
1877 goto try_again;
1878
1879 if (ret1 < 0)
1880 mlog_errno(ret1);
1881 }
1882
3a307ffc
MF
1883 return ret;
1884}
1885
b6af1bcd
NP
1886static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1887 loff_t pos, unsigned len, unsigned flags,
1888 struct page **pagep, void **fsdata)
607d44aa
MF
1889{
1890 int ret;
1891 struct buffer_head *di_bh = NULL;
1892 struct inode *inode = mapping->host;
1893
e63aecb6 1894 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1895 if (ret) {
1896 mlog_errno(ret);
1897 return ret;
1898 }
1899
1900 /*
1901 * Take alloc sem here to prevent concurrent lookups. That way
1902 * the mapping, zeroing and tree manipulation within
1903 * ocfs2_write() will be safe against ->readpage(). This
1904 * should also serve to lock out allocation from a shared
1905 * writeable region.
1906 */
1907 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1908
0378da0f 1909 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1910 fsdata, di_bh, NULL);
607d44aa
MF
1911 if (ret) {
1912 mlog_errno(ret);
c934a92d 1913 goto out_fail;
607d44aa
MF
1914 }
1915
1916 brelse(di_bh);
1917
1918 return 0;
1919
607d44aa
MF
1920out_fail:
1921 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1922
1923 brelse(di_bh);
e63aecb6 1924 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1925
1926 return ret;
1927}
1928
1afc32b9
MF
1929static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1930 unsigned len, unsigned *copied,
1931 struct ocfs2_dinode *di,
1932 struct ocfs2_write_ctxt *wc)
1933{
1934 void *kaddr;
1935
1936 if (unlikely(*copied < len)) {
1937 if (!PageUptodate(wc->w_target_page)) {
1938 *copied = 0;
1939 return;
1940 }
1941 }
1942
1943 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1944 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1945 kunmap_atomic(kaddr, KM_USER0);
1946
9558156b
TM
1947 trace_ocfs2_write_end_inline(
1948 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1949 (unsigned long long)pos, *copied,
1950 le16_to_cpu(di->id2.i_data.id_count),
1951 le16_to_cpu(di->i_dyn_features));
1952}
1953
7307de80
MF
1954int ocfs2_write_end_nolock(struct address_space *mapping,
1955 loff_t pos, unsigned len, unsigned copied,
1956 struct page *page, void *fsdata)
3a307ffc
MF
1957{
1958 int i;
1959 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1960 struct inode *inode = mapping->host;
1961 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1962 struct ocfs2_write_ctxt *wc = fsdata;
1963 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1964 handle_t *handle = wc->w_handle;
1965 struct page *tmppage;
1966
1afc32b9
MF
1967 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1968 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1969 goto out_write_size;
1970 }
1971
3a307ffc
MF
1972 if (unlikely(copied < len)) {
1973 if (!PageUptodate(wc->w_target_page))
1974 copied = 0;
1975
1976 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1977 start+len);
1978 }
1979 flush_dcache_page(wc->w_target_page);
1980
1981 for(i = 0; i < wc->w_num_pages; i++) {
1982 tmppage = wc->w_pages[i];
1983
1984 if (tmppage == wc->w_target_page) {
1985 from = wc->w_target_from;
1986 to = wc->w_target_to;
1987
1988 BUG_ON(from > PAGE_CACHE_SIZE ||
1989 to > PAGE_CACHE_SIZE ||
1990 to < from);
1991 } else {
1992 /*
1993 * Pages adjacent to the target (if any) imply
1994 * a hole-filling write in which case we want
1995 * to flush their entire range.
1996 */
1997 from = 0;
1998 to = PAGE_CACHE_SIZE;
1999 }
2000
961cecbe 2001 if (page_has_buffers(tmppage)) {
53ef99ca 2002 if (ocfs2_should_order_data(inode))
2b4e30fb 2003 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2004 block_commit_write(tmppage, from, to);
2005 }
3a307ffc
MF
2006 }
2007
1afc32b9 2008out_write_size:
3a307ffc
MF
2009 pos += copied;
2010 if (pos > inode->i_size) {
2011 i_size_write(inode, pos);
2012 mark_inode_dirty(inode);
2013 }
2014 inode->i_blocks = ocfs2_inode_sector_count(inode);
2015 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2016 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2017 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2018 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2019 ocfs2_journal_dirty(handle, wc->w_di_bh);
2020
2021 ocfs2_commit_trans(osb, handle);
59a5e416 2022
b27b7cbc
MF
2023 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2024
607d44aa
MF
2025 ocfs2_free_write_ctxt(wc);
2026
2027 return copied;
2028}
2029
b6af1bcd
NP
2030static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2031 loff_t pos, unsigned len, unsigned copied,
2032 struct page *page, void *fsdata)
607d44aa
MF
2033{
2034 int ret;
2035 struct inode *inode = mapping->host;
2036
2037 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2038
3a307ffc 2039 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2040 ocfs2_inode_unlock(inode, 1);
9517bac6 2041
607d44aa 2042 return ret;
9517bac6
MF
2043}
2044
f5e54d6e 2045const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2046 .readpage = ocfs2_readpage,
2047 .readpages = ocfs2_readpages,
2048 .writepage = ocfs2_writepage,
2049 .write_begin = ocfs2_write_begin,
2050 .write_end = ocfs2_write_end,
2051 .bmap = ocfs2_bmap,
1fca3a05
HH
2052 .direct_IO = ocfs2_direct_IO,
2053 .invalidatepage = ocfs2_invalidatepage,
2054 .releasepage = ocfs2_releasepage,
2055 .migratepage = buffer_migrate_page,
2056 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2057 .error_remove_page = generic_error_remove_page,
ccd979bd 2058};