ocfs2: Implementation of local and global quota file handling
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
ccd979bd
MF
30
31#define MLOG_MASK_PREFIX ML_FILE_IO
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
46
47#include "buffer_head_io.h"
48
49static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 struct buffer_head *bh_result, int create)
51{
52 int err = -EIO;
53 int status;
54 struct ocfs2_dinode *fe = NULL;
55 struct buffer_head *bh = NULL;
56 struct buffer_head *buffer_cache_bh = NULL;
57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 void *kaddr;
59
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 (unsigned long long)iblock, bh_result, create);
62
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock);
68 goto bail;
69 }
70
b657c95c 71 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
72 if (status < 0) {
73 mlog_errno(status);
74 goto bail;
75 }
76 fe = (struct ocfs2_dinode *) bh->b_data;
77
ccd979bd
MF
78 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
79 le32_to_cpu(fe->i_clusters))) {
80 mlog(ML_ERROR, "block offset is outside the allocated size: "
81 "%llu\n", (unsigned long long)iblock);
82 goto bail;
83 }
84
85 /* We don't use the page cache to create symlink data, so if
86 * need be, copy it over from the buffer cache. */
87 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
88 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
89 iblock;
90 buffer_cache_bh = sb_getblk(osb->sb, blkno);
91 if (!buffer_cache_bh) {
92 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
93 goto bail;
94 }
95
96 /* we haven't locked out transactions, so a commit
97 * could've happened. Since we've got a reference on
98 * the bh, even if it commits while we're doing the
99 * copy, the data is still good. */
100 if (buffer_jbd(buffer_cache_bh)
101 && ocfs2_inode_is_new(inode)) {
102 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
103 if (!kaddr) {
104 mlog(ML_ERROR, "couldn't kmap!\n");
105 goto bail;
106 }
107 memcpy(kaddr + (bh_result->b_size * iblock),
108 buffer_cache_bh->b_data,
109 bh_result->b_size);
110 kunmap_atomic(kaddr, KM_USER0);
111 set_buffer_uptodate(bh_result);
112 }
113 brelse(buffer_cache_bh);
114 }
115
116 map_bh(bh_result, inode->i_sb,
117 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
118
119 err = 0;
120
121bail:
a81cb88b 122 brelse(bh);
ccd979bd
MF
123
124 mlog_exit(err);
125 return err;
126}
127
128static int ocfs2_get_block(struct inode *inode, sector_t iblock,
129 struct buffer_head *bh_result, int create)
130{
131 int err = 0;
49cb8d2d 132 unsigned int ext_flags;
628a24f5
MF
133 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
134 u64 p_blkno, count, past_eof;
25baf2da 135 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
136
137 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
138 (unsigned long long)iblock, bh_result, create);
139
140 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
141 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
142 inode, inode->i_ino);
143
144 if (S_ISLNK(inode->i_mode)) {
145 /* this always does I/O for some reason. */
146 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
147 goto bail;
148 }
149
628a24f5 150 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 151 &ext_flags);
ccd979bd
MF
152 if (err) {
153 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
154 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
155 (unsigned long long)p_blkno);
ccd979bd
MF
156 goto bail;
157 }
158
628a24f5
MF
159 if (max_blocks < count)
160 count = max_blocks;
161
25baf2da
MF
162 /*
163 * ocfs2 never allocates in this function - the only time we
164 * need to use BH_New is when we're extending i_size on a file
165 * system which doesn't support holes, in which case BH_New
166 * allows block_prepare_write() to zero.
c0420ad2
CL
167 *
168 * If we see this on a sparse file system, then a truncate has
169 * raced us and removed the cluster. In this case, we clear
170 * the buffers dirty and uptodate bits and let the buffer code
171 * ignore it as a hole.
25baf2da 172 */
c0420ad2
CL
173 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
174 clear_buffer_dirty(bh_result);
175 clear_buffer_uptodate(bh_result);
176 goto bail;
177 }
25baf2da 178
49cb8d2d
MF
179 /* Treat the unwritten extent as a hole for zeroing purposes. */
180 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
181 map_bh(bh_result, inode->i_sb, p_blkno);
182
628a24f5
MF
183 bh_result->b_size = count << inode->i_blkbits;
184
25baf2da
MF
185 if (!ocfs2_sparse_alloc(osb)) {
186 if (p_blkno == 0) {
187 err = -EIO;
188 mlog(ML_ERROR,
189 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
190 (unsigned long long)iblock,
191 (unsigned long long)p_blkno,
192 (unsigned long long)OCFS2_I(inode)->ip_blkno);
193 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
194 dump_stack();
195 }
ccd979bd 196
25baf2da
MF
197 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
198 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
199 (unsigned long long)past_eof);
ccd979bd 200
25baf2da
MF
201 if (create && (iblock >= past_eof))
202 set_buffer_new(bh_result);
203 }
ccd979bd
MF
204
205bail:
206 if (err < 0)
207 err = -EIO;
208
209 mlog_exit(err);
210 return err;
211}
212
1afc32b9
MF
213int ocfs2_read_inline_data(struct inode *inode, struct page *page,
214 struct buffer_head *di_bh)
6798d35a
MF
215{
216 void *kaddr;
d2849fb2 217 loff_t size;
6798d35a
MF
218 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
219
220 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
221 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
222 (unsigned long long)OCFS2_I(inode)->ip_blkno);
223 return -EROFS;
224 }
225
226 size = i_size_read(inode);
227
228 if (size > PAGE_CACHE_SIZE ||
229 size > ocfs2_max_inline_data(inode->i_sb)) {
230 ocfs2_error(inode->i_sb,
d2849fb2
JK
231 "Inode %llu has with inline data has bad size: %Lu",
232 (unsigned long long)OCFS2_I(inode)->ip_blkno,
233 (unsigned long long)size);
6798d35a
MF
234 return -EROFS;
235 }
236
237 kaddr = kmap_atomic(page, KM_USER0);
238 if (size)
239 memcpy(kaddr, di->id2.i_data.id_data, size);
240 /* Clear the remaining part of the page */
241 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
242 flush_dcache_page(page);
243 kunmap_atomic(kaddr, KM_USER0);
244
245 SetPageUptodate(page);
246
247 return 0;
248}
249
250static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
251{
252 int ret;
253 struct buffer_head *di_bh = NULL;
6798d35a
MF
254
255 BUG_ON(!PageLocked(page));
86c838b0 256 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 257
b657c95c 258 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
259 if (ret) {
260 mlog_errno(ret);
261 goto out;
262 }
263
264 ret = ocfs2_read_inline_data(inode, page, di_bh);
265out:
266 unlock_page(page);
267
268 brelse(di_bh);
269 return ret;
270}
271
ccd979bd
MF
272static int ocfs2_readpage(struct file *file, struct page *page)
273{
274 struct inode *inode = page->mapping->host;
6798d35a 275 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
276 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
277 int ret, unlock = 1;
278
279 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
280
e63aecb6 281 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
282 if (ret != 0) {
283 if (ret == AOP_TRUNCATED_PAGE)
284 unlock = 0;
285 mlog_errno(ret);
286 goto out;
287 }
288
6798d35a 289 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 290 ret = AOP_TRUNCATED_PAGE;
e63aecb6 291 goto out_inode_unlock;
e9dfc0b2 292 }
ccd979bd
MF
293
294 /*
295 * i_size might have just been updated as we grabed the meta lock. We
296 * might now be discovering a truncate that hit on another node.
297 * block_read_full_page->get_block freaks out if it is asked to read
298 * beyond the end of a file, so we check here. Callers
54cb8821 299 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
300 * and notice that the page they just read isn't needed.
301 *
302 * XXX sys_readahead() seems to get that wrong?
303 */
304 if (start >= i_size_read(inode)) {
eebd2aa3 305 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
306 SetPageUptodate(page);
307 ret = 0;
308 goto out_alloc;
309 }
310
6798d35a
MF
311 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
312 ret = ocfs2_readpage_inline(inode, page);
313 else
314 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
315 unlock = 0;
316
ccd979bd
MF
317out_alloc:
318 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
319out_inode_unlock:
320 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
321out:
322 if (unlock)
323 unlock_page(page);
324 mlog_exit(ret);
325 return ret;
326}
327
628a24f5
MF
328/*
329 * This is used only for read-ahead. Failures or difficult to handle
330 * situations are safe to ignore.
331 *
332 * Right now, we don't bother with BH_Boundary - in-inode extent lists
333 * are quite large (243 extents on 4k blocks), so most inodes don't
334 * grow out to a tree. If need be, detecting boundary extents could
335 * trivially be added in a future version of ocfs2_get_block().
336 */
337static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
338 struct list_head *pages, unsigned nr_pages)
339{
340 int ret, err = -EIO;
341 struct inode *inode = mapping->host;
342 struct ocfs2_inode_info *oi = OCFS2_I(inode);
343 loff_t start;
344 struct page *last;
345
346 /*
347 * Use the nonblocking flag for the dlm code to avoid page
348 * lock inversion, but don't bother with retrying.
349 */
350 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
351 if (ret)
352 return err;
353
354 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
355 ocfs2_inode_unlock(inode, 0);
356 return err;
357 }
358
359 /*
360 * Don't bother with inline-data. There isn't anything
361 * to read-ahead in that case anyway...
362 */
363 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
364 goto out_unlock;
365
366 /*
367 * Check whether a remote node truncated this file - we just
368 * drop out in that case as it's not worth handling here.
369 */
370 last = list_entry(pages->prev, struct page, lru);
371 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
372 if (start >= i_size_read(inode))
373 goto out_unlock;
374
375 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
376
377out_unlock:
378 up_read(&oi->ip_alloc_sem);
379 ocfs2_inode_unlock(inode, 0);
380
381 return err;
382}
383
ccd979bd
MF
384/* Note: Because we don't support holes, our allocation has
385 * already happened (allocation writes zeros to the file data)
386 * so we don't have to worry about ordered writes in
387 * ocfs2_writepage.
388 *
389 * ->writepage is called during the process of invalidating the page cache
390 * during blocked lock processing. It can't block on any cluster locks
391 * to during block mapping. It's relying on the fact that the block
392 * mapping can't have disappeared under the dirty pages that it is
393 * being asked to write back.
394 */
395static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
396{
397 int ret;
398
399 mlog_entry("(0x%p)\n", page);
400
401 ret = block_write_full_page(page, ocfs2_get_block, wbc);
402
403 mlog_exit(ret);
404
405 return ret;
406}
407
5069120b
MF
408/*
409 * This is called from ocfs2_write_zero_page() which has handled it's
410 * own cluster locking and has ensured allocation exists for those
411 * blocks to be written.
412 */
53013cba
MF
413int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
414 unsigned from, unsigned to)
415{
416 int ret;
417
53013cba
MF
418 ret = block_prepare_write(page, from, to, ocfs2_get_block);
419
53013cba
MF
420 return ret;
421}
422
ccd979bd
MF
423/* Taken from ext3. We don't necessarily need the full blown
424 * functionality yet, but IMHO it's better to cut and paste the whole
425 * thing so we can avoid introducing our own bugs (and easily pick up
426 * their fixes when they happen) --Mark */
60b11392
MF
427int walk_page_buffers( handle_t *handle,
428 struct buffer_head *head,
429 unsigned from,
430 unsigned to,
431 int *partial,
432 int (*fn)( handle_t *handle,
433 struct buffer_head *bh))
ccd979bd
MF
434{
435 struct buffer_head *bh;
436 unsigned block_start, block_end;
437 unsigned blocksize = head->b_size;
438 int err, ret = 0;
439 struct buffer_head *next;
440
441 for ( bh = head, block_start = 0;
442 ret == 0 && (bh != head || !block_start);
443 block_start = block_end, bh = next)
444 {
445 next = bh->b_this_page;
446 block_end = block_start + blocksize;
447 if (block_end <= from || block_start >= to) {
448 if (partial && !buffer_uptodate(bh))
449 *partial = 1;
450 continue;
451 }
452 err = (*fn)(handle, bh);
453 if (!ret)
454 ret = err;
455 }
456 return ret;
457}
458
1fabe148 459handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
460 struct page *page,
461 unsigned from,
462 unsigned to)
463{
464 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58dadcdb 465 handle_t *handle;
ccd979bd
MF
466 int ret = 0;
467
65eff9cc 468 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
58dadcdb 469 if (IS_ERR(handle)) {
ccd979bd
MF
470 ret = -ENOMEM;
471 mlog_errno(ret);
472 goto out;
473 }
474
475 if (ocfs2_should_order_data(inode)) {
2b4e30fb 476 ret = ocfs2_jbd2_file_inode(handle, inode);
2b4e30fb 477 if (ret < 0)
ccd979bd
MF
478 mlog_errno(ret);
479 }
480out:
481 if (ret) {
58dadcdb 482 if (!IS_ERR(handle))
02dc1af4 483 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
484 handle = ERR_PTR(ret);
485 }
486 return handle;
487}
488
ccd979bd
MF
489static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
490{
491 sector_t status;
492 u64 p_blkno = 0;
493 int err = 0;
494 struct inode *inode = mapping->host;
495
496 mlog_entry("(block = %llu)\n", (unsigned long long)block);
497
498 /* We don't need to lock journal system files, since they aren't
499 * accessed concurrently from multiple nodes.
500 */
501 if (!INODE_JOURNAL(inode)) {
e63aecb6 502 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
503 if (err) {
504 if (err != -ENOENT)
505 mlog_errno(err);
506 goto bail;
507 }
508 down_read(&OCFS2_I(inode)->ip_alloc_sem);
509 }
510
6798d35a
MF
511 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
512 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
513 NULL);
ccd979bd
MF
514
515 if (!INODE_JOURNAL(inode)) {
516 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 517 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
518 }
519
520 if (err) {
521 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
522 (unsigned long long)block);
523 mlog_errno(err);
524 goto bail;
525 }
526
ccd979bd
MF
527bail:
528 status = err ? 0 : p_blkno;
529
530 mlog_exit((int)status);
531
532 return status;
533}
534
535/*
536 * TODO: Make this into a generic get_blocks function.
537 *
538 * From do_direct_io in direct-io.c:
539 * "So what we do is to permit the ->get_blocks function to populate
540 * bh.b_size with the size of IO which is permitted at this offset and
541 * this i_blkbits."
542 *
543 * This function is called directly from get_more_blocks in direct-io.c.
544 *
545 * called like this: dio->get_blocks(dio->inode, fs_startblk,
546 * fs_count, map_bh, dio->rw == WRITE);
547 */
548static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
549 struct buffer_head *bh_result, int create)
550{
551 int ret;
4f902c37 552 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 553 unsigned int ext_flags;
184d7d20 554 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 555 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 556
ccd979bd
MF
557 /* This function won't even be called if the request isn't all
558 * nicely aligned and of the right size, so there's no need
559 * for us to check any of that. */
560
25baf2da 561 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
562
563 /*
564 * Any write past EOF is not allowed because we'd be extending.
565 */
566 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
567 ret = -EIO;
568 goto bail;
569 }
ccd979bd
MF
570
571 /* This figures out the size of the next contiguous block, and
572 * our logical offset */
363041a5 573 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 574 &contig_blocks, &ext_flags);
ccd979bd
MF
575 if (ret) {
576 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577 (unsigned long long)iblock);
578 ret = -EIO;
579 goto bail;
580 }
581
0e116227 582 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
25baf2da
MF
583 ocfs2_error(inode->i_sb,
584 "Inode %llu has a hole at block %llu\n",
585 (unsigned long long)OCFS2_I(inode)->ip_blkno,
586 (unsigned long long)iblock);
587 ret = -EROFS;
588 goto bail;
589 }
590
591 /*
592 * get_more_blocks() expects us to describe a hole by clearing
593 * the mapped bit on bh_result().
49cb8d2d
MF
594 *
595 * Consider an unwritten extent as a hole.
25baf2da 596 */
49cb8d2d 597 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
598 map_bh(bh_result, inode->i_sb, p_blkno);
599 else {
600 /*
601 * ocfs2_prepare_inode_for_write() should have caught
602 * the case where we'd be filling a hole and triggered
603 * a buffered write instead.
604 */
605 if (create) {
606 ret = -EIO;
607 mlog_errno(ret);
608 goto bail;
609 }
610
611 clear_buffer_mapped(bh_result);
612 }
ccd979bd
MF
613
614 /* make sure we don't map more than max_blocks blocks here as
615 that's all the kernel will handle at this point. */
616 if (max_blocks < contig_blocks)
617 contig_blocks = max_blocks;
618 bh_result->b_size = contig_blocks << blocksize_bits;
619bail:
620 return ret;
621}
622
623/*
624 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
625 * particularly interested in the aio/dio case. Like the core uses
626 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
627 * truncation on another.
628 */
629static void ocfs2_dio_end_io(struct kiocb *iocb,
630 loff_t offset,
631 ssize_t bytes,
632 void *private)
633{
d28c9174 634 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 635 int level;
ccd979bd
MF
636
637 /* this io's submitter should not have unlocked this before we could */
638 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 639
ccd979bd 640 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
641
642 level = ocfs2_iocb_rw_locked_level(iocb);
643 if (!level)
644 up_read(&inode->i_alloc_sem);
645 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
646}
647
03f981cf
JB
648/*
649 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
650 * from ext3. PageChecked() bits have been removed as OCFS2 does not
651 * do journalled data.
652 */
653static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
654{
655 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
656
2b4e30fb 657 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
658}
659
660static int ocfs2_releasepage(struct page *page, gfp_t wait)
661{
662 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
663
664 if (!page_has_buffers(page))
665 return 0;
2b4e30fb 666 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
667}
668
ccd979bd
MF
669static ssize_t ocfs2_direct_IO(int rw,
670 struct kiocb *iocb,
671 const struct iovec *iov,
672 loff_t offset,
673 unsigned long nr_segs)
674{
675 struct file *file = iocb->ki_filp;
d28c9174 676 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
677 int ret;
678
679 mlog_entry_void();
53013cba 680
6798d35a
MF
681 /*
682 * Fallback to buffered I/O if we see an inode without
683 * extents.
684 */
685 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
686 return 0;
687
ccd979bd
MF
688 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
689 inode->i_sb->s_bdev, iov, offset,
690 nr_segs,
691 ocfs2_direct_IO_get_blocks,
692 ocfs2_dio_end_io);
c934a92d 693
ccd979bd
MF
694 mlog_exit(ret);
695 return ret;
696}
697
9517bac6
MF
698static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
699 u32 cpos,
700 unsigned int *start,
701 unsigned int *end)
702{
703 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
704
705 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
706 unsigned int cpp;
707
708 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
709
710 cluster_start = cpos % cpp;
711 cluster_start = cluster_start << osb->s_clustersize_bits;
712
713 cluster_end = cluster_start + osb->s_clustersize;
714 }
715
716 BUG_ON(cluster_start > PAGE_SIZE);
717 BUG_ON(cluster_end > PAGE_SIZE);
718
719 if (start)
720 *start = cluster_start;
721 if (end)
722 *end = cluster_end;
723}
724
725/*
726 * 'from' and 'to' are the region in the page to avoid zeroing.
727 *
728 * If pagesize > clustersize, this function will avoid zeroing outside
729 * of the cluster boundary.
730 *
731 * from == to == 0 is code for "zero the entire cluster region"
732 */
733static void ocfs2_clear_page_regions(struct page *page,
734 struct ocfs2_super *osb, u32 cpos,
735 unsigned from, unsigned to)
736{
737 void *kaddr;
738 unsigned int cluster_start, cluster_end;
739
740 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
741
742 kaddr = kmap_atomic(page, KM_USER0);
743
744 if (from || to) {
745 if (from > cluster_start)
746 memset(kaddr + cluster_start, 0, from - cluster_start);
747 if (to < cluster_end)
748 memset(kaddr + to, 0, cluster_end - to);
749 } else {
750 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
751 }
752
753 kunmap_atomic(kaddr, KM_USER0);
754}
755
4e9563fd
MF
756/*
757 * Nonsparse file systems fully allocate before we get to the write
758 * code. This prevents ocfs2_write() from tagging the write as an
759 * allocating one, which means ocfs2_map_page_blocks() might try to
760 * read-in the blocks at the tail of our file. Avoid reading them by
761 * testing i_size against each block offset.
762 */
763static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
764 unsigned int block_start)
765{
766 u64 offset = page_offset(page) + block_start;
767
768 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
769 return 1;
770
771 if (i_size_read(inode) > offset)
772 return 1;
773
774 return 0;
775}
776
9517bac6
MF
777/*
778 * Some of this taken from block_prepare_write(). We already have our
779 * mapping by now though, and the entire write will be allocating or
780 * it won't, so not much need to use BH_New.
781 *
782 * This will also skip zeroing, which is handled externally.
783 */
60b11392
MF
784int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
785 struct inode *inode, unsigned int from,
786 unsigned int to, int new)
9517bac6
MF
787{
788 int ret = 0;
789 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
790 unsigned int block_end, block_start;
791 unsigned int bsize = 1 << inode->i_blkbits;
792
793 if (!page_has_buffers(page))
794 create_empty_buffers(page, bsize, 0);
795
796 head = page_buffers(page);
797 for (bh = head, block_start = 0; bh != head || !block_start;
798 bh = bh->b_this_page, block_start += bsize) {
799 block_end = block_start + bsize;
800
3a307ffc
MF
801 clear_buffer_new(bh);
802
9517bac6
MF
803 /*
804 * Ignore blocks outside of our i/o range -
805 * they may belong to unallocated clusters.
806 */
60b11392 807 if (block_start >= to || block_end <= from) {
9517bac6
MF
808 if (PageUptodate(page))
809 set_buffer_uptodate(bh);
810 continue;
811 }
812
813 /*
814 * For an allocating write with cluster size >= page
815 * size, we always write the entire page.
816 */
3a307ffc
MF
817 if (new)
818 set_buffer_new(bh);
9517bac6
MF
819
820 if (!buffer_mapped(bh)) {
821 map_bh(bh, inode->i_sb, *p_blkno);
822 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
823 }
824
825 if (PageUptodate(page)) {
826 if (!buffer_uptodate(bh))
827 set_buffer_uptodate(bh);
828 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 829 !buffer_new(bh) &&
4e9563fd 830 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 831 (block_start < from || block_end > to)) {
9517bac6
MF
832 ll_rw_block(READ, 1, &bh);
833 *wait_bh++=bh;
834 }
835
836 *p_blkno = *p_blkno + 1;
837 }
838
839 /*
840 * If we issued read requests - let them complete.
841 */
842 while(wait_bh > wait) {
843 wait_on_buffer(*--wait_bh);
844 if (!buffer_uptodate(*wait_bh))
845 ret = -EIO;
846 }
847
848 if (ret == 0 || !new)
849 return ret;
850
851 /*
852 * If we get -EIO above, zero out any newly allocated blocks
853 * to avoid exposing stale data.
854 */
855 bh = head;
856 block_start = 0;
857 do {
9517bac6
MF
858 block_end = block_start + bsize;
859 if (block_end <= from)
860 goto next_bh;
861 if (block_start >= to)
862 break;
863
eebd2aa3 864 zero_user(page, block_start, bh->b_size);
9517bac6
MF
865 set_buffer_uptodate(bh);
866 mark_buffer_dirty(bh);
867
868next_bh:
869 block_start = block_end;
870 bh = bh->b_this_page;
871 } while (bh != head);
872
873 return ret;
874}
875
3a307ffc
MF
876#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
877#define OCFS2_MAX_CTXT_PAGES 1
878#else
879#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
880#endif
881
882#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
883
6af67d82 884/*
3a307ffc 885 * Describe the state of a single cluster to be written to.
6af67d82 886 */
3a307ffc
MF
887struct ocfs2_write_cluster_desc {
888 u32 c_cpos;
889 u32 c_phys;
890 /*
891 * Give this a unique field because c_phys eventually gets
892 * filled.
893 */
894 unsigned c_new;
b27b7cbc 895 unsigned c_unwritten;
3a307ffc 896};
6af67d82 897
b27b7cbc
MF
898static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
899{
900 return d->c_new || d->c_unwritten;
901}
902
3a307ffc
MF
903struct ocfs2_write_ctxt {
904 /* Logical cluster position / len of write */
905 u32 w_cpos;
906 u32 w_clen;
6af67d82 907
3a307ffc 908 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 909
3a307ffc
MF
910 /*
911 * This is true if page_size > cluster_size.
912 *
913 * It triggers a set of special cases during write which might
914 * have to deal with allocating writes to partial pages.
915 */
916 unsigned int w_large_pages;
6af67d82 917
3a307ffc
MF
918 /*
919 * Pages involved in this write.
920 *
921 * w_target_page is the page being written to by the user.
922 *
923 * w_pages is an array of pages which always contains
924 * w_target_page, and in the case of an allocating write with
925 * page_size < cluster size, it will contain zero'd and mapped
926 * pages adjacent to w_target_page which need to be written
927 * out in so that future reads from that region will get
928 * zero's.
929 */
930 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
931 unsigned int w_num_pages;
932 struct page *w_target_page;
eeb47d12 933
3a307ffc
MF
934 /*
935 * ocfs2_write_end() uses this to know what the real range to
936 * write in the target should be.
937 */
938 unsigned int w_target_from;
939 unsigned int w_target_to;
940
941 /*
942 * We could use journal_current_handle() but this is cleaner,
943 * IMHO -Mark
944 */
945 handle_t *w_handle;
946
947 struct buffer_head *w_di_bh;
b27b7cbc
MF
948
949 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
950};
951
1d410a6e 952void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
953{
954 int i;
955
1d410a6e
MF
956 for(i = 0; i < num_pages; i++) {
957 if (pages[i]) {
958 unlock_page(pages[i]);
959 mark_page_accessed(pages[i]);
960 page_cache_release(pages[i]);
961 }
6af67d82 962 }
1d410a6e
MF
963}
964
965static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
966{
967 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 968
3a307ffc
MF
969 brelse(wc->w_di_bh);
970 kfree(wc);
971}
972
973static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
974 struct ocfs2_super *osb, loff_t pos,
607d44aa 975 unsigned len, struct buffer_head *di_bh)
3a307ffc 976{
30b8548f 977 u32 cend;
3a307ffc
MF
978 struct ocfs2_write_ctxt *wc;
979
980 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
981 if (!wc)
982 return -ENOMEM;
6af67d82 983
3a307ffc 984 wc->w_cpos = pos >> osb->s_clustersize_bits;
30b8548f 985 cend = (pos + len - 1) >> osb->s_clustersize_bits;
986 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
987 get_bh(di_bh);
988 wc->w_di_bh = di_bh;
6af67d82 989
3a307ffc
MF
990 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
991 wc->w_large_pages = 1;
992 else
993 wc->w_large_pages = 0;
994
b27b7cbc
MF
995 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
996
3a307ffc 997 *wcp = wc;
6af67d82 998
3a307ffc 999 return 0;
6af67d82
MF
1000}
1001
9517bac6 1002/*
3a307ffc
MF
1003 * If a page has any new buffers, zero them out here, and mark them uptodate
1004 * and dirty so they'll be written out (in order to prevent uninitialised
1005 * block data from leaking). And clear the new bit.
9517bac6 1006 */
3a307ffc 1007static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1008{
3a307ffc
MF
1009 unsigned int block_start, block_end;
1010 struct buffer_head *head, *bh;
9517bac6 1011
3a307ffc
MF
1012 BUG_ON(!PageLocked(page));
1013 if (!page_has_buffers(page))
1014 return;
9517bac6 1015
3a307ffc
MF
1016 bh = head = page_buffers(page);
1017 block_start = 0;
1018 do {
1019 block_end = block_start + bh->b_size;
1020
1021 if (buffer_new(bh)) {
1022 if (block_end > from && block_start < to) {
1023 if (!PageUptodate(page)) {
1024 unsigned start, end;
3a307ffc
MF
1025
1026 start = max(from, block_start);
1027 end = min(to, block_end);
1028
eebd2aa3 1029 zero_user_segment(page, start, end);
3a307ffc
MF
1030 set_buffer_uptodate(bh);
1031 }
1032
1033 clear_buffer_new(bh);
1034 mark_buffer_dirty(bh);
1035 }
1036 }
9517bac6 1037
3a307ffc
MF
1038 block_start = block_end;
1039 bh = bh->b_this_page;
1040 } while (bh != head);
1041}
1042
1043/*
1044 * Only called when we have a failure during allocating write to write
1045 * zero's to the newly allocated region.
1046 */
1047static void ocfs2_write_failure(struct inode *inode,
1048 struct ocfs2_write_ctxt *wc,
1049 loff_t user_pos, unsigned user_len)
1050{
1051 int i;
5c26a7b7
MF
1052 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1053 to = user_pos + user_len;
3a307ffc
MF
1054 struct page *tmppage;
1055
5c26a7b7 1056 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1057
3a307ffc
MF
1058 for(i = 0; i < wc->w_num_pages; i++) {
1059 tmppage = wc->w_pages[i];
9517bac6 1060
961cecbe 1061 if (page_has_buffers(tmppage)) {
53ef99ca 1062 if (ocfs2_should_order_data(inode))
2b4e30fb 1063 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1064
1065 block_commit_write(tmppage, from, to);
1066 }
9517bac6 1067 }
9517bac6
MF
1068}
1069
3a307ffc
MF
1070static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1071 struct ocfs2_write_ctxt *wc,
1072 struct page *page, u32 cpos,
1073 loff_t user_pos, unsigned user_len,
1074 int new)
9517bac6 1075{
3a307ffc
MF
1076 int ret;
1077 unsigned int map_from = 0, map_to = 0;
9517bac6 1078 unsigned int cluster_start, cluster_end;
3a307ffc 1079 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1080
3a307ffc 1081 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1082 &cluster_start, &cluster_end);
1083
3a307ffc
MF
1084 if (page == wc->w_target_page) {
1085 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1086 map_to = map_from + user_len;
1087
1088 if (new)
1089 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1090 cluster_start, cluster_end,
1091 new);
1092 else
1093 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1094 map_from, map_to, new);
1095 if (ret) {
9517bac6
MF
1096 mlog_errno(ret);
1097 goto out;
1098 }
1099
3a307ffc
MF
1100 user_data_from = map_from;
1101 user_data_to = map_to;
9517bac6 1102 if (new) {
3a307ffc
MF
1103 map_from = cluster_start;
1104 map_to = cluster_end;
9517bac6
MF
1105 }
1106 } else {
1107 /*
1108 * If we haven't allocated the new page yet, we
1109 * shouldn't be writing it out without copying user
1110 * data. This is likely a math error from the caller.
1111 */
1112 BUG_ON(!new);
1113
3a307ffc
MF
1114 map_from = cluster_start;
1115 map_to = cluster_end;
9517bac6
MF
1116
1117 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1118 cluster_start, cluster_end, new);
9517bac6
MF
1119 if (ret) {
1120 mlog_errno(ret);
1121 goto out;
1122 }
1123 }
1124
1125 /*
1126 * Parts of newly allocated pages need to be zero'd.
1127 *
1128 * Above, we have also rewritten 'to' and 'from' - as far as
1129 * the rest of the function is concerned, the entire cluster
1130 * range inside of a page needs to be written.
1131 *
1132 * We can skip this if the page is up to date - it's already
1133 * been zero'd from being read in as a hole.
1134 */
1135 if (new && !PageUptodate(page))
1136 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1137 cpos, user_data_from, user_data_to);
9517bac6
MF
1138
1139 flush_dcache_page(page);
1140
9517bac6 1141out:
3a307ffc 1142 return ret;
9517bac6
MF
1143}
1144
1145/*
3a307ffc 1146 * This function will only grab one clusters worth of pages.
9517bac6 1147 */
3a307ffc
MF
1148static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1149 struct ocfs2_write_ctxt *wc,
7307de80
MF
1150 u32 cpos, loff_t user_pos, int new,
1151 struct page *mmap_page)
9517bac6 1152{
3a307ffc
MF
1153 int ret = 0, i;
1154 unsigned long start, target_index, index;
9517bac6 1155 struct inode *inode = mapping->host;
9517bac6 1156
3a307ffc 1157 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1158
1159 /*
1160 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1161 * non allocating write, we just change the one
1162 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1163 */
9517bac6 1164 if (new) {
3a307ffc
MF
1165 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1166 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1167 } else {
3a307ffc
MF
1168 wc->w_num_pages = 1;
1169 start = target_index;
9517bac6
MF
1170 }
1171
3a307ffc 1172 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1173 index = start + i;
1174
7307de80
MF
1175 if (index == target_index && mmap_page) {
1176 /*
1177 * ocfs2_pagemkwrite() is a little different
1178 * and wants us to directly use the page
1179 * passed in.
1180 */
1181 lock_page(mmap_page);
1182
1183 if (mmap_page->mapping != mapping) {
1184 unlock_page(mmap_page);
1185 /*
1186 * Sanity check - the locking in
1187 * ocfs2_pagemkwrite() should ensure
1188 * that this code doesn't trigger.
1189 */
1190 ret = -EINVAL;
1191 mlog_errno(ret);
1192 goto out;
1193 }
1194
1195 page_cache_get(mmap_page);
1196 wc->w_pages[i] = mmap_page;
1197 } else {
1198 wc->w_pages[i] = find_or_create_page(mapping, index,
1199 GFP_NOFS);
1200 if (!wc->w_pages[i]) {
1201 ret = -ENOMEM;
1202 mlog_errno(ret);
1203 goto out;
1204 }
9517bac6 1205 }
3a307ffc
MF
1206
1207 if (index == target_index)
1208 wc->w_target_page = wc->w_pages[i];
9517bac6 1209 }
3a307ffc
MF
1210out:
1211 return ret;
1212}
1213
1214/*
1215 * Prepare a single cluster for write one cluster into the file.
1216 */
1217static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc
MF
1218 u32 phys, unsigned int unwritten,
1219 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1220 struct ocfs2_alloc_context *meta_ac,
1221 struct ocfs2_write_ctxt *wc, u32 cpos,
1222 loff_t user_pos, unsigned user_len)
1223{
b27b7cbc 1224 int ret, i, new, should_zero = 0;
3a307ffc
MF
1225 u64 v_blkno, p_blkno;
1226 struct inode *inode = mapping->host;
f99b9b7c 1227 struct ocfs2_extent_tree et;
3a307ffc
MF
1228
1229 new = phys == 0 ? 1 : 0;
b27b7cbc
MF
1230 if (new || unwritten)
1231 should_zero = 1;
9517bac6
MF
1232
1233 if (new) {
3a307ffc
MF
1234 u32 tmp_pos;
1235
9517bac6
MF
1236 /*
1237 * This is safe to call with the page locks - it won't take
1238 * any additional semaphores or cluster locks.
1239 */
3a307ffc 1240 tmp_pos = cpos;
0eb8d47e
TM
1241 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1242 &tmp_pos, 1, 0, wc->w_di_bh,
1243 wc->w_handle, data_ac,
1244 meta_ac, NULL);
9517bac6
MF
1245 /*
1246 * This shouldn't happen because we must have already
1247 * calculated the correct meta data allocation required. The
1248 * internal tree allocation code should know how to increase
1249 * transaction credits itself.
1250 *
1251 * If need be, we could handle -EAGAIN for a
1252 * RESTART_TRANS here.
1253 */
1254 mlog_bug_on_msg(ret == -EAGAIN,
1255 "Inode %llu: EAGAIN return during allocation.\n",
1256 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1257 if (ret < 0) {
1258 mlog_errno(ret);
1259 goto out;
1260 }
b27b7cbc 1261 } else if (unwritten) {
8d6220d6 1262 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1263 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1264 wc->w_handle, cpos, 1, phys,
f99b9b7c 1265 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1266 if (ret < 0) {
1267 mlog_errno(ret);
1268 goto out;
1269 }
1270 }
3a307ffc 1271
b27b7cbc 1272 if (should_zero)
3a307ffc 1273 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1274 else
3a307ffc 1275 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1276
3a307ffc
MF
1277 /*
1278 * The only reason this should fail is due to an inability to
1279 * find the extent added.
1280 */
49cb8d2d
MF
1281 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1282 NULL);
9517bac6 1283 if (ret < 0) {
3a307ffc
MF
1284 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1285 "at logical block %llu",
1286 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1287 (unsigned long long)v_blkno);
9517bac6
MF
1288 goto out;
1289 }
1290
1291 BUG_ON(p_blkno == 0);
1292
3a307ffc
MF
1293 for(i = 0; i < wc->w_num_pages; i++) {
1294 int tmpret;
9517bac6 1295
3a307ffc
MF
1296 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1297 wc->w_pages[i], cpos,
b27b7cbc
MF
1298 user_pos, user_len,
1299 should_zero);
3a307ffc
MF
1300 if (tmpret) {
1301 mlog_errno(tmpret);
1302 if (ret == 0)
1303 tmpret = ret;
1304 }
9517bac6
MF
1305 }
1306
3a307ffc
MF
1307 /*
1308 * We only have cleanup to do in case of allocating write.
1309 */
1310 if (ret && new)
1311 ocfs2_write_failure(inode, wc, user_pos, user_len);
1312
9517bac6 1313out:
9517bac6 1314
3a307ffc 1315 return ret;
9517bac6
MF
1316}
1317
0d172baa
MF
1318static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1319 struct ocfs2_alloc_context *data_ac,
1320 struct ocfs2_alloc_context *meta_ac,
1321 struct ocfs2_write_ctxt *wc,
1322 loff_t pos, unsigned len)
1323{
1324 int ret, i;
db56246c
MF
1325 loff_t cluster_off;
1326 unsigned int local_len = len;
0d172baa 1327 struct ocfs2_write_cluster_desc *desc;
db56246c 1328 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1329
1330 for (i = 0; i < wc->w_clen; i++) {
1331 desc = &wc->w_desc[i];
1332
db56246c
MF
1333 /*
1334 * We have to make sure that the total write passed in
1335 * doesn't extend past a single cluster.
1336 */
1337 local_len = len;
1338 cluster_off = pos & (osb->s_clustersize - 1);
1339 if ((cluster_off + local_len) > osb->s_clustersize)
1340 local_len = osb->s_clustersize - cluster_off;
1341
b27b7cbc
MF
1342 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1343 desc->c_unwritten, data_ac, meta_ac,
db56246c 1344 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1345 if (ret) {
1346 mlog_errno(ret);
1347 goto out;
1348 }
db56246c
MF
1349
1350 len -= local_len;
1351 pos += local_len;
0d172baa
MF
1352 }
1353
1354 ret = 0;
1355out:
1356 return ret;
1357}
1358
3a307ffc
MF
1359/*
1360 * ocfs2_write_end() wants to know which parts of the target page it
1361 * should complete the write on. It's easiest to compute them ahead of
1362 * time when a more complete view of the write is available.
1363 */
1364static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1365 struct ocfs2_write_ctxt *wc,
1366 loff_t pos, unsigned len, int alloc)
9517bac6 1367{
3a307ffc 1368 struct ocfs2_write_cluster_desc *desc;
9517bac6 1369
3a307ffc
MF
1370 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1371 wc->w_target_to = wc->w_target_from + len;
1372
1373 if (alloc == 0)
1374 return;
1375
1376 /*
1377 * Allocating write - we may have different boundaries based
1378 * on page size and cluster size.
1379 *
1380 * NOTE: We can no longer compute one value from the other as
1381 * the actual write length and user provided length may be
1382 * different.
1383 */
9517bac6 1384
3a307ffc
MF
1385 if (wc->w_large_pages) {
1386 /*
1387 * We only care about the 1st and last cluster within
b27b7cbc 1388 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1389 * value may be extended out to the start/end of a
1390 * newly allocated cluster.
1391 */
1392 desc = &wc->w_desc[0];
b27b7cbc 1393 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1394 ocfs2_figure_cluster_boundaries(osb,
1395 desc->c_cpos,
1396 &wc->w_target_from,
1397 NULL);
1398
1399 desc = &wc->w_desc[wc->w_clen - 1];
b27b7cbc 1400 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1401 ocfs2_figure_cluster_boundaries(osb,
1402 desc->c_cpos,
1403 NULL,
1404 &wc->w_target_to);
1405 } else {
1406 wc->w_target_from = 0;
1407 wc->w_target_to = PAGE_CACHE_SIZE;
1408 }
9517bac6
MF
1409}
1410
0d172baa
MF
1411/*
1412 * Populate each single-cluster write descriptor in the write context
1413 * with information about the i/o to be done.
b27b7cbc
MF
1414 *
1415 * Returns the number of clusters that will have to be allocated, as
1416 * well as a worst case estimate of the number of extent records that
1417 * would have to be created during a write to an unwritten region.
0d172baa
MF
1418 */
1419static int ocfs2_populate_write_desc(struct inode *inode,
1420 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1421 unsigned int *clusters_to_alloc,
1422 unsigned int *extents_to_split)
9517bac6 1423{
0d172baa 1424 int ret;
3a307ffc 1425 struct ocfs2_write_cluster_desc *desc;
0d172baa 1426 unsigned int num_clusters = 0;
b27b7cbc 1427 unsigned int ext_flags = 0;
0d172baa
MF
1428 u32 phys = 0;
1429 int i;
9517bac6 1430
b27b7cbc
MF
1431 *clusters_to_alloc = 0;
1432 *extents_to_split = 0;
1433
3a307ffc
MF
1434 for (i = 0; i < wc->w_clen; i++) {
1435 desc = &wc->w_desc[i];
1436 desc->c_cpos = wc->w_cpos + i;
1437
1438 if (num_clusters == 0) {
b27b7cbc
MF
1439 /*
1440 * Need to look up the next extent record.
1441 */
3a307ffc 1442 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1443 &num_clusters, &ext_flags);
3a307ffc
MF
1444 if (ret) {
1445 mlog_errno(ret);
607d44aa 1446 goto out;
3a307ffc 1447 }
b27b7cbc
MF
1448
1449 /*
1450 * Assume worst case - that we're writing in
1451 * the middle of the extent.
1452 *
1453 * We can assume that the write proceeds from
1454 * left to right, in which case the extent
1455 * insert code is smart enough to coalesce the
1456 * next splits into the previous records created.
1457 */
1458 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1459 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1460 } else if (phys) {
1461 /*
1462 * Only increment phys if it doesn't describe
1463 * a hole.
1464 */
1465 phys++;
1466 }
1467
1468 desc->c_phys = phys;
1469 if (phys == 0) {
1470 desc->c_new = 1;
0d172baa 1471 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1472 }
b27b7cbc
MF
1473 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1474 desc->c_unwritten = 1;
3a307ffc
MF
1475
1476 num_clusters--;
9517bac6
MF
1477 }
1478
0d172baa
MF
1479 ret = 0;
1480out:
1481 return ret;
1482}
1483
1afc32b9
MF
1484static int ocfs2_write_begin_inline(struct address_space *mapping,
1485 struct inode *inode,
1486 struct ocfs2_write_ctxt *wc)
1487{
1488 int ret;
1489 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1490 struct page *page;
1491 handle_t *handle;
1492 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1493
1494 page = find_or_create_page(mapping, 0, GFP_NOFS);
1495 if (!page) {
1496 ret = -ENOMEM;
1497 mlog_errno(ret);
1498 goto out;
1499 }
1500 /*
1501 * If we don't set w_num_pages then this page won't get unlocked
1502 * and freed on cleanup of the write context.
1503 */
1504 wc->w_pages[0] = wc->w_target_page = page;
1505 wc->w_num_pages = 1;
1506
1507 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1508 if (IS_ERR(handle)) {
1509 ret = PTR_ERR(handle);
1510 mlog_errno(ret);
1511 goto out;
1512 }
1513
1514 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1515 OCFS2_JOURNAL_ACCESS_WRITE);
1516 if (ret) {
1517 ocfs2_commit_trans(osb, handle);
1518
1519 mlog_errno(ret);
1520 goto out;
1521 }
1522
1523 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1524 ocfs2_set_inode_data_inline(inode, di);
1525
1526 if (!PageUptodate(page)) {
1527 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1528 if (ret) {
1529 ocfs2_commit_trans(osb, handle);
1530
1531 goto out;
1532 }
1533 }
1534
1535 wc->w_handle = handle;
1536out:
1537 return ret;
1538}
1539
1540int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1541{
1542 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1543
0d8a4e0c 1544 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1545 return 1;
1546 return 0;
1547}
1548
1549static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1550 struct inode *inode, loff_t pos,
1551 unsigned len, struct page *mmap_page,
1552 struct ocfs2_write_ctxt *wc)
1553{
1554 int ret, written = 0;
1555 loff_t end = pos + len;
1556 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1557
1558 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1559 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1560 oi->ip_dyn_features);
1561
1562 /*
1563 * Handle inodes which already have inline data 1st.
1564 */
1565 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1566 if (mmap_page == NULL &&
1567 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1568 goto do_inline_write;
1569
1570 /*
1571 * The write won't fit - we have to give this inode an
1572 * inline extent list now.
1573 */
1574 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1575 if (ret)
1576 mlog_errno(ret);
1577 goto out;
1578 }
1579
1580 /*
1581 * Check whether the inode can accept inline data.
1582 */
1583 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1584 return 0;
1585
1586 /*
1587 * Check whether the write can fit.
1588 */
1589 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1590 return 0;
1591
1592do_inline_write:
1593 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1594 if (ret) {
1595 mlog_errno(ret);
1596 goto out;
1597 }
1598
1599 /*
1600 * This signals to the caller that the data can be written
1601 * inline.
1602 */
1603 written = 1;
1604out:
1605 return written ? written : ret;
1606}
1607
65ed39d6
MF
1608/*
1609 * This function only does anything for file systems which can't
1610 * handle sparse files.
1611 *
1612 * What we want to do here is fill in any hole between the current end
1613 * of allocation and the end of our write. That way the rest of the
1614 * write path can treat it as an non-allocating write, which has no
1615 * special case code for sparse/nonsparse files.
1616 */
1617static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1618 unsigned len,
1619 struct ocfs2_write_ctxt *wc)
1620{
1621 int ret;
1622 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1623 loff_t newsize = pos + len;
1624
1625 if (ocfs2_sparse_alloc(osb))
1626 return 0;
1627
1628 if (newsize <= i_size_read(inode))
1629 return 0;
1630
1631 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1632 if (ret)
1633 mlog_errno(ret);
1634
1635 return ret;
1636}
1637
0d172baa
MF
1638int ocfs2_write_begin_nolock(struct address_space *mapping,
1639 loff_t pos, unsigned len, unsigned flags,
1640 struct page **pagep, void **fsdata,
1641 struct buffer_head *di_bh, struct page *mmap_page)
1642{
1643 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1644 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1645 struct ocfs2_write_ctxt *wc;
1646 struct inode *inode = mapping->host;
1647 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1648 struct ocfs2_dinode *di;
1649 struct ocfs2_alloc_context *data_ac = NULL;
1650 struct ocfs2_alloc_context *meta_ac = NULL;
1651 handle_t *handle;
f99b9b7c 1652 struct ocfs2_extent_tree et;
0d172baa
MF
1653
1654 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1655 if (ret) {
1656 mlog_errno(ret);
1657 return ret;
1658 }
1659
1afc32b9
MF
1660 if (ocfs2_supports_inline_data(osb)) {
1661 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1662 mmap_page, wc);
1663 if (ret == 1) {
1664 ret = 0;
1665 goto success;
1666 }
1667 if (ret < 0) {
1668 mlog_errno(ret);
1669 goto out;
1670 }
1671 }
1672
65ed39d6
MF
1673 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1674 if (ret) {
1675 mlog_errno(ret);
1676 goto out;
1677 }
1678
b27b7cbc
MF
1679 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1680 &extents_to_split);
0d172baa
MF
1681 if (ret) {
1682 mlog_errno(ret);
1683 goto out;
1684 }
1685
1686 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1687
3a307ffc
MF
1688 /*
1689 * We set w_target_from, w_target_to here so that
1690 * ocfs2_write_end() knows which range in the target page to
1691 * write out. An allocation requires that we write the entire
1692 * cluster range.
1693 */
b27b7cbc 1694 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1695 /*
1696 * XXX: We are stretching the limits of
b27b7cbc 1697 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1698 * the work to be done.
1699 */
e7d4cb6b
TM
1700 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1701 " clusters_to_add = %u, extents_to_split = %u\n",
1702 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1703 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1704 clusters_to_alloc, extents_to_split);
1705
8d6220d6 1706 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1707 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1708 clusters_to_alloc, extents_to_split,
f99b9b7c 1709 &data_ac, &meta_ac);
9517bac6
MF
1710 if (ret) {
1711 mlog_errno(ret);
607d44aa 1712 goto out;
9517bac6
MF
1713 }
1714
811f933d
TM
1715 credits = ocfs2_calc_extend_credits(inode->i_sb,
1716 &di->id2.i_list,
3a307ffc
MF
1717 clusters_to_alloc);
1718
9517bac6
MF
1719 }
1720
b27b7cbc
MF
1721 ocfs2_set_target_boundaries(osb, wc, pos, len,
1722 clusters_to_alloc + extents_to_split);
3a307ffc 1723
9517bac6
MF
1724 handle = ocfs2_start_trans(osb, credits);
1725 if (IS_ERR(handle)) {
1726 ret = PTR_ERR(handle);
1727 mlog_errno(ret);
607d44aa 1728 goto out;
9517bac6
MF
1729 }
1730
3a307ffc
MF
1731 wc->w_handle = handle;
1732
1733 /*
1734 * We don't want this to fail in ocfs2_write_end(), so do it
1735 * here.
1736 */
1737 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1738 OCFS2_JOURNAL_ACCESS_WRITE);
1739 if (ret) {
9517bac6
MF
1740 mlog_errno(ret);
1741 goto out_commit;
1742 }
1743
3a307ffc
MF
1744 /*
1745 * Fill our page array first. That way we've grabbed enough so
1746 * that we can zero and flush if we error after adding the
1747 * extent.
1748 */
1749 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
b27b7cbc
MF
1750 clusters_to_alloc + extents_to_split,
1751 mmap_page);
9517bac6
MF
1752 if (ret) {
1753 mlog_errno(ret);
1754 goto out_commit;
1755 }
1756
0d172baa
MF
1757 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1758 len);
1759 if (ret) {
1760 mlog_errno(ret);
1761 goto out_commit;
9517bac6 1762 }
9517bac6 1763
3a307ffc
MF
1764 if (data_ac)
1765 ocfs2_free_alloc_context(data_ac);
1766 if (meta_ac)
1767 ocfs2_free_alloc_context(meta_ac);
9517bac6 1768
1afc32b9 1769success:
3a307ffc
MF
1770 *pagep = wc->w_target_page;
1771 *fsdata = wc;
1772 return 0;
9517bac6
MF
1773out_commit:
1774 ocfs2_commit_trans(osb, handle);
1775
9517bac6 1776out:
3a307ffc
MF
1777 ocfs2_free_write_ctxt(wc);
1778
9517bac6
MF
1779 if (data_ac)
1780 ocfs2_free_alloc_context(data_ac);
1781 if (meta_ac)
1782 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1783 return ret;
1784}
1785
b6af1bcd
NP
1786static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1787 loff_t pos, unsigned len, unsigned flags,
1788 struct page **pagep, void **fsdata)
607d44aa
MF
1789{
1790 int ret;
1791 struct buffer_head *di_bh = NULL;
1792 struct inode *inode = mapping->host;
1793
e63aecb6 1794 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1795 if (ret) {
1796 mlog_errno(ret);
1797 return ret;
1798 }
1799
1800 /*
1801 * Take alloc sem here to prevent concurrent lookups. That way
1802 * the mapping, zeroing and tree manipulation within
1803 * ocfs2_write() will be safe against ->readpage(). This
1804 * should also serve to lock out allocation from a shared
1805 * writeable region.
1806 */
1807 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1808
607d44aa 1809 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1810 fsdata, di_bh, NULL);
607d44aa
MF
1811 if (ret) {
1812 mlog_errno(ret);
c934a92d 1813 goto out_fail;
607d44aa
MF
1814 }
1815
1816 brelse(di_bh);
1817
1818 return 0;
1819
607d44aa
MF
1820out_fail:
1821 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1822
1823 brelse(di_bh);
e63aecb6 1824 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1825
1826 return ret;
1827}
1828
1afc32b9
MF
1829static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1830 unsigned len, unsigned *copied,
1831 struct ocfs2_dinode *di,
1832 struct ocfs2_write_ctxt *wc)
1833{
1834 void *kaddr;
1835
1836 if (unlikely(*copied < len)) {
1837 if (!PageUptodate(wc->w_target_page)) {
1838 *copied = 0;
1839 return;
1840 }
1841 }
1842
1843 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1844 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1845 kunmap_atomic(kaddr, KM_USER0);
1846
1847 mlog(0, "Data written to inode at offset %llu. "
1848 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1849 (unsigned long long)pos, *copied,
1850 le16_to_cpu(di->id2.i_data.id_count),
1851 le16_to_cpu(di->i_dyn_features));
1852}
1853
7307de80
MF
1854int ocfs2_write_end_nolock(struct address_space *mapping,
1855 loff_t pos, unsigned len, unsigned copied,
1856 struct page *page, void *fsdata)
3a307ffc
MF
1857{
1858 int i;
1859 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1860 struct inode *inode = mapping->host;
1861 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1862 struct ocfs2_write_ctxt *wc = fsdata;
1863 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1864 handle_t *handle = wc->w_handle;
1865 struct page *tmppage;
1866
1afc32b9
MF
1867 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1868 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1869 goto out_write_size;
1870 }
1871
3a307ffc
MF
1872 if (unlikely(copied < len)) {
1873 if (!PageUptodate(wc->w_target_page))
1874 copied = 0;
1875
1876 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1877 start+len);
1878 }
1879 flush_dcache_page(wc->w_target_page);
1880
1881 for(i = 0; i < wc->w_num_pages; i++) {
1882 tmppage = wc->w_pages[i];
1883
1884 if (tmppage == wc->w_target_page) {
1885 from = wc->w_target_from;
1886 to = wc->w_target_to;
1887
1888 BUG_ON(from > PAGE_CACHE_SIZE ||
1889 to > PAGE_CACHE_SIZE ||
1890 to < from);
1891 } else {
1892 /*
1893 * Pages adjacent to the target (if any) imply
1894 * a hole-filling write in which case we want
1895 * to flush their entire range.
1896 */
1897 from = 0;
1898 to = PAGE_CACHE_SIZE;
1899 }
1900
961cecbe 1901 if (page_has_buffers(tmppage)) {
53ef99ca 1902 if (ocfs2_should_order_data(inode))
2b4e30fb 1903 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1904 block_commit_write(tmppage, from, to);
1905 }
3a307ffc
MF
1906 }
1907
1afc32b9 1908out_write_size:
3a307ffc
MF
1909 pos += copied;
1910 if (pos > inode->i_size) {
1911 i_size_write(inode, pos);
1912 mark_inode_dirty(inode);
1913 }
1914 inode->i_blocks = ocfs2_inode_sector_count(inode);
1915 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1916 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1917 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1918 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1919 ocfs2_journal_dirty(handle, wc->w_di_bh);
1920
1921 ocfs2_commit_trans(osb, handle);
59a5e416 1922
b27b7cbc
MF
1923 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1924
607d44aa
MF
1925 ocfs2_free_write_ctxt(wc);
1926
1927 return copied;
1928}
1929
b6af1bcd
NP
1930static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1931 loff_t pos, unsigned len, unsigned copied,
1932 struct page *page, void *fsdata)
607d44aa
MF
1933{
1934 int ret;
1935 struct inode *inode = mapping->host;
1936
1937 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1938
3a307ffc 1939 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 1940 ocfs2_inode_unlock(inode, 1);
9517bac6 1941
607d44aa 1942 return ret;
9517bac6
MF
1943}
1944
f5e54d6e 1945const struct address_space_operations ocfs2_aops = {
ccd979bd 1946 .readpage = ocfs2_readpage,
628a24f5 1947 .readpages = ocfs2_readpages,
ccd979bd 1948 .writepage = ocfs2_writepage,
b6af1bcd
NP
1949 .write_begin = ocfs2_write_begin,
1950 .write_end = ocfs2_write_end,
ccd979bd
MF
1951 .bmap = ocfs2_bmap,
1952 .sync_page = block_sync_page,
03f981cf
JB
1953 .direct_IO = ocfs2_direct_IO,
1954 .invalidatepage = ocfs2_invalidatepage,
1955 .releasepage = ocfs2_releasepage,
1956 .migratepage = buffer_migrate_page,
ccd979bd 1957};