ocfs2: Sync ocfs2_fs.h with ocfs2-tools
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
ccd979bd
MF
29
30#define MLOG_MASK_PREFIX ML_FILE_IO
31#include <cluster/masklog.h>
32
33#include "ocfs2.h"
34
35#include "alloc.h"
36#include "aops.h"
37#include "dlmglue.h"
38#include "extent_map.h"
39#include "file.h"
40#include "inode.h"
41#include "journal.h"
9517bac6 42#include "suballoc.h"
ccd979bd
MF
43#include "super.h"
44#include "symlink.h"
45
46#include "buffer_head_io.h"
47
48static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
50{
51 int err = -EIO;
52 int status;
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 void *kaddr;
58
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
61
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
67 goto bail;
68 }
69
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
76 }
77 fe = (struct ocfs2_dinode *) bh->b_data;
78
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
b0697053 80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
1ca1a111
MF
81 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82 fe->i_signature);
ccd979bd
MF
83 goto bail;
84 }
85
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
90 goto bail;
91 }
92
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 iblock;
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
100 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101 goto bail;
102 }
103
104 /* we haven't locked out transactions, so a commit
105 * could've happened. Since we've got a reference on
106 * the bh, even if it commits while we're doing the
107 * copy, the data is still good. */
108 if (buffer_jbd(buffer_cache_bh)
109 && ocfs2_inode_is_new(inode)) {
110 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111 if (!kaddr) {
112 mlog(ML_ERROR, "couldn't kmap!\n");
113 goto bail;
114 }
115 memcpy(kaddr + (bh_result->b_size * iblock),
116 buffer_cache_bh->b_data,
117 bh_result->b_size);
118 kunmap_atomic(kaddr, KM_USER0);
119 set_buffer_uptodate(bh_result);
120 }
121 brelse(buffer_cache_bh);
122 }
123
124 map_bh(bh_result, inode->i_sb,
125 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126
127 err = 0;
128
129bail:
130 if (bh)
131 brelse(bh);
132
133 mlog_exit(err);
134 return err;
135}
136
137static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
ccd979bd 142 u64 p_blkno, past_eof;
25baf2da 143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
144
145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 (unsigned long long)iblock, bh_result, create);
147
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
151
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
156 }
157
49cb8d2d
MF
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159 &ext_flags);
ccd979bd
MF
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
ccd979bd
MF
164 goto bail;
165 }
166
25baf2da
MF
167 /*
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows block_prepare_write() to zero.
172 */
173 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 "ino %lu, iblock %llu\n", inode->i_ino,
175 (unsigned long long)iblock);
176
49cb8d2d
MF
177 /* Treat the unwritten extent as a hole for zeroing purposes. */
178 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
179 map_bh(bh_result, inode->i_sb, p_blkno);
180
181 if (!ocfs2_sparse_alloc(osb)) {
182 if (p_blkno == 0) {
183 err = -EIO;
184 mlog(ML_ERROR,
185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 (unsigned long long)iblock,
187 (unsigned long long)p_blkno,
188 (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190 dump_stack();
191 }
ccd979bd 192
25baf2da
MF
193 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 (unsigned long long)past_eof);
ccd979bd 196
25baf2da
MF
197 if (create && (iblock >= past_eof))
198 set_buffer_new(bh_result);
199 }
ccd979bd
MF
200
201bail:
202 if (err < 0)
203 err = -EIO;
204
205 mlog_exit(err);
206 return err;
207}
208
209static int ocfs2_readpage(struct file *file, struct page *page)
210{
211 struct inode *inode = page->mapping->host;
212 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
213 int ret, unlock = 1;
214
215 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
216
4bcec184 217 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
218 if (ret != 0) {
219 if (ret == AOP_TRUNCATED_PAGE)
220 unlock = 0;
221 mlog_errno(ret);
222 goto out;
223 }
224
e9dfc0b2
MF
225 if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226 ret = AOP_TRUNCATED_PAGE;
227 goto out_meta_unlock;
228 }
ccd979bd
MF
229
230 /*
231 * i_size might have just been updated as we grabed the meta lock. We
232 * might now be discovering a truncate that hit on another node.
233 * block_read_full_page->get_block freaks out if it is asked to read
234 * beyond the end of a file, so we check here. Callers
54cb8821 235 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
236 * and notice that the page they just read isn't needed.
237 *
238 * XXX sys_readahead() seems to get that wrong?
239 */
240 if (start >= i_size_read(inode)) {
5c3c6bb7 241 zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
ccd979bd
MF
242 SetPageUptodate(page);
243 ret = 0;
244 goto out_alloc;
245 }
246
247 ret = ocfs2_data_lock_with_page(inode, 0, page);
248 if (ret != 0) {
249 if (ret == AOP_TRUNCATED_PAGE)
250 unlock = 0;
251 mlog_errno(ret);
252 goto out_alloc;
253 }
254
255 ret = block_read_full_page(page, ocfs2_get_block);
256 unlock = 0;
257
258 ocfs2_data_unlock(inode, 0);
259out_alloc:
260 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e9dfc0b2 261out_meta_unlock:
ccd979bd
MF
262 ocfs2_meta_unlock(inode, 0);
263out:
264 if (unlock)
265 unlock_page(page);
266 mlog_exit(ret);
267 return ret;
268}
269
270/* Note: Because we don't support holes, our allocation has
271 * already happened (allocation writes zeros to the file data)
272 * so we don't have to worry about ordered writes in
273 * ocfs2_writepage.
274 *
275 * ->writepage is called during the process of invalidating the page cache
276 * during blocked lock processing. It can't block on any cluster locks
277 * to during block mapping. It's relying on the fact that the block
278 * mapping can't have disappeared under the dirty pages that it is
279 * being asked to write back.
280 */
281static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
282{
283 int ret;
284
285 mlog_entry("(0x%p)\n", page);
286
287 ret = block_write_full_page(page, ocfs2_get_block, wbc);
288
289 mlog_exit(ret);
290
291 return ret;
292}
293
5069120b
MF
294/*
295 * This is called from ocfs2_write_zero_page() which has handled it's
296 * own cluster locking and has ensured allocation exists for those
297 * blocks to be written.
298 */
53013cba
MF
299int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300 unsigned from, unsigned to)
301{
302 int ret;
303
304 down_read(&OCFS2_I(inode)->ip_alloc_sem);
305
306 ret = block_prepare_write(page, from, to, ocfs2_get_block);
307
308 up_read(&OCFS2_I(inode)->ip_alloc_sem);
309
310 return ret;
311}
312
ccd979bd
MF
313/* Taken from ext3. We don't necessarily need the full blown
314 * functionality yet, but IMHO it's better to cut and paste the whole
315 * thing so we can avoid introducing our own bugs (and easily pick up
316 * their fixes when they happen) --Mark */
60b11392
MF
317int walk_page_buffers( handle_t *handle,
318 struct buffer_head *head,
319 unsigned from,
320 unsigned to,
321 int *partial,
322 int (*fn)( handle_t *handle,
323 struct buffer_head *bh))
ccd979bd
MF
324{
325 struct buffer_head *bh;
326 unsigned block_start, block_end;
327 unsigned blocksize = head->b_size;
328 int err, ret = 0;
329 struct buffer_head *next;
330
331 for ( bh = head, block_start = 0;
332 ret == 0 && (bh != head || !block_start);
333 block_start = block_end, bh = next)
334 {
335 next = bh->b_this_page;
336 block_end = block_start + blocksize;
337 if (block_end <= from || block_start >= to) {
338 if (partial && !buffer_uptodate(bh))
339 *partial = 1;
340 continue;
341 }
342 err = (*fn)(handle, bh);
343 if (!ret)
344 ret = err;
345 }
346 return ret;
347}
348
1fabe148 349handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
350 struct page *page,
351 unsigned from,
352 unsigned to)
353{
354 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1fabe148 355 handle_t *handle = NULL;
ccd979bd
MF
356 int ret = 0;
357
65eff9cc 358 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
ccd979bd
MF
359 if (!handle) {
360 ret = -ENOMEM;
361 mlog_errno(ret);
362 goto out;
363 }
364
365 if (ocfs2_should_order_data(inode)) {
1fabe148 366 ret = walk_page_buffers(handle,
ccd979bd
MF
367 page_buffers(page),
368 from, to, NULL,
369 ocfs2_journal_dirty_data);
370 if (ret < 0)
371 mlog_errno(ret);
372 }
373out:
374 if (ret) {
375 if (handle)
02dc1af4 376 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
377 handle = ERR_PTR(ret);
378 }
379 return handle;
380}
381
ccd979bd
MF
382static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
383{
384 sector_t status;
385 u64 p_blkno = 0;
386 int err = 0;
387 struct inode *inode = mapping->host;
388
389 mlog_entry("(block = %llu)\n", (unsigned long long)block);
390
391 /* We don't need to lock journal system files, since they aren't
392 * accessed concurrently from multiple nodes.
393 */
394 if (!INODE_JOURNAL(inode)) {
4bcec184 395 err = ocfs2_meta_lock(inode, NULL, 0);
ccd979bd
MF
396 if (err) {
397 if (err != -ENOENT)
398 mlog_errno(err);
399 goto bail;
400 }
401 down_read(&OCFS2_I(inode)->ip_alloc_sem);
402 }
403
49cb8d2d 404 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
ccd979bd
MF
405
406 if (!INODE_JOURNAL(inode)) {
407 up_read(&OCFS2_I(inode)->ip_alloc_sem);
408 ocfs2_meta_unlock(inode, 0);
409 }
410
411 if (err) {
412 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
413 (unsigned long long)block);
414 mlog_errno(err);
415 goto bail;
416 }
417
418
419bail:
420 status = err ? 0 : p_blkno;
421
422 mlog_exit((int)status);
423
424 return status;
425}
426
427/*
428 * TODO: Make this into a generic get_blocks function.
429 *
430 * From do_direct_io in direct-io.c:
431 * "So what we do is to permit the ->get_blocks function to populate
432 * bh.b_size with the size of IO which is permitted at this offset and
433 * this i_blkbits."
434 *
435 * This function is called directly from get_more_blocks in direct-io.c.
436 *
437 * called like this: dio->get_blocks(dio->inode, fs_startblk,
438 * fs_count, map_bh, dio->rw == WRITE);
439 */
440static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
441 struct buffer_head *bh_result, int create)
442{
443 int ret;
4f902c37 444 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 445 unsigned int ext_flags;
184d7d20 446 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 447 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 448
ccd979bd
MF
449 /* This function won't even be called if the request isn't all
450 * nicely aligned and of the right size, so there's no need
451 * for us to check any of that. */
452
25baf2da 453 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
454
455 /*
456 * Any write past EOF is not allowed because we'd be extending.
457 */
458 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
459 ret = -EIO;
460 goto bail;
461 }
ccd979bd
MF
462
463 /* This figures out the size of the next contiguous block, and
464 * our logical offset */
363041a5 465 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 466 &contig_blocks, &ext_flags);
ccd979bd
MF
467 if (ret) {
468 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
469 (unsigned long long)iblock);
470 ret = -EIO;
471 goto bail;
472 }
473
25baf2da
MF
474 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
475 ocfs2_error(inode->i_sb,
476 "Inode %llu has a hole at block %llu\n",
477 (unsigned long long)OCFS2_I(inode)->ip_blkno,
478 (unsigned long long)iblock);
479 ret = -EROFS;
480 goto bail;
481 }
482
483 /*
484 * get_more_blocks() expects us to describe a hole by clearing
485 * the mapped bit on bh_result().
49cb8d2d
MF
486 *
487 * Consider an unwritten extent as a hole.
25baf2da 488 */
49cb8d2d 489 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
490 map_bh(bh_result, inode->i_sb, p_blkno);
491 else {
492 /*
493 * ocfs2_prepare_inode_for_write() should have caught
494 * the case where we'd be filling a hole and triggered
495 * a buffered write instead.
496 */
497 if (create) {
498 ret = -EIO;
499 mlog_errno(ret);
500 goto bail;
501 }
502
503 clear_buffer_mapped(bh_result);
504 }
ccd979bd
MF
505
506 /* make sure we don't map more than max_blocks blocks here as
507 that's all the kernel will handle at this point. */
508 if (max_blocks < contig_blocks)
509 contig_blocks = max_blocks;
510 bh_result->b_size = contig_blocks << blocksize_bits;
511bail:
512 return ret;
513}
514
515/*
516 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
517 * particularly interested in the aio/dio case. Like the core uses
518 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519 * truncation on another.
520 */
521static void ocfs2_dio_end_io(struct kiocb *iocb,
522 loff_t offset,
523 ssize_t bytes,
524 void *private)
525{
d28c9174 526 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 527 int level;
ccd979bd
MF
528
529 /* this io's submitter should not have unlocked this before we could */
530 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 531
ccd979bd 532 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
533
534 level = ocfs2_iocb_rw_locked_level(iocb);
535 if (!level)
536 up_read(&inode->i_alloc_sem);
537 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
538}
539
03f981cf
JB
540/*
541 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542 * from ext3. PageChecked() bits have been removed as OCFS2 does not
543 * do journalled data.
544 */
545static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
546{
547 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
548
549 journal_invalidatepage(journal, page, offset);
550}
551
552static int ocfs2_releasepage(struct page *page, gfp_t wait)
553{
554 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
555
556 if (!page_has_buffers(page))
557 return 0;
558 return journal_try_to_free_buffers(journal, page, wait);
559}
560
ccd979bd
MF
561static ssize_t ocfs2_direct_IO(int rw,
562 struct kiocb *iocb,
563 const struct iovec *iov,
564 loff_t offset,
565 unsigned long nr_segs)
566{
567 struct file *file = iocb->ki_filp;
d28c9174 568 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
569 int ret;
570
571 mlog_entry_void();
53013cba 572
9517bac6
MF
573 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
574 /*
575 * We get PR data locks even for O_DIRECT. This
576 * allows concurrent O_DIRECT I/O but doesn't let
577 * O_DIRECT with extending and buffered zeroing writes
578 * race. If they did race then the buffered zeroing
579 * could be written back after the O_DIRECT I/O. It's
580 * one thing to tell people not to mix buffered and
581 * O_DIRECT writes, but expecting them to understand
582 * that file extension is also an implicit buffered
583 * write is too much. By getting the PR we force
584 * writeback of the buffered zeroing before
585 * proceeding.
586 */
587 ret = ocfs2_data_lock(inode, 0);
588 if (ret < 0) {
589 mlog_errno(ret);
590 goto out;
591 }
592 ocfs2_data_unlock(inode, 0);
53013cba 593 }
53013cba 594
ccd979bd
MF
595 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
596 inode->i_sb->s_bdev, iov, offset,
597 nr_segs,
598 ocfs2_direct_IO_get_blocks,
599 ocfs2_dio_end_io);
53013cba 600out:
ccd979bd
MF
601 mlog_exit(ret);
602 return ret;
603}
604
9517bac6
MF
605static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
606 u32 cpos,
607 unsigned int *start,
608 unsigned int *end)
609{
610 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
611
612 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
613 unsigned int cpp;
614
615 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
616
617 cluster_start = cpos % cpp;
618 cluster_start = cluster_start << osb->s_clustersize_bits;
619
620 cluster_end = cluster_start + osb->s_clustersize;
621 }
622
623 BUG_ON(cluster_start > PAGE_SIZE);
624 BUG_ON(cluster_end > PAGE_SIZE);
625
626 if (start)
627 *start = cluster_start;
628 if (end)
629 *end = cluster_end;
630}
631
632/*
633 * 'from' and 'to' are the region in the page to avoid zeroing.
634 *
635 * If pagesize > clustersize, this function will avoid zeroing outside
636 * of the cluster boundary.
637 *
638 * from == to == 0 is code for "zero the entire cluster region"
639 */
640static void ocfs2_clear_page_regions(struct page *page,
641 struct ocfs2_super *osb, u32 cpos,
642 unsigned from, unsigned to)
643{
644 void *kaddr;
645 unsigned int cluster_start, cluster_end;
646
647 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
648
649 kaddr = kmap_atomic(page, KM_USER0);
650
651 if (from || to) {
652 if (from > cluster_start)
653 memset(kaddr + cluster_start, 0, from - cluster_start);
654 if (to < cluster_end)
655 memset(kaddr + to, 0, cluster_end - to);
656 } else {
657 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
658 }
659
660 kunmap_atomic(kaddr, KM_USER0);
661}
662
663/*
664 * Some of this taken from block_prepare_write(). We already have our
665 * mapping by now though, and the entire write will be allocating or
666 * it won't, so not much need to use BH_New.
667 *
668 * This will also skip zeroing, which is handled externally.
669 */
60b11392
MF
670int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
671 struct inode *inode, unsigned int from,
672 unsigned int to, int new)
9517bac6
MF
673{
674 int ret = 0;
675 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
676 unsigned int block_end, block_start;
677 unsigned int bsize = 1 << inode->i_blkbits;
678
679 if (!page_has_buffers(page))
680 create_empty_buffers(page, bsize, 0);
681
682 head = page_buffers(page);
683 for (bh = head, block_start = 0; bh != head || !block_start;
684 bh = bh->b_this_page, block_start += bsize) {
685 block_end = block_start + bsize;
686
3a307ffc
MF
687 clear_buffer_new(bh);
688
9517bac6
MF
689 /*
690 * Ignore blocks outside of our i/o range -
691 * they may belong to unallocated clusters.
692 */
60b11392 693 if (block_start >= to || block_end <= from) {
9517bac6
MF
694 if (PageUptodate(page))
695 set_buffer_uptodate(bh);
696 continue;
697 }
698
699 /*
700 * For an allocating write with cluster size >= page
701 * size, we always write the entire page.
702 */
3a307ffc
MF
703 if (new)
704 set_buffer_new(bh);
9517bac6
MF
705
706 if (!buffer_mapped(bh)) {
707 map_bh(bh, inode->i_sb, *p_blkno);
708 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
709 }
710
711 if (PageUptodate(page)) {
712 if (!buffer_uptodate(bh))
713 set_buffer_uptodate(bh);
714 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768
MF
715 !buffer_new(bh) &&
716 (block_start < from || block_end > to)) {
9517bac6
MF
717 ll_rw_block(READ, 1, &bh);
718 *wait_bh++=bh;
719 }
720
721 *p_blkno = *p_blkno + 1;
722 }
723
724 /*
725 * If we issued read requests - let them complete.
726 */
727 while(wait_bh > wait) {
728 wait_on_buffer(*--wait_bh);
729 if (!buffer_uptodate(*wait_bh))
730 ret = -EIO;
731 }
732
733 if (ret == 0 || !new)
734 return ret;
735
736 /*
737 * If we get -EIO above, zero out any newly allocated blocks
738 * to avoid exposing stale data.
739 */
740 bh = head;
741 block_start = 0;
742 do {
9517bac6
MF
743 block_end = block_start + bsize;
744 if (block_end <= from)
745 goto next_bh;
746 if (block_start >= to)
747 break;
748
54c57dc3 749 zero_user_page(page, block_start, bh->b_size, KM_USER0);
9517bac6
MF
750 set_buffer_uptodate(bh);
751 mark_buffer_dirty(bh);
752
753next_bh:
754 block_start = block_end;
755 bh = bh->b_this_page;
756 } while (bh != head);
757
758 return ret;
759}
760
3a307ffc
MF
761#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
762#define OCFS2_MAX_CTXT_PAGES 1
763#else
764#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
765#endif
766
767#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
768
6af67d82 769/*
3a307ffc 770 * Describe the state of a single cluster to be written to.
6af67d82 771 */
3a307ffc
MF
772struct ocfs2_write_cluster_desc {
773 u32 c_cpos;
774 u32 c_phys;
775 /*
776 * Give this a unique field because c_phys eventually gets
777 * filled.
778 */
779 unsigned c_new;
b27b7cbc 780 unsigned c_unwritten;
3a307ffc 781};
6af67d82 782
b27b7cbc
MF
783static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
784{
785 return d->c_new || d->c_unwritten;
786}
787
3a307ffc
MF
788struct ocfs2_write_ctxt {
789 /* Logical cluster position / len of write */
790 u32 w_cpos;
791 u32 w_clen;
6af67d82 792
3a307ffc 793 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 794
3a307ffc
MF
795 /*
796 * This is true if page_size > cluster_size.
797 *
798 * It triggers a set of special cases during write which might
799 * have to deal with allocating writes to partial pages.
800 */
801 unsigned int w_large_pages;
6af67d82 802
3a307ffc
MF
803 /*
804 * Pages involved in this write.
805 *
806 * w_target_page is the page being written to by the user.
807 *
808 * w_pages is an array of pages which always contains
809 * w_target_page, and in the case of an allocating write with
810 * page_size < cluster size, it will contain zero'd and mapped
811 * pages adjacent to w_target_page which need to be written
812 * out in so that future reads from that region will get
813 * zero's.
814 */
815 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
816 unsigned int w_num_pages;
817 struct page *w_target_page;
eeb47d12 818
3a307ffc
MF
819 /*
820 * ocfs2_write_end() uses this to know what the real range to
821 * write in the target should be.
822 */
823 unsigned int w_target_from;
824 unsigned int w_target_to;
825
826 /*
827 * We could use journal_current_handle() but this is cleaner,
828 * IMHO -Mark
829 */
830 handle_t *w_handle;
831
832 struct buffer_head *w_di_bh;
b27b7cbc
MF
833
834 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
835};
836
837static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
838{
839 int i;
840
841 for(i = 0; i < wc->w_num_pages; i++) {
842 if (wc->w_pages[i] == NULL)
843 continue;
844
845 unlock_page(wc->w_pages[i]);
846 mark_page_accessed(wc->w_pages[i]);
847 page_cache_release(wc->w_pages[i]);
6af67d82
MF
848 }
849
3a307ffc
MF
850 brelse(wc->w_di_bh);
851 kfree(wc);
852}
853
854static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
855 struct ocfs2_super *osb, loff_t pos,
607d44aa 856 unsigned len, struct buffer_head *di_bh)
3a307ffc 857{
30b8548f 858 u32 cend;
3a307ffc
MF
859 struct ocfs2_write_ctxt *wc;
860
861 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
862 if (!wc)
863 return -ENOMEM;
6af67d82 864
3a307ffc 865 wc->w_cpos = pos >> osb->s_clustersize_bits;
30b8548f 866 cend = (pos + len - 1) >> osb->s_clustersize_bits;
867 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
868 get_bh(di_bh);
869 wc->w_di_bh = di_bh;
6af67d82 870
3a307ffc
MF
871 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
872 wc->w_large_pages = 1;
873 else
874 wc->w_large_pages = 0;
875
b27b7cbc
MF
876 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
877
3a307ffc 878 *wcp = wc;
6af67d82 879
3a307ffc 880 return 0;
6af67d82
MF
881}
882
9517bac6 883/*
3a307ffc
MF
884 * If a page has any new buffers, zero them out here, and mark them uptodate
885 * and dirty so they'll be written out (in order to prevent uninitialised
886 * block data from leaking). And clear the new bit.
9517bac6 887 */
3a307ffc 888static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 889{
3a307ffc
MF
890 unsigned int block_start, block_end;
891 struct buffer_head *head, *bh;
9517bac6 892
3a307ffc
MF
893 BUG_ON(!PageLocked(page));
894 if (!page_has_buffers(page))
895 return;
9517bac6 896
3a307ffc
MF
897 bh = head = page_buffers(page);
898 block_start = 0;
899 do {
900 block_end = block_start + bh->b_size;
901
902 if (buffer_new(bh)) {
903 if (block_end > from && block_start < to) {
904 if (!PageUptodate(page)) {
905 unsigned start, end;
3a307ffc
MF
906
907 start = max(from, block_start);
908 end = min(to, block_end);
909
54c57dc3 910 zero_user_page(page, start, end - start, KM_USER0);
3a307ffc
MF
911 set_buffer_uptodate(bh);
912 }
913
914 clear_buffer_new(bh);
915 mark_buffer_dirty(bh);
916 }
917 }
9517bac6 918
3a307ffc
MF
919 block_start = block_end;
920 bh = bh->b_this_page;
921 } while (bh != head);
922}
923
924/*
925 * Only called when we have a failure during allocating write to write
926 * zero's to the newly allocated region.
927 */
928static void ocfs2_write_failure(struct inode *inode,
929 struct ocfs2_write_ctxt *wc,
930 loff_t user_pos, unsigned user_len)
931{
932 int i;
5c26a7b7
MF
933 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
934 to = user_pos + user_len;
3a307ffc
MF
935 struct page *tmppage;
936
5c26a7b7 937 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 938
3a307ffc
MF
939 for(i = 0; i < wc->w_num_pages; i++) {
940 tmppage = wc->w_pages[i];
9517bac6 941
3a307ffc
MF
942 if (ocfs2_should_order_data(inode))
943 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
944 from, to, NULL,
945 ocfs2_journal_dirty_data);
eeb47d12 946
3a307ffc 947 block_commit_write(tmppage, from, to);
9517bac6 948 }
9517bac6
MF
949}
950
3a307ffc
MF
951static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
952 struct ocfs2_write_ctxt *wc,
953 struct page *page, u32 cpos,
954 loff_t user_pos, unsigned user_len,
955 int new)
9517bac6 956{
3a307ffc
MF
957 int ret;
958 unsigned int map_from = 0, map_to = 0;
9517bac6 959 unsigned int cluster_start, cluster_end;
3a307ffc 960 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 961
3a307ffc 962 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
963 &cluster_start, &cluster_end);
964
3a307ffc
MF
965 if (page == wc->w_target_page) {
966 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
967 map_to = map_from + user_len;
968
969 if (new)
970 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
971 cluster_start, cluster_end,
972 new);
973 else
974 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
975 map_from, map_to, new);
976 if (ret) {
9517bac6
MF
977 mlog_errno(ret);
978 goto out;
979 }
980
3a307ffc
MF
981 user_data_from = map_from;
982 user_data_to = map_to;
9517bac6 983 if (new) {
3a307ffc
MF
984 map_from = cluster_start;
985 map_to = cluster_end;
9517bac6
MF
986 }
987 } else {
988 /*
989 * If we haven't allocated the new page yet, we
990 * shouldn't be writing it out without copying user
991 * data. This is likely a math error from the caller.
992 */
993 BUG_ON(!new);
994
3a307ffc
MF
995 map_from = cluster_start;
996 map_to = cluster_end;
9517bac6
MF
997
998 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 999 cluster_start, cluster_end, new);
9517bac6
MF
1000 if (ret) {
1001 mlog_errno(ret);
1002 goto out;
1003 }
1004 }
1005
1006 /*
1007 * Parts of newly allocated pages need to be zero'd.
1008 *
1009 * Above, we have also rewritten 'to' and 'from' - as far as
1010 * the rest of the function is concerned, the entire cluster
1011 * range inside of a page needs to be written.
1012 *
1013 * We can skip this if the page is up to date - it's already
1014 * been zero'd from being read in as a hole.
1015 */
1016 if (new && !PageUptodate(page))
1017 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1018 cpos, user_data_from, user_data_to);
9517bac6
MF
1019
1020 flush_dcache_page(page);
1021
9517bac6 1022out:
3a307ffc 1023 return ret;
9517bac6
MF
1024}
1025
1026/*
3a307ffc 1027 * This function will only grab one clusters worth of pages.
9517bac6 1028 */
3a307ffc
MF
1029static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1030 struct ocfs2_write_ctxt *wc,
7307de80
MF
1031 u32 cpos, loff_t user_pos, int new,
1032 struct page *mmap_page)
9517bac6 1033{
3a307ffc
MF
1034 int ret = 0, i;
1035 unsigned long start, target_index, index;
9517bac6 1036 struct inode *inode = mapping->host;
9517bac6 1037
3a307ffc 1038 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1039
1040 /*
1041 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1042 * non allocating write, we just change the one
1043 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1044 */
9517bac6 1045 if (new) {
3a307ffc
MF
1046 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1047 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1048 } else {
3a307ffc
MF
1049 wc->w_num_pages = 1;
1050 start = target_index;
9517bac6
MF
1051 }
1052
3a307ffc 1053 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1054 index = start + i;
1055
7307de80
MF
1056 if (index == target_index && mmap_page) {
1057 /*
1058 * ocfs2_pagemkwrite() is a little different
1059 * and wants us to directly use the page
1060 * passed in.
1061 */
1062 lock_page(mmap_page);
1063
1064 if (mmap_page->mapping != mapping) {
1065 unlock_page(mmap_page);
1066 /*
1067 * Sanity check - the locking in
1068 * ocfs2_pagemkwrite() should ensure
1069 * that this code doesn't trigger.
1070 */
1071 ret = -EINVAL;
1072 mlog_errno(ret);
1073 goto out;
1074 }
1075
1076 page_cache_get(mmap_page);
1077 wc->w_pages[i] = mmap_page;
1078 } else {
1079 wc->w_pages[i] = find_or_create_page(mapping, index,
1080 GFP_NOFS);
1081 if (!wc->w_pages[i]) {
1082 ret = -ENOMEM;
1083 mlog_errno(ret);
1084 goto out;
1085 }
9517bac6 1086 }
3a307ffc
MF
1087
1088 if (index == target_index)
1089 wc->w_target_page = wc->w_pages[i];
9517bac6 1090 }
3a307ffc
MF
1091out:
1092 return ret;
1093}
1094
1095/*
1096 * Prepare a single cluster for write one cluster into the file.
1097 */
1098static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc
MF
1099 u32 phys, unsigned int unwritten,
1100 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1101 struct ocfs2_alloc_context *meta_ac,
1102 struct ocfs2_write_ctxt *wc, u32 cpos,
1103 loff_t user_pos, unsigned user_len)
1104{
b27b7cbc 1105 int ret, i, new, should_zero = 0;
3a307ffc
MF
1106 u64 v_blkno, p_blkno;
1107 struct inode *inode = mapping->host;
1108
1109 new = phys == 0 ? 1 : 0;
b27b7cbc
MF
1110 if (new || unwritten)
1111 should_zero = 1;
9517bac6
MF
1112
1113 if (new) {
3a307ffc
MF
1114 u32 tmp_pos;
1115
9517bac6
MF
1116 /*
1117 * This is safe to call with the page locks - it won't take
1118 * any additional semaphores or cluster locks.
1119 */
3a307ffc 1120 tmp_pos = cpos;
9517bac6 1121 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
2ae99a60 1122 &tmp_pos, 1, 0, wc->w_di_bh,
3a307ffc
MF
1123 wc->w_handle, data_ac,
1124 meta_ac, NULL);
9517bac6
MF
1125 /*
1126 * This shouldn't happen because we must have already
1127 * calculated the correct meta data allocation required. The
1128 * internal tree allocation code should know how to increase
1129 * transaction credits itself.
1130 *
1131 * If need be, we could handle -EAGAIN for a
1132 * RESTART_TRANS here.
1133 */
1134 mlog_bug_on_msg(ret == -EAGAIN,
1135 "Inode %llu: EAGAIN return during allocation.\n",
1136 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1137 if (ret < 0) {
1138 mlog_errno(ret);
1139 goto out;
1140 }
b27b7cbc
MF
1141 } else if (unwritten) {
1142 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1143 wc->w_handle, cpos, 1, phys,
1144 meta_ac, &wc->w_dealloc);
1145 if (ret < 0) {
1146 mlog_errno(ret);
1147 goto out;
1148 }
1149 }
3a307ffc 1150
b27b7cbc 1151 if (should_zero)
3a307ffc 1152 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1153 else
3a307ffc 1154 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1155
3a307ffc
MF
1156 /*
1157 * The only reason this should fail is due to an inability to
1158 * find the extent added.
1159 */
49cb8d2d
MF
1160 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1161 NULL);
9517bac6 1162 if (ret < 0) {
3a307ffc
MF
1163 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1164 "at logical block %llu",
1165 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1166 (unsigned long long)v_blkno);
9517bac6
MF
1167 goto out;
1168 }
1169
1170 BUG_ON(p_blkno == 0);
1171
3a307ffc
MF
1172 for(i = 0; i < wc->w_num_pages; i++) {
1173 int tmpret;
9517bac6 1174
3a307ffc
MF
1175 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1176 wc->w_pages[i], cpos,
b27b7cbc
MF
1177 user_pos, user_len,
1178 should_zero);
3a307ffc
MF
1179 if (tmpret) {
1180 mlog_errno(tmpret);
1181 if (ret == 0)
1182 tmpret = ret;
1183 }
9517bac6
MF
1184 }
1185
3a307ffc
MF
1186 /*
1187 * We only have cleanup to do in case of allocating write.
1188 */
1189 if (ret && new)
1190 ocfs2_write_failure(inode, wc, user_pos, user_len);
1191
9517bac6 1192out:
9517bac6 1193
3a307ffc 1194 return ret;
9517bac6
MF
1195}
1196
0d172baa
MF
1197static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1198 struct ocfs2_alloc_context *data_ac,
1199 struct ocfs2_alloc_context *meta_ac,
1200 struct ocfs2_write_ctxt *wc,
1201 loff_t pos, unsigned len)
1202{
1203 int ret, i;
db56246c
MF
1204 loff_t cluster_off;
1205 unsigned int local_len = len;
0d172baa 1206 struct ocfs2_write_cluster_desc *desc;
db56246c 1207 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1208
1209 for (i = 0; i < wc->w_clen; i++) {
1210 desc = &wc->w_desc[i];
1211
db56246c
MF
1212 /*
1213 * We have to make sure that the total write passed in
1214 * doesn't extend past a single cluster.
1215 */
1216 local_len = len;
1217 cluster_off = pos & (osb->s_clustersize - 1);
1218 if ((cluster_off + local_len) > osb->s_clustersize)
1219 local_len = osb->s_clustersize - cluster_off;
1220
b27b7cbc
MF
1221 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1222 desc->c_unwritten, data_ac, meta_ac,
db56246c 1223 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1224 if (ret) {
1225 mlog_errno(ret);
1226 goto out;
1227 }
db56246c
MF
1228
1229 len -= local_len;
1230 pos += local_len;
0d172baa
MF
1231 }
1232
1233 ret = 0;
1234out:
1235 return ret;
1236}
1237
3a307ffc
MF
1238/*
1239 * ocfs2_write_end() wants to know which parts of the target page it
1240 * should complete the write on. It's easiest to compute them ahead of
1241 * time when a more complete view of the write is available.
1242 */
1243static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1244 struct ocfs2_write_ctxt *wc,
1245 loff_t pos, unsigned len, int alloc)
9517bac6 1246{
3a307ffc 1247 struct ocfs2_write_cluster_desc *desc;
9517bac6 1248
3a307ffc
MF
1249 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1250 wc->w_target_to = wc->w_target_from + len;
1251
1252 if (alloc == 0)
1253 return;
1254
1255 /*
1256 * Allocating write - we may have different boundaries based
1257 * on page size and cluster size.
1258 *
1259 * NOTE: We can no longer compute one value from the other as
1260 * the actual write length and user provided length may be
1261 * different.
1262 */
9517bac6 1263
3a307ffc
MF
1264 if (wc->w_large_pages) {
1265 /*
1266 * We only care about the 1st and last cluster within
b27b7cbc 1267 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1268 * value may be extended out to the start/end of a
1269 * newly allocated cluster.
1270 */
1271 desc = &wc->w_desc[0];
b27b7cbc 1272 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1273 ocfs2_figure_cluster_boundaries(osb,
1274 desc->c_cpos,
1275 &wc->w_target_from,
1276 NULL);
1277
1278 desc = &wc->w_desc[wc->w_clen - 1];
b27b7cbc 1279 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1280 ocfs2_figure_cluster_boundaries(osb,
1281 desc->c_cpos,
1282 NULL,
1283 &wc->w_target_to);
1284 } else {
1285 wc->w_target_from = 0;
1286 wc->w_target_to = PAGE_CACHE_SIZE;
1287 }
9517bac6
MF
1288}
1289
0d172baa
MF
1290/*
1291 * Populate each single-cluster write descriptor in the write context
1292 * with information about the i/o to be done.
b27b7cbc
MF
1293 *
1294 * Returns the number of clusters that will have to be allocated, as
1295 * well as a worst case estimate of the number of extent records that
1296 * would have to be created during a write to an unwritten region.
0d172baa
MF
1297 */
1298static int ocfs2_populate_write_desc(struct inode *inode,
1299 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1300 unsigned int *clusters_to_alloc,
1301 unsigned int *extents_to_split)
9517bac6 1302{
0d172baa 1303 int ret;
3a307ffc 1304 struct ocfs2_write_cluster_desc *desc;
0d172baa 1305 unsigned int num_clusters = 0;
b27b7cbc 1306 unsigned int ext_flags = 0;
0d172baa
MF
1307 u32 phys = 0;
1308 int i;
9517bac6 1309
b27b7cbc
MF
1310 *clusters_to_alloc = 0;
1311 *extents_to_split = 0;
1312
3a307ffc
MF
1313 for (i = 0; i < wc->w_clen; i++) {
1314 desc = &wc->w_desc[i];
1315 desc->c_cpos = wc->w_cpos + i;
1316
1317 if (num_clusters == 0) {
b27b7cbc
MF
1318 /*
1319 * Need to look up the next extent record.
1320 */
3a307ffc 1321 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1322 &num_clusters, &ext_flags);
3a307ffc
MF
1323 if (ret) {
1324 mlog_errno(ret);
607d44aa 1325 goto out;
3a307ffc 1326 }
b27b7cbc
MF
1327
1328 /*
1329 * Assume worst case - that we're writing in
1330 * the middle of the extent.
1331 *
1332 * We can assume that the write proceeds from
1333 * left to right, in which case the extent
1334 * insert code is smart enough to coalesce the
1335 * next splits into the previous records created.
1336 */
1337 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1338 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1339 } else if (phys) {
1340 /*
1341 * Only increment phys if it doesn't describe
1342 * a hole.
1343 */
1344 phys++;
1345 }
1346
1347 desc->c_phys = phys;
1348 if (phys == 0) {
1349 desc->c_new = 1;
0d172baa 1350 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1351 }
b27b7cbc
MF
1352 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1353 desc->c_unwritten = 1;
3a307ffc
MF
1354
1355 num_clusters--;
9517bac6
MF
1356 }
1357
0d172baa
MF
1358 ret = 0;
1359out:
1360 return ret;
1361}
1362
1363int ocfs2_write_begin_nolock(struct address_space *mapping,
1364 loff_t pos, unsigned len, unsigned flags,
1365 struct page **pagep, void **fsdata,
1366 struct buffer_head *di_bh, struct page *mmap_page)
1367{
1368 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1369 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1370 struct ocfs2_write_ctxt *wc;
1371 struct inode *inode = mapping->host;
1372 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1373 struct ocfs2_dinode *di;
1374 struct ocfs2_alloc_context *data_ac = NULL;
1375 struct ocfs2_alloc_context *meta_ac = NULL;
1376 handle_t *handle;
1377
1378 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1379 if (ret) {
1380 mlog_errno(ret);
1381 return ret;
1382 }
1383
b27b7cbc
MF
1384 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1385 &extents_to_split);
0d172baa
MF
1386 if (ret) {
1387 mlog_errno(ret);
1388 goto out;
1389 }
1390
1391 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1392
3a307ffc
MF
1393 /*
1394 * We set w_target_from, w_target_to here so that
1395 * ocfs2_write_end() knows which range in the target page to
1396 * write out. An allocation requires that we write the entire
1397 * cluster range.
1398 */
b27b7cbc 1399 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1400 /*
1401 * XXX: We are stretching the limits of
b27b7cbc 1402 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1403 * the work to be done.
1404 */
1405 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
b27b7cbc 1406 extents_to_split, &data_ac, &meta_ac);
9517bac6
MF
1407 if (ret) {
1408 mlog_errno(ret);
607d44aa 1409 goto out;
9517bac6
MF
1410 }
1411
3a307ffc
MF
1412 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1413 clusters_to_alloc);
1414
9517bac6
MF
1415 }
1416
b27b7cbc
MF
1417 ocfs2_set_target_boundaries(osb, wc, pos, len,
1418 clusters_to_alloc + extents_to_split);
3a307ffc 1419
9517bac6
MF
1420 handle = ocfs2_start_trans(osb, credits);
1421 if (IS_ERR(handle)) {
1422 ret = PTR_ERR(handle);
1423 mlog_errno(ret);
607d44aa 1424 goto out;
9517bac6
MF
1425 }
1426
3a307ffc
MF
1427 wc->w_handle = handle;
1428
1429 /*
1430 * We don't want this to fail in ocfs2_write_end(), so do it
1431 * here.
1432 */
1433 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1434 OCFS2_JOURNAL_ACCESS_WRITE);
1435 if (ret) {
9517bac6
MF
1436 mlog_errno(ret);
1437 goto out_commit;
1438 }
1439
3a307ffc
MF
1440 /*
1441 * Fill our page array first. That way we've grabbed enough so
1442 * that we can zero and flush if we error after adding the
1443 * extent.
1444 */
1445 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
b27b7cbc
MF
1446 clusters_to_alloc + extents_to_split,
1447 mmap_page);
9517bac6
MF
1448 if (ret) {
1449 mlog_errno(ret);
1450 goto out_commit;
1451 }
1452
0d172baa
MF
1453 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1454 len);
1455 if (ret) {
1456 mlog_errno(ret);
1457 goto out_commit;
9517bac6 1458 }
9517bac6 1459
3a307ffc
MF
1460 if (data_ac)
1461 ocfs2_free_alloc_context(data_ac);
1462 if (meta_ac)
1463 ocfs2_free_alloc_context(meta_ac);
9517bac6 1464
3a307ffc
MF
1465 *pagep = wc->w_target_page;
1466 *fsdata = wc;
1467 return 0;
9517bac6
MF
1468out_commit:
1469 ocfs2_commit_trans(osb, handle);
1470
9517bac6 1471out:
3a307ffc
MF
1472 ocfs2_free_write_ctxt(wc);
1473
9517bac6
MF
1474 if (data_ac)
1475 ocfs2_free_alloc_context(data_ac);
1476 if (meta_ac)
1477 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1478 return ret;
1479}
1480
607d44aa
MF
1481int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1482 loff_t pos, unsigned len, unsigned flags,
1483 struct page **pagep, void **fsdata)
1484{
1485 int ret;
1486 struct buffer_head *di_bh = NULL;
1487 struct inode *inode = mapping->host;
1488
1489 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1490 if (ret) {
1491 mlog_errno(ret);
1492 return ret;
1493 }
1494
1495 /*
1496 * Take alloc sem here to prevent concurrent lookups. That way
1497 * the mapping, zeroing and tree manipulation within
1498 * ocfs2_write() will be safe against ->readpage(). This
1499 * should also serve to lock out allocation from a shared
1500 * writeable region.
1501 */
1502 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1503
1504 ret = ocfs2_data_lock(inode, 1);
1505 if (ret) {
1506 mlog_errno(ret);
1507 goto out_fail;
1508 }
1509
1510 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1511 fsdata, di_bh, NULL);
607d44aa
MF
1512 if (ret) {
1513 mlog_errno(ret);
1514 goto out_fail_data;
1515 }
1516
1517 brelse(di_bh);
1518
1519 return 0;
1520
1521out_fail_data:
1522 ocfs2_data_unlock(inode, 1);
1523out_fail:
1524 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1525
1526 brelse(di_bh);
1527 ocfs2_meta_unlock(inode, 1);
1528
1529 return ret;
1530}
1531
7307de80
MF
1532int ocfs2_write_end_nolock(struct address_space *mapping,
1533 loff_t pos, unsigned len, unsigned copied,
1534 struct page *page, void *fsdata)
3a307ffc
MF
1535{
1536 int i;
1537 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1538 struct inode *inode = mapping->host;
1539 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1540 struct ocfs2_write_ctxt *wc = fsdata;
1541 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1542 handle_t *handle = wc->w_handle;
1543 struct page *tmppage;
1544
1545 if (unlikely(copied < len)) {
1546 if (!PageUptodate(wc->w_target_page))
1547 copied = 0;
1548
1549 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1550 start+len);
1551 }
1552 flush_dcache_page(wc->w_target_page);
1553
1554 for(i = 0; i < wc->w_num_pages; i++) {
1555 tmppage = wc->w_pages[i];
1556
1557 if (tmppage == wc->w_target_page) {
1558 from = wc->w_target_from;
1559 to = wc->w_target_to;
1560
1561 BUG_ON(from > PAGE_CACHE_SIZE ||
1562 to > PAGE_CACHE_SIZE ||
1563 to < from);
1564 } else {
1565 /*
1566 * Pages adjacent to the target (if any) imply
1567 * a hole-filling write in which case we want
1568 * to flush their entire range.
1569 */
1570 from = 0;
1571 to = PAGE_CACHE_SIZE;
1572 }
1573
1574 if (ocfs2_should_order_data(inode))
1575 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1576 from, to, NULL,
1577 ocfs2_journal_dirty_data);
1578
1579 block_commit_write(tmppage, from, to);
1580 }
1581
1582 pos += copied;
1583 if (pos > inode->i_size) {
1584 i_size_write(inode, pos);
1585 mark_inode_dirty(inode);
1586 }
1587 inode->i_blocks = ocfs2_inode_sector_count(inode);
1588 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1589 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1590 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1591 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1592 ocfs2_journal_dirty(handle, wc->w_di_bh);
1593
1594 ocfs2_commit_trans(osb, handle);
59a5e416 1595
b27b7cbc
MF
1596 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1597
607d44aa
MF
1598 ocfs2_free_write_ctxt(wc);
1599
1600 return copied;
1601}
1602
1603int ocfs2_write_end(struct file *file, struct address_space *mapping,
1604 loff_t pos, unsigned len, unsigned copied,
1605 struct page *page, void *fsdata)
1606{
1607 int ret;
1608 struct inode *inode = mapping->host;
1609
1610 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1611
3a307ffc
MF
1612 ocfs2_data_unlock(inode, 1);
1613 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1614 ocfs2_meta_unlock(inode, 1);
9517bac6 1615
607d44aa 1616 return ret;
9517bac6
MF
1617}
1618
f5e54d6e 1619const struct address_space_operations ocfs2_aops = {
ccd979bd
MF
1620 .readpage = ocfs2_readpage,
1621 .writepage = ocfs2_writepage,
ccd979bd
MF
1622 .bmap = ocfs2_bmap,
1623 .sync_page = block_sync_page,
03f981cf
JB
1624 .direct_IO = ocfs2_direct_IO,
1625 .invalidatepage = ocfs2_invalidatepage,
1626 .releasepage = ocfs2_releasepage,
1627 .migratepage = buffer_migrate_page,
ccd979bd 1628};