direct-io: Implement generic deferred AIO completions
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd 31
ccd979bd
MF
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
293b2f70 46#include "refcounttree.h"
9558156b 47#include "ocfs2_trace.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
9558156b
TM
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
b657c95c 74 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
ccd979bd
MF
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 105 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
c4bc8dcb 113 kunmap_atomic(kaddr);
ccd979bd
MF
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
a81cb88b 125 brelse(bh);
ccd979bd 126
ccd979bd
MF
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 138
9558156b
TM
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
ebdec241 168 * allows __block_write_begin() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
25baf2da 199 }
ccd979bd 200
5693486b 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
5693486b
JB
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
ccd979bd
MF
208bail:
209 if (err < 0)
210 err = -EIO;
211
ccd979bd
MF
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
c4bc8dcb 239 kaddr = kmap_atomic(page);
6798d35a
MF
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
c4bc8dcb 245 kunmap_atomic(kaddr);
6798d35a
MF
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
9558156b
TM
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
ccd979bd 283
e63aecb6 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
6798d35a 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
293 /*
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
296 */
e9dfc0b2 297 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
e63aecb6 302 goto out_inode_unlock;
e9dfc0b2 303 }
ccd979bd
MF
304
305 /*
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
54cb8821 310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
311 * and notice that the page they just read isn't needed.
312 *
313 * XXX sys_readahead() seems to get that wrong?
314 */
315 if (start >= i_size_read(inode)) {
eebd2aa3 316 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
320 }
321
6798d35a
MF
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
326 unlock = 0;
327
ccd979bd
MF
328out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
330out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
332out:
333 if (unlock)
334 unlock_page(page);
ccd979bd
MF
335 return ret;
336}
337
628a24f5
MF
338/*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
349{
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
367 }
368
369 /*
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
372 */
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
375
376 /*
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
379 */
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
384
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
390
391 return err;
392}
393
ccd979bd
MF
394/* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406{
9558156b
TM
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
ccd979bd 410
9558156b 411 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
412}
413
ccd979bd
MF
414/* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
60b11392
MF
418int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
ccd979bd
MF
425{
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
431
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
435 {
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
442 }
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
446 }
447 return ret;
448}
449
ccd979bd
MF
450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451{
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
456
9558156b
TM
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
ccd979bd
MF
459
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
462 */
463 if (!INODE_JOURNAL(inode)) {
e63aecb6 464 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
469 }
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 }
472
6798d35a
MF
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
ccd979bd
MF
476
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 479 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
480 }
481
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
487 }
488
ccd979bd
MF
489bail:
490 status = err ? 0 : p_blkno;
491
ccd979bd
MF
492 return status;
493}
494
495/*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
ccd979bd
MF
510 */
511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
512 struct buffer_head *bh_result, int create)
513{
514 int ret;
4f902c37 515 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 516 unsigned int ext_flags;
184d7d20 517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 519
ccd979bd
MF
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
523
25baf2da 524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 525
ccd979bd
MF
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
363041a5 528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 529 &contig_blocks, &ext_flags);
ccd979bd
MF
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
535 }
536
cbaee472
TM
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
25baf2da
MF
540 /*
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
49cb8d2d
MF
543 *
544 * Consider an unwritten extent as a hole.
25baf2da 545 */
49cb8d2d 546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 547 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 548 else
25baf2da 549 clear_buffer_mapped(bh_result);
ccd979bd
MF
550
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556bail:
557 return ret;
558}
559
2bd63216 560/*
ccd979bd 561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
ccd979bd
MF
564 */
565static void ocfs2_dio_end_io(struct kiocb *iocb,
566 loff_t offset,
567 ssize_t bytes,
7b7a8665 568 void *private)
ccd979bd 569{
496ad9aa 570 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 571 int level;
a11f7e63 572 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
ccd979bd
MF
573
574 /* this io's submitter should not have unlocked this before we could */
575 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 576
df2d6f26 577 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 578 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 579
a11f7e63
MF
580 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
581 ocfs2_iocb_clear_unaligned_aio(iocb);
582
583 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
584 waitqueue_active(wq)) {
585 wake_up_all(wq);
586 }
587 }
588
ccd979bd 589 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
590
591 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 592 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
593}
594
03f981cf
JB
595/*
596 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
597 * from ext3. PageChecked() bits have been removed as OCFS2 does not
598 * do journalled data.
599 */
d47992f8
LC
600static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
601 unsigned int length)
03f981cf
JB
602{
603 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
604
e5f8d30d 605 jbd2_journal_invalidatepage(journal, page, offset, length);
03f981cf
JB
606}
607
608static int ocfs2_releasepage(struct page *page, gfp_t wait)
609{
610 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
611
612 if (!page_has_buffers(page))
613 return 0;
2b4e30fb 614 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
615}
616
ccd979bd
MF
617static ssize_t ocfs2_direct_IO(int rw,
618 struct kiocb *iocb,
619 const struct iovec *iov,
620 loff_t offset,
621 unsigned long nr_segs)
622{
623 struct file *file = iocb->ki_filp;
496ad9aa 624 struct inode *inode = file_inode(file)->i_mapping->host;
53013cba 625
6798d35a
MF
626 /*
627 * Fallback to buffered I/O if we see an inode without
628 * extents.
629 */
630 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
631 return 0;
632
b80474b4
TM
633 /* Fallback to buffered I/O if we are appending. */
634 if (i_size_read(inode) <= offset)
635 return 0;
636
c1e8d35e
TM
637 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
638 iov, offset, nr_segs,
639 ocfs2_direct_IO_get_blocks,
640 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
641}
642
9517bac6
MF
643static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
644 u32 cpos,
645 unsigned int *start,
646 unsigned int *end)
647{
648 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
649
650 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
651 unsigned int cpp;
652
653 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
654
655 cluster_start = cpos % cpp;
656 cluster_start = cluster_start << osb->s_clustersize_bits;
657
658 cluster_end = cluster_start + osb->s_clustersize;
659 }
660
661 BUG_ON(cluster_start > PAGE_SIZE);
662 BUG_ON(cluster_end > PAGE_SIZE);
663
664 if (start)
665 *start = cluster_start;
666 if (end)
667 *end = cluster_end;
668}
669
670/*
671 * 'from' and 'to' are the region in the page to avoid zeroing.
672 *
673 * If pagesize > clustersize, this function will avoid zeroing outside
674 * of the cluster boundary.
675 *
676 * from == to == 0 is code for "zero the entire cluster region"
677 */
678static void ocfs2_clear_page_regions(struct page *page,
679 struct ocfs2_super *osb, u32 cpos,
680 unsigned from, unsigned to)
681{
682 void *kaddr;
683 unsigned int cluster_start, cluster_end;
684
685 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
686
c4bc8dcb 687 kaddr = kmap_atomic(page);
9517bac6
MF
688
689 if (from || to) {
690 if (from > cluster_start)
691 memset(kaddr + cluster_start, 0, from - cluster_start);
692 if (to < cluster_end)
693 memset(kaddr + to, 0, cluster_end - to);
694 } else {
695 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
696 }
697
c4bc8dcb 698 kunmap_atomic(kaddr);
9517bac6
MF
699}
700
4e9563fd
MF
701/*
702 * Nonsparse file systems fully allocate before we get to the write
703 * code. This prevents ocfs2_write() from tagging the write as an
704 * allocating one, which means ocfs2_map_page_blocks() might try to
705 * read-in the blocks at the tail of our file. Avoid reading them by
706 * testing i_size against each block offset.
707 */
708static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
709 unsigned int block_start)
710{
711 u64 offset = page_offset(page) + block_start;
712
713 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
714 return 1;
715
716 if (i_size_read(inode) > offset)
717 return 1;
718
719 return 0;
720}
721
9517bac6 722/*
ebdec241 723 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
724 * mapping by now though, and the entire write will be allocating or
725 * it won't, so not much need to use BH_New.
726 *
727 * This will also skip zeroing, which is handled externally.
728 */
60b11392
MF
729int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
730 struct inode *inode, unsigned int from,
731 unsigned int to, int new)
9517bac6
MF
732{
733 int ret = 0;
734 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
735 unsigned int block_end, block_start;
736 unsigned int bsize = 1 << inode->i_blkbits;
737
738 if (!page_has_buffers(page))
739 create_empty_buffers(page, bsize, 0);
740
741 head = page_buffers(page);
742 for (bh = head, block_start = 0; bh != head || !block_start;
743 bh = bh->b_this_page, block_start += bsize) {
744 block_end = block_start + bsize;
745
3a307ffc
MF
746 clear_buffer_new(bh);
747
9517bac6
MF
748 /*
749 * Ignore blocks outside of our i/o range -
750 * they may belong to unallocated clusters.
751 */
60b11392 752 if (block_start >= to || block_end <= from) {
9517bac6
MF
753 if (PageUptodate(page))
754 set_buffer_uptodate(bh);
755 continue;
756 }
757
758 /*
759 * For an allocating write with cluster size >= page
760 * size, we always write the entire page.
761 */
3a307ffc
MF
762 if (new)
763 set_buffer_new(bh);
9517bac6
MF
764
765 if (!buffer_mapped(bh)) {
766 map_bh(bh, inode->i_sb, *p_blkno);
767 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
768 }
769
770 if (PageUptodate(page)) {
771 if (!buffer_uptodate(bh))
772 set_buffer_uptodate(bh);
773 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 774 !buffer_new(bh) &&
4e9563fd 775 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 776 (block_start < from || block_end > to)) {
9517bac6
MF
777 ll_rw_block(READ, 1, &bh);
778 *wait_bh++=bh;
779 }
780
781 *p_blkno = *p_blkno + 1;
782 }
783
784 /*
785 * If we issued read requests - let them complete.
786 */
787 while(wait_bh > wait) {
788 wait_on_buffer(*--wait_bh);
789 if (!buffer_uptodate(*wait_bh))
790 ret = -EIO;
791 }
792
793 if (ret == 0 || !new)
794 return ret;
795
796 /*
797 * If we get -EIO above, zero out any newly allocated blocks
798 * to avoid exposing stale data.
799 */
800 bh = head;
801 block_start = 0;
802 do {
9517bac6
MF
803 block_end = block_start + bsize;
804 if (block_end <= from)
805 goto next_bh;
806 if (block_start >= to)
807 break;
808
eebd2aa3 809 zero_user(page, block_start, bh->b_size);
9517bac6
MF
810 set_buffer_uptodate(bh);
811 mark_buffer_dirty(bh);
812
813next_bh:
814 block_start = block_end;
815 bh = bh->b_this_page;
816 } while (bh != head);
817
818 return ret;
819}
820
3a307ffc
MF
821#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
822#define OCFS2_MAX_CTXT_PAGES 1
823#else
824#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
825#endif
826
827#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
828
6af67d82 829/*
3a307ffc 830 * Describe the state of a single cluster to be written to.
6af67d82 831 */
3a307ffc
MF
832struct ocfs2_write_cluster_desc {
833 u32 c_cpos;
834 u32 c_phys;
835 /*
836 * Give this a unique field because c_phys eventually gets
837 * filled.
838 */
839 unsigned c_new;
b27b7cbc 840 unsigned c_unwritten;
e7432675 841 unsigned c_needs_zero;
3a307ffc 842};
6af67d82 843
3a307ffc
MF
844struct ocfs2_write_ctxt {
845 /* Logical cluster position / len of write */
846 u32 w_cpos;
847 u32 w_clen;
6af67d82 848
e7432675
SM
849 /* First cluster allocated in a nonsparse extend */
850 u32 w_first_new_cpos;
851
3a307ffc 852 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 853
3a307ffc
MF
854 /*
855 * This is true if page_size > cluster_size.
856 *
857 * It triggers a set of special cases during write which might
858 * have to deal with allocating writes to partial pages.
859 */
860 unsigned int w_large_pages;
6af67d82 861
3a307ffc
MF
862 /*
863 * Pages involved in this write.
864 *
865 * w_target_page is the page being written to by the user.
866 *
867 * w_pages is an array of pages which always contains
868 * w_target_page, and in the case of an allocating write with
869 * page_size < cluster size, it will contain zero'd and mapped
870 * pages adjacent to w_target_page which need to be written
871 * out in so that future reads from that region will get
872 * zero's.
873 */
3a307ffc 874 unsigned int w_num_pages;
83fd9c7f 875 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 876 struct page *w_target_page;
eeb47d12 877
5cffff9e
WW
878 /*
879 * w_target_locked is used for page_mkwrite path indicating no unlocking
880 * against w_target_page in ocfs2_write_end_nolock.
881 */
882 unsigned int w_target_locked:1;
883
3a307ffc
MF
884 /*
885 * ocfs2_write_end() uses this to know what the real range to
886 * write in the target should be.
887 */
888 unsigned int w_target_from;
889 unsigned int w_target_to;
890
891 /*
892 * We could use journal_current_handle() but this is cleaner,
893 * IMHO -Mark
894 */
895 handle_t *w_handle;
896
897 struct buffer_head *w_di_bh;
b27b7cbc
MF
898
899 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
900};
901
1d410a6e 902void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
903{
904 int i;
905
1d410a6e
MF
906 for(i = 0; i < num_pages; i++) {
907 if (pages[i]) {
908 unlock_page(pages[i]);
909 mark_page_accessed(pages[i]);
910 page_cache_release(pages[i]);
911 }
6af67d82 912 }
1d410a6e
MF
913}
914
915static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
916{
5cffff9e
WW
917 int i;
918
919 /*
920 * w_target_locked is only set to true in the page_mkwrite() case.
921 * The intent is to allow us to lock the target page from write_begin()
922 * to write_end(). The caller must hold a ref on w_target_page.
923 */
924 if (wc->w_target_locked) {
925 BUG_ON(!wc->w_target_page);
926 for (i = 0; i < wc->w_num_pages; i++) {
927 if (wc->w_target_page == wc->w_pages[i]) {
928 wc->w_pages[i] = NULL;
929 break;
930 }
931 }
932 mark_page_accessed(wc->w_target_page);
933 page_cache_release(wc->w_target_page);
934 }
1d410a6e 935 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 936
3a307ffc
MF
937 brelse(wc->w_di_bh);
938 kfree(wc);
939}
940
941static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
942 struct ocfs2_super *osb, loff_t pos,
607d44aa 943 unsigned len, struct buffer_head *di_bh)
3a307ffc 944{
30b8548f 945 u32 cend;
3a307ffc
MF
946 struct ocfs2_write_ctxt *wc;
947
948 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
949 if (!wc)
950 return -ENOMEM;
6af67d82 951
3a307ffc 952 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 953 wc->w_first_new_cpos = UINT_MAX;
30b8548f 954 cend = (pos + len - 1) >> osb->s_clustersize_bits;
955 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
956 get_bh(di_bh);
957 wc->w_di_bh = di_bh;
6af67d82 958
3a307ffc
MF
959 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
960 wc->w_large_pages = 1;
961 else
962 wc->w_large_pages = 0;
963
b27b7cbc
MF
964 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
965
3a307ffc 966 *wcp = wc;
6af67d82 967
3a307ffc 968 return 0;
6af67d82
MF
969}
970
9517bac6 971/*
3a307ffc
MF
972 * If a page has any new buffers, zero them out here, and mark them uptodate
973 * and dirty so they'll be written out (in order to prevent uninitialised
974 * block data from leaking). And clear the new bit.
9517bac6 975 */
3a307ffc 976static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 977{
3a307ffc
MF
978 unsigned int block_start, block_end;
979 struct buffer_head *head, *bh;
9517bac6 980
3a307ffc
MF
981 BUG_ON(!PageLocked(page));
982 if (!page_has_buffers(page))
983 return;
9517bac6 984
3a307ffc
MF
985 bh = head = page_buffers(page);
986 block_start = 0;
987 do {
988 block_end = block_start + bh->b_size;
989
990 if (buffer_new(bh)) {
991 if (block_end > from && block_start < to) {
992 if (!PageUptodate(page)) {
993 unsigned start, end;
3a307ffc
MF
994
995 start = max(from, block_start);
996 end = min(to, block_end);
997
eebd2aa3 998 zero_user_segment(page, start, end);
3a307ffc
MF
999 set_buffer_uptodate(bh);
1000 }
1001
1002 clear_buffer_new(bh);
1003 mark_buffer_dirty(bh);
1004 }
1005 }
9517bac6 1006
3a307ffc
MF
1007 block_start = block_end;
1008 bh = bh->b_this_page;
1009 } while (bh != head);
1010}
1011
1012/*
1013 * Only called when we have a failure during allocating write to write
1014 * zero's to the newly allocated region.
1015 */
1016static void ocfs2_write_failure(struct inode *inode,
1017 struct ocfs2_write_ctxt *wc,
1018 loff_t user_pos, unsigned user_len)
1019{
1020 int i;
5c26a7b7
MF
1021 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1022 to = user_pos + user_len;
3a307ffc
MF
1023 struct page *tmppage;
1024
5c26a7b7 1025 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1026
3a307ffc
MF
1027 for(i = 0; i < wc->w_num_pages; i++) {
1028 tmppage = wc->w_pages[i];
9517bac6 1029
961cecbe 1030 if (page_has_buffers(tmppage)) {
53ef99ca 1031 if (ocfs2_should_order_data(inode))
2b4e30fb 1032 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1033
1034 block_commit_write(tmppage, from, to);
1035 }
9517bac6 1036 }
9517bac6
MF
1037}
1038
3a307ffc
MF
1039static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1040 struct ocfs2_write_ctxt *wc,
1041 struct page *page, u32 cpos,
1042 loff_t user_pos, unsigned user_len,
1043 int new)
9517bac6 1044{
3a307ffc
MF
1045 int ret;
1046 unsigned int map_from = 0, map_to = 0;
9517bac6 1047 unsigned int cluster_start, cluster_end;
3a307ffc 1048 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1049
3a307ffc 1050 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1051 &cluster_start, &cluster_end);
1052
272b62c1
GR
1053 /* treat the write as new if the a hole/lseek spanned across
1054 * the page boundary.
1055 */
1056 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1057 (page_offset(page) <= user_pos));
1058
3a307ffc
MF
1059 if (page == wc->w_target_page) {
1060 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1061 map_to = map_from + user_len;
1062
1063 if (new)
1064 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1065 cluster_start, cluster_end,
1066 new);
1067 else
1068 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1069 map_from, map_to, new);
1070 if (ret) {
9517bac6
MF
1071 mlog_errno(ret);
1072 goto out;
1073 }
1074
3a307ffc
MF
1075 user_data_from = map_from;
1076 user_data_to = map_to;
9517bac6 1077 if (new) {
3a307ffc
MF
1078 map_from = cluster_start;
1079 map_to = cluster_end;
9517bac6
MF
1080 }
1081 } else {
1082 /*
1083 * If we haven't allocated the new page yet, we
1084 * shouldn't be writing it out without copying user
1085 * data. This is likely a math error from the caller.
1086 */
1087 BUG_ON(!new);
1088
3a307ffc
MF
1089 map_from = cluster_start;
1090 map_to = cluster_end;
9517bac6
MF
1091
1092 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1093 cluster_start, cluster_end, new);
9517bac6
MF
1094 if (ret) {
1095 mlog_errno(ret);
1096 goto out;
1097 }
1098 }
1099
1100 /*
1101 * Parts of newly allocated pages need to be zero'd.
1102 *
1103 * Above, we have also rewritten 'to' and 'from' - as far as
1104 * the rest of the function is concerned, the entire cluster
1105 * range inside of a page needs to be written.
1106 *
1107 * We can skip this if the page is up to date - it's already
1108 * been zero'd from being read in as a hole.
1109 */
1110 if (new && !PageUptodate(page))
1111 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1112 cpos, user_data_from, user_data_to);
9517bac6
MF
1113
1114 flush_dcache_page(page);
1115
9517bac6 1116out:
3a307ffc 1117 return ret;
9517bac6
MF
1118}
1119
1120/*
3a307ffc 1121 * This function will only grab one clusters worth of pages.
9517bac6 1122 */
3a307ffc
MF
1123static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1124 struct ocfs2_write_ctxt *wc,
693c241a
JB
1125 u32 cpos, loff_t user_pos,
1126 unsigned user_len, int new,
7307de80 1127 struct page *mmap_page)
9517bac6 1128{
3a307ffc 1129 int ret = 0, i;
693c241a 1130 unsigned long start, target_index, end_index, index;
9517bac6 1131 struct inode *inode = mapping->host;
693c241a 1132 loff_t last_byte;
9517bac6 1133
3a307ffc 1134 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1135
1136 /*
1137 * Figure out how many pages we'll be manipulating here. For
60b11392 1138 * non allocating write, we just change the one
693c241a
JB
1139 * page. Otherwise, we'll need a whole clusters worth. If we're
1140 * writing past i_size, we only need enough pages to cover the
1141 * last page of the write.
9517bac6 1142 */
9517bac6 1143 if (new) {
3a307ffc
MF
1144 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1145 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1146 /*
1147 * We need the index *past* the last page we could possibly
1148 * touch. This is the page past the end of the write or
1149 * i_size, whichever is greater.
1150 */
1151 last_byte = max(user_pos + user_len, i_size_read(inode));
1152 BUG_ON(last_byte < 1);
1153 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1154 if ((start + wc->w_num_pages) > end_index)
1155 wc->w_num_pages = end_index - start;
9517bac6 1156 } else {
3a307ffc
MF
1157 wc->w_num_pages = 1;
1158 start = target_index;
9517bac6
MF
1159 }
1160
3a307ffc 1161 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1162 index = start + i;
1163
7307de80
MF
1164 if (index == target_index && mmap_page) {
1165 /*
1166 * ocfs2_pagemkwrite() is a little different
1167 * and wants us to directly use the page
1168 * passed in.
1169 */
1170 lock_page(mmap_page);
1171
5cffff9e 1172 /* Exit and let the caller retry */
7307de80 1173 if (mmap_page->mapping != mapping) {
5cffff9e 1174 WARN_ON(mmap_page->mapping);
7307de80 1175 unlock_page(mmap_page);
5cffff9e 1176 ret = -EAGAIN;
7307de80
MF
1177 goto out;
1178 }
1179
1180 page_cache_get(mmap_page);
1181 wc->w_pages[i] = mmap_page;
5cffff9e 1182 wc->w_target_locked = true;
7307de80
MF
1183 } else {
1184 wc->w_pages[i] = find_or_create_page(mapping, index,
1185 GFP_NOFS);
1186 if (!wc->w_pages[i]) {
1187 ret = -ENOMEM;
1188 mlog_errno(ret);
1189 goto out;
1190 }
9517bac6 1191 }
1269529b 1192 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1193
1194 if (index == target_index)
1195 wc->w_target_page = wc->w_pages[i];
9517bac6 1196 }
3a307ffc 1197out:
5cffff9e
WW
1198 if (ret)
1199 wc->w_target_locked = false;
3a307ffc
MF
1200 return ret;
1201}
1202
1203/*
1204 * Prepare a single cluster for write one cluster into the file.
1205 */
1206static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1207 u32 phys, unsigned int unwritten,
e7432675 1208 unsigned int should_zero,
b27b7cbc 1209 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1210 struct ocfs2_alloc_context *meta_ac,
1211 struct ocfs2_write_ctxt *wc, u32 cpos,
1212 loff_t user_pos, unsigned user_len)
1213{
e7432675 1214 int ret, i, new;
3a307ffc
MF
1215 u64 v_blkno, p_blkno;
1216 struct inode *inode = mapping->host;
f99b9b7c 1217 struct ocfs2_extent_tree et;
3a307ffc
MF
1218
1219 new = phys == 0 ? 1 : 0;
9517bac6 1220 if (new) {
3a307ffc
MF
1221 u32 tmp_pos;
1222
9517bac6
MF
1223 /*
1224 * This is safe to call with the page locks - it won't take
1225 * any additional semaphores or cluster locks.
1226 */
3a307ffc 1227 tmp_pos = cpos;
0eb8d47e
TM
1228 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1229 &tmp_pos, 1, 0, wc->w_di_bh,
1230 wc->w_handle, data_ac,
1231 meta_ac, NULL);
9517bac6
MF
1232 /*
1233 * This shouldn't happen because we must have already
1234 * calculated the correct meta data allocation required. The
1235 * internal tree allocation code should know how to increase
1236 * transaction credits itself.
1237 *
1238 * If need be, we could handle -EAGAIN for a
1239 * RESTART_TRANS here.
1240 */
1241 mlog_bug_on_msg(ret == -EAGAIN,
1242 "Inode %llu: EAGAIN return during allocation.\n",
1243 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1244 if (ret < 0) {
1245 mlog_errno(ret);
1246 goto out;
1247 }
b27b7cbc 1248 } else if (unwritten) {
5e404e9e
JB
1249 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1250 wc->w_di_bh);
f99b9b7c 1251 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1252 wc->w_handle, cpos, 1, phys,
f99b9b7c 1253 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1254 if (ret < 0) {
1255 mlog_errno(ret);
1256 goto out;
1257 }
1258 }
3a307ffc 1259
b27b7cbc 1260 if (should_zero)
3a307ffc 1261 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1262 else
3a307ffc 1263 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1264
3a307ffc
MF
1265 /*
1266 * The only reason this should fail is due to an inability to
1267 * find the extent added.
1268 */
49cb8d2d
MF
1269 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1270 NULL);
9517bac6 1271 if (ret < 0) {
3a307ffc
MF
1272 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1273 "at logical block %llu",
1274 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1275 (unsigned long long)v_blkno);
9517bac6
MF
1276 goto out;
1277 }
1278
1279 BUG_ON(p_blkno == 0);
1280
3a307ffc
MF
1281 for(i = 0; i < wc->w_num_pages; i++) {
1282 int tmpret;
9517bac6 1283
3a307ffc
MF
1284 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1285 wc->w_pages[i], cpos,
b27b7cbc
MF
1286 user_pos, user_len,
1287 should_zero);
3a307ffc
MF
1288 if (tmpret) {
1289 mlog_errno(tmpret);
1290 if (ret == 0)
cbfa9639 1291 ret = tmpret;
3a307ffc 1292 }
9517bac6
MF
1293 }
1294
3a307ffc
MF
1295 /*
1296 * We only have cleanup to do in case of allocating write.
1297 */
1298 if (ret && new)
1299 ocfs2_write_failure(inode, wc, user_pos, user_len);
1300
9517bac6 1301out:
9517bac6 1302
3a307ffc 1303 return ret;
9517bac6
MF
1304}
1305
0d172baa
MF
1306static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1307 struct ocfs2_alloc_context *data_ac,
1308 struct ocfs2_alloc_context *meta_ac,
1309 struct ocfs2_write_ctxt *wc,
1310 loff_t pos, unsigned len)
1311{
1312 int ret, i;
db56246c
MF
1313 loff_t cluster_off;
1314 unsigned int local_len = len;
0d172baa 1315 struct ocfs2_write_cluster_desc *desc;
db56246c 1316 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1317
1318 for (i = 0; i < wc->w_clen; i++) {
1319 desc = &wc->w_desc[i];
1320
db56246c
MF
1321 /*
1322 * We have to make sure that the total write passed in
1323 * doesn't extend past a single cluster.
1324 */
1325 local_len = len;
1326 cluster_off = pos & (osb->s_clustersize - 1);
1327 if ((cluster_off + local_len) > osb->s_clustersize)
1328 local_len = osb->s_clustersize - cluster_off;
1329
b27b7cbc 1330 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1331 desc->c_unwritten,
1332 desc->c_needs_zero,
1333 data_ac, meta_ac,
db56246c 1334 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1335 if (ret) {
1336 mlog_errno(ret);
1337 goto out;
1338 }
db56246c
MF
1339
1340 len -= local_len;
1341 pos += local_len;
0d172baa
MF
1342 }
1343
1344 ret = 0;
1345out:
1346 return ret;
1347}
1348
3a307ffc
MF
1349/*
1350 * ocfs2_write_end() wants to know which parts of the target page it
1351 * should complete the write on. It's easiest to compute them ahead of
1352 * time when a more complete view of the write is available.
1353 */
1354static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1355 struct ocfs2_write_ctxt *wc,
1356 loff_t pos, unsigned len, int alloc)
9517bac6 1357{
3a307ffc 1358 struct ocfs2_write_cluster_desc *desc;
9517bac6 1359
3a307ffc
MF
1360 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1361 wc->w_target_to = wc->w_target_from + len;
1362
1363 if (alloc == 0)
1364 return;
1365
1366 /*
1367 * Allocating write - we may have different boundaries based
1368 * on page size and cluster size.
1369 *
1370 * NOTE: We can no longer compute one value from the other as
1371 * the actual write length and user provided length may be
1372 * different.
1373 */
9517bac6 1374
3a307ffc
MF
1375 if (wc->w_large_pages) {
1376 /*
1377 * We only care about the 1st and last cluster within
b27b7cbc 1378 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1379 * value may be extended out to the start/end of a
1380 * newly allocated cluster.
1381 */
1382 desc = &wc->w_desc[0];
e7432675 1383 if (desc->c_needs_zero)
3a307ffc
MF
1384 ocfs2_figure_cluster_boundaries(osb,
1385 desc->c_cpos,
1386 &wc->w_target_from,
1387 NULL);
1388
1389 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1390 if (desc->c_needs_zero)
3a307ffc
MF
1391 ocfs2_figure_cluster_boundaries(osb,
1392 desc->c_cpos,
1393 NULL,
1394 &wc->w_target_to);
1395 } else {
1396 wc->w_target_from = 0;
1397 wc->w_target_to = PAGE_CACHE_SIZE;
1398 }
9517bac6
MF
1399}
1400
0d172baa
MF
1401/*
1402 * Populate each single-cluster write descriptor in the write context
1403 * with information about the i/o to be done.
b27b7cbc
MF
1404 *
1405 * Returns the number of clusters that will have to be allocated, as
1406 * well as a worst case estimate of the number of extent records that
1407 * would have to be created during a write to an unwritten region.
0d172baa
MF
1408 */
1409static int ocfs2_populate_write_desc(struct inode *inode,
1410 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1411 unsigned int *clusters_to_alloc,
1412 unsigned int *extents_to_split)
9517bac6 1413{
0d172baa 1414 int ret;
3a307ffc 1415 struct ocfs2_write_cluster_desc *desc;
0d172baa 1416 unsigned int num_clusters = 0;
b27b7cbc 1417 unsigned int ext_flags = 0;
0d172baa
MF
1418 u32 phys = 0;
1419 int i;
9517bac6 1420
b27b7cbc
MF
1421 *clusters_to_alloc = 0;
1422 *extents_to_split = 0;
1423
3a307ffc
MF
1424 for (i = 0; i < wc->w_clen; i++) {
1425 desc = &wc->w_desc[i];
1426 desc->c_cpos = wc->w_cpos + i;
1427
1428 if (num_clusters == 0) {
b27b7cbc
MF
1429 /*
1430 * Need to look up the next extent record.
1431 */
3a307ffc 1432 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1433 &num_clusters, &ext_flags);
3a307ffc
MF
1434 if (ret) {
1435 mlog_errno(ret);
607d44aa 1436 goto out;
3a307ffc 1437 }
b27b7cbc 1438
293b2f70
TM
1439 /* We should already CoW the refcountd extent. */
1440 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1441
b27b7cbc
MF
1442 /*
1443 * Assume worst case - that we're writing in
1444 * the middle of the extent.
1445 *
1446 * We can assume that the write proceeds from
1447 * left to right, in which case the extent
1448 * insert code is smart enough to coalesce the
1449 * next splits into the previous records created.
1450 */
1451 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1452 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1453 } else if (phys) {
1454 /*
1455 * Only increment phys if it doesn't describe
1456 * a hole.
1457 */
1458 phys++;
1459 }
1460
e7432675
SM
1461 /*
1462 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1463 * file that got extended. w_first_new_cpos tells us
1464 * where the newly allocated clusters are so we can
1465 * zero them.
1466 */
1467 if (desc->c_cpos >= wc->w_first_new_cpos) {
1468 BUG_ON(phys == 0);
1469 desc->c_needs_zero = 1;
1470 }
1471
3a307ffc
MF
1472 desc->c_phys = phys;
1473 if (phys == 0) {
1474 desc->c_new = 1;
e7432675 1475 desc->c_needs_zero = 1;
0d172baa 1476 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1477 }
e7432675
SM
1478
1479 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1480 desc->c_unwritten = 1;
e7432675
SM
1481 desc->c_needs_zero = 1;
1482 }
3a307ffc
MF
1483
1484 num_clusters--;
9517bac6
MF
1485 }
1486
0d172baa
MF
1487 ret = 0;
1488out:
1489 return ret;
1490}
1491
1afc32b9
MF
1492static int ocfs2_write_begin_inline(struct address_space *mapping,
1493 struct inode *inode,
1494 struct ocfs2_write_ctxt *wc)
1495{
1496 int ret;
1497 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1498 struct page *page;
1499 handle_t *handle;
1500 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1501
1502 page = find_or_create_page(mapping, 0, GFP_NOFS);
1503 if (!page) {
1504 ret = -ENOMEM;
1505 mlog_errno(ret);
1506 goto out;
1507 }
1508 /*
1509 * If we don't set w_num_pages then this page won't get unlocked
1510 * and freed on cleanup of the write context.
1511 */
1512 wc->w_pages[0] = wc->w_target_page = page;
1513 wc->w_num_pages = 1;
1514
1515 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1516 if (IS_ERR(handle)) {
1517 ret = PTR_ERR(handle);
1518 mlog_errno(ret);
1519 goto out;
1520 }
1521
0cf2f763 1522 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1523 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1524 if (ret) {
1525 ocfs2_commit_trans(osb, handle);
1526
1527 mlog_errno(ret);
1528 goto out;
1529 }
1530
1531 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1532 ocfs2_set_inode_data_inline(inode, di);
1533
1534 if (!PageUptodate(page)) {
1535 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1536 if (ret) {
1537 ocfs2_commit_trans(osb, handle);
1538
1539 goto out;
1540 }
1541 }
1542
1543 wc->w_handle = handle;
1544out:
1545 return ret;
1546}
1547
1548int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1549{
1550 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1551
0d8a4e0c 1552 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1553 return 1;
1554 return 0;
1555}
1556
1557static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1558 struct inode *inode, loff_t pos,
1559 unsigned len, struct page *mmap_page,
1560 struct ocfs2_write_ctxt *wc)
1561{
1562 int ret, written = 0;
1563 loff_t end = pos + len;
1564 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1565 struct ocfs2_dinode *di = NULL;
1afc32b9 1566
9558156b
TM
1567 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1568 len, (unsigned long long)pos,
1569 oi->ip_dyn_features);
1afc32b9
MF
1570
1571 /*
1572 * Handle inodes which already have inline data 1st.
1573 */
1574 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1575 if (mmap_page == NULL &&
1576 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1577 goto do_inline_write;
1578
1579 /*
1580 * The write won't fit - we have to give this inode an
1581 * inline extent list now.
1582 */
1583 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1584 if (ret)
1585 mlog_errno(ret);
1586 goto out;
1587 }
1588
1589 /*
1590 * Check whether the inode can accept inline data.
1591 */
1592 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1593 return 0;
1594
1595 /*
1596 * Check whether the write can fit.
1597 */
d9ae49d6
TY
1598 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1599 if (mmap_page ||
1600 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1601 return 0;
1602
1603do_inline_write:
1604 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1605 if (ret) {
1606 mlog_errno(ret);
1607 goto out;
1608 }
1609
1610 /*
1611 * This signals to the caller that the data can be written
1612 * inline.
1613 */
1614 written = 1;
1615out:
1616 return written ? written : ret;
1617}
1618
65ed39d6
MF
1619/*
1620 * This function only does anything for file systems which can't
1621 * handle sparse files.
1622 *
1623 * What we want to do here is fill in any hole between the current end
1624 * of allocation and the end of our write. That way the rest of the
1625 * write path can treat it as an non-allocating write, which has no
1626 * special case code for sparse/nonsparse files.
1627 */
5693486b
JB
1628static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1629 struct buffer_head *di_bh,
1630 loff_t pos, unsigned len,
65ed39d6
MF
1631 struct ocfs2_write_ctxt *wc)
1632{
1633 int ret;
65ed39d6
MF
1634 loff_t newsize = pos + len;
1635
5693486b 1636 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1637
1638 if (newsize <= i_size_read(inode))
1639 return 0;
1640
5693486b 1641 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1642 if (ret)
1643 mlog_errno(ret);
1644
e7432675
SM
1645 wc->w_first_new_cpos =
1646 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1647
65ed39d6
MF
1648 return ret;
1649}
1650
5693486b
JB
1651static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1652 loff_t pos)
1653{
1654 int ret = 0;
1655
1656 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1657 if (pos > i_size_read(inode))
1658 ret = ocfs2_zero_extend(inode, di_bh, pos);
1659
1660 return ret;
1661}
1662
50308d81
TM
1663/*
1664 * Try to flush truncate logs if we can free enough clusters from it.
1665 * As for return value, "< 0" means error, "0" no space and "1" means
1666 * we have freed enough spaces and let the caller try to allocate again.
1667 */
1668static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1669 unsigned int needed)
1670{
1671 tid_t target;
1672 int ret = 0;
1673 unsigned int truncated_clusters;
1674
1675 mutex_lock(&osb->osb_tl_inode->i_mutex);
1676 truncated_clusters = osb->truncated_clusters;
1677 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1678
1679 /*
1680 * Check whether we can succeed in allocating if we free
1681 * the truncate log.
1682 */
1683 if (truncated_clusters < needed)
1684 goto out;
1685
1686 ret = ocfs2_flush_truncate_log(osb);
1687 if (ret) {
1688 mlog_errno(ret);
1689 goto out;
1690 }
1691
1692 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1693 jbd2_log_wait_commit(osb->journal->j_journal, target);
1694 ret = 1;
1695 }
1696out:
1697 return ret;
1698}
1699
0378da0f
TM
1700int ocfs2_write_begin_nolock(struct file *filp,
1701 struct address_space *mapping,
0d172baa
MF
1702 loff_t pos, unsigned len, unsigned flags,
1703 struct page **pagep, void **fsdata,
1704 struct buffer_head *di_bh, struct page *mmap_page)
1705{
e7432675 1706 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1707 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1708 struct ocfs2_write_ctxt *wc;
1709 struct inode *inode = mapping->host;
1710 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1711 struct ocfs2_dinode *di;
1712 struct ocfs2_alloc_context *data_ac = NULL;
1713 struct ocfs2_alloc_context *meta_ac = NULL;
1714 handle_t *handle;
f99b9b7c 1715 struct ocfs2_extent_tree et;
50308d81 1716 int try_free = 1, ret1;
0d172baa 1717
50308d81 1718try_again:
0d172baa
MF
1719 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1720 if (ret) {
1721 mlog_errno(ret);
1722 return ret;
1723 }
1724
1afc32b9
MF
1725 if (ocfs2_supports_inline_data(osb)) {
1726 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1727 mmap_page, wc);
1728 if (ret == 1) {
1729 ret = 0;
1730 goto success;
1731 }
1732 if (ret < 0) {
1733 mlog_errno(ret);
1734 goto out;
1735 }
1736 }
1737
5693486b
JB
1738 if (ocfs2_sparse_alloc(osb))
1739 ret = ocfs2_zero_tail(inode, di_bh, pos);
1740 else
1741 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1742 wc);
65ed39d6
MF
1743 if (ret) {
1744 mlog_errno(ret);
1745 goto out;
1746 }
1747
293b2f70
TM
1748 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1749 if (ret < 0) {
1750 mlog_errno(ret);
1751 goto out;
1752 } else if (ret == 1) {
50308d81 1753 clusters_need = wc->w_clen;
c7dd3392 1754 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1755 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1756 if (ret) {
1757 mlog_errno(ret);
1758 goto out;
1759 }
1760 }
1761
b27b7cbc
MF
1762 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1763 &extents_to_split);
0d172baa
MF
1764 if (ret) {
1765 mlog_errno(ret);
1766 goto out;
1767 }
50308d81 1768 clusters_need += clusters_to_alloc;
0d172baa
MF
1769
1770 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1771
9558156b
TM
1772 trace_ocfs2_write_begin_nolock(
1773 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1774 (long long)i_size_read(inode),
1775 le32_to_cpu(di->i_clusters),
1776 pos, len, flags, mmap_page,
1777 clusters_to_alloc, extents_to_split);
1778
3a307ffc
MF
1779 /*
1780 * We set w_target_from, w_target_to here so that
1781 * ocfs2_write_end() knows which range in the target page to
1782 * write out. An allocation requires that we write the entire
1783 * cluster range.
1784 */
b27b7cbc 1785 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1786 /*
1787 * XXX: We are stretching the limits of
b27b7cbc 1788 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1789 * the work to be done.
1790 */
5e404e9e
JB
1791 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1792 wc->w_di_bh);
f99b9b7c 1793 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1794 clusters_to_alloc, extents_to_split,
f99b9b7c 1795 &data_ac, &meta_ac);
9517bac6
MF
1796 if (ret) {
1797 mlog_errno(ret);
607d44aa 1798 goto out;
9517bac6
MF
1799 }
1800
4fe370af
MF
1801 if (data_ac)
1802 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1803
811f933d
TM
1804 credits = ocfs2_calc_extend_credits(inode->i_sb,
1805 &di->id2.i_list,
3a307ffc
MF
1806 clusters_to_alloc);
1807
9517bac6
MF
1808 }
1809
e7432675
SM
1810 /*
1811 * We have to zero sparse allocated clusters, unwritten extent clusters,
1812 * and non-sparse clusters we just extended. For non-sparse writes,
1813 * we know zeros will only be needed in the first and/or last cluster.
1814 */
1815 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1816 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1817 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1818 cluster_of_pages = 1;
1819 else
1820 cluster_of_pages = 0;
1821
1822 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1823
9517bac6
MF
1824 handle = ocfs2_start_trans(osb, credits);
1825 if (IS_ERR(handle)) {
1826 ret = PTR_ERR(handle);
1827 mlog_errno(ret);
607d44aa 1828 goto out;
9517bac6
MF
1829 }
1830
3a307ffc
MF
1831 wc->w_handle = handle;
1832
5dd4056d
CH
1833 if (clusters_to_alloc) {
1834 ret = dquot_alloc_space_nodirty(inode,
1835 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836 if (ret)
1837 goto out_commit;
a90714c1 1838 }
3a307ffc
MF
1839 /*
1840 * We don't want this to fail in ocfs2_write_end(), so do it
1841 * here.
1842 */
0cf2f763 1843 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1844 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1845 if (ret) {
9517bac6 1846 mlog_errno(ret);
a90714c1 1847 goto out_quota;
9517bac6
MF
1848 }
1849
3a307ffc
MF
1850 /*
1851 * Fill our page array first. That way we've grabbed enough so
1852 * that we can zero and flush if we error after adding the
1853 * extent.
1854 */
693c241a 1855 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1856 cluster_of_pages, mmap_page);
5cffff9e 1857 if (ret && ret != -EAGAIN) {
9517bac6 1858 mlog_errno(ret);
a90714c1 1859 goto out_quota;
9517bac6
MF
1860 }
1861
5cffff9e
WW
1862 /*
1863 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1864 * the target page. In this case, we exit with no error and no target
1865 * page. This will trigger the caller, page_mkwrite(), to re-try
1866 * the operation.
1867 */
1868 if (ret == -EAGAIN) {
1869 BUG_ON(wc->w_target_page);
1870 ret = 0;
1871 goto out_quota;
1872 }
1873
0d172baa
MF
1874 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1875 len);
1876 if (ret) {
1877 mlog_errno(ret);
a90714c1 1878 goto out_quota;
9517bac6 1879 }
9517bac6 1880
3a307ffc
MF
1881 if (data_ac)
1882 ocfs2_free_alloc_context(data_ac);
1883 if (meta_ac)
1884 ocfs2_free_alloc_context(meta_ac);
9517bac6 1885
1afc32b9 1886success:
3a307ffc
MF
1887 *pagep = wc->w_target_page;
1888 *fsdata = wc;
1889 return 0;
a90714c1
JK
1890out_quota:
1891 if (clusters_to_alloc)
5dd4056d 1892 dquot_free_space(inode,
a90714c1 1893 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1894out_commit:
1895 ocfs2_commit_trans(osb, handle);
1896
9517bac6 1897out:
3a307ffc
MF
1898 ocfs2_free_write_ctxt(wc);
1899
9517bac6
MF
1900 if (data_ac)
1901 ocfs2_free_alloc_context(data_ac);
1902 if (meta_ac)
1903 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1904
1905 if (ret == -ENOSPC && try_free) {
1906 /*
1907 * Try to free some truncate log so that we can have enough
1908 * clusters to allocate.
1909 */
1910 try_free = 0;
1911
1912 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1913 if (ret1 == 1)
1914 goto try_again;
1915
1916 if (ret1 < 0)
1917 mlog_errno(ret1);
1918 }
1919
3a307ffc
MF
1920 return ret;
1921}
1922
b6af1bcd
NP
1923static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1924 loff_t pos, unsigned len, unsigned flags,
1925 struct page **pagep, void **fsdata)
607d44aa
MF
1926{
1927 int ret;
1928 struct buffer_head *di_bh = NULL;
1929 struct inode *inode = mapping->host;
1930
e63aecb6 1931 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1932 if (ret) {
1933 mlog_errno(ret);
1934 return ret;
1935 }
1936
1937 /*
1938 * Take alloc sem here to prevent concurrent lookups. That way
1939 * the mapping, zeroing and tree manipulation within
1940 * ocfs2_write() will be safe against ->readpage(). This
1941 * should also serve to lock out allocation from a shared
1942 * writeable region.
1943 */
1944 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1945
0378da0f 1946 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1947 fsdata, di_bh, NULL);
607d44aa
MF
1948 if (ret) {
1949 mlog_errno(ret);
c934a92d 1950 goto out_fail;
607d44aa
MF
1951 }
1952
1953 brelse(di_bh);
1954
1955 return 0;
1956
607d44aa
MF
1957out_fail:
1958 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1959
1960 brelse(di_bh);
e63aecb6 1961 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1962
1963 return ret;
1964}
1965
1afc32b9
MF
1966static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1967 unsigned len, unsigned *copied,
1968 struct ocfs2_dinode *di,
1969 struct ocfs2_write_ctxt *wc)
1970{
1971 void *kaddr;
1972
1973 if (unlikely(*copied < len)) {
1974 if (!PageUptodate(wc->w_target_page)) {
1975 *copied = 0;
1976 return;
1977 }
1978 }
1979
c4bc8dcb 1980 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1981 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1982 kunmap_atomic(kaddr);
1afc32b9 1983
9558156b
TM
1984 trace_ocfs2_write_end_inline(
1985 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1986 (unsigned long long)pos, *copied,
1987 le16_to_cpu(di->id2.i_data.id_count),
1988 le16_to_cpu(di->i_dyn_features));
1989}
1990
7307de80
MF
1991int ocfs2_write_end_nolock(struct address_space *mapping,
1992 loff_t pos, unsigned len, unsigned copied,
1993 struct page *page, void *fsdata)
3a307ffc
MF
1994{
1995 int i;
1996 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1997 struct inode *inode = mapping->host;
1998 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1999 struct ocfs2_write_ctxt *wc = fsdata;
2000 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2001 handle_t *handle = wc->w_handle;
2002 struct page *tmppage;
2003
1afc32b9
MF
2004 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006 goto out_write_size;
2007 }
2008
3a307ffc
MF
2009 if (unlikely(copied < len)) {
2010 if (!PageUptodate(wc->w_target_page))
2011 copied = 0;
2012
2013 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014 start+len);
2015 }
2016 flush_dcache_page(wc->w_target_page);
2017
2018 for(i = 0; i < wc->w_num_pages; i++) {
2019 tmppage = wc->w_pages[i];
2020
2021 if (tmppage == wc->w_target_page) {
2022 from = wc->w_target_from;
2023 to = wc->w_target_to;
2024
2025 BUG_ON(from > PAGE_CACHE_SIZE ||
2026 to > PAGE_CACHE_SIZE ||
2027 to < from);
2028 } else {
2029 /*
2030 * Pages adjacent to the target (if any) imply
2031 * a hole-filling write in which case we want
2032 * to flush their entire range.
2033 */
2034 from = 0;
2035 to = PAGE_CACHE_SIZE;
2036 }
2037
961cecbe 2038 if (page_has_buffers(tmppage)) {
53ef99ca 2039 if (ocfs2_should_order_data(inode))
2b4e30fb 2040 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2041 block_commit_write(tmppage, from, to);
2042 }
3a307ffc
MF
2043 }
2044
1afc32b9 2045out_write_size:
3a307ffc
MF
2046 pos += copied;
2047 if (pos > inode->i_size) {
2048 i_size_write(inode, pos);
2049 mark_inode_dirty(inode);
2050 }
2051 inode->i_blocks = ocfs2_inode_sector_count(inode);
2052 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2053 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2054 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2055 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2056 ocfs2_journal_dirty(handle, wc->w_di_bh);
2057
2058 ocfs2_commit_trans(osb, handle);
59a5e416 2059
b27b7cbc
MF
2060 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061
607d44aa
MF
2062 ocfs2_free_write_ctxt(wc);
2063
2064 return copied;
2065}
2066
b6af1bcd
NP
2067static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2068 loff_t pos, unsigned len, unsigned copied,
2069 struct page *page, void *fsdata)
607d44aa
MF
2070{
2071 int ret;
2072 struct inode *inode = mapping->host;
2073
2074 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2075
3a307ffc 2076 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2077 ocfs2_inode_unlock(inode, 1);
9517bac6 2078
607d44aa 2079 return ret;
9517bac6
MF
2080}
2081
f5e54d6e 2082const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2083 .readpage = ocfs2_readpage,
2084 .readpages = ocfs2_readpages,
2085 .writepage = ocfs2_writepage,
2086 .write_begin = ocfs2_write_begin,
2087 .write_end = ocfs2_write_end,
2088 .bmap = ocfs2_bmap,
1fca3a05
HH
2089 .direct_IO = ocfs2_direct_IO,
2090 .invalidatepage = ocfs2_invalidatepage,
2091 .releasepage = ocfs2_releasepage,
2092 .migratepage = buffer_migrate_page,
2093 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2094 .error_remove_page = generic_error_remove_page,
ccd979bd 2095};