ocfs2: fix rare stale inode errors when exporting via nfs
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd
MF
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
47
48#include "buffer_head_io.h"
49
50static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
51 struct buffer_head *bh_result, int create)
52{
53 int err = -EIO;
54 int status;
55 struct ocfs2_dinode *fe = NULL;
56 struct buffer_head *bh = NULL;
57 struct buffer_head *buffer_cache_bh = NULL;
58 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
59 void *kaddr;
60
61 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
62 (unsigned long long)iblock, bh_result, create);
63
64 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
65
66 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
67 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
68 (unsigned long long)iblock);
69 goto bail;
70 }
71
b657c95c 72 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
76 }
77 fe = (struct ocfs2_dinode *) bh->b_data;
78
ccd979bd
MF
79 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
80 le32_to_cpu(fe->i_clusters))) {
81 mlog(ML_ERROR, "block offset is outside the allocated size: "
82 "%llu\n", (unsigned long long)iblock);
83 goto bail;
84 }
85
86 /* We don't use the page cache to create symlink data, so if
87 * need be, copy it over from the buffer cache. */
88 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
89 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
90 iblock;
91 buffer_cache_bh = sb_getblk(osb->sb, blkno);
92 if (!buffer_cache_bh) {
93 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
94 goto bail;
95 }
96
97 /* we haven't locked out transactions, so a commit
98 * could've happened. Since we've got a reference on
99 * the bh, even if it commits while we're doing the
100 * copy, the data is still good. */
101 if (buffer_jbd(buffer_cache_bh)
102 && ocfs2_inode_is_new(inode)) {
103 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
104 if (!kaddr) {
105 mlog(ML_ERROR, "couldn't kmap!\n");
106 goto bail;
107 }
108 memcpy(kaddr + (bh_result->b_size * iblock),
109 buffer_cache_bh->b_data,
110 bh_result->b_size);
111 kunmap_atomic(kaddr, KM_USER0);
112 set_buffer_uptodate(bh_result);
113 }
114 brelse(buffer_cache_bh);
115 }
116
117 map_bh(bh_result, inode->i_sb,
118 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
119
120 err = 0;
121
122bail:
a81cb88b 123 brelse(bh);
ccd979bd
MF
124
125 mlog_exit(err);
126 return err;
127}
128
129static int ocfs2_get_block(struct inode *inode, sector_t iblock,
130 struct buffer_head *bh_result, int create)
131{
132 int err = 0;
49cb8d2d 133 unsigned int ext_flags;
628a24f5
MF
134 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
135 u64 p_blkno, count, past_eof;
25baf2da 136 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
137
138 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
139 (unsigned long long)iblock, bh_result, create);
140
141 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
142 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
143 inode, inode->i_ino);
144
145 if (S_ISLNK(inode->i_mode)) {
146 /* this always does I/O for some reason. */
147 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
148 goto bail;
149 }
150
628a24f5 151 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 152 &ext_flags);
ccd979bd
MF
153 if (err) {
154 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
155 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
156 (unsigned long long)p_blkno);
ccd979bd
MF
157 goto bail;
158 }
159
628a24f5
MF
160 if (max_blocks < count)
161 count = max_blocks;
162
25baf2da
MF
163 /*
164 * ocfs2 never allocates in this function - the only time we
165 * need to use BH_New is when we're extending i_size on a file
166 * system which doesn't support holes, in which case BH_New
167 * allows block_prepare_write() to zero.
c0420ad2
CL
168 *
169 * If we see this on a sparse file system, then a truncate has
170 * raced us and removed the cluster. In this case, we clear
171 * the buffers dirty and uptodate bits and let the buffer code
172 * ignore it as a hole.
25baf2da 173 */
c0420ad2
CL
174 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
175 clear_buffer_dirty(bh_result);
176 clear_buffer_uptodate(bh_result);
177 goto bail;
178 }
25baf2da 179
49cb8d2d
MF
180 /* Treat the unwritten extent as a hole for zeroing purposes. */
181 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
182 map_bh(bh_result, inode->i_sb, p_blkno);
183
628a24f5
MF
184 bh_result->b_size = count << inode->i_blkbits;
185
25baf2da
MF
186 if (!ocfs2_sparse_alloc(osb)) {
187 if (p_blkno == 0) {
188 err = -EIO;
189 mlog(ML_ERROR,
190 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
191 (unsigned long long)iblock,
192 (unsigned long long)p_blkno,
193 (unsigned long long)OCFS2_I(inode)->ip_blkno);
194 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
195 dump_stack();
196 }
ccd979bd 197
25baf2da
MF
198 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
199 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
200 (unsigned long long)past_eof);
ccd979bd 201
25baf2da
MF
202 if (create && (iblock >= past_eof))
203 set_buffer_new(bh_result);
204 }
ccd979bd
MF
205
206bail:
207 if (err < 0)
208 err = -EIO;
209
210 mlog_exit(err);
211 return err;
212}
213
1afc32b9
MF
214int ocfs2_read_inline_data(struct inode *inode, struct page *page,
215 struct buffer_head *di_bh)
6798d35a
MF
216{
217 void *kaddr;
d2849fb2 218 loff_t size;
6798d35a
MF
219 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
220
221 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
222 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
223 (unsigned long long)OCFS2_I(inode)->ip_blkno);
224 return -EROFS;
225 }
226
227 size = i_size_read(inode);
228
229 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 230 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 231 ocfs2_error(inode->i_sb,
d2849fb2
JK
232 "Inode %llu has with inline data has bad size: %Lu",
233 (unsigned long long)OCFS2_I(inode)->ip_blkno,
234 (unsigned long long)size);
6798d35a
MF
235 return -EROFS;
236 }
237
238 kaddr = kmap_atomic(page, KM_USER0);
239 if (size)
240 memcpy(kaddr, di->id2.i_data.id_data, size);
241 /* Clear the remaining part of the page */
242 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
243 flush_dcache_page(page);
244 kunmap_atomic(kaddr, KM_USER0);
245
246 SetPageUptodate(page);
247
248 return 0;
249}
250
251static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
252{
253 int ret;
254 struct buffer_head *di_bh = NULL;
6798d35a
MF
255
256 BUG_ON(!PageLocked(page));
86c838b0 257 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 258
b657c95c 259 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
260 if (ret) {
261 mlog_errno(ret);
262 goto out;
263 }
264
265 ret = ocfs2_read_inline_data(inode, page, di_bh);
266out:
267 unlock_page(page);
268
269 brelse(di_bh);
270 return ret;
271}
272
ccd979bd
MF
273static int ocfs2_readpage(struct file *file, struct page *page)
274{
275 struct inode *inode = page->mapping->host;
6798d35a 276 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
277 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
278 int ret, unlock = 1;
279
280 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
281
e63aecb6 282 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
283 if (ret != 0) {
284 if (ret == AOP_TRUNCATED_PAGE)
285 unlock = 0;
286 mlog_errno(ret);
287 goto out;
288 }
289
6798d35a 290 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 291 ret = AOP_TRUNCATED_PAGE;
e63aecb6 292 goto out_inode_unlock;
e9dfc0b2 293 }
ccd979bd
MF
294
295 /*
296 * i_size might have just been updated as we grabed the meta lock. We
297 * might now be discovering a truncate that hit on another node.
298 * block_read_full_page->get_block freaks out if it is asked to read
299 * beyond the end of a file, so we check here. Callers
54cb8821 300 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
301 * and notice that the page they just read isn't needed.
302 *
303 * XXX sys_readahead() seems to get that wrong?
304 */
305 if (start >= i_size_read(inode)) {
eebd2aa3 306 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
307 SetPageUptodate(page);
308 ret = 0;
309 goto out_alloc;
310 }
311
6798d35a
MF
312 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
313 ret = ocfs2_readpage_inline(inode, page);
314 else
315 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
316 unlock = 0;
317
ccd979bd
MF
318out_alloc:
319 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
320out_inode_unlock:
321 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
322out:
323 if (unlock)
324 unlock_page(page);
325 mlog_exit(ret);
326 return ret;
327}
328
628a24f5
MF
329/*
330 * This is used only for read-ahead. Failures or difficult to handle
331 * situations are safe to ignore.
332 *
333 * Right now, we don't bother with BH_Boundary - in-inode extent lists
334 * are quite large (243 extents on 4k blocks), so most inodes don't
335 * grow out to a tree. If need be, detecting boundary extents could
336 * trivially be added in a future version of ocfs2_get_block().
337 */
338static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
339 struct list_head *pages, unsigned nr_pages)
340{
341 int ret, err = -EIO;
342 struct inode *inode = mapping->host;
343 struct ocfs2_inode_info *oi = OCFS2_I(inode);
344 loff_t start;
345 struct page *last;
346
347 /*
348 * Use the nonblocking flag for the dlm code to avoid page
349 * lock inversion, but don't bother with retrying.
350 */
351 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
352 if (ret)
353 return err;
354
355 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
356 ocfs2_inode_unlock(inode, 0);
357 return err;
358 }
359
360 /*
361 * Don't bother with inline-data. There isn't anything
362 * to read-ahead in that case anyway...
363 */
364 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
365 goto out_unlock;
366
367 /*
368 * Check whether a remote node truncated this file - we just
369 * drop out in that case as it's not worth handling here.
370 */
371 last = list_entry(pages->prev, struct page, lru);
372 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
373 if (start >= i_size_read(inode))
374 goto out_unlock;
375
376 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
377
378out_unlock:
379 up_read(&oi->ip_alloc_sem);
380 ocfs2_inode_unlock(inode, 0);
381
382 return err;
383}
384
ccd979bd
MF
385/* Note: Because we don't support holes, our allocation has
386 * already happened (allocation writes zeros to the file data)
387 * so we don't have to worry about ordered writes in
388 * ocfs2_writepage.
389 *
390 * ->writepage is called during the process of invalidating the page cache
391 * during blocked lock processing. It can't block on any cluster locks
392 * to during block mapping. It's relying on the fact that the block
393 * mapping can't have disappeared under the dirty pages that it is
394 * being asked to write back.
395 */
396static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
397{
398 int ret;
399
400 mlog_entry("(0x%p)\n", page);
401
402 ret = block_write_full_page(page, ocfs2_get_block, wbc);
403
404 mlog_exit(ret);
405
406 return ret;
407}
408
5069120b
MF
409/*
410 * This is called from ocfs2_write_zero_page() which has handled it's
411 * own cluster locking and has ensured allocation exists for those
412 * blocks to be written.
413 */
53013cba
MF
414int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
415 unsigned from, unsigned to)
416{
417 int ret;
418
53013cba
MF
419 ret = block_prepare_write(page, from, to, ocfs2_get_block);
420
53013cba
MF
421 return ret;
422}
423
ccd979bd
MF
424/* Taken from ext3. We don't necessarily need the full blown
425 * functionality yet, but IMHO it's better to cut and paste the whole
426 * thing so we can avoid introducing our own bugs (and easily pick up
427 * their fixes when they happen) --Mark */
60b11392
MF
428int walk_page_buffers( handle_t *handle,
429 struct buffer_head *head,
430 unsigned from,
431 unsigned to,
432 int *partial,
433 int (*fn)( handle_t *handle,
434 struct buffer_head *bh))
ccd979bd
MF
435{
436 struct buffer_head *bh;
437 unsigned block_start, block_end;
438 unsigned blocksize = head->b_size;
439 int err, ret = 0;
440 struct buffer_head *next;
441
442 for ( bh = head, block_start = 0;
443 ret == 0 && (bh != head || !block_start);
444 block_start = block_end, bh = next)
445 {
446 next = bh->b_this_page;
447 block_end = block_start + blocksize;
448 if (block_end <= from || block_start >= to) {
449 if (partial && !buffer_uptodate(bh))
450 *partial = 1;
451 continue;
452 }
453 err = (*fn)(handle, bh);
454 if (!ret)
455 ret = err;
456 }
457 return ret;
458}
459
1fabe148 460handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
461 struct page *page,
462 unsigned from,
463 unsigned to)
464{
465 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58dadcdb 466 handle_t *handle;
ccd979bd
MF
467 int ret = 0;
468
65eff9cc 469 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
58dadcdb 470 if (IS_ERR(handle)) {
ccd979bd
MF
471 ret = -ENOMEM;
472 mlog_errno(ret);
473 goto out;
474 }
475
476 if (ocfs2_should_order_data(inode)) {
2b4e30fb 477 ret = ocfs2_jbd2_file_inode(handle, inode);
2b4e30fb 478 if (ret < 0)
ccd979bd
MF
479 mlog_errno(ret);
480 }
481out:
482 if (ret) {
58dadcdb 483 if (!IS_ERR(handle))
02dc1af4 484 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
485 handle = ERR_PTR(ret);
486 }
487 return handle;
488}
489
ccd979bd
MF
490static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
491{
492 sector_t status;
493 u64 p_blkno = 0;
494 int err = 0;
495 struct inode *inode = mapping->host;
496
497 mlog_entry("(block = %llu)\n", (unsigned long long)block);
498
499 /* We don't need to lock journal system files, since they aren't
500 * accessed concurrently from multiple nodes.
501 */
502 if (!INODE_JOURNAL(inode)) {
e63aecb6 503 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
504 if (err) {
505 if (err != -ENOENT)
506 mlog_errno(err);
507 goto bail;
508 }
509 down_read(&OCFS2_I(inode)->ip_alloc_sem);
510 }
511
6798d35a
MF
512 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
513 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
514 NULL);
ccd979bd
MF
515
516 if (!INODE_JOURNAL(inode)) {
517 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 518 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
519 }
520
521 if (err) {
522 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
523 (unsigned long long)block);
524 mlog_errno(err);
525 goto bail;
526 }
527
ccd979bd
MF
528bail:
529 status = err ? 0 : p_blkno;
530
531 mlog_exit((int)status);
532
533 return status;
534}
535
536/*
537 * TODO: Make this into a generic get_blocks function.
538 *
539 * From do_direct_io in direct-io.c:
540 * "So what we do is to permit the ->get_blocks function to populate
541 * bh.b_size with the size of IO which is permitted at this offset and
542 * this i_blkbits."
543 *
544 * This function is called directly from get_more_blocks in direct-io.c.
545 *
546 * called like this: dio->get_blocks(dio->inode, fs_startblk,
547 * fs_count, map_bh, dio->rw == WRITE);
548 */
549static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
550 struct buffer_head *bh_result, int create)
551{
552 int ret;
4f902c37 553 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 554 unsigned int ext_flags;
184d7d20 555 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 556 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 557
ccd979bd
MF
558 /* This function won't even be called if the request isn't all
559 * nicely aligned and of the right size, so there's no need
560 * for us to check any of that. */
561
25baf2da 562 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
563
564 /*
565 * Any write past EOF is not allowed because we'd be extending.
566 */
567 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
568 ret = -EIO;
569 goto bail;
570 }
ccd979bd
MF
571
572 /* This figures out the size of the next contiguous block, and
573 * our logical offset */
363041a5 574 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 575 &contig_blocks, &ext_flags);
ccd979bd
MF
576 if (ret) {
577 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578 (unsigned long long)iblock);
579 ret = -EIO;
580 goto bail;
581 }
582
0e116227 583 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
25baf2da
MF
584 ocfs2_error(inode->i_sb,
585 "Inode %llu has a hole at block %llu\n",
586 (unsigned long long)OCFS2_I(inode)->ip_blkno,
587 (unsigned long long)iblock);
588 ret = -EROFS;
589 goto bail;
590 }
591
592 /*
593 * get_more_blocks() expects us to describe a hole by clearing
594 * the mapped bit on bh_result().
49cb8d2d
MF
595 *
596 * Consider an unwritten extent as a hole.
25baf2da 597 */
49cb8d2d 598 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
599 map_bh(bh_result, inode->i_sb, p_blkno);
600 else {
601 /*
602 * ocfs2_prepare_inode_for_write() should have caught
603 * the case where we'd be filling a hole and triggered
604 * a buffered write instead.
605 */
606 if (create) {
607 ret = -EIO;
608 mlog_errno(ret);
609 goto bail;
610 }
611
612 clear_buffer_mapped(bh_result);
613 }
ccd979bd
MF
614
615 /* make sure we don't map more than max_blocks blocks here as
616 that's all the kernel will handle at this point. */
617 if (max_blocks < contig_blocks)
618 contig_blocks = max_blocks;
619 bh_result->b_size = contig_blocks << blocksize_bits;
620bail:
621 return ret;
622}
623
624/*
625 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
626 * particularly interested in the aio/dio case. Like the core uses
627 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
628 * truncation on another.
629 */
630static void ocfs2_dio_end_io(struct kiocb *iocb,
631 loff_t offset,
632 ssize_t bytes,
633 void *private)
634{
d28c9174 635 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 636 int level;
ccd979bd
MF
637
638 /* this io's submitter should not have unlocked this before we could */
639 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 640
ccd979bd 641 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
642
643 level = ocfs2_iocb_rw_locked_level(iocb);
644 if (!level)
645 up_read(&inode->i_alloc_sem);
646 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
647}
648
03f981cf
JB
649/*
650 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
651 * from ext3. PageChecked() bits have been removed as OCFS2 does not
652 * do journalled data.
653 */
654static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
655{
656 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
657
2b4e30fb 658 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
659}
660
661static int ocfs2_releasepage(struct page *page, gfp_t wait)
662{
663 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
664
665 if (!page_has_buffers(page))
666 return 0;
2b4e30fb 667 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
668}
669
ccd979bd
MF
670static ssize_t ocfs2_direct_IO(int rw,
671 struct kiocb *iocb,
672 const struct iovec *iov,
673 loff_t offset,
674 unsigned long nr_segs)
675{
676 struct file *file = iocb->ki_filp;
d28c9174 677 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
678 int ret;
679
680 mlog_entry_void();
53013cba 681
6798d35a
MF
682 /*
683 * Fallback to buffered I/O if we see an inode without
684 * extents.
685 */
686 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
687 return 0;
688
ccd979bd
MF
689 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
690 inode->i_sb->s_bdev, iov, offset,
691 nr_segs,
692 ocfs2_direct_IO_get_blocks,
693 ocfs2_dio_end_io);
c934a92d 694
ccd979bd
MF
695 mlog_exit(ret);
696 return ret;
697}
698
9517bac6
MF
699static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
700 u32 cpos,
701 unsigned int *start,
702 unsigned int *end)
703{
704 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
705
706 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
707 unsigned int cpp;
708
709 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
710
711 cluster_start = cpos % cpp;
712 cluster_start = cluster_start << osb->s_clustersize_bits;
713
714 cluster_end = cluster_start + osb->s_clustersize;
715 }
716
717 BUG_ON(cluster_start > PAGE_SIZE);
718 BUG_ON(cluster_end > PAGE_SIZE);
719
720 if (start)
721 *start = cluster_start;
722 if (end)
723 *end = cluster_end;
724}
725
726/*
727 * 'from' and 'to' are the region in the page to avoid zeroing.
728 *
729 * If pagesize > clustersize, this function will avoid zeroing outside
730 * of the cluster boundary.
731 *
732 * from == to == 0 is code for "zero the entire cluster region"
733 */
734static void ocfs2_clear_page_regions(struct page *page,
735 struct ocfs2_super *osb, u32 cpos,
736 unsigned from, unsigned to)
737{
738 void *kaddr;
739 unsigned int cluster_start, cluster_end;
740
741 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
742
743 kaddr = kmap_atomic(page, KM_USER0);
744
745 if (from || to) {
746 if (from > cluster_start)
747 memset(kaddr + cluster_start, 0, from - cluster_start);
748 if (to < cluster_end)
749 memset(kaddr + to, 0, cluster_end - to);
750 } else {
751 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
752 }
753
754 kunmap_atomic(kaddr, KM_USER0);
755}
756
4e9563fd
MF
757/*
758 * Nonsparse file systems fully allocate before we get to the write
759 * code. This prevents ocfs2_write() from tagging the write as an
760 * allocating one, which means ocfs2_map_page_blocks() might try to
761 * read-in the blocks at the tail of our file. Avoid reading them by
762 * testing i_size against each block offset.
763 */
764static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
765 unsigned int block_start)
766{
767 u64 offset = page_offset(page) + block_start;
768
769 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
770 return 1;
771
772 if (i_size_read(inode) > offset)
773 return 1;
774
775 return 0;
776}
777
9517bac6
MF
778/*
779 * Some of this taken from block_prepare_write(). We already have our
780 * mapping by now though, and the entire write will be allocating or
781 * it won't, so not much need to use BH_New.
782 *
783 * This will also skip zeroing, which is handled externally.
784 */
60b11392
MF
785int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
786 struct inode *inode, unsigned int from,
787 unsigned int to, int new)
9517bac6
MF
788{
789 int ret = 0;
790 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
791 unsigned int block_end, block_start;
792 unsigned int bsize = 1 << inode->i_blkbits;
793
794 if (!page_has_buffers(page))
795 create_empty_buffers(page, bsize, 0);
796
797 head = page_buffers(page);
798 for (bh = head, block_start = 0; bh != head || !block_start;
799 bh = bh->b_this_page, block_start += bsize) {
800 block_end = block_start + bsize;
801
3a307ffc
MF
802 clear_buffer_new(bh);
803
9517bac6
MF
804 /*
805 * Ignore blocks outside of our i/o range -
806 * they may belong to unallocated clusters.
807 */
60b11392 808 if (block_start >= to || block_end <= from) {
9517bac6
MF
809 if (PageUptodate(page))
810 set_buffer_uptodate(bh);
811 continue;
812 }
813
814 /*
815 * For an allocating write with cluster size >= page
816 * size, we always write the entire page.
817 */
3a307ffc
MF
818 if (new)
819 set_buffer_new(bh);
9517bac6
MF
820
821 if (!buffer_mapped(bh)) {
822 map_bh(bh, inode->i_sb, *p_blkno);
823 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
824 }
825
826 if (PageUptodate(page)) {
827 if (!buffer_uptodate(bh))
828 set_buffer_uptodate(bh);
829 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 830 !buffer_new(bh) &&
4e9563fd 831 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 832 (block_start < from || block_end > to)) {
9517bac6
MF
833 ll_rw_block(READ, 1, &bh);
834 *wait_bh++=bh;
835 }
836
837 *p_blkno = *p_blkno + 1;
838 }
839
840 /*
841 * If we issued read requests - let them complete.
842 */
843 while(wait_bh > wait) {
844 wait_on_buffer(*--wait_bh);
845 if (!buffer_uptodate(*wait_bh))
846 ret = -EIO;
847 }
848
849 if (ret == 0 || !new)
850 return ret;
851
852 /*
853 * If we get -EIO above, zero out any newly allocated blocks
854 * to avoid exposing stale data.
855 */
856 bh = head;
857 block_start = 0;
858 do {
9517bac6
MF
859 block_end = block_start + bsize;
860 if (block_end <= from)
861 goto next_bh;
862 if (block_start >= to)
863 break;
864
eebd2aa3 865 zero_user(page, block_start, bh->b_size);
9517bac6
MF
866 set_buffer_uptodate(bh);
867 mark_buffer_dirty(bh);
868
869next_bh:
870 block_start = block_end;
871 bh = bh->b_this_page;
872 } while (bh != head);
873
874 return ret;
875}
876
3a307ffc
MF
877#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
878#define OCFS2_MAX_CTXT_PAGES 1
879#else
880#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
881#endif
882
883#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
884
6af67d82 885/*
3a307ffc 886 * Describe the state of a single cluster to be written to.
6af67d82 887 */
3a307ffc
MF
888struct ocfs2_write_cluster_desc {
889 u32 c_cpos;
890 u32 c_phys;
891 /*
892 * Give this a unique field because c_phys eventually gets
893 * filled.
894 */
895 unsigned c_new;
b27b7cbc 896 unsigned c_unwritten;
3a307ffc 897};
6af67d82 898
b27b7cbc
MF
899static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
900{
901 return d->c_new || d->c_unwritten;
902}
903
3a307ffc
MF
904struct ocfs2_write_ctxt {
905 /* Logical cluster position / len of write */
906 u32 w_cpos;
907 u32 w_clen;
6af67d82 908
3a307ffc 909 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 910
3a307ffc
MF
911 /*
912 * This is true if page_size > cluster_size.
913 *
914 * It triggers a set of special cases during write which might
915 * have to deal with allocating writes to partial pages.
916 */
917 unsigned int w_large_pages;
6af67d82 918
3a307ffc
MF
919 /*
920 * Pages involved in this write.
921 *
922 * w_target_page is the page being written to by the user.
923 *
924 * w_pages is an array of pages which always contains
925 * w_target_page, and in the case of an allocating write with
926 * page_size < cluster size, it will contain zero'd and mapped
927 * pages adjacent to w_target_page which need to be written
928 * out in so that future reads from that region will get
929 * zero's.
930 */
931 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
932 unsigned int w_num_pages;
933 struct page *w_target_page;
eeb47d12 934
3a307ffc
MF
935 /*
936 * ocfs2_write_end() uses this to know what the real range to
937 * write in the target should be.
938 */
939 unsigned int w_target_from;
940 unsigned int w_target_to;
941
942 /*
943 * We could use journal_current_handle() but this is cleaner,
944 * IMHO -Mark
945 */
946 handle_t *w_handle;
947
948 struct buffer_head *w_di_bh;
b27b7cbc
MF
949
950 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
951};
952
1d410a6e 953void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
954{
955 int i;
956
1d410a6e
MF
957 for(i = 0; i < num_pages; i++) {
958 if (pages[i]) {
959 unlock_page(pages[i]);
960 mark_page_accessed(pages[i]);
961 page_cache_release(pages[i]);
962 }
6af67d82 963 }
1d410a6e
MF
964}
965
966static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
967{
968 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 969
3a307ffc
MF
970 brelse(wc->w_di_bh);
971 kfree(wc);
972}
973
974static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
975 struct ocfs2_super *osb, loff_t pos,
607d44aa 976 unsigned len, struct buffer_head *di_bh)
3a307ffc 977{
30b8548f 978 u32 cend;
3a307ffc
MF
979 struct ocfs2_write_ctxt *wc;
980
981 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
982 if (!wc)
983 return -ENOMEM;
6af67d82 984
3a307ffc 985 wc->w_cpos = pos >> osb->s_clustersize_bits;
30b8548f 986 cend = (pos + len - 1) >> osb->s_clustersize_bits;
987 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
988 get_bh(di_bh);
989 wc->w_di_bh = di_bh;
6af67d82 990
3a307ffc
MF
991 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
992 wc->w_large_pages = 1;
993 else
994 wc->w_large_pages = 0;
995
b27b7cbc
MF
996 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
997
3a307ffc 998 *wcp = wc;
6af67d82 999
3a307ffc 1000 return 0;
6af67d82
MF
1001}
1002
9517bac6 1003/*
3a307ffc
MF
1004 * If a page has any new buffers, zero them out here, and mark them uptodate
1005 * and dirty so they'll be written out (in order to prevent uninitialised
1006 * block data from leaking). And clear the new bit.
9517bac6 1007 */
3a307ffc 1008static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1009{
3a307ffc
MF
1010 unsigned int block_start, block_end;
1011 struct buffer_head *head, *bh;
9517bac6 1012
3a307ffc
MF
1013 BUG_ON(!PageLocked(page));
1014 if (!page_has_buffers(page))
1015 return;
9517bac6 1016
3a307ffc
MF
1017 bh = head = page_buffers(page);
1018 block_start = 0;
1019 do {
1020 block_end = block_start + bh->b_size;
1021
1022 if (buffer_new(bh)) {
1023 if (block_end > from && block_start < to) {
1024 if (!PageUptodate(page)) {
1025 unsigned start, end;
3a307ffc
MF
1026
1027 start = max(from, block_start);
1028 end = min(to, block_end);
1029
eebd2aa3 1030 zero_user_segment(page, start, end);
3a307ffc
MF
1031 set_buffer_uptodate(bh);
1032 }
1033
1034 clear_buffer_new(bh);
1035 mark_buffer_dirty(bh);
1036 }
1037 }
9517bac6 1038
3a307ffc
MF
1039 block_start = block_end;
1040 bh = bh->b_this_page;
1041 } while (bh != head);
1042}
1043
1044/*
1045 * Only called when we have a failure during allocating write to write
1046 * zero's to the newly allocated region.
1047 */
1048static void ocfs2_write_failure(struct inode *inode,
1049 struct ocfs2_write_ctxt *wc,
1050 loff_t user_pos, unsigned user_len)
1051{
1052 int i;
5c26a7b7
MF
1053 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1054 to = user_pos + user_len;
3a307ffc
MF
1055 struct page *tmppage;
1056
5c26a7b7 1057 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1058
3a307ffc
MF
1059 for(i = 0; i < wc->w_num_pages; i++) {
1060 tmppage = wc->w_pages[i];
9517bac6 1061
961cecbe 1062 if (page_has_buffers(tmppage)) {
53ef99ca 1063 if (ocfs2_should_order_data(inode))
2b4e30fb 1064 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1065
1066 block_commit_write(tmppage, from, to);
1067 }
9517bac6 1068 }
9517bac6
MF
1069}
1070
3a307ffc
MF
1071static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1072 struct ocfs2_write_ctxt *wc,
1073 struct page *page, u32 cpos,
1074 loff_t user_pos, unsigned user_len,
1075 int new)
9517bac6 1076{
3a307ffc
MF
1077 int ret;
1078 unsigned int map_from = 0, map_to = 0;
9517bac6 1079 unsigned int cluster_start, cluster_end;
3a307ffc 1080 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1081
3a307ffc 1082 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1083 &cluster_start, &cluster_end);
1084
3a307ffc
MF
1085 if (page == wc->w_target_page) {
1086 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1087 map_to = map_from + user_len;
1088
1089 if (new)
1090 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1091 cluster_start, cluster_end,
1092 new);
1093 else
1094 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1095 map_from, map_to, new);
1096 if (ret) {
9517bac6
MF
1097 mlog_errno(ret);
1098 goto out;
1099 }
1100
3a307ffc
MF
1101 user_data_from = map_from;
1102 user_data_to = map_to;
9517bac6 1103 if (new) {
3a307ffc
MF
1104 map_from = cluster_start;
1105 map_to = cluster_end;
9517bac6
MF
1106 }
1107 } else {
1108 /*
1109 * If we haven't allocated the new page yet, we
1110 * shouldn't be writing it out without copying user
1111 * data. This is likely a math error from the caller.
1112 */
1113 BUG_ON(!new);
1114
3a307ffc
MF
1115 map_from = cluster_start;
1116 map_to = cluster_end;
9517bac6
MF
1117
1118 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1119 cluster_start, cluster_end, new);
9517bac6
MF
1120 if (ret) {
1121 mlog_errno(ret);
1122 goto out;
1123 }
1124 }
1125
1126 /*
1127 * Parts of newly allocated pages need to be zero'd.
1128 *
1129 * Above, we have also rewritten 'to' and 'from' - as far as
1130 * the rest of the function is concerned, the entire cluster
1131 * range inside of a page needs to be written.
1132 *
1133 * We can skip this if the page is up to date - it's already
1134 * been zero'd from being read in as a hole.
1135 */
1136 if (new && !PageUptodate(page))
1137 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1138 cpos, user_data_from, user_data_to);
9517bac6
MF
1139
1140 flush_dcache_page(page);
1141
9517bac6 1142out:
3a307ffc 1143 return ret;
9517bac6
MF
1144}
1145
1146/*
3a307ffc 1147 * This function will only grab one clusters worth of pages.
9517bac6 1148 */
3a307ffc
MF
1149static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1150 struct ocfs2_write_ctxt *wc,
7307de80
MF
1151 u32 cpos, loff_t user_pos, int new,
1152 struct page *mmap_page)
9517bac6 1153{
3a307ffc
MF
1154 int ret = 0, i;
1155 unsigned long start, target_index, index;
9517bac6 1156 struct inode *inode = mapping->host;
9517bac6 1157
3a307ffc 1158 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1159
1160 /*
1161 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1162 * non allocating write, we just change the one
1163 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1164 */
9517bac6 1165 if (new) {
3a307ffc
MF
1166 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1167 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1168 } else {
3a307ffc
MF
1169 wc->w_num_pages = 1;
1170 start = target_index;
9517bac6
MF
1171 }
1172
3a307ffc 1173 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1174 index = start + i;
1175
7307de80
MF
1176 if (index == target_index && mmap_page) {
1177 /*
1178 * ocfs2_pagemkwrite() is a little different
1179 * and wants us to directly use the page
1180 * passed in.
1181 */
1182 lock_page(mmap_page);
1183
1184 if (mmap_page->mapping != mapping) {
1185 unlock_page(mmap_page);
1186 /*
1187 * Sanity check - the locking in
1188 * ocfs2_pagemkwrite() should ensure
1189 * that this code doesn't trigger.
1190 */
1191 ret = -EINVAL;
1192 mlog_errno(ret);
1193 goto out;
1194 }
1195
1196 page_cache_get(mmap_page);
1197 wc->w_pages[i] = mmap_page;
1198 } else {
1199 wc->w_pages[i] = find_or_create_page(mapping, index,
1200 GFP_NOFS);
1201 if (!wc->w_pages[i]) {
1202 ret = -ENOMEM;
1203 mlog_errno(ret);
1204 goto out;
1205 }
9517bac6 1206 }
3a307ffc
MF
1207
1208 if (index == target_index)
1209 wc->w_target_page = wc->w_pages[i];
9517bac6 1210 }
3a307ffc
MF
1211out:
1212 return ret;
1213}
1214
1215/*
1216 * Prepare a single cluster for write one cluster into the file.
1217 */
1218static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc
MF
1219 u32 phys, unsigned int unwritten,
1220 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1221 struct ocfs2_alloc_context *meta_ac,
1222 struct ocfs2_write_ctxt *wc, u32 cpos,
1223 loff_t user_pos, unsigned user_len)
1224{
b27b7cbc 1225 int ret, i, new, should_zero = 0;
3a307ffc
MF
1226 u64 v_blkno, p_blkno;
1227 struct inode *inode = mapping->host;
f99b9b7c 1228 struct ocfs2_extent_tree et;
3a307ffc
MF
1229
1230 new = phys == 0 ? 1 : 0;
b27b7cbc
MF
1231 if (new || unwritten)
1232 should_zero = 1;
9517bac6
MF
1233
1234 if (new) {
3a307ffc
MF
1235 u32 tmp_pos;
1236
9517bac6
MF
1237 /*
1238 * This is safe to call with the page locks - it won't take
1239 * any additional semaphores or cluster locks.
1240 */
3a307ffc 1241 tmp_pos = cpos;
0eb8d47e
TM
1242 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1243 &tmp_pos, 1, 0, wc->w_di_bh,
1244 wc->w_handle, data_ac,
1245 meta_ac, NULL);
9517bac6
MF
1246 /*
1247 * This shouldn't happen because we must have already
1248 * calculated the correct meta data allocation required. The
1249 * internal tree allocation code should know how to increase
1250 * transaction credits itself.
1251 *
1252 * If need be, we could handle -EAGAIN for a
1253 * RESTART_TRANS here.
1254 */
1255 mlog_bug_on_msg(ret == -EAGAIN,
1256 "Inode %llu: EAGAIN return during allocation.\n",
1257 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1258 if (ret < 0) {
1259 mlog_errno(ret);
1260 goto out;
1261 }
b27b7cbc 1262 } else if (unwritten) {
8d6220d6 1263 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1264 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1265 wc->w_handle, cpos, 1, phys,
f99b9b7c 1266 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1267 if (ret < 0) {
1268 mlog_errno(ret);
1269 goto out;
1270 }
1271 }
3a307ffc 1272
b27b7cbc 1273 if (should_zero)
3a307ffc 1274 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1275 else
3a307ffc 1276 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1277
3a307ffc
MF
1278 /*
1279 * The only reason this should fail is due to an inability to
1280 * find the extent added.
1281 */
49cb8d2d
MF
1282 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1283 NULL);
9517bac6 1284 if (ret < 0) {
3a307ffc
MF
1285 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1286 "at logical block %llu",
1287 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1288 (unsigned long long)v_blkno);
9517bac6
MF
1289 goto out;
1290 }
1291
1292 BUG_ON(p_blkno == 0);
1293
3a307ffc
MF
1294 for(i = 0; i < wc->w_num_pages; i++) {
1295 int tmpret;
9517bac6 1296
3a307ffc
MF
1297 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1298 wc->w_pages[i], cpos,
b27b7cbc
MF
1299 user_pos, user_len,
1300 should_zero);
3a307ffc
MF
1301 if (tmpret) {
1302 mlog_errno(tmpret);
1303 if (ret == 0)
1304 tmpret = ret;
1305 }
9517bac6
MF
1306 }
1307
3a307ffc
MF
1308 /*
1309 * We only have cleanup to do in case of allocating write.
1310 */
1311 if (ret && new)
1312 ocfs2_write_failure(inode, wc, user_pos, user_len);
1313
9517bac6 1314out:
9517bac6 1315
3a307ffc 1316 return ret;
9517bac6
MF
1317}
1318
0d172baa
MF
1319static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1320 struct ocfs2_alloc_context *data_ac,
1321 struct ocfs2_alloc_context *meta_ac,
1322 struct ocfs2_write_ctxt *wc,
1323 loff_t pos, unsigned len)
1324{
1325 int ret, i;
db56246c
MF
1326 loff_t cluster_off;
1327 unsigned int local_len = len;
0d172baa 1328 struct ocfs2_write_cluster_desc *desc;
db56246c 1329 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1330
1331 for (i = 0; i < wc->w_clen; i++) {
1332 desc = &wc->w_desc[i];
1333
db56246c
MF
1334 /*
1335 * We have to make sure that the total write passed in
1336 * doesn't extend past a single cluster.
1337 */
1338 local_len = len;
1339 cluster_off = pos & (osb->s_clustersize - 1);
1340 if ((cluster_off + local_len) > osb->s_clustersize)
1341 local_len = osb->s_clustersize - cluster_off;
1342
b27b7cbc
MF
1343 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1344 desc->c_unwritten, data_ac, meta_ac,
db56246c 1345 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1346 if (ret) {
1347 mlog_errno(ret);
1348 goto out;
1349 }
db56246c
MF
1350
1351 len -= local_len;
1352 pos += local_len;
0d172baa
MF
1353 }
1354
1355 ret = 0;
1356out:
1357 return ret;
1358}
1359
3a307ffc
MF
1360/*
1361 * ocfs2_write_end() wants to know which parts of the target page it
1362 * should complete the write on. It's easiest to compute them ahead of
1363 * time when a more complete view of the write is available.
1364 */
1365static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1366 struct ocfs2_write_ctxt *wc,
1367 loff_t pos, unsigned len, int alloc)
9517bac6 1368{
3a307ffc 1369 struct ocfs2_write_cluster_desc *desc;
9517bac6 1370
3a307ffc
MF
1371 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1372 wc->w_target_to = wc->w_target_from + len;
1373
1374 if (alloc == 0)
1375 return;
1376
1377 /*
1378 * Allocating write - we may have different boundaries based
1379 * on page size and cluster size.
1380 *
1381 * NOTE: We can no longer compute one value from the other as
1382 * the actual write length and user provided length may be
1383 * different.
1384 */
9517bac6 1385
3a307ffc
MF
1386 if (wc->w_large_pages) {
1387 /*
1388 * We only care about the 1st and last cluster within
b27b7cbc 1389 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1390 * value may be extended out to the start/end of a
1391 * newly allocated cluster.
1392 */
1393 desc = &wc->w_desc[0];
b27b7cbc 1394 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1395 ocfs2_figure_cluster_boundaries(osb,
1396 desc->c_cpos,
1397 &wc->w_target_from,
1398 NULL);
1399
1400 desc = &wc->w_desc[wc->w_clen - 1];
b27b7cbc 1401 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1402 ocfs2_figure_cluster_boundaries(osb,
1403 desc->c_cpos,
1404 NULL,
1405 &wc->w_target_to);
1406 } else {
1407 wc->w_target_from = 0;
1408 wc->w_target_to = PAGE_CACHE_SIZE;
1409 }
9517bac6
MF
1410}
1411
0d172baa
MF
1412/*
1413 * Populate each single-cluster write descriptor in the write context
1414 * with information about the i/o to be done.
b27b7cbc
MF
1415 *
1416 * Returns the number of clusters that will have to be allocated, as
1417 * well as a worst case estimate of the number of extent records that
1418 * would have to be created during a write to an unwritten region.
0d172baa
MF
1419 */
1420static int ocfs2_populate_write_desc(struct inode *inode,
1421 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1422 unsigned int *clusters_to_alloc,
1423 unsigned int *extents_to_split)
9517bac6 1424{
0d172baa 1425 int ret;
3a307ffc 1426 struct ocfs2_write_cluster_desc *desc;
0d172baa 1427 unsigned int num_clusters = 0;
b27b7cbc 1428 unsigned int ext_flags = 0;
0d172baa
MF
1429 u32 phys = 0;
1430 int i;
9517bac6 1431
b27b7cbc
MF
1432 *clusters_to_alloc = 0;
1433 *extents_to_split = 0;
1434
3a307ffc
MF
1435 for (i = 0; i < wc->w_clen; i++) {
1436 desc = &wc->w_desc[i];
1437 desc->c_cpos = wc->w_cpos + i;
1438
1439 if (num_clusters == 0) {
b27b7cbc
MF
1440 /*
1441 * Need to look up the next extent record.
1442 */
3a307ffc 1443 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1444 &num_clusters, &ext_flags);
3a307ffc
MF
1445 if (ret) {
1446 mlog_errno(ret);
607d44aa 1447 goto out;
3a307ffc 1448 }
b27b7cbc
MF
1449
1450 /*
1451 * Assume worst case - that we're writing in
1452 * the middle of the extent.
1453 *
1454 * We can assume that the write proceeds from
1455 * left to right, in which case the extent
1456 * insert code is smart enough to coalesce the
1457 * next splits into the previous records created.
1458 */
1459 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1460 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1461 } else if (phys) {
1462 /*
1463 * Only increment phys if it doesn't describe
1464 * a hole.
1465 */
1466 phys++;
1467 }
1468
1469 desc->c_phys = phys;
1470 if (phys == 0) {
1471 desc->c_new = 1;
0d172baa 1472 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1473 }
b27b7cbc
MF
1474 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1475 desc->c_unwritten = 1;
3a307ffc
MF
1476
1477 num_clusters--;
9517bac6
MF
1478 }
1479
0d172baa
MF
1480 ret = 0;
1481out:
1482 return ret;
1483}
1484
1afc32b9
MF
1485static int ocfs2_write_begin_inline(struct address_space *mapping,
1486 struct inode *inode,
1487 struct ocfs2_write_ctxt *wc)
1488{
1489 int ret;
1490 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1491 struct page *page;
1492 handle_t *handle;
1493 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1494
1495 page = find_or_create_page(mapping, 0, GFP_NOFS);
1496 if (!page) {
1497 ret = -ENOMEM;
1498 mlog_errno(ret);
1499 goto out;
1500 }
1501 /*
1502 * If we don't set w_num_pages then this page won't get unlocked
1503 * and freed on cleanup of the write context.
1504 */
1505 wc->w_pages[0] = wc->w_target_page = page;
1506 wc->w_num_pages = 1;
1507
1508 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1509 if (IS_ERR(handle)) {
1510 ret = PTR_ERR(handle);
1511 mlog_errno(ret);
1512 goto out;
1513 }
1514
13723d00
JB
1515 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1516 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1517 if (ret) {
1518 ocfs2_commit_trans(osb, handle);
1519
1520 mlog_errno(ret);
1521 goto out;
1522 }
1523
1524 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1525 ocfs2_set_inode_data_inline(inode, di);
1526
1527 if (!PageUptodate(page)) {
1528 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1529 if (ret) {
1530 ocfs2_commit_trans(osb, handle);
1531
1532 goto out;
1533 }
1534 }
1535
1536 wc->w_handle = handle;
1537out:
1538 return ret;
1539}
1540
1541int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1542{
1543 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1544
0d8a4e0c 1545 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1546 return 1;
1547 return 0;
1548}
1549
1550static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1551 struct inode *inode, loff_t pos,
1552 unsigned len, struct page *mmap_page,
1553 struct ocfs2_write_ctxt *wc)
1554{
1555 int ret, written = 0;
1556 loff_t end = pos + len;
1557 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1558 struct ocfs2_dinode *di = NULL;
1afc32b9
MF
1559
1560 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1561 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1562 oi->ip_dyn_features);
1563
1564 /*
1565 * Handle inodes which already have inline data 1st.
1566 */
1567 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1568 if (mmap_page == NULL &&
1569 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1570 goto do_inline_write;
1571
1572 /*
1573 * The write won't fit - we have to give this inode an
1574 * inline extent list now.
1575 */
1576 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1577 if (ret)
1578 mlog_errno(ret);
1579 goto out;
1580 }
1581
1582 /*
1583 * Check whether the inode can accept inline data.
1584 */
1585 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1586 return 0;
1587
1588 /*
1589 * Check whether the write can fit.
1590 */
d9ae49d6
TY
1591 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1592 if (mmap_page ||
1593 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1594 return 0;
1595
1596do_inline_write:
1597 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1598 if (ret) {
1599 mlog_errno(ret);
1600 goto out;
1601 }
1602
1603 /*
1604 * This signals to the caller that the data can be written
1605 * inline.
1606 */
1607 written = 1;
1608out:
1609 return written ? written : ret;
1610}
1611
65ed39d6
MF
1612/*
1613 * This function only does anything for file systems which can't
1614 * handle sparse files.
1615 *
1616 * What we want to do here is fill in any hole between the current end
1617 * of allocation and the end of our write. That way the rest of the
1618 * write path can treat it as an non-allocating write, which has no
1619 * special case code for sparse/nonsparse files.
1620 */
1621static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1622 unsigned len,
1623 struct ocfs2_write_ctxt *wc)
1624{
1625 int ret;
1626 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1627 loff_t newsize = pos + len;
1628
1629 if (ocfs2_sparse_alloc(osb))
1630 return 0;
1631
1632 if (newsize <= i_size_read(inode))
1633 return 0;
1634
1635 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1636 if (ret)
1637 mlog_errno(ret);
1638
1639 return ret;
1640}
1641
0d172baa
MF
1642int ocfs2_write_begin_nolock(struct address_space *mapping,
1643 loff_t pos, unsigned len, unsigned flags,
1644 struct page **pagep, void **fsdata,
1645 struct buffer_head *di_bh, struct page *mmap_page)
1646{
1647 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1648 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1649 struct ocfs2_write_ctxt *wc;
1650 struct inode *inode = mapping->host;
1651 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1652 struct ocfs2_dinode *di;
1653 struct ocfs2_alloc_context *data_ac = NULL;
1654 struct ocfs2_alloc_context *meta_ac = NULL;
1655 handle_t *handle;
f99b9b7c 1656 struct ocfs2_extent_tree et;
0d172baa
MF
1657
1658 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1659 if (ret) {
1660 mlog_errno(ret);
1661 return ret;
1662 }
1663
1afc32b9
MF
1664 if (ocfs2_supports_inline_data(osb)) {
1665 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1666 mmap_page, wc);
1667 if (ret == 1) {
1668 ret = 0;
1669 goto success;
1670 }
1671 if (ret < 0) {
1672 mlog_errno(ret);
1673 goto out;
1674 }
1675 }
1676
65ed39d6
MF
1677 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1678 if (ret) {
1679 mlog_errno(ret);
1680 goto out;
1681 }
1682
b27b7cbc
MF
1683 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1684 &extents_to_split);
0d172baa
MF
1685 if (ret) {
1686 mlog_errno(ret);
1687 goto out;
1688 }
1689
1690 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1691
3a307ffc
MF
1692 /*
1693 * We set w_target_from, w_target_to here so that
1694 * ocfs2_write_end() knows which range in the target page to
1695 * write out. An allocation requires that we write the entire
1696 * cluster range.
1697 */
b27b7cbc 1698 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1699 /*
1700 * XXX: We are stretching the limits of
b27b7cbc 1701 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1702 * the work to be done.
1703 */
e7d4cb6b
TM
1704 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1705 " clusters_to_add = %u, extents_to_split = %u\n",
1706 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1707 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1708 clusters_to_alloc, extents_to_split);
1709
8d6220d6 1710 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1711 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1712 clusters_to_alloc, extents_to_split,
f99b9b7c 1713 &data_ac, &meta_ac);
9517bac6
MF
1714 if (ret) {
1715 mlog_errno(ret);
607d44aa 1716 goto out;
9517bac6
MF
1717 }
1718
811f933d
TM
1719 credits = ocfs2_calc_extend_credits(inode->i_sb,
1720 &di->id2.i_list,
3a307ffc
MF
1721 clusters_to_alloc);
1722
9517bac6
MF
1723 }
1724
b27b7cbc
MF
1725 ocfs2_set_target_boundaries(osb, wc, pos, len,
1726 clusters_to_alloc + extents_to_split);
3a307ffc 1727
9517bac6
MF
1728 handle = ocfs2_start_trans(osb, credits);
1729 if (IS_ERR(handle)) {
1730 ret = PTR_ERR(handle);
1731 mlog_errno(ret);
607d44aa 1732 goto out;
9517bac6
MF
1733 }
1734
3a307ffc
MF
1735 wc->w_handle = handle;
1736
a90714c1
JK
1737 if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1738 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1739 ret = -EDQUOT;
1740 goto out_commit;
1741 }
3a307ffc
MF
1742 /*
1743 * We don't want this to fail in ocfs2_write_end(), so do it
1744 * here.
1745 */
13723d00
JB
1746 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1747 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1748 if (ret) {
9517bac6 1749 mlog_errno(ret);
a90714c1 1750 goto out_quota;
9517bac6
MF
1751 }
1752
3a307ffc
MF
1753 /*
1754 * Fill our page array first. That way we've grabbed enough so
1755 * that we can zero and flush if we error after adding the
1756 * extent.
1757 */
1758 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
b27b7cbc
MF
1759 clusters_to_alloc + extents_to_split,
1760 mmap_page);
9517bac6
MF
1761 if (ret) {
1762 mlog_errno(ret);
a90714c1 1763 goto out_quota;
9517bac6
MF
1764 }
1765
0d172baa
MF
1766 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1767 len);
1768 if (ret) {
1769 mlog_errno(ret);
a90714c1 1770 goto out_quota;
9517bac6 1771 }
9517bac6 1772
3a307ffc
MF
1773 if (data_ac)
1774 ocfs2_free_alloc_context(data_ac);
1775 if (meta_ac)
1776 ocfs2_free_alloc_context(meta_ac);
9517bac6 1777
1afc32b9 1778success:
3a307ffc
MF
1779 *pagep = wc->w_target_page;
1780 *fsdata = wc;
1781 return 0;
a90714c1
JK
1782out_quota:
1783 if (clusters_to_alloc)
1784 vfs_dq_free_space(inode,
1785 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1786out_commit:
1787 ocfs2_commit_trans(osb, handle);
1788
9517bac6 1789out:
3a307ffc
MF
1790 ocfs2_free_write_ctxt(wc);
1791
9517bac6
MF
1792 if (data_ac)
1793 ocfs2_free_alloc_context(data_ac);
1794 if (meta_ac)
1795 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1796 return ret;
1797}
1798
b6af1bcd
NP
1799static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1800 loff_t pos, unsigned len, unsigned flags,
1801 struct page **pagep, void **fsdata)
607d44aa
MF
1802{
1803 int ret;
1804 struct buffer_head *di_bh = NULL;
1805 struct inode *inode = mapping->host;
1806
e63aecb6 1807 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1808 if (ret) {
1809 mlog_errno(ret);
1810 return ret;
1811 }
1812
1813 /*
1814 * Take alloc sem here to prevent concurrent lookups. That way
1815 * the mapping, zeroing and tree manipulation within
1816 * ocfs2_write() will be safe against ->readpage(). This
1817 * should also serve to lock out allocation from a shared
1818 * writeable region.
1819 */
1820 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1821
607d44aa 1822 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1823 fsdata, di_bh, NULL);
607d44aa
MF
1824 if (ret) {
1825 mlog_errno(ret);
c934a92d 1826 goto out_fail;
607d44aa
MF
1827 }
1828
1829 brelse(di_bh);
1830
1831 return 0;
1832
607d44aa
MF
1833out_fail:
1834 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1835
1836 brelse(di_bh);
e63aecb6 1837 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1838
1839 return ret;
1840}
1841
1afc32b9
MF
1842static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1843 unsigned len, unsigned *copied,
1844 struct ocfs2_dinode *di,
1845 struct ocfs2_write_ctxt *wc)
1846{
1847 void *kaddr;
1848
1849 if (unlikely(*copied < len)) {
1850 if (!PageUptodate(wc->w_target_page)) {
1851 *copied = 0;
1852 return;
1853 }
1854 }
1855
1856 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1857 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1858 kunmap_atomic(kaddr, KM_USER0);
1859
1860 mlog(0, "Data written to inode at offset %llu. "
1861 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1862 (unsigned long long)pos, *copied,
1863 le16_to_cpu(di->id2.i_data.id_count),
1864 le16_to_cpu(di->i_dyn_features));
1865}
1866
7307de80
MF
1867int ocfs2_write_end_nolock(struct address_space *mapping,
1868 loff_t pos, unsigned len, unsigned copied,
1869 struct page *page, void *fsdata)
3a307ffc
MF
1870{
1871 int i;
1872 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1873 struct inode *inode = mapping->host;
1874 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1875 struct ocfs2_write_ctxt *wc = fsdata;
1876 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1877 handle_t *handle = wc->w_handle;
1878 struct page *tmppage;
1879
1afc32b9
MF
1880 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1881 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1882 goto out_write_size;
1883 }
1884
3a307ffc
MF
1885 if (unlikely(copied < len)) {
1886 if (!PageUptodate(wc->w_target_page))
1887 copied = 0;
1888
1889 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1890 start+len);
1891 }
1892 flush_dcache_page(wc->w_target_page);
1893
1894 for(i = 0; i < wc->w_num_pages; i++) {
1895 tmppage = wc->w_pages[i];
1896
1897 if (tmppage == wc->w_target_page) {
1898 from = wc->w_target_from;
1899 to = wc->w_target_to;
1900
1901 BUG_ON(from > PAGE_CACHE_SIZE ||
1902 to > PAGE_CACHE_SIZE ||
1903 to < from);
1904 } else {
1905 /*
1906 * Pages adjacent to the target (if any) imply
1907 * a hole-filling write in which case we want
1908 * to flush their entire range.
1909 */
1910 from = 0;
1911 to = PAGE_CACHE_SIZE;
1912 }
1913
961cecbe 1914 if (page_has_buffers(tmppage)) {
53ef99ca 1915 if (ocfs2_should_order_data(inode))
2b4e30fb 1916 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1917 block_commit_write(tmppage, from, to);
1918 }
3a307ffc
MF
1919 }
1920
1afc32b9 1921out_write_size:
3a307ffc
MF
1922 pos += copied;
1923 if (pos > inode->i_size) {
1924 i_size_write(inode, pos);
1925 mark_inode_dirty(inode);
1926 }
1927 inode->i_blocks = ocfs2_inode_sector_count(inode);
1928 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1929 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1930 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1931 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1932 ocfs2_journal_dirty(handle, wc->w_di_bh);
1933
1934 ocfs2_commit_trans(osb, handle);
59a5e416 1935
b27b7cbc
MF
1936 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1937
607d44aa
MF
1938 ocfs2_free_write_ctxt(wc);
1939
1940 return copied;
1941}
1942
b6af1bcd
NP
1943static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1944 loff_t pos, unsigned len, unsigned copied,
1945 struct page *page, void *fsdata)
607d44aa
MF
1946{
1947 int ret;
1948 struct inode *inode = mapping->host;
1949
1950 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1951
3a307ffc 1952 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 1953 ocfs2_inode_unlock(inode, 1);
9517bac6 1954
607d44aa 1955 return ret;
9517bac6
MF
1956}
1957
f5e54d6e 1958const struct address_space_operations ocfs2_aops = {
ccd979bd 1959 .readpage = ocfs2_readpage,
628a24f5 1960 .readpages = ocfs2_readpages,
ccd979bd 1961 .writepage = ocfs2_writepage,
b6af1bcd
NP
1962 .write_begin = ocfs2_write_begin,
1963 .write_end = ocfs2_write_end,
ccd979bd
MF
1964 .bmap = ocfs2_bmap,
1965 .sync_page = block_sync_page,
03f981cf
JB
1966 .direct_IO = ocfs2_direct_IO,
1967 .invalidatepage = ocfs2_invalidatepage,
1968 .releasepage = ocfs2_releasepage,
1969 .migratepage = buffer_migrate_page,
ccd979bd 1970};