xfs: fix big endian build
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd
MF
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
293b2f70 47#include "refcounttree.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
64
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
71 }
72
b657c95c 73 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
77 }
78 fe = (struct ocfs2_dinode *) bh->b_data;
79
ccd979bd
MF
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
85 }
86
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
96 }
97
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
108 }
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
114 }
115 brelse(buffer_cache_bh);
116 }
117
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121 err = 0;
122
123bail:
a81cb88b 124 brelse(bh);
ccd979bd
MF
125
126 mlog_exit(err);
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
138
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
25baf2da 199 }
ccd979bd 200
5693486b
JB
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
206
ccd979bd
MF
207bail:
208 if (err < 0)
209 err = -EIO;
210
211 mlog_exit(err);
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282
e63aecb6 283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
284 if (ret != 0) {
285 if (ret == AOP_TRUNCATED_PAGE)
286 unlock = 0;
287 mlog_errno(ret);
288 goto out;
289 }
290
6798d35a 291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 292 ret = AOP_TRUNCATED_PAGE;
e63aecb6 293 goto out_inode_unlock;
e9dfc0b2 294 }
ccd979bd
MF
295
296 /*
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
54cb8821 301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
302 * and notice that the page they just read isn't needed.
303 *
304 * XXX sys_readahead() seems to get that wrong?
305 */
306 if (start >= i_size_read(inode)) {
eebd2aa3 307 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
308 SetPageUptodate(page);
309 ret = 0;
310 goto out_alloc;
311 }
312
6798d35a
MF
313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 ret = ocfs2_readpage_inline(inode, page);
315 else
316 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
317 unlock = 0;
318
ccd979bd
MF
319out_alloc:
320 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
321out_inode_unlock:
322 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
323out:
324 if (unlock)
325 unlock_page(page);
326 mlog_exit(ret);
327 return ret;
328}
329
628a24f5
MF
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341{
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384}
385
ccd979bd
MF
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
399 int ret;
400
401 mlog_entry("(0x%p)\n", page);
402
403 ret = block_write_full_page(page, ocfs2_get_block, wbc);
404
405 mlog_exit(ret);
406
407 return ret;
408}
409
5069120b
MF
410/*
411 * This is called from ocfs2_write_zero_page() which has handled it's
412 * own cluster locking and has ensured allocation exists for those
413 * blocks to be written.
414 */
53013cba
MF
415int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416 unsigned from, unsigned to)
417{
418 int ret;
419
53013cba
MF
420 ret = block_prepare_write(page, from, to, ocfs2_get_block);
421
53013cba
MF
422 return ret;
423}
424
ccd979bd
MF
425/* Taken from ext3. We don't necessarily need the full blown
426 * functionality yet, but IMHO it's better to cut and paste the whole
427 * thing so we can avoid introducing our own bugs (and easily pick up
428 * their fixes when they happen) --Mark */
60b11392
MF
429int walk_page_buffers( handle_t *handle,
430 struct buffer_head *head,
431 unsigned from,
432 unsigned to,
433 int *partial,
434 int (*fn)( handle_t *handle,
435 struct buffer_head *bh))
ccd979bd
MF
436{
437 struct buffer_head *bh;
438 unsigned block_start, block_end;
439 unsigned blocksize = head->b_size;
440 int err, ret = 0;
441 struct buffer_head *next;
442
443 for ( bh = head, block_start = 0;
444 ret == 0 && (bh != head || !block_start);
445 block_start = block_end, bh = next)
446 {
447 next = bh->b_this_page;
448 block_end = block_start + blocksize;
449 if (block_end <= from || block_start >= to) {
450 if (partial && !buffer_uptodate(bh))
451 *partial = 1;
452 continue;
453 }
454 err = (*fn)(handle, bh);
455 if (!ret)
456 ret = err;
457 }
458 return ret;
459}
460
ccd979bd
MF
461static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
462{
463 sector_t status;
464 u64 p_blkno = 0;
465 int err = 0;
466 struct inode *inode = mapping->host;
467
468 mlog_entry("(block = %llu)\n", (unsigned long long)block);
469
470 /* We don't need to lock journal system files, since they aren't
471 * accessed concurrently from multiple nodes.
472 */
473 if (!INODE_JOURNAL(inode)) {
e63aecb6 474 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
475 if (err) {
476 if (err != -ENOENT)
477 mlog_errno(err);
478 goto bail;
479 }
480 down_read(&OCFS2_I(inode)->ip_alloc_sem);
481 }
482
6798d35a
MF
483 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
484 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
485 NULL);
ccd979bd
MF
486
487 if (!INODE_JOURNAL(inode)) {
488 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 489 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
490 }
491
492 if (err) {
493 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
494 (unsigned long long)block);
495 mlog_errno(err);
496 goto bail;
497 }
498
ccd979bd
MF
499bail:
500 status = err ? 0 : p_blkno;
501
502 mlog_exit((int)status);
503
504 return status;
505}
506
507/*
508 * TODO: Make this into a generic get_blocks function.
509 *
510 * From do_direct_io in direct-io.c:
511 * "So what we do is to permit the ->get_blocks function to populate
512 * bh.b_size with the size of IO which is permitted at this offset and
513 * this i_blkbits."
514 *
515 * This function is called directly from get_more_blocks in direct-io.c.
516 *
517 * called like this: dio->get_blocks(dio->inode, fs_startblk,
518 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
519 *
520 * Note that we never bother to allocate blocks here, and thus ignore the
521 * create argument.
ccd979bd
MF
522 */
523static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
524 struct buffer_head *bh_result, int create)
525{
526 int ret;
4f902c37 527 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 528 unsigned int ext_flags;
184d7d20 529 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 530 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 531
ccd979bd
MF
532 /* This function won't even be called if the request isn't all
533 * nicely aligned and of the right size, so there's no need
534 * for us to check any of that. */
535
25baf2da 536 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 537
ccd979bd
MF
538 /* This figures out the size of the next contiguous block, and
539 * our logical offset */
363041a5 540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 541 &contig_blocks, &ext_flags);
ccd979bd
MF
542 if (ret) {
543 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
544 (unsigned long long)iblock);
545 ret = -EIO;
546 goto bail;
547 }
548
cbaee472
TM
549 /* We should already CoW the refcounted extent in case of create. */
550 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
551
25baf2da
MF
552 /*
553 * get_more_blocks() expects us to describe a hole by clearing
554 * the mapped bit on bh_result().
49cb8d2d
MF
555 *
556 * Consider an unwritten extent as a hole.
25baf2da 557 */
49cb8d2d 558 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 559 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 560 else
25baf2da 561 clear_buffer_mapped(bh_result);
ccd979bd
MF
562
563 /* make sure we don't map more than max_blocks blocks here as
564 that's all the kernel will handle at this point. */
565 if (max_blocks < contig_blocks)
566 contig_blocks = max_blocks;
567 bh_result->b_size = contig_blocks << blocksize_bits;
568bail:
569 return ret;
570}
571
2bd63216 572/*
ccd979bd
MF
573 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
574 * particularly interested in the aio/dio case. Like the core uses
575 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
576 * truncation on another.
577 */
578static void ocfs2_dio_end_io(struct kiocb *iocb,
579 loff_t offset,
580 ssize_t bytes,
581 void *private)
582{
d28c9174 583 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 584 int level;
ccd979bd
MF
585
586 /* this io's submitter should not have unlocked this before we could */
587 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 588
ccd979bd 589 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
590
591 level = ocfs2_iocb_rw_locked_level(iocb);
592 if (!level)
593 up_read(&inode->i_alloc_sem);
594 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
595}
596
03f981cf
JB
597/*
598 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
599 * from ext3. PageChecked() bits have been removed as OCFS2 does not
600 * do journalled data.
601 */
602static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
603{
604 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
605
2b4e30fb 606 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
607}
608
609static int ocfs2_releasepage(struct page *page, gfp_t wait)
610{
611 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
612
613 if (!page_has_buffers(page))
614 return 0;
2b4e30fb 615 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
616}
617
ccd979bd
MF
618static ssize_t ocfs2_direct_IO(int rw,
619 struct kiocb *iocb,
620 const struct iovec *iov,
621 loff_t offset,
622 unsigned long nr_segs)
623{
624 struct file *file = iocb->ki_filp;
d28c9174 625 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
626 int ret;
627
628 mlog_entry_void();
53013cba 629
6798d35a
MF
630 /*
631 * Fallback to buffered I/O if we see an inode without
632 * extents.
633 */
634 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
635 return 0;
636
b80474b4
TM
637 /* Fallback to buffered I/O if we are appending. */
638 if (i_size_read(inode) <= offset)
639 return 0;
640
ccd979bd
MF
641 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
642 inode->i_sb->s_bdev, iov, offset,
2bd63216 643 nr_segs,
ccd979bd
MF
644 ocfs2_direct_IO_get_blocks,
645 ocfs2_dio_end_io);
c934a92d 646
ccd979bd
MF
647 mlog_exit(ret);
648 return ret;
649}
650
9517bac6
MF
651static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
652 u32 cpos,
653 unsigned int *start,
654 unsigned int *end)
655{
656 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
657
658 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
659 unsigned int cpp;
660
661 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
662
663 cluster_start = cpos % cpp;
664 cluster_start = cluster_start << osb->s_clustersize_bits;
665
666 cluster_end = cluster_start + osb->s_clustersize;
667 }
668
669 BUG_ON(cluster_start > PAGE_SIZE);
670 BUG_ON(cluster_end > PAGE_SIZE);
671
672 if (start)
673 *start = cluster_start;
674 if (end)
675 *end = cluster_end;
676}
677
678/*
679 * 'from' and 'to' are the region in the page to avoid zeroing.
680 *
681 * If pagesize > clustersize, this function will avoid zeroing outside
682 * of the cluster boundary.
683 *
684 * from == to == 0 is code for "zero the entire cluster region"
685 */
686static void ocfs2_clear_page_regions(struct page *page,
687 struct ocfs2_super *osb, u32 cpos,
688 unsigned from, unsigned to)
689{
690 void *kaddr;
691 unsigned int cluster_start, cluster_end;
692
693 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
694
695 kaddr = kmap_atomic(page, KM_USER0);
696
697 if (from || to) {
698 if (from > cluster_start)
699 memset(kaddr + cluster_start, 0, from - cluster_start);
700 if (to < cluster_end)
701 memset(kaddr + to, 0, cluster_end - to);
702 } else {
703 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
704 }
705
706 kunmap_atomic(kaddr, KM_USER0);
707}
708
4e9563fd
MF
709/*
710 * Nonsparse file systems fully allocate before we get to the write
711 * code. This prevents ocfs2_write() from tagging the write as an
712 * allocating one, which means ocfs2_map_page_blocks() might try to
713 * read-in the blocks at the tail of our file. Avoid reading them by
714 * testing i_size against each block offset.
715 */
716static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
717 unsigned int block_start)
718{
719 u64 offset = page_offset(page) + block_start;
720
721 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
722 return 1;
723
724 if (i_size_read(inode) > offset)
725 return 1;
726
727 return 0;
728}
729
9517bac6
MF
730/*
731 * Some of this taken from block_prepare_write(). We already have our
732 * mapping by now though, and the entire write will be allocating or
733 * it won't, so not much need to use BH_New.
734 *
735 * This will also skip zeroing, which is handled externally.
736 */
60b11392
MF
737int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
738 struct inode *inode, unsigned int from,
739 unsigned int to, int new)
9517bac6
MF
740{
741 int ret = 0;
742 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
743 unsigned int block_end, block_start;
744 unsigned int bsize = 1 << inode->i_blkbits;
745
746 if (!page_has_buffers(page))
747 create_empty_buffers(page, bsize, 0);
748
749 head = page_buffers(page);
750 for (bh = head, block_start = 0; bh != head || !block_start;
751 bh = bh->b_this_page, block_start += bsize) {
752 block_end = block_start + bsize;
753
3a307ffc
MF
754 clear_buffer_new(bh);
755
9517bac6
MF
756 /*
757 * Ignore blocks outside of our i/o range -
758 * they may belong to unallocated clusters.
759 */
60b11392 760 if (block_start >= to || block_end <= from) {
9517bac6
MF
761 if (PageUptodate(page))
762 set_buffer_uptodate(bh);
763 continue;
764 }
765
766 /*
767 * For an allocating write with cluster size >= page
768 * size, we always write the entire page.
769 */
3a307ffc
MF
770 if (new)
771 set_buffer_new(bh);
9517bac6
MF
772
773 if (!buffer_mapped(bh)) {
774 map_bh(bh, inode->i_sb, *p_blkno);
775 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
776 }
777
778 if (PageUptodate(page)) {
779 if (!buffer_uptodate(bh))
780 set_buffer_uptodate(bh);
781 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 782 !buffer_new(bh) &&
4e9563fd 783 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 784 (block_start < from || block_end > to)) {
9517bac6
MF
785 ll_rw_block(READ, 1, &bh);
786 *wait_bh++=bh;
787 }
788
789 *p_blkno = *p_blkno + 1;
790 }
791
792 /*
793 * If we issued read requests - let them complete.
794 */
795 while(wait_bh > wait) {
796 wait_on_buffer(*--wait_bh);
797 if (!buffer_uptodate(*wait_bh))
798 ret = -EIO;
799 }
800
801 if (ret == 0 || !new)
802 return ret;
803
804 /*
805 * If we get -EIO above, zero out any newly allocated blocks
806 * to avoid exposing stale data.
807 */
808 bh = head;
809 block_start = 0;
810 do {
9517bac6
MF
811 block_end = block_start + bsize;
812 if (block_end <= from)
813 goto next_bh;
814 if (block_start >= to)
815 break;
816
eebd2aa3 817 zero_user(page, block_start, bh->b_size);
9517bac6
MF
818 set_buffer_uptodate(bh);
819 mark_buffer_dirty(bh);
820
821next_bh:
822 block_start = block_end;
823 bh = bh->b_this_page;
824 } while (bh != head);
825
826 return ret;
827}
828
3a307ffc
MF
829#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
830#define OCFS2_MAX_CTXT_PAGES 1
831#else
832#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
833#endif
834
835#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
836
6af67d82 837/*
3a307ffc 838 * Describe the state of a single cluster to be written to.
6af67d82 839 */
3a307ffc
MF
840struct ocfs2_write_cluster_desc {
841 u32 c_cpos;
842 u32 c_phys;
843 /*
844 * Give this a unique field because c_phys eventually gets
845 * filled.
846 */
847 unsigned c_new;
b27b7cbc 848 unsigned c_unwritten;
e7432675 849 unsigned c_needs_zero;
3a307ffc 850};
6af67d82 851
3a307ffc
MF
852struct ocfs2_write_ctxt {
853 /* Logical cluster position / len of write */
854 u32 w_cpos;
855 u32 w_clen;
6af67d82 856
e7432675
SM
857 /* First cluster allocated in a nonsparse extend */
858 u32 w_first_new_cpos;
859
3a307ffc 860 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 861
3a307ffc
MF
862 /*
863 * This is true if page_size > cluster_size.
864 *
865 * It triggers a set of special cases during write which might
866 * have to deal with allocating writes to partial pages.
867 */
868 unsigned int w_large_pages;
6af67d82 869
3a307ffc
MF
870 /*
871 * Pages involved in this write.
872 *
873 * w_target_page is the page being written to by the user.
874 *
875 * w_pages is an array of pages which always contains
876 * w_target_page, and in the case of an allocating write with
877 * page_size < cluster size, it will contain zero'd and mapped
878 * pages adjacent to w_target_page which need to be written
879 * out in so that future reads from that region will get
880 * zero's.
881 */
882 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
883 unsigned int w_num_pages;
884 struct page *w_target_page;
eeb47d12 885
3a307ffc
MF
886 /*
887 * ocfs2_write_end() uses this to know what the real range to
888 * write in the target should be.
889 */
890 unsigned int w_target_from;
891 unsigned int w_target_to;
892
893 /*
894 * We could use journal_current_handle() but this is cleaner,
895 * IMHO -Mark
896 */
897 handle_t *w_handle;
898
899 struct buffer_head *w_di_bh;
b27b7cbc
MF
900
901 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
902};
903
1d410a6e 904void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
905{
906 int i;
907
1d410a6e
MF
908 for(i = 0; i < num_pages; i++) {
909 if (pages[i]) {
910 unlock_page(pages[i]);
911 mark_page_accessed(pages[i]);
912 page_cache_release(pages[i]);
913 }
6af67d82 914 }
1d410a6e
MF
915}
916
917static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
918{
919 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 920
3a307ffc
MF
921 brelse(wc->w_di_bh);
922 kfree(wc);
923}
924
925static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
926 struct ocfs2_super *osb, loff_t pos,
607d44aa 927 unsigned len, struct buffer_head *di_bh)
3a307ffc 928{
30b8548f 929 u32 cend;
3a307ffc
MF
930 struct ocfs2_write_ctxt *wc;
931
932 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
933 if (!wc)
934 return -ENOMEM;
6af67d82 935
3a307ffc 936 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 937 wc->w_first_new_cpos = UINT_MAX;
30b8548f 938 cend = (pos + len - 1) >> osb->s_clustersize_bits;
939 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
940 get_bh(di_bh);
941 wc->w_di_bh = di_bh;
6af67d82 942
3a307ffc
MF
943 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
944 wc->w_large_pages = 1;
945 else
946 wc->w_large_pages = 0;
947
b27b7cbc
MF
948 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
949
3a307ffc 950 *wcp = wc;
6af67d82 951
3a307ffc 952 return 0;
6af67d82
MF
953}
954
9517bac6 955/*
3a307ffc
MF
956 * If a page has any new buffers, zero them out here, and mark them uptodate
957 * and dirty so they'll be written out (in order to prevent uninitialised
958 * block data from leaking). And clear the new bit.
9517bac6 959 */
3a307ffc 960static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 961{
3a307ffc
MF
962 unsigned int block_start, block_end;
963 struct buffer_head *head, *bh;
9517bac6 964
3a307ffc
MF
965 BUG_ON(!PageLocked(page));
966 if (!page_has_buffers(page))
967 return;
9517bac6 968
3a307ffc
MF
969 bh = head = page_buffers(page);
970 block_start = 0;
971 do {
972 block_end = block_start + bh->b_size;
973
974 if (buffer_new(bh)) {
975 if (block_end > from && block_start < to) {
976 if (!PageUptodate(page)) {
977 unsigned start, end;
3a307ffc
MF
978
979 start = max(from, block_start);
980 end = min(to, block_end);
981
eebd2aa3 982 zero_user_segment(page, start, end);
3a307ffc
MF
983 set_buffer_uptodate(bh);
984 }
985
986 clear_buffer_new(bh);
987 mark_buffer_dirty(bh);
988 }
989 }
9517bac6 990
3a307ffc
MF
991 block_start = block_end;
992 bh = bh->b_this_page;
993 } while (bh != head);
994}
995
996/*
997 * Only called when we have a failure during allocating write to write
998 * zero's to the newly allocated region.
999 */
1000static void ocfs2_write_failure(struct inode *inode,
1001 struct ocfs2_write_ctxt *wc,
1002 loff_t user_pos, unsigned user_len)
1003{
1004 int i;
5c26a7b7
MF
1005 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1006 to = user_pos + user_len;
3a307ffc
MF
1007 struct page *tmppage;
1008
5c26a7b7 1009 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1010
3a307ffc
MF
1011 for(i = 0; i < wc->w_num_pages; i++) {
1012 tmppage = wc->w_pages[i];
9517bac6 1013
961cecbe 1014 if (page_has_buffers(tmppage)) {
53ef99ca 1015 if (ocfs2_should_order_data(inode))
2b4e30fb 1016 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1017
1018 block_commit_write(tmppage, from, to);
1019 }
9517bac6 1020 }
9517bac6
MF
1021}
1022
3a307ffc
MF
1023static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1024 struct ocfs2_write_ctxt *wc,
1025 struct page *page, u32 cpos,
1026 loff_t user_pos, unsigned user_len,
1027 int new)
9517bac6 1028{
3a307ffc
MF
1029 int ret;
1030 unsigned int map_from = 0, map_to = 0;
9517bac6 1031 unsigned int cluster_start, cluster_end;
3a307ffc 1032 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1033
3a307ffc 1034 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1035 &cluster_start, &cluster_end);
1036
3a307ffc
MF
1037 if (page == wc->w_target_page) {
1038 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1039 map_to = map_from + user_len;
1040
1041 if (new)
1042 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1043 cluster_start, cluster_end,
1044 new);
1045 else
1046 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047 map_from, map_to, new);
1048 if (ret) {
9517bac6
MF
1049 mlog_errno(ret);
1050 goto out;
1051 }
1052
3a307ffc
MF
1053 user_data_from = map_from;
1054 user_data_to = map_to;
9517bac6 1055 if (new) {
3a307ffc
MF
1056 map_from = cluster_start;
1057 map_to = cluster_end;
9517bac6
MF
1058 }
1059 } else {
1060 /*
1061 * If we haven't allocated the new page yet, we
1062 * shouldn't be writing it out without copying user
1063 * data. This is likely a math error from the caller.
1064 */
1065 BUG_ON(!new);
1066
3a307ffc
MF
1067 map_from = cluster_start;
1068 map_to = cluster_end;
9517bac6
MF
1069
1070 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1071 cluster_start, cluster_end, new);
9517bac6
MF
1072 if (ret) {
1073 mlog_errno(ret);
1074 goto out;
1075 }
1076 }
1077
1078 /*
1079 * Parts of newly allocated pages need to be zero'd.
1080 *
1081 * Above, we have also rewritten 'to' and 'from' - as far as
1082 * the rest of the function is concerned, the entire cluster
1083 * range inside of a page needs to be written.
1084 *
1085 * We can skip this if the page is up to date - it's already
1086 * been zero'd from being read in as a hole.
1087 */
1088 if (new && !PageUptodate(page))
1089 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1090 cpos, user_data_from, user_data_to);
9517bac6
MF
1091
1092 flush_dcache_page(page);
1093
9517bac6 1094out:
3a307ffc 1095 return ret;
9517bac6
MF
1096}
1097
1098/*
3a307ffc 1099 * This function will only grab one clusters worth of pages.
9517bac6 1100 */
3a307ffc
MF
1101static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1102 struct ocfs2_write_ctxt *wc,
693c241a
JB
1103 u32 cpos, loff_t user_pos,
1104 unsigned user_len, int new,
7307de80 1105 struct page *mmap_page)
9517bac6 1106{
3a307ffc 1107 int ret = 0, i;
693c241a 1108 unsigned long start, target_index, end_index, index;
9517bac6 1109 struct inode *inode = mapping->host;
693c241a 1110 loff_t last_byte;
9517bac6 1111
3a307ffc 1112 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1113
1114 /*
1115 * Figure out how many pages we'll be manipulating here. For
60b11392 1116 * non allocating write, we just change the one
693c241a
JB
1117 * page. Otherwise, we'll need a whole clusters worth. If we're
1118 * writing past i_size, we only need enough pages to cover the
1119 * last page of the write.
9517bac6 1120 */
9517bac6 1121 if (new) {
3a307ffc
MF
1122 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1123 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1124 /*
1125 * We need the index *past* the last page we could possibly
1126 * touch. This is the page past the end of the write or
1127 * i_size, whichever is greater.
1128 */
1129 last_byte = max(user_pos + user_len, i_size_read(inode));
1130 BUG_ON(last_byte < 1);
1131 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1132 if ((start + wc->w_num_pages) > end_index)
1133 wc->w_num_pages = end_index - start;
9517bac6 1134 } else {
3a307ffc
MF
1135 wc->w_num_pages = 1;
1136 start = target_index;
9517bac6
MF
1137 }
1138
3a307ffc 1139 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1140 index = start + i;
1141
7307de80
MF
1142 if (index == target_index && mmap_page) {
1143 /*
1144 * ocfs2_pagemkwrite() is a little different
1145 * and wants us to directly use the page
1146 * passed in.
1147 */
1148 lock_page(mmap_page);
1149
1150 if (mmap_page->mapping != mapping) {
1151 unlock_page(mmap_page);
1152 /*
1153 * Sanity check - the locking in
1154 * ocfs2_pagemkwrite() should ensure
1155 * that this code doesn't trigger.
1156 */
1157 ret = -EINVAL;
1158 mlog_errno(ret);
1159 goto out;
1160 }
1161
1162 page_cache_get(mmap_page);
1163 wc->w_pages[i] = mmap_page;
1164 } else {
1165 wc->w_pages[i] = find_or_create_page(mapping, index,
1166 GFP_NOFS);
1167 if (!wc->w_pages[i]) {
1168 ret = -ENOMEM;
1169 mlog_errno(ret);
1170 goto out;
1171 }
9517bac6 1172 }
3a307ffc
MF
1173
1174 if (index == target_index)
1175 wc->w_target_page = wc->w_pages[i];
9517bac6 1176 }
3a307ffc
MF
1177out:
1178 return ret;
1179}
1180
1181/*
1182 * Prepare a single cluster for write one cluster into the file.
1183 */
1184static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1185 u32 phys, unsigned int unwritten,
e7432675 1186 unsigned int should_zero,
b27b7cbc 1187 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1188 struct ocfs2_alloc_context *meta_ac,
1189 struct ocfs2_write_ctxt *wc, u32 cpos,
1190 loff_t user_pos, unsigned user_len)
1191{
e7432675 1192 int ret, i, new;
3a307ffc
MF
1193 u64 v_blkno, p_blkno;
1194 struct inode *inode = mapping->host;
f99b9b7c 1195 struct ocfs2_extent_tree et;
3a307ffc
MF
1196
1197 new = phys == 0 ? 1 : 0;
9517bac6 1198 if (new) {
3a307ffc
MF
1199 u32 tmp_pos;
1200
9517bac6
MF
1201 /*
1202 * This is safe to call with the page locks - it won't take
1203 * any additional semaphores or cluster locks.
1204 */
3a307ffc 1205 tmp_pos = cpos;
0eb8d47e
TM
1206 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1207 &tmp_pos, 1, 0, wc->w_di_bh,
1208 wc->w_handle, data_ac,
1209 meta_ac, NULL);
9517bac6
MF
1210 /*
1211 * This shouldn't happen because we must have already
1212 * calculated the correct meta data allocation required. The
1213 * internal tree allocation code should know how to increase
1214 * transaction credits itself.
1215 *
1216 * If need be, we could handle -EAGAIN for a
1217 * RESTART_TRANS here.
1218 */
1219 mlog_bug_on_msg(ret == -EAGAIN,
1220 "Inode %llu: EAGAIN return during allocation.\n",
1221 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1222 if (ret < 0) {
1223 mlog_errno(ret);
1224 goto out;
1225 }
b27b7cbc 1226 } else if (unwritten) {
5e404e9e
JB
1227 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1228 wc->w_di_bh);
f99b9b7c 1229 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1230 wc->w_handle, cpos, 1, phys,
f99b9b7c 1231 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1232 if (ret < 0) {
1233 mlog_errno(ret);
1234 goto out;
1235 }
1236 }
3a307ffc 1237
b27b7cbc 1238 if (should_zero)
3a307ffc 1239 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1240 else
3a307ffc 1241 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1242
3a307ffc
MF
1243 /*
1244 * The only reason this should fail is due to an inability to
1245 * find the extent added.
1246 */
49cb8d2d
MF
1247 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1248 NULL);
9517bac6 1249 if (ret < 0) {
3a307ffc
MF
1250 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1251 "at logical block %llu",
1252 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1253 (unsigned long long)v_blkno);
9517bac6
MF
1254 goto out;
1255 }
1256
1257 BUG_ON(p_blkno == 0);
1258
3a307ffc
MF
1259 for(i = 0; i < wc->w_num_pages; i++) {
1260 int tmpret;
9517bac6 1261
3a307ffc
MF
1262 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1263 wc->w_pages[i], cpos,
b27b7cbc
MF
1264 user_pos, user_len,
1265 should_zero);
3a307ffc
MF
1266 if (tmpret) {
1267 mlog_errno(tmpret);
1268 if (ret == 0)
cbfa9639 1269 ret = tmpret;
3a307ffc 1270 }
9517bac6
MF
1271 }
1272
3a307ffc
MF
1273 /*
1274 * We only have cleanup to do in case of allocating write.
1275 */
1276 if (ret && new)
1277 ocfs2_write_failure(inode, wc, user_pos, user_len);
1278
9517bac6 1279out:
9517bac6 1280
3a307ffc 1281 return ret;
9517bac6
MF
1282}
1283
0d172baa
MF
1284static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1285 struct ocfs2_alloc_context *data_ac,
1286 struct ocfs2_alloc_context *meta_ac,
1287 struct ocfs2_write_ctxt *wc,
1288 loff_t pos, unsigned len)
1289{
1290 int ret, i;
db56246c
MF
1291 loff_t cluster_off;
1292 unsigned int local_len = len;
0d172baa 1293 struct ocfs2_write_cluster_desc *desc;
db56246c 1294 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1295
1296 for (i = 0; i < wc->w_clen; i++) {
1297 desc = &wc->w_desc[i];
1298
db56246c
MF
1299 /*
1300 * We have to make sure that the total write passed in
1301 * doesn't extend past a single cluster.
1302 */
1303 local_len = len;
1304 cluster_off = pos & (osb->s_clustersize - 1);
1305 if ((cluster_off + local_len) > osb->s_clustersize)
1306 local_len = osb->s_clustersize - cluster_off;
1307
b27b7cbc 1308 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1309 desc->c_unwritten,
1310 desc->c_needs_zero,
1311 data_ac, meta_ac,
db56246c 1312 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1313 if (ret) {
1314 mlog_errno(ret);
1315 goto out;
1316 }
db56246c
MF
1317
1318 len -= local_len;
1319 pos += local_len;
0d172baa
MF
1320 }
1321
1322 ret = 0;
1323out:
1324 return ret;
1325}
1326
3a307ffc
MF
1327/*
1328 * ocfs2_write_end() wants to know which parts of the target page it
1329 * should complete the write on. It's easiest to compute them ahead of
1330 * time when a more complete view of the write is available.
1331 */
1332static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1333 struct ocfs2_write_ctxt *wc,
1334 loff_t pos, unsigned len, int alloc)
9517bac6 1335{
3a307ffc 1336 struct ocfs2_write_cluster_desc *desc;
9517bac6 1337
3a307ffc
MF
1338 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1339 wc->w_target_to = wc->w_target_from + len;
1340
1341 if (alloc == 0)
1342 return;
1343
1344 /*
1345 * Allocating write - we may have different boundaries based
1346 * on page size and cluster size.
1347 *
1348 * NOTE: We can no longer compute one value from the other as
1349 * the actual write length and user provided length may be
1350 * different.
1351 */
9517bac6 1352
3a307ffc
MF
1353 if (wc->w_large_pages) {
1354 /*
1355 * We only care about the 1st and last cluster within
b27b7cbc 1356 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1357 * value may be extended out to the start/end of a
1358 * newly allocated cluster.
1359 */
1360 desc = &wc->w_desc[0];
e7432675 1361 if (desc->c_needs_zero)
3a307ffc
MF
1362 ocfs2_figure_cluster_boundaries(osb,
1363 desc->c_cpos,
1364 &wc->w_target_from,
1365 NULL);
1366
1367 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1368 if (desc->c_needs_zero)
3a307ffc
MF
1369 ocfs2_figure_cluster_boundaries(osb,
1370 desc->c_cpos,
1371 NULL,
1372 &wc->w_target_to);
1373 } else {
1374 wc->w_target_from = 0;
1375 wc->w_target_to = PAGE_CACHE_SIZE;
1376 }
9517bac6
MF
1377}
1378
0d172baa
MF
1379/*
1380 * Populate each single-cluster write descriptor in the write context
1381 * with information about the i/o to be done.
b27b7cbc
MF
1382 *
1383 * Returns the number of clusters that will have to be allocated, as
1384 * well as a worst case estimate of the number of extent records that
1385 * would have to be created during a write to an unwritten region.
0d172baa
MF
1386 */
1387static int ocfs2_populate_write_desc(struct inode *inode,
1388 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1389 unsigned int *clusters_to_alloc,
1390 unsigned int *extents_to_split)
9517bac6 1391{
0d172baa 1392 int ret;
3a307ffc 1393 struct ocfs2_write_cluster_desc *desc;
0d172baa 1394 unsigned int num_clusters = 0;
b27b7cbc 1395 unsigned int ext_flags = 0;
0d172baa
MF
1396 u32 phys = 0;
1397 int i;
9517bac6 1398
b27b7cbc
MF
1399 *clusters_to_alloc = 0;
1400 *extents_to_split = 0;
1401
3a307ffc
MF
1402 for (i = 0; i < wc->w_clen; i++) {
1403 desc = &wc->w_desc[i];
1404 desc->c_cpos = wc->w_cpos + i;
1405
1406 if (num_clusters == 0) {
b27b7cbc
MF
1407 /*
1408 * Need to look up the next extent record.
1409 */
3a307ffc 1410 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1411 &num_clusters, &ext_flags);
3a307ffc
MF
1412 if (ret) {
1413 mlog_errno(ret);
607d44aa 1414 goto out;
3a307ffc 1415 }
b27b7cbc 1416
293b2f70
TM
1417 /* We should already CoW the refcountd extent. */
1418 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1419
b27b7cbc
MF
1420 /*
1421 * Assume worst case - that we're writing in
1422 * the middle of the extent.
1423 *
1424 * We can assume that the write proceeds from
1425 * left to right, in which case the extent
1426 * insert code is smart enough to coalesce the
1427 * next splits into the previous records created.
1428 */
1429 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1430 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1431 } else if (phys) {
1432 /*
1433 * Only increment phys if it doesn't describe
1434 * a hole.
1435 */
1436 phys++;
1437 }
1438
e7432675
SM
1439 /*
1440 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1441 * file that got extended. w_first_new_cpos tells us
1442 * where the newly allocated clusters are so we can
1443 * zero them.
1444 */
1445 if (desc->c_cpos >= wc->w_first_new_cpos) {
1446 BUG_ON(phys == 0);
1447 desc->c_needs_zero = 1;
1448 }
1449
3a307ffc
MF
1450 desc->c_phys = phys;
1451 if (phys == 0) {
1452 desc->c_new = 1;
e7432675 1453 desc->c_needs_zero = 1;
0d172baa 1454 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1455 }
e7432675
SM
1456
1457 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1458 desc->c_unwritten = 1;
e7432675
SM
1459 desc->c_needs_zero = 1;
1460 }
3a307ffc
MF
1461
1462 num_clusters--;
9517bac6
MF
1463 }
1464
0d172baa
MF
1465 ret = 0;
1466out:
1467 return ret;
1468}
1469
1afc32b9
MF
1470static int ocfs2_write_begin_inline(struct address_space *mapping,
1471 struct inode *inode,
1472 struct ocfs2_write_ctxt *wc)
1473{
1474 int ret;
1475 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1476 struct page *page;
1477 handle_t *handle;
1478 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1479
1480 page = find_or_create_page(mapping, 0, GFP_NOFS);
1481 if (!page) {
1482 ret = -ENOMEM;
1483 mlog_errno(ret);
1484 goto out;
1485 }
1486 /*
1487 * If we don't set w_num_pages then this page won't get unlocked
1488 * and freed on cleanup of the write context.
1489 */
1490 wc->w_pages[0] = wc->w_target_page = page;
1491 wc->w_num_pages = 1;
1492
1493 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1494 if (IS_ERR(handle)) {
1495 ret = PTR_ERR(handle);
1496 mlog_errno(ret);
1497 goto out;
1498 }
1499
0cf2f763 1500 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1501 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1502 if (ret) {
1503 ocfs2_commit_trans(osb, handle);
1504
1505 mlog_errno(ret);
1506 goto out;
1507 }
1508
1509 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1510 ocfs2_set_inode_data_inline(inode, di);
1511
1512 if (!PageUptodate(page)) {
1513 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1514 if (ret) {
1515 ocfs2_commit_trans(osb, handle);
1516
1517 goto out;
1518 }
1519 }
1520
1521 wc->w_handle = handle;
1522out:
1523 return ret;
1524}
1525
1526int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1527{
1528 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1529
0d8a4e0c 1530 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1531 return 1;
1532 return 0;
1533}
1534
1535static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1536 struct inode *inode, loff_t pos,
1537 unsigned len, struct page *mmap_page,
1538 struct ocfs2_write_ctxt *wc)
1539{
1540 int ret, written = 0;
1541 loff_t end = pos + len;
1542 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1543 struct ocfs2_dinode *di = NULL;
1afc32b9
MF
1544
1545 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1546 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1547 oi->ip_dyn_features);
1548
1549 /*
1550 * Handle inodes which already have inline data 1st.
1551 */
1552 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1553 if (mmap_page == NULL &&
1554 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1555 goto do_inline_write;
1556
1557 /*
1558 * The write won't fit - we have to give this inode an
1559 * inline extent list now.
1560 */
1561 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1562 if (ret)
1563 mlog_errno(ret);
1564 goto out;
1565 }
1566
1567 /*
1568 * Check whether the inode can accept inline data.
1569 */
1570 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1571 return 0;
1572
1573 /*
1574 * Check whether the write can fit.
1575 */
d9ae49d6
TY
1576 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1577 if (mmap_page ||
1578 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1579 return 0;
1580
1581do_inline_write:
1582 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1583 if (ret) {
1584 mlog_errno(ret);
1585 goto out;
1586 }
1587
1588 /*
1589 * This signals to the caller that the data can be written
1590 * inline.
1591 */
1592 written = 1;
1593out:
1594 return written ? written : ret;
1595}
1596
65ed39d6
MF
1597/*
1598 * This function only does anything for file systems which can't
1599 * handle sparse files.
1600 *
1601 * What we want to do here is fill in any hole between the current end
1602 * of allocation and the end of our write. That way the rest of the
1603 * write path can treat it as an non-allocating write, which has no
1604 * special case code for sparse/nonsparse files.
1605 */
5693486b
JB
1606static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1607 struct buffer_head *di_bh,
1608 loff_t pos, unsigned len,
65ed39d6
MF
1609 struct ocfs2_write_ctxt *wc)
1610{
1611 int ret;
65ed39d6
MF
1612 loff_t newsize = pos + len;
1613
5693486b 1614 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1615
1616 if (newsize <= i_size_read(inode))
1617 return 0;
1618
5693486b 1619 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1620 if (ret)
1621 mlog_errno(ret);
1622
e7432675
SM
1623 wc->w_first_new_cpos =
1624 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1625
65ed39d6
MF
1626 return ret;
1627}
1628
5693486b
JB
1629static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1630 loff_t pos)
1631{
1632 int ret = 0;
1633
1634 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1635 if (pos > i_size_read(inode))
1636 ret = ocfs2_zero_extend(inode, di_bh, pos);
1637
1638 return ret;
1639}
1640
0d172baa
MF
1641int ocfs2_write_begin_nolock(struct address_space *mapping,
1642 loff_t pos, unsigned len, unsigned flags,
1643 struct page **pagep, void **fsdata,
1644 struct buffer_head *di_bh, struct page *mmap_page)
1645{
e7432675 1646 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1647 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1648 struct ocfs2_write_ctxt *wc;
1649 struct inode *inode = mapping->host;
1650 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1651 struct ocfs2_dinode *di;
1652 struct ocfs2_alloc_context *data_ac = NULL;
1653 struct ocfs2_alloc_context *meta_ac = NULL;
1654 handle_t *handle;
f99b9b7c 1655 struct ocfs2_extent_tree et;
0d172baa
MF
1656
1657 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1658 if (ret) {
1659 mlog_errno(ret);
1660 return ret;
1661 }
1662
1afc32b9
MF
1663 if (ocfs2_supports_inline_data(osb)) {
1664 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1665 mmap_page, wc);
1666 if (ret == 1) {
1667 ret = 0;
1668 goto success;
1669 }
1670 if (ret < 0) {
1671 mlog_errno(ret);
1672 goto out;
1673 }
1674 }
1675
5693486b
JB
1676 if (ocfs2_sparse_alloc(osb))
1677 ret = ocfs2_zero_tail(inode, di_bh, pos);
1678 else
1679 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1680 wc);
65ed39d6
MF
1681 if (ret) {
1682 mlog_errno(ret);
1683 goto out;
1684 }
1685
293b2f70
TM
1686 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1687 if (ret < 0) {
1688 mlog_errno(ret);
1689 goto out;
1690 } else if (ret == 1) {
1691 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1692 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1693 if (ret) {
1694 mlog_errno(ret);
1695 goto out;
1696 }
1697 }
1698
b27b7cbc
MF
1699 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1700 &extents_to_split);
0d172baa
MF
1701 if (ret) {
1702 mlog_errno(ret);
1703 goto out;
1704 }
1705
1706 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1707
3a307ffc
MF
1708 /*
1709 * We set w_target_from, w_target_to here so that
1710 * ocfs2_write_end() knows which range in the target page to
1711 * write out. An allocation requires that we write the entire
1712 * cluster range.
1713 */
b27b7cbc 1714 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1715 /*
1716 * XXX: We are stretching the limits of
b27b7cbc 1717 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1718 * the work to be done.
1719 */
e7d4cb6b
TM
1720 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1721 " clusters_to_add = %u, extents_to_split = %u\n",
1722 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1724 clusters_to_alloc, extents_to_split);
1725
5e404e9e
JB
1726 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1727 wc->w_di_bh);
f99b9b7c 1728 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1729 clusters_to_alloc, extents_to_split,
f99b9b7c 1730 &data_ac, &meta_ac);
9517bac6
MF
1731 if (ret) {
1732 mlog_errno(ret);
607d44aa 1733 goto out;
9517bac6
MF
1734 }
1735
4fe370af
MF
1736 if (data_ac)
1737 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1738
811f933d
TM
1739 credits = ocfs2_calc_extend_credits(inode->i_sb,
1740 &di->id2.i_list,
3a307ffc
MF
1741 clusters_to_alloc);
1742
9517bac6
MF
1743 }
1744
e7432675
SM
1745 /*
1746 * We have to zero sparse allocated clusters, unwritten extent clusters,
1747 * and non-sparse clusters we just extended. For non-sparse writes,
1748 * we know zeros will only be needed in the first and/or last cluster.
1749 */
1750 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1751 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1752 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1753 cluster_of_pages = 1;
1754 else
1755 cluster_of_pages = 0;
1756
1757 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1758
9517bac6
MF
1759 handle = ocfs2_start_trans(osb, credits);
1760 if (IS_ERR(handle)) {
1761 ret = PTR_ERR(handle);
1762 mlog_errno(ret);
607d44aa 1763 goto out;
9517bac6
MF
1764 }
1765
3a307ffc
MF
1766 wc->w_handle = handle;
1767
5dd4056d
CH
1768 if (clusters_to_alloc) {
1769 ret = dquot_alloc_space_nodirty(inode,
1770 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1771 if (ret)
1772 goto out_commit;
a90714c1 1773 }
3a307ffc
MF
1774 /*
1775 * We don't want this to fail in ocfs2_write_end(), so do it
1776 * here.
1777 */
0cf2f763 1778 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1779 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1780 if (ret) {
9517bac6 1781 mlog_errno(ret);
a90714c1 1782 goto out_quota;
9517bac6
MF
1783 }
1784
3a307ffc
MF
1785 /*
1786 * Fill our page array first. That way we've grabbed enough so
1787 * that we can zero and flush if we error after adding the
1788 * extent.
1789 */
693c241a 1790 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1791 cluster_of_pages, mmap_page);
9517bac6
MF
1792 if (ret) {
1793 mlog_errno(ret);
a90714c1 1794 goto out_quota;
9517bac6
MF
1795 }
1796
0d172baa
MF
1797 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1798 len);
1799 if (ret) {
1800 mlog_errno(ret);
a90714c1 1801 goto out_quota;
9517bac6 1802 }
9517bac6 1803
3a307ffc
MF
1804 if (data_ac)
1805 ocfs2_free_alloc_context(data_ac);
1806 if (meta_ac)
1807 ocfs2_free_alloc_context(meta_ac);
9517bac6 1808
1afc32b9 1809success:
3a307ffc
MF
1810 *pagep = wc->w_target_page;
1811 *fsdata = wc;
1812 return 0;
a90714c1
JK
1813out_quota:
1814 if (clusters_to_alloc)
5dd4056d 1815 dquot_free_space(inode,
a90714c1 1816 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1817out_commit:
1818 ocfs2_commit_trans(osb, handle);
1819
9517bac6 1820out:
3a307ffc
MF
1821 ocfs2_free_write_ctxt(wc);
1822
9517bac6
MF
1823 if (data_ac)
1824 ocfs2_free_alloc_context(data_ac);
1825 if (meta_ac)
1826 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1827 return ret;
1828}
1829
b6af1bcd
NP
1830static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1831 loff_t pos, unsigned len, unsigned flags,
1832 struct page **pagep, void **fsdata)
607d44aa
MF
1833{
1834 int ret;
1835 struct buffer_head *di_bh = NULL;
1836 struct inode *inode = mapping->host;
1837
e63aecb6 1838 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1839 if (ret) {
1840 mlog_errno(ret);
1841 return ret;
1842 }
1843
1844 /*
1845 * Take alloc sem here to prevent concurrent lookups. That way
1846 * the mapping, zeroing and tree manipulation within
1847 * ocfs2_write() will be safe against ->readpage(). This
1848 * should also serve to lock out allocation from a shared
1849 * writeable region.
1850 */
1851 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1852
607d44aa 1853 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1854 fsdata, di_bh, NULL);
607d44aa
MF
1855 if (ret) {
1856 mlog_errno(ret);
c934a92d 1857 goto out_fail;
607d44aa
MF
1858 }
1859
1860 brelse(di_bh);
1861
1862 return 0;
1863
607d44aa
MF
1864out_fail:
1865 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1866
1867 brelse(di_bh);
e63aecb6 1868 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1869
1870 return ret;
1871}
1872
1afc32b9
MF
1873static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1874 unsigned len, unsigned *copied,
1875 struct ocfs2_dinode *di,
1876 struct ocfs2_write_ctxt *wc)
1877{
1878 void *kaddr;
1879
1880 if (unlikely(*copied < len)) {
1881 if (!PageUptodate(wc->w_target_page)) {
1882 *copied = 0;
1883 return;
1884 }
1885 }
1886
1887 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1888 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1889 kunmap_atomic(kaddr, KM_USER0);
1890
1891 mlog(0, "Data written to inode at offset %llu. "
1892 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1893 (unsigned long long)pos, *copied,
1894 le16_to_cpu(di->id2.i_data.id_count),
1895 le16_to_cpu(di->i_dyn_features));
1896}
1897
7307de80
MF
1898int ocfs2_write_end_nolock(struct address_space *mapping,
1899 loff_t pos, unsigned len, unsigned copied,
1900 struct page *page, void *fsdata)
3a307ffc
MF
1901{
1902 int i;
1903 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1904 struct inode *inode = mapping->host;
1905 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1906 struct ocfs2_write_ctxt *wc = fsdata;
1907 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1908 handle_t *handle = wc->w_handle;
1909 struct page *tmppage;
1910
1afc32b9
MF
1911 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1912 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1913 goto out_write_size;
1914 }
1915
3a307ffc
MF
1916 if (unlikely(copied < len)) {
1917 if (!PageUptodate(wc->w_target_page))
1918 copied = 0;
1919
1920 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1921 start+len);
1922 }
1923 flush_dcache_page(wc->w_target_page);
1924
1925 for(i = 0; i < wc->w_num_pages; i++) {
1926 tmppage = wc->w_pages[i];
1927
1928 if (tmppage == wc->w_target_page) {
1929 from = wc->w_target_from;
1930 to = wc->w_target_to;
1931
1932 BUG_ON(from > PAGE_CACHE_SIZE ||
1933 to > PAGE_CACHE_SIZE ||
1934 to < from);
1935 } else {
1936 /*
1937 * Pages adjacent to the target (if any) imply
1938 * a hole-filling write in which case we want
1939 * to flush their entire range.
1940 */
1941 from = 0;
1942 to = PAGE_CACHE_SIZE;
1943 }
1944
961cecbe 1945 if (page_has_buffers(tmppage)) {
53ef99ca 1946 if (ocfs2_should_order_data(inode))
2b4e30fb 1947 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1948 block_commit_write(tmppage, from, to);
1949 }
3a307ffc
MF
1950 }
1951
1afc32b9 1952out_write_size:
3a307ffc
MF
1953 pos += copied;
1954 if (pos > inode->i_size) {
1955 i_size_write(inode, pos);
1956 mark_inode_dirty(inode);
1957 }
1958 inode->i_blocks = ocfs2_inode_sector_count(inode);
1959 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1960 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1961 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1962 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1963 ocfs2_journal_dirty(handle, wc->w_di_bh);
1964
1965 ocfs2_commit_trans(osb, handle);
59a5e416 1966
b27b7cbc
MF
1967 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1968
607d44aa
MF
1969 ocfs2_free_write_ctxt(wc);
1970
1971 return copied;
1972}
1973
b6af1bcd
NP
1974static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1975 loff_t pos, unsigned len, unsigned copied,
1976 struct page *page, void *fsdata)
607d44aa
MF
1977{
1978 int ret;
1979 struct inode *inode = mapping->host;
1980
1981 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1982
3a307ffc 1983 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 1984 ocfs2_inode_unlock(inode, 1);
9517bac6 1985
607d44aa 1986 return ret;
9517bac6
MF
1987}
1988
f5e54d6e 1989const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
1990 .readpage = ocfs2_readpage,
1991 .readpages = ocfs2_readpages,
1992 .writepage = ocfs2_writepage,
1993 .write_begin = ocfs2_write_begin,
1994 .write_end = ocfs2_write_end,
1995 .bmap = ocfs2_bmap,
1996 .sync_page = block_sync_page,
1997 .direct_IO = ocfs2_direct_IO,
1998 .invalidatepage = ocfs2_invalidatepage,
1999 .releasepage = ocfs2_releasepage,
2000 .migratepage = buffer_migrate_page,
2001 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2002 .error_remove_page = generic_error_remove_page,
ccd979bd 2003};