fs: move inode_dio_wait calls into ->setattr
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd 31
ccd979bd
MF
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
293b2f70 46#include "refcounttree.h"
9558156b 47#include "ocfs2_trace.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
9558156b
TM
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
b657c95c 74 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
ccd979bd
MF
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr, KM_USER0);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
a81cb88b 125 brelse(bh);
ccd979bd 126
ccd979bd
MF
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 138
9558156b
TM
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
ebdec241 168 * allows __block_write_begin() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
25baf2da 199 }
ccd979bd 200
5693486b 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
5693486b
JB
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
ccd979bd
MF
208bail:
209 if (err < 0)
210 err = -EIO;
211
ccd979bd
MF
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
9558156b
TM
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
ccd979bd 283
e63aecb6 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
6798d35a 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 293 ret = AOP_TRUNCATED_PAGE;
e63aecb6 294 goto out_inode_unlock;
e9dfc0b2 295 }
ccd979bd
MF
296
297 /*
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
54cb8821 302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
303 * and notice that the page they just read isn't needed.
304 *
305 * XXX sys_readahead() seems to get that wrong?
306 */
307 if (start >= i_size_read(inode)) {
eebd2aa3 308 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
312 }
313
6798d35a
MF
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
318 unlock = 0;
319
ccd979bd
MF
320out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
322out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
324out:
325 if (unlock)
326 unlock_page(page);
ccd979bd
MF
327 return ret;
328}
329
628a24f5
MF
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341{
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384}
385
ccd979bd
MF
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
9558156b
TM
399 trace_ocfs2_writepage(
400 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401 page->index);
ccd979bd 402
9558156b 403 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
404}
405
ccd979bd
MF
406/* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
60b11392
MF
410int walk_page_buffers( handle_t *handle,
411 struct buffer_head *head,
412 unsigned from,
413 unsigned to,
414 int *partial,
415 int (*fn)( handle_t *handle,
416 struct buffer_head *bh))
ccd979bd
MF
417{
418 struct buffer_head *bh;
419 unsigned block_start, block_end;
420 unsigned blocksize = head->b_size;
421 int err, ret = 0;
422 struct buffer_head *next;
423
424 for ( bh = head, block_start = 0;
425 ret == 0 && (bh != head || !block_start);
426 block_start = block_end, bh = next)
427 {
428 next = bh->b_this_page;
429 block_end = block_start + blocksize;
430 if (block_end <= from || block_start >= to) {
431 if (partial && !buffer_uptodate(bh))
432 *partial = 1;
433 continue;
434 }
435 err = (*fn)(handle, bh);
436 if (!ret)
437 ret = err;
438 }
439 return ret;
440}
441
ccd979bd
MF
442static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443{
444 sector_t status;
445 u64 p_blkno = 0;
446 int err = 0;
447 struct inode *inode = mapping->host;
448
9558156b
TM
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 (unsigned long long)block);
ccd979bd
MF
451
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
454 */
455 if (!INODE_JOURNAL(inode)) {
e63aecb6 456 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
457 if (err) {
458 if (err != -ENOENT)
459 mlog_errno(err);
460 goto bail;
461 }
462 down_read(&OCFS2_I(inode)->ip_alloc_sem);
463 }
464
6798d35a
MF
465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 NULL);
ccd979bd
MF
468
469 if (!INODE_JOURNAL(inode)) {
470 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 471 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
472 }
473
474 if (err) {
475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block);
477 mlog_errno(err);
478 goto bail;
479 }
480
ccd979bd
MF
481bail:
482 status = err ? 0 : p_blkno;
483
ccd979bd
MF
484 return status;
485}
486
487/*
488 * TODO: Make this into a generic get_blocks function.
489 *
490 * From do_direct_io in direct-io.c:
491 * "So what we do is to permit the ->get_blocks function to populate
492 * bh.b_size with the size of IO which is permitted at this offset and
493 * this i_blkbits."
494 *
495 * This function is called directly from get_more_blocks in direct-io.c.
496 *
497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
498 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
499 *
500 * Note that we never bother to allocate blocks here, and thus ignore the
501 * create argument.
ccd979bd
MF
502 */
503static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
504 struct buffer_head *bh_result, int create)
505{
506 int ret;
4f902c37 507 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 508 unsigned int ext_flags;
184d7d20 509 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 510 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 511
ccd979bd
MF
512 /* This function won't even be called if the request isn't all
513 * nicely aligned and of the right size, so there's no need
514 * for us to check any of that. */
515
25baf2da 516 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 517
ccd979bd
MF
518 /* This figures out the size of the next contiguous block, and
519 * our logical offset */
363041a5 520 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 521 &contig_blocks, &ext_flags);
ccd979bd
MF
522 if (ret) {
523 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524 (unsigned long long)iblock);
525 ret = -EIO;
526 goto bail;
527 }
528
cbaee472
TM
529 /* We should already CoW the refcounted extent in case of create. */
530 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
531
25baf2da
MF
532 /*
533 * get_more_blocks() expects us to describe a hole by clearing
534 * the mapped bit on bh_result().
49cb8d2d
MF
535 *
536 * Consider an unwritten extent as a hole.
25baf2da 537 */
49cb8d2d 538 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 539 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 540 else
25baf2da 541 clear_buffer_mapped(bh_result);
ccd979bd
MF
542
543 /* make sure we don't map more than max_blocks blocks here as
544 that's all the kernel will handle at this point. */
545 if (max_blocks < contig_blocks)
546 contig_blocks = max_blocks;
547 bh_result->b_size = contig_blocks << blocksize_bits;
548bail:
549 return ret;
550}
551
2bd63216 552/*
ccd979bd 553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
554 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
555 * to protect io on one node from truncation on another.
ccd979bd
MF
556 */
557static void ocfs2_dio_end_io(struct kiocb *iocb,
558 loff_t offset,
559 ssize_t bytes,
40e2e973
CH
560 void *private,
561 int ret,
562 bool is_async)
ccd979bd 563{
d28c9174 564 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 565 int level;
ccd979bd
MF
566
567 /* this io's submitter should not have unlocked this before we could */
568 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 569
39c99f12 570 if (ocfs2_iocb_is_sem_locked(iocb)) {
bd5fe6c5 571 inode_dio_done(inode);
39c99f12
TY
572 ocfs2_iocb_clear_sem_locked(iocb);
573 }
574
ccd979bd 575 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
576
577 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 578 ocfs2_rw_unlock(inode, level);
40e2e973
CH
579
580 if (is_async)
581 aio_complete(iocb, ret, 0);
ccd979bd
MF
582}
583
03f981cf
JB
584/*
585 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
586 * from ext3. PageChecked() bits have been removed as OCFS2 does not
587 * do journalled data.
588 */
589static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
590{
591 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
592
2b4e30fb 593 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
594}
595
596static int ocfs2_releasepage(struct page *page, gfp_t wait)
597{
598 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
599
600 if (!page_has_buffers(page))
601 return 0;
2b4e30fb 602 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
603}
604
ccd979bd
MF
605static ssize_t ocfs2_direct_IO(int rw,
606 struct kiocb *iocb,
607 const struct iovec *iov,
608 loff_t offset,
609 unsigned long nr_segs)
610{
611 struct file *file = iocb->ki_filp;
d28c9174 612 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
53013cba 613
6798d35a
MF
614 /*
615 * Fallback to buffered I/O if we see an inode without
616 * extents.
617 */
618 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
619 return 0;
620
b80474b4
TM
621 /* Fallback to buffered I/O if we are appending. */
622 if (i_size_read(inode) <= offset)
623 return 0;
624
c1e8d35e
TM
625 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
626 iov, offset, nr_segs,
627 ocfs2_direct_IO_get_blocks,
628 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
629}
630
9517bac6
MF
631static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
632 u32 cpos,
633 unsigned int *start,
634 unsigned int *end)
635{
636 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
637
638 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
639 unsigned int cpp;
640
641 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
642
643 cluster_start = cpos % cpp;
644 cluster_start = cluster_start << osb->s_clustersize_bits;
645
646 cluster_end = cluster_start + osb->s_clustersize;
647 }
648
649 BUG_ON(cluster_start > PAGE_SIZE);
650 BUG_ON(cluster_end > PAGE_SIZE);
651
652 if (start)
653 *start = cluster_start;
654 if (end)
655 *end = cluster_end;
656}
657
658/*
659 * 'from' and 'to' are the region in the page to avoid zeroing.
660 *
661 * If pagesize > clustersize, this function will avoid zeroing outside
662 * of the cluster boundary.
663 *
664 * from == to == 0 is code for "zero the entire cluster region"
665 */
666static void ocfs2_clear_page_regions(struct page *page,
667 struct ocfs2_super *osb, u32 cpos,
668 unsigned from, unsigned to)
669{
670 void *kaddr;
671 unsigned int cluster_start, cluster_end;
672
673 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
674
675 kaddr = kmap_atomic(page, KM_USER0);
676
677 if (from || to) {
678 if (from > cluster_start)
679 memset(kaddr + cluster_start, 0, from - cluster_start);
680 if (to < cluster_end)
681 memset(kaddr + to, 0, cluster_end - to);
682 } else {
683 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
684 }
685
686 kunmap_atomic(kaddr, KM_USER0);
687}
688
4e9563fd
MF
689/*
690 * Nonsparse file systems fully allocate before we get to the write
691 * code. This prevents ocfs2_write() from tagging the write as an
692 * allocating one, which means ocfs2_map_page_blocks() might try to
693 * read-in the blocks at the tail of our file. Avoid reading them by
694 * testing i_size against each block offset.
695 */
696static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
697 unsigned int block_start)
698{
699 u64 offset = page_offset(page) + block_start;
700
701 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
702 return 1;
703
704 if (i_size_read(inode) > offset)
705 return 1;
706
707 return 0;
708}
709
9517bac6 710/*
ebdec241 711 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
712 * mapping by now though, and the entire write will be allocating or
713 * it won't, so not much need to use BH_New.
714 *
715 * This will also skip zeroing, which is handled externally.
716 */
60b11392
MF
717int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
718 struct inode *inode, unsigned int from,
719 unsigned int to, int new)
9517bac6
MF
720{
721 int ret = 0;
722 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
723 unsigned int block_end, block_start;
724 unsigned int bsize = 1 << inode->i_blkbits;
725
726 if (!page_has_buffers(page))
727 create_empty_buffers(page, bsize, 0);
728
729 head = page_buffers(page);
730 for (bh = head, block_start = 0; bh != head || !block_start;
731 bh = bh->b_this_page, block_start += bsize) {
732 block_end = block_start + bsize;
733
3a307ffc
MF
734 clear_buffer_new(bh);
735
9517bac6
MF
736 /*
737 * Ignore blocks outside of our i/o range -
738 * they may belong to unallocated clusters.
739 */
60b11392 740 if (block_start >= to || block_end <= from) {
9517bac6
MF
741 if (PageUptodate(page))
742 set_buffer_uptodate(bh);
743 continue;
744 }
745
746 /*
747 * For an allocating write with cluster size >= page
748 * size, we always write the entire page.
749 */
3a307ffc
MF
750 if (new)
751 set_buffer_new(bh);
9517bac6
MF
752
753 if (!buffer_mapped(bh)) {
754 map_bh(bh, inode->i_sb, *p_blkno);
755 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
756 }
757
758 if (PageUptodate(page)) {
759 if (!buffer_uptodate(bh))
760 set_buffer_uptodate(bh);
761 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 762 !buffer_new(bh) &&
4e9563fd 763 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 764 (block_start < from || block_end > to)) {
9517bac6
MF
765 ll_rw_block(READ, 1, &bh);
766 *wait_bh++=bh;
767 }
768
769 *p_blkno = *p_blkno + 1;
770 }
771
772 /*
773 * If we issued read requests - let them complete.
774 */
775 while(wait_bh > wait) {
776 wait_on_buffer(*--wait_bh);
777 if (!buffer_uptodate(*wait_bh))
778 ret = -EIO;
779 }
780
781 if (ret == 0 || !new)
782 return ret;
783
784 /*
785 * If we get -EIO above, zero out any newly allocated blocks
786 * to avoid exposing stale data.
787 */
788 bh = head;
789 block_start = 0;
790 do {
9517bac6
MF
791 block_end = block_start + bsize;
792 if (block_end <= from)
793 goto next_bh;
794 if (block_start >= to)
795 break;
796
eebd2aa3 797 zero_user(page, block_start, bh->b_size);
9517bac6
MF
798 set_buffer_uptodate(bh);
799 mark_buffer_dirty(bh);
800
801next_bh:
802 block_start = block_end;
803 bh = bh->b_this_page;
804 } while (bh != head);
805
806 return ret;
807}
808
3a307ffc
MF
809#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
810#define OCFS2_MAX_CTXT_PAGES 1
811#else
812#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
813#endif
814
815#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
816
6af67d82 817/*
3a307ffc 818 * Describe the state of a single cluster to be written to.
6af67d82 819 */
3a307ffc
MF
820struct ocfs2_write_cluster_desc {
821 u32 c_cpos;
822 u32 c_phys;
823 /*
824 * Give this a unique field because c_phys eventually gets
825 * filled.
826 */
827 unsigned c_new;
b27b7cbc 828 unsigned c_unwritten;
e7432675 829 unsigned c_needs_zero;
3a307ffc 830};
6af67d82 831
3a307ffc
MF
832struct ocfs2_write_ctxt {
833 /* Logical cluster position / len of write */
834 u32 w_cpos;
835 u32 w_clen;
6af67d82 836
e7432675
SM
837 /* First cluster allocated in a nonsparse extend */
838 u32 w_first_new_cpos;
839
3a307ffc 840 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 841
3a307ffc
MF
842 /*
843 * This is true if page_size > cluster_size.
844 *
845 * It triggers a set of special cases during write which might
846 * have to deal with allocating writes to partial pages.
847 */
848 unsigned int w_large_pages;
6af67d82 849
3a307ffc
MF
850 /*
851 * Pages involved in this write.
852 *
853 * w_target_page is the page being written to by the user.
854 *
855 * w_pages is an array of pages which always contains
856 * w_target_page, and in the case of an allocating write with
857 * page_size < cluster size, it will contain zero'd and mapped
858 * pages adjacent to w_target_page which need to be written
859 * out in so that future reads from that region will get
860 * zero's.
861 */
3a307ffc 862 unsigned int w_num_pages;
83fd9c7f 863 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 864 struct page *w_target_page;
eeb47d12 865
3a307ffc
MF
866 /*
867 * ocfs2_write_end() uses this to know what the real range to
868 * write in the target should be.
869 */
870 unsigned int w_target_from;
871 unsigned int w_target_to;
872
873 /*
874 * We could use journal_current_handle() but this is cleaner,
875 * IMHO -Mark
876 */
877 handle_t *w_handle;
878
879 struct buffer_head *w_di_bh;
b27b7cbc
MF
880
881 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
882};
883
1d410a6e 884void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
885{
886 int i;
887
1d410a6e
MF
888 for(i = 0; i < num_pages; i++) {
889 if (pages[i]) {
890 unlock_page(pages[i]);
891 mark_page_accessed(pages[i]);
892 page_cache_release(pages[i]);
893 }
6af67d82 894 }
1d410a6e
MF
895}
896
897static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
898{
899 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 900
3a307ffc
MF
901 brelse(wc->w_di_bh);
902 kfree(wc);
903}
904
905static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
906 struct ocfs2_super *osb, loff_t pos,
607d44aa 907 unsigned len, struct buffer_head *di_bh)
3a307ffc 908{
30b8548f 909 u32 cend;
3a307ffc
MF
910 struct ocfs2_write_ctxt *wc;
911
912 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
913 if (!wc)
914 return -ENOMEM;
6af67d82 915
3a307ffc 916 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 917 wc->w_first_new_cpos = UINT_MAX;
30b8548f 918 cend = (pos + len - 1) >> osb->s_clustersize_bits;
919 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
920 get_bh(di_bh);
921 wc->w_di_bh = di_bh;
6af67d82 922
3a307ffc
MF
923 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
924 wc->w_large_pages = 1;
925 else
926 wc->w_large_pages = 0;
927
b27b7cbc
MF
928 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
929
3a307ffc 930 *wcp = wc;
6af67d82 931
3a307ffc 932 return 0;
6af67d82
MF
933}
934
9517bac6 935/*
3a307ffc
MF
936 * If a page has any new buffers, zero them out here, and mark them uptodate
937 * and dirty so they'll be written out (in order to prevent uninitialised
938 * block data from leaking). And clear the new bit.
9517bac6 939 */
3a307ffc 940static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 941{
3a307ffc
MF
942 unsigned int block_start, block_end;
943 struct buffer_head *head, *bh;
9517bac6 944
3a307ffc
MF
945 BUG_ON(!PageLocked(page));
946 if (!page_has_buffers(page))
947 return;
9517bac6 948
3a307ffc
MF
949 bh = head = page_buffers(page);
950 block_start = 0;
951 do {
952 block_end = block_start + bh->b_size;
953
954 if (buffer_new(bh)) {
955 if (block_end > from && block_start < to) {
956 if (!PageUptodate(page)) {
957 unsigned start, end;
3a307ffc
MF
958
959 start = max(from, block_start);
960 end = min(to, block_end);
961
eebd2aa3 962 zero_user_segment(page, start, end);
3a307ffc
MF
963 set_buffer_uptodate(bh);
964 }
965
966 clear_buffer_new(bh);
967 mark_buffer_dirty(bh);
968 }
969 }
9517bac6 970
3a307ffc
MF
971 block_start = block_end;
972 bh = bh->b_this_page;
973 } while (bh != head);
974}
975
976/*
977 * Only called when we have a failure during allocating write to write
978 * zero's to the newly allocated region.
979 */
980static void ocfs2_write_failure(struct inode *inode,
981 struct ocfs2_write_ctxt *wc,
982 loff_t user_pos, unsigned user_len)
983{
984 int i;
5c26a7b7
MF
985 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
986 to = user_pos + user_len;
3a307ffc
MF
987 struct page *tmppage;
988
5c26a7b7 989 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 990
3a307ffc
MF
991 for(i = 0; i < wc->w_num_pages; i++) {
992 tmppage = wc->w_pages[i];
9517bac6 993
961cecbe 994 if (page_has_buffers(tmppage)) {
53ef99ca 995 if (ocfs2_should_order_data(inode))
2b4e30fb 996 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
997
998 block_commit_write(tmppage, from, to);
999 }
9517bac6 1000 }
9517bac6
MF
1001}
1002
3a307ffc
MF
1003static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1004 struct ocfs2_write_ctxt *wc,
1005 struct page *page, u32 cpos,
1006 loff_t user_pos, unsigned user_len,
1007 int new)
9517bac6 1008{
3a307ffc
MF
1009 int ret;
1010 unsigned int map_from = 0, map_to = 0;
9517bac6 1011 unsigned int cluster_start, cluster_end;
3a307ffc 1012 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1013
3a307ffc 1014 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1015 &cluster_start, &cluster_end);
1016
272b62c1
GR
1017 /* treat the write as new if the a hole/lseek spanned across
1018 * the page boundary.
1019 */
1020 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1021 (page_offset(page) <= user_pos));
1022
3a307ffc
MF
1023 if (page == wc->w_target_page) {
1024 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1025 map_to = map_from + user_len;
1026
1027 if (new)
1028 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1029 cluster_start, cluster_end,
1030 new);
1031 else
1032 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1033 map_from, map_to, new);
1034 if (ret) {
9517bac6
MF
1035 mlog_errno(ret);
1036 goto out;
1037 }
1038
3a307ffc
MF
1039 user_data_from = map_from;
1040 user_data_to = map_to;
9517bac6 1041 if (new) {
3a307ffc
MF
1042 map_from = cluster_start;
1043 map_to = cluster_end;
9517bac6
MF
1044 }
1045 } else {
1046 /*
1047 * If we haven't allocated the new page yet, we
1048 * shouldn't be writing it out without copying user
1049 * data. This is likely a math error from the caller.
1050 */
1051 BUG_ON(!new);
1052
3a307ffc
MF
1053 map_from = cluster_start;
1054 map_to = cluster_end;
9517bac6
MF
1055
1056 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1057 cluster_start, cluster_end, new);
9517bac6
MF
1058 if (ret) {
1059 mlog_errno(ret);
1060 goto out;
1061 }
1062 }
1063
1064 /*
1065 * Parts of newly allocated pages need to be zero'd.
1066 *
1067 * Above, we have also rewritten 'to' and 'from' - as far as
1068 * the rest of the function is concerned, the entire cluster
1069 * range inside of a page needs to be written.
1070 *
1071 * We can skip this if the page is up to date - it's already
1072 * been zero'd from being read in as a hole.
1073 */
1074 if (new && !PageUptodate(page))
1075 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1076 cpos, user_data_from, user_data_to);
9517bac6
MF
1077
1078 flush_dcache_page(page);
1079
9517bac6 1080out:
3a307ffc 1081 return ret;
9517bac6
MF
1082}
1083
1084/*
3a307ffc 1085 * This function will only grab one clusters worth of pages.
9517bac6 1086 */
3a307ffc
MF
1087static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1088 struct ocfs2_write_ctxt *wc,
693c241a
JB
1089 u32 cpos, loff_t user_pos,
1090 unsigned user_len, int new,
7307de80 1091 struct page *mmap_page)
9517bac6 1092{
3a307ffc 1093 int ret = 0, i;
693c241a 1094 unsigned long start, target_index, end_index, index;
9517bac6 1095 struct inode *inode = mapping->host;
693c241a 1096 loff_t last_byte;
9517bac6 1097
3a307ffc 1098 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1099
1100 /*
1101 * Figure out how many pages we'll be manipulating here. For
60b11392 1102 * non allocating write, we just change the one
693c241a
JB
1103 * page. Otherwise, we'll need a whole clusters worth. If we're
1104 * writing past i_size, we only need enough pages to cover the
1105 * last page of the write.
9517bac6 1106 */
9517bac6 1107 if (new) {
3a307ffc
MF
1108 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1109 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1110 /*
1111 * We need the index *past* the last page we could possibly
1112 * touch. This is the page past the end of the write or
1113 * i_size, whichever is greater.
1114 */
1115 last_byte = max(user_pos + user_len, i_size_read(inode));
1116 BUG_ON(last_byte < 1);
1117 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1118 if ((start + wc->w_num_pages) > end_index)
1119 wc->w_num_pages = end_index - start;
9517bac6 1120 } else {
3a307ffc
MF
1121 wc->w_num_pages = 1;
1122 start = target_index;
9517bac6
MF
1123 }
1124
3a307ffc 1125 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1126 index = start + i;
1127
7307de80
MF
1128 if (index == target_index && mmap_page) {
1129 /*
1130 * ocfs2_pagemkwrite() is a little different
1131 * and wants us to directly use the page
1132 * passed in.
1133 */
1134 lock_page(mmap_page);
1135
1136 if (mmap_page->mapping != mapping) {
1137 unlock_page(mmap_page);
1138 /*
1139 * Sanity check - the locking in
1140 * ocfs2_pagemkwrite() should ensure
1141 * that this code doesn't trigger.
1142 */
1143 ret = -EINVAL;
1144 mlog_errno(ret);
1145 goto out;
1146 }
1147
1148 page_cache_get(mmap_page);
1149 wc->w_pages[i] = mmap_page;
1150 } else {
1151 wc->w_pages[i] = find_or_create_page(mapping, index,
1152 GFP_NOFS);
1153 if (!wc->w_pages[i]) {
1154 ret = -ENOMEM;
1155 mlog_errno(ret);
1156 goto out;
1157 }
9517bac6 1158 }
3a307ffc
MF
1159
1160 if (index == target_index)
1161 wc->w_target_page = wc->w_pages[i];
9517bac6 1162 }
3a307ffc
MF
1163out:
1164 return ret;
1165}
1166
1167/*
1168 * Prepare a single cluster for write one cluster into the file.
1169 */
1170static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1171 u32 phys, unsigned int unwritten,
e7432675 1172 unsigned int should_zero,
b27b7cbc 1173 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1174 struct ocfs2_alloc_context *meta_ac,
1175 struct ocfs2_write_ctxt *wc, u32 cpos,
1176 loff_t user_pos, unsigned user_len)
1177{
e7432675 1178 int ret, i, new;
3a307ffc
MF
1179 u64 v_blkno, p_blkno;
1180 struct inode *inode = mapping->host;
f99b9b7c 1181 struct ocfs2_extent_tree et;
3a307ffc
MF
1182
1183 new = phys == 0 ? 1 : 0;
9517bac6 1184 if (new) {
3a307ffc
MF
1185 u32 tmp_pos;
1186
9517bac6
MF
1187 /*
1188 * This is safe to call with the page locks - it won't take
1189 * any additional semaphores or cluster locks.
1190 */
3a307ffc 1191 tmp_pos = cpos;
0eb8d47e
TM
1192 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1193 &tmp_pos, 1, 0, wc->w_di_bh,
1194 wc->w_handle, data_ac,
1195 meta_ac, NULL);
9517bac6
MF
1196 /*
1197 * This shouldn't happen because we must have already
1198 * calculated the correct meta data allocation required. The
1199 * internal tree allocation code should know how to increase
1200 * transaction credits itself.
1201 *
1202 * If need be, we could handle -EAGAIN for a
1203 * RESTART_TRANS here.
1204 */
1205 mlog_bug_on_msg(ret == -EAGAIN,
1206 "Inode %llu: EAGAIN return during allocation.\n",
1207 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1208 if (ret < 0) {
1209 mlog_errno(ret);
1210 goto out;
1211 }
b27b7cbc 1212 } else if (unwritten) {
5e404e9e
JB
1213 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1214 wc->w_di_bh);
f99b9b7c 1215 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1216 wc->w_handle, cpos, 1, phys,
f99b9b7c 1217 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1218 if (ret < 0) {
1219 mlog_errno(ret);
1220 goto out;
1221 }
1222 }
3a307ffc 1223
b27b7cbc 1224 if (should_zero)
3a307ffc 1225 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1226 else
3a307ffc 1227 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1228
3a307ffc
MF
1229 /*
1230 * The only reason this should fail is due to an inability to
1231 * find the extent added.
1232 */
49cb8d2d
MF
1233 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1234 NULL);
9517bac6 1235 if (ret < 0) {
3a307ffc
MF
1236 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1237 "at logical block %llu",
1238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1239 (unsigned long long)v_blkno);
9517bac6
MF
1240 goto out;
1241 }
1242
1243 BUG_ON(p_blkno == 0);
1244
3a307ffc
MF
1245 for(i = 0; i < wc->w_num_pages; i++) {
1246 int tmpret;
9517bac6 1247
3a307ffc
MF
1248 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1249 wc->w_pages[i], cpos,
b27b7cbc
MF
1250 user_pos, user_len,
1251 should_zero);
3a307ffc
MF
1252 if (tmpret) {
1253 mlog_errno(tmpret);
1254 if (ret == 0)
cbfa9639 1255 ret = tmpret;
3a307ffc 1256 }
9517bac6
MF
1257 }
1258
3a307ffc
MF
1259 /*
1260 * We only have cleanup to do in case of allocating write.
1261 */
1262 if (ret && new)
1263 ocfs2_write_failure(inode, wc, user_pos, user_len);
1264
9517bac6 1265out:
9517bac6 1266
3a307ffc 1267 return ret;
9517bac6
MF
1268}
1269
0d172baa
MF
1270static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1271 struct ocfs2_alloc_context *data_ac,
1272 struct ocfs2_alloc_context *meta_ac,
1273 struct ocfs2_write_ctxt *wc,
1274 loff_t pos, unsigned len)
1275{
1276 int ret, i;
db56246c
MF
1277 loff_t cluster_off;
1278 unsigned int local_len = len;
0d172baa 1279 struct ocfs2_write_cluster_desc *desc;
db56246c 1280 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1281
1282 for (i = 0; i < wc->w_clen; i++) {
1283 desc = &wc->w_desc[i];
1284
db56246c
MF
1285 /*
1286 * We have to make sure that the total write passed in
1287 * doesn't extend past a single cluster.
1288 */
1289 local_len = len;
1290 cluster_off = pos & (osb->s_clustersize - 1);
1291 if ((cluster_off + local_len) > osb->s_clustersize)
1292 local_len = osb->s_clustersize - cluster_off;
1293
b27b7cbc 1294 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1295 desc->c_unwritten,
1296 desc->c_needs_zero,
1297 data_ac, meta_ac,
db56246c 1298 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1299 if (ret) {
1300 mlog_errno(ret);
1301 goto out;
1302 }
db56246c
MF
1303
1304 len -= local_len;
1305 pos += local_len;
0d172baa
MF
1306 }
1307
1308 ret = 0;
1309out:
1310 return ret;
1311}
1312
3a307ffc
MF
1313/*
1314 * ocfs2_write_end() wants to know which parts of the target page it
1315 * should complete the write on. It's easiest to compute them ahead of
1316 * time when a more complete view of the write is available.
1317 */
1318static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1319 struct ocfs2_write_ctxt *wc,
1320 loff_t pos, unsigned len, int alloc)
9517bac6 1321{
3a307ffc 1322 struct ocfs2_write_cluster_desc *desc;
9517bac6 1323
3a307ffc
MF
1324 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1325 wc->w_target_to = wc->w_target_from + len;
1326
1327 if (alloc == 0)
1328 return;
1329
1330 /*
1331 * Allocating write - we may have different boundaries based
1332 * on page size and cluster size.
1333 *
1334 * NOTE: We can no longer compute one value from the other as
1335 * the actual write length and user provided length may be
1336 * different.
1337 */
9517bac6 1338
3a307ffc
MF
1339 if (wc->w_large_pages) {
1340 /*
1341 * We only care about the 1st and last cluster within
b27b7cbc 1342 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1343 * value may be extended out to the start/end of a
1344 * newly allocated cluster.
1345 */
1346 desc = &wc->w_desc[0];
e7432675 1347 if (desc->c_needs_zero)
3a307ffc
MF
1348 ocfs2_figure_cluster_boundaries(osb,
1349 desc->c_cpos,
1350 &wc->w_target_from,
1351 NULL);
1352
1353 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1354 if (desc->c_needs_zero)
3a307ffc
MF
1355 ocfs2_figure_cluster_boundaries(osb,
1356 desc->c_cpos,
1357 NULL,
1358 &wc->w_target_to);
1359 } else {
1360 wc->w_target_from = 0;
1361 wc->w_target_to = PAGE_CACHE_SIZE;
1362 }
9517bac6
MF
1363}
1364
0d172baa
MF
1365/*
1366 * Populate each single-cluster write descriptor in the write context
1367 * with information about the i/o to be done.
b27b7cbc
MF
1368 *
1369 * Returns the number of clusters that will have to be allocated, as
1370 * well as a worst case estimate of the number of extent records that
1371 * would have to be created during a write to an unwritten region.
0d172baa
MF
1372 */
1373static int ocfs2_populate_write_desc(struct inode *inode,
1374 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1375 unsigned int *clusters_to_alloc,
1376 unsigned int *extents_to_split)
9517bac6 1377{
0d172baa 1378 int ret;
3a307ffc 1379 struct ocfs2_write_cluster_desc *desc;
0d172baa 1380 unsigned int num_clusters = 0;
b27b7cbc 1381 unsigned int ext_flags = 0;
0d172baa
MF
1382 u32 phys = 0;
1383 int i;
9517bac6 1384
b27b7cbc
MF
1385 *clusters_to_alloc = 0;
1386 *extents_to_split = 0;
1387
3a307ffc
MF
1388 for (i = 0; i < wc->w_clen; i++) {
1389 desc = &wc->w_desc[i];
1390 desc->c_cpos = wc->w_cpos + i;
1391
1392 if (num_clusters == 0) {
b27b7cbc
MF
1393 /*
1394 * Need to look up the next extent record.
1395 */
3a307ffc 1396 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1397 &num_clusters, &ext_flags);
3a307ffc
MF
1398 if (ret) {
1399 mlog_errno(ret);
607d44aa 1400 goto out;
3a307ffc 1401 }
b27b7cbc 1402
293b2f70
TM
1403 /* We should already CoW the refcountd extent. */
1404 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1405
b27b7cbc
MF
1406 /*
1407 * Assume worst case - that we're writing in
1408 * the middle of the extent.
1409 *
1410 * We can assume that the write proceeds from
1411 * left to right, in which case the extent
1412 * insert code is smart enough to coalesce the
1413 * next splits into the previous records created.
1414 */
1415 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1416 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1417 } else if (phys) {
1418 /*
1419 * Only increment phys if it doesn't describe
1420 * a hole.
1421 */
1422 phys++;
1423 }
1424
e7432675
SM
1425 /*
1426 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1427 * file that got extended. w_first_new_cpos tells us
1428 * where the newly allocated clusters are so we can
1429 * zero them.
1430 */
1431 if (desc->c_cpos >= wc->w_first_new_cpos) {
1432 BUG_ON(phys == 0);
1433 desc->c_needs_zero = 1;
1434 }
1435
3a307ffc
MF
1436 desc->c_phys = phys;
1437 if (phys == 0) {
1438 desc->c_new = 1;
e7432675 1439 desc->c_needs_zero = 1;
0d172baa 1440 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1441 }
e7432675
SM
1442
1443 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1444 desc->c_unwritten = 1;
e7432675
SM
1445 desc->c_needs_zero = 1;
1446 }
3a307ffc
MF
1447
1448 num_clusters--;
9517bac6
MF
1449 }
1450
0d172baa
MF
1451 ret = 0;
1452out:
1453 return ret;
1454}
1455
1afc32b9
MF
1456static int ocfs2_write_begin_inline(struct address_space *mapping,
1457 struct inode *inode,
1458 struct ocfs2_write_ctxt *wc)
1459{
1460 int ret;
1461 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1462 struct page *page;
1463 handle_t *handle;
1464 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1465
1466 page = find_or_create_page(mapping, 0, GFP_NOFS);
1467 if (!page) {
1468 ret = -ENOMEM;
1469 mlog_errno(ret);
1470 goto out;
1471 }
1472 /*
1473 * If we don't set w_num_pages then this page won't get unlocked
1474 * and freed on cleanup of the write context.
1475 */
1476 wc->w_pages[0] = wc->w_target_page = page;
1477 wc->w_num_pages = 1;
1478
1479 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1480 if (IS_ERR(handle)) {
1481 ret = PTR_ERR(handle);
1482 mlog_errno(ret);
1483 goto out;
1484 }
1485
0cf2f763 1486 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1487 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1488 if (ret) {
1489 ocfs2_commit_trans(osb, handle);
1490
1491 mlog_errno(ret);
1492 goto out;
1493 }
1494
1495 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1496 ocfs2_set_inode_data_inline(inode, di);
1497
1498 if (!PageUptodate(page)) {
1499 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1500 if (ret) {
1501 ocfs2_commit_trans(osb, handle);
1502
1503 goto out;
1504 }
1505 }
1506
1507 wc->w_handle = handle;
1508out:
1509 return ret;
1510}
1511
1512int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1513{
1514 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1515
0d8a4e0c 1516 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1517 return 1;
1518 return 0;
1519}
1520
1521static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1522 struct inode *inode, loff_t pos,
1523 unsigned len, struct page *mmap_page,
1524 struct ocfs2_write_ctxt *wc)
1525{
1526 int ret, written = 0;
1527 loff_t end = pos + len;
1528 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1529 struct ocfs2_dinode *di = NULL;
1afc32b9 1530
9558156b
TM
1531 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1532 len, (unsigned long long)pos,
1533 oi->ip_dyn_features);
1afc32b9
MF
1534
1535 /*
1536 * Handle inodes which already have inline data 1st.
1537 */
1538 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1539 if (mmap_page == NULL &&
1540 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1541 goto do_inline_write;
1542
1543 /*
1544 * The write won't fit - we have to give this inode an
1545 * inline extent list now.
1546 */
1547 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1548 if (ret)
1549 mlog_errno(ret);
1550 goto out;
1551 }
1552
1553 /*
1554 * Check whether the inode can accept inline data.
1555 */
1556 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1557 return 0;
1558
1559 /*
1560 * Check whether the write can fit.
1561 */
d9ae49d6
TY
1562 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1563 if (mmap_page ||
1564 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1565 return 0;
1566
1567do_inline_write:
1568 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1569 if (ret) {
1570 mlog_errno(ret);
1571 goto out;
1572 }
1573
1574 /*
1575 * This signals to the caller that the data can be written
1576 * inline.
1577 */
1578 written = 1;
1579out:
1580 return written ? written : ret;
1581}
1582
65ed39d6
MF
1583/*
1584 * This function only does anything for file systems which can't
1585 * handle sparse files.
1586 *
1587 * What we want to do here is fill in any hole between the current end
1588 * of allocation and the end of our write. That way the rest of the
1589 * write path can treat it as an non-allocating write, which has no
1590 * special case code for sparse/nonsparse files.
1591 */
5693486b
JB
1592static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1593 struct buffer_head *di_bh,
1594 loff_t pos, unsigned len,
65ed39d6
MF
1595 struct ocfs2_write_ctxt *wc)
1596{
1597 int ret;
65ed39d6
MF
1598 loff_t newsize = pos + len;
1599
5693486b 1600 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1601
1602 if (newsize <= i_size_read(inode))
1603 return 0;
1604
5693486b 1605 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1606 if (ret)
1607 mlog_errno(ret);
1608
e7432675
SM
1609 wc->w_first_new_cpos =
1610 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1611
65ed39d6
MF
1612 return ret;
1613}
1614
5693486b
JB
1615static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1616 loff_t pos)
1617{
1618 int ret = 0;
1619
1620 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1621 if (pos > i_size_read(inode))
1622 ret = ocfs2_zero_extend(inode, di_bh, pos);
1623
1624 return ret;
1625}
1626
50308d81
TM
1627/*
1628 * Try to flush truncate logs if we can free enough clusters from it.
1629 * As for return value, "< 0" means error, "0" no space and "1" means
1630 * we have freed enough spaces and let the caller try to allocate again.
1631 */
1632static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1633 unsigned int needed)
1634{
1635 tid_t target;
1636 int ret = 0;
1637 unsigned int truncated_clusters;
1638
1639 mutex_lock(&osb->osb_tl_inode->i_mutex);
1640 truncated_clusters = osb->truncated_clusters;
1641 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1642
1643 /*
1644 * Check whether we can succeed in allocating if we free
1645 * the truncate log.
1646 */
1647 if (truncated_clusters < needed)
1648 goto out;
1649
1650 ret = ocfs2_flush_truncate_log(osb);
1651 if (ret) {
1652 mlog_errno(ret);
1653 goto out;
1654 }
1655
1656 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1657 jbd2_log_wait_commit(osb->journal->j_journal, target);
1658 ret = 1;
1659 }
1660out:
1661 return ret;
1662}
1663
0378da0f
TM
1664int ocfs2_write_begin_nolock(struct file *filp,
1665 struct address_space *mapping,
0d172baa
MF
1666 loff_t pos, unsigned len, unsigned flags,
1667 struct page **pagep, void **fsdata,
1668 struct buffer_head *di_bh, struct page *mmap_page)
1669{
e7432675 1670 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1671 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1672 struct ocfs2_write_ctxt *wc;
1673 struct inode *inode = mapping->host;
1674 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1675 struct ocfs2_dinode *di;
1676 struct ocfs2_alloc_context *data_ac = NULL;
1677 struct ocfs2_alloc_context *meta_ac = NULL;
1678 handle_t *handle;
f99b9b7c 1679 struct ocfs2_extent_tree et;
50308d81 1680 int try_free = 1, ret1;
0d172baa 1681
50308d81 1682try_again:
0d172baa
MF
1683 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1684 if (ret) {
1685 mlog_errno(ret);
1686 return ret;
1687 }
1688
1afc32b9
MF
1689 if (ocfs2_supports_inline_data(osb)) {
1690 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1691 mmap_page, wc);
1692 if (ret == 1) {
1693 ret = 0;
1694 goto success;
1695 }
1696 if (ret < 0) {
1697 mlog_errno(ret);
1698 goto out;
1699 }
1700 }
1701
5693486b
JB
1702 if (ocfs2_sparse_alloc(osb))
1703 ret = ocfs2_zero_tail(inode, di_bh, pos);
1704 else
1705 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1706 wc);
65ed39d6
MF
1707 if (ret) {
1708 mlog_errno(ret);
1709 goto out;
1710 }
1711
293b2f70
TM
1712 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1713 if (ret < 0) {
1714 mlog_errno(ret);
1715 goto out;
1716 } else if (ret == 1) {
50308d81 1717 clusters_need = wc->w_clen;
15502712 1718 ret = ocfs2_refcount_cow(inode, filp, di_bh,
37f8a2bf 1719 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1720 if (ret) {
1721 mlog_errno(ret);
1722 goto out;
1723 }
1724 }
1725
b27b7cbc
MF
1726 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1727 &extents_to_split);
0d172baa
MF
1728 if (ret) {
1729 mlog_errno(ret);
1730 goto out;
1731 }
50308d81 1732 clusters_need += clusters_to_alloc;
0d172baa
MF
1733
1734 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1735
9558156b
TM
1736 trace_ocfs2_write_begin_nolock(
1737 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1738 (long long)i_size_read(inode),
1739 le32_to_cpu(di->i_clusters),
1740 pos, len, flags, mmap_page,
1741 clusters_to_alloc, extents_to_split);
1742
3a307ffc
MF
1743 /*
1744 * We set w_target_from, w_target_to here so that
1745 * ocfs2_write_end() knows which range in the target page to
1746 * write out. An allocation requires that we write the entire
1747 * cluster range.
1748 */
b27b7cbc 1749 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1750 /*
1751 * XXX: We are stretching the limits of
b27b7cbc 1752 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1753 * the work to be done.
1754 */
5e404e9e
JB
1755 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1756 wc->w_di_bh);
f99b9b7c 1757 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1758 clusters_to_alloc, extents_to_split,
f99b9b7c 1759 &data_ac, &meta_ac);
9517bac6
MF
1760 if (ret) {
1761 mlog_errno(ret);
607d44aa 1762 goto out;
9517bac6
MF
1763 }
1764
4fe370af
MF
1765 if (data_ac)
1766 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1767
811f933d
TM
1768 credits = ocfs2_calc_extend_credits(inode->i_sb,
1769 &di->id2.i_list,
3a307ffc
MF
1770 clusters_to_alloc);
1771
9517bac6
MF
1772 }
1773
e7432675
SM
1774 /*
1775 * We have to zero sparse allocated clusters, unwritten extent clusters,
1776 * and non-sparse clusters we just extended. For non-sparse writes,
1777 * we know zeros will only be needed in the first and/or last cluster.
1778 */
1779 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1780 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1781 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1782 cluster_of_pages = 1;
1783 else
1784 cluster_of_pages = 0;
1785
1786 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1787
9517bac6
MF
1788 handle = ocfs2_start_trans(osb, credits);
1789 if (IS_ERR(handle)) {
1790 ret = PTR_ERR(handle);
1791 mlog_errno(ret);
607d44aa 1792 goto out;
9517bac6
MF
1793 }
1794
3a307ffc
MF
1795 wc->w_handle = handle;
1796
5dd4056d
CH
1797 if (clusters_to_alloc) {
1798 ret = dquot_alloc_space_nodirty(inode,
1799 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1800 if (ret)
1801 goto out_commit;
a90714c1 1802 }
3a307ffc
MF
1803 /*
1804 * We don't want this to fail in ocfs2_write_end(), so do it
1805 * here.
1806 */
0cf2f763 1807 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1808 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1809 if (ret) {
9517bac6 1810 mlog_errno(ret);
a90714c1 1811 goto out_quota;
9517bac6
MF
1812 }
1813
3a307ffc
MF
1814 /*
1815 * Fill our page array first. That way we've grabbed enough so
1816 * that we can zero and flush if we error after adding the
1817 * extent.
1818 */
693c241a 1819 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1820 cluster_of_pages, mmap_page);
9517bac6
MF
1821 if (ret) {
1822 mlog_errno(ret);
a90714c1 1823 goto out_quota;
9517bac6
MF
1824 }
1825
0d172baa
MF
1826 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1827 len);
1828 if (ret) {
1829 mlog_errno(ret);
a90714c1 1830 goto out_quota;
9517bac6 1831 }
9517bac6 1832
3a307ffc
MF
1833 if (data_ac)
1834 ocfs2_free_alloc_context(data_ac);
1835 if (meta_ac)
1836 ocfs2_free_alloc_context(meta_ac);
9517bac6 1837
1afc32b9 1838success:
3a307ffc
MF
1839 *pagep = wc->w_target_page;
1840 *fsdata = wc;
1841 return 0;
a90714c1
JK
1842out_quota:
1843 if (clusters_to_alloc)
5dd4056d 1844 dquot_free_space(inode,
a90714c1 1845 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1846out_commit:
1847 ocfs2_commit_trans(osb, handle);
1848
9517bac6 1849out:
3a307ffc
MF
1850 ocfs2_free_write_ctxt(wc);
1851
9517bac6
MF
1852 if (data_ac)
1853 ocfs2_free_alloc_context(data_ac);
1854 if (meta_ac)
1855 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1856
1857 if (ret == -ENOSPC && try_free) {
1858 /*
1859 * Try to free some truncate log so that we can have enough
1860 * clusters to allocate.
1861 */
1862 try_free = 0;
1863
1864 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1865 if (ret1 == 1)
1866 goto try_again;
1867
1868 if (ret1 < 0)
1869 mlog_errno(ret1);
1870 }
1871
3a307ffc
MF
1872 return ret;
1873}
1874
b6af1bcd
NP
1875static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1876 loff_t pos, unsigned len, unsigned flags,
1877 struct page **pagep, void **fsdata)
607d44aa
MF
1878{
1879 int ret;
1880 struct buffer_head *di_bh = NULL;
1881 struct inode *inode = mapping->host;
1882
e63aecb6 1883 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1884 if (ret) {
1885 mlog_errno(ret);
1886 return ret;
1887 }
1888
1889 /*
1890 * Take alloc sem here to prevent concurrent lookups. That way
1891 * the mapping, zeroing and tree manipulation within
1892 * ocfs2_write() will be safe against ->readpage(). This
1893 * should also serve to lock out allocation from a shared
1894 * writeable region.
1895 */
1896 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1897
0378da0f 1898 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1899 fsdata, di_bh, NULL);
607d44aa
MF
1900 if (ret) {
1901 mlog_errno(ret);
c934a92d 1902 goto out_fail;
607d44aa
MF
1903 }
1904
1905 brelse(di_bh);
1906
1907 return 0;
1908
607d44aa
MF
1909out_fail:
1910 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1911
1912 brelse(di_bh);
e63aecb6 1913 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1914
1915 return ret;
1916}
1917
1afc32b9
MF
1918static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1919 unsigned len, unsigned *copied,
1920 struct ocfs2_dinode *di,
1921 struct ocfs2_write_ctxt *wc)
1922{
1923 void *kaddr;
1924
1925 if (unlikely(*copied < len)) {
1926 if (!PageUptodate(wc->w_target_page)) {
1927 *copied = 0;
1928 return;
1929 }
1930 }
1931
1932 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1933 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1934 kunmap_atomic(kaddr, KM_USER0);
1935
9558156b
TM
1936 trace_ocfs2_write_end_inline(
1937 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1938 (unsigned long long)pos, *copied,
1939 le16_to_cpu(di->id2.i_data.id_count),
1940 le16_to_cpu(di->i_dyn_features));
1941}
1942
7307de80
MF
1943int ocfs2_write_end_nolock(struct address_space *mapping,
1944 loff_t pos, unsigned len, unsigned copied,
1945 struct page *page, void *fsdata)
3a307ffc
MF
1946{
1947 int i;
1948 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1949 struct inode *inode = mapping->host;
1950 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1951 struct ocfs2_write_ctxt *wc = fsdata;
1952 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1953 handle_t *handle = wc->w_handle;
1954 struct page *tmppage;
1955
1afc32b9
MF
1956 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1957 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1958 goto out_write_size;
1959 }
1960
3a307ffc
MF
1961 if (unlikely(copied < len)) {
1962 if (!PageUptodate(wc->w_target_page))
1963 copied = 0;
1964
1965 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1966 start+len);
1967 }
1968 flush_dcache_page(wc->w_target_page);
1969
1970 for(i = 0; i < wc->w_num_pages; i++) {
1971 tmppage = wc->w_pages[i];
1972
1973 if (tmppage == wc->w_target_page) {
1974 from = wc->w_target_from;
1975 to = wc->w_target_to;
1976
1977 BUG_ON(from > PAGE_CACHE_SIZE ||
1978 to > PAGE_CACHE_SIZE ||
1979 to < from);
1980 } else {
1981 /*
1982 * Pages adjacent to the target (if any) imply
1983 * a hole-filling write in which case we want
1984 * to flush their entire range.
1985 */
1986 from = 0;
1987 to = PAGE_CACHE_SIZE;
1988 }
1989
961cecbe 1990 if (page_has_buffers(tmppage)) {
53ef99ca 1991 if (ocfs2_should_order_data(inode))
2b4e30fb 1992 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1993 block_commit_write(tmppage, from, to);
1994 }
3a307ffc
MF
1995 }
1996
1afc32b9 1997out_write_size:
3a307ffc
MF
1998 pos += copied;
1999 if (pos > inode->i_size) {
2000 i_size_write(inode, pos);
2001 mark_inode_dirty(inode);
2002 }
2003 inode->i_blocks = ocfs2_inode_sector_count(inode);
2004 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2005 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2006 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2007 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2008 ocfs2_journal_dirty(handle, wc->w_di_bh);
2009
2010 ocfs2_commit_trans(osb, handle);
59a5e416 2011
b27b7cbc
MF
2012 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2013
607d44aa
MF
2014 ocfs2_free_write_ctxt(wc);
2015
2016 return copied;
2017}
2018
b6af1bcd
NP
2019static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2020 loff_t pos, unsigned len, unsigned copied,
2021 struct page *page, void *fsdata)
607d44aa
MF
2022{
2023 int ret;
2024 struct inode *inode = mapping->host;
2025
2026 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2027
3a307ffc 2028 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2029 ocfs2_inode_unlock(inode, 1);
9517bac6 2030
607d44aa 2031 return ret;
9517bac6
MF
2032}
2033
f5e54d6e 2034const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2035 .readpage = ocfs2_readpage,
2036 .readpages = ocfs2_readpages,
2037 .writepage = ocfs2_writepage,
2038 .write_begin = ocfs2_write_begin,
2039 .write_end = ocfs2_write_end,
2040 .bmap = ocfs2_bmap,
1fca3a05
HH
2041 .direct_IO = ocfs2_direct_IO,
2042 .invalidatepage = ocfs2_invalidatepage,
2043 .releasepage = ocfs2_releasepage,
2044 .migratepage = buffer_migrate_page,
2045 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2046 .error_remove_page = generic_error_remove_page,
ccd979bd 2047};