ocfs2: Convert ocfs2_read_dir_block() to ocfs2_read_virt_blocks()
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
ccd979bd
MF
30
31#define MLOG_MASK_PREFIX ML_FILE_IO
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
46
47#include "buffer_head_io.h"
48
49static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 struct buffer_head *bh_result, int create)
51{
52 int err = -EIO;
53 int status;
54 struct ocfs2_dinode *fe = NULL;
55 struct buffer_head *bh = NULL;
56 struct buffer_head *buffer_cache_bh = NULL;
57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 void *kaddr;
59
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 (unsigned long long)iblock, bh_result, create);
62
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock);
68 goto bail;
69 }
70
b657c95c 71 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
72 if (status < 0) {
73 mlog_errno(status);
74 goto bail;
75 }
76 fe = (struct ocfs2_dinode *) bh->b_data;
77
ccd979bd
MF
78 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
79 le32_to_cpu(fe->i_clusters))) {
80 mlog(ML_ERROR, "block offset is outside the allocated size: "
81 "%llu\n", (unsigned long long)iblock);
82 goto bail;
83 }
84
85 /* We don't use the page cache to create symlink data, so if
86 * need be, copy it over from the buffer cache. */
87 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
88 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
89 iblock;
90 buffer_cache_bh = sb_getblk(osb->sb, blkno);
91 if (!buffer_cache_bh) {
92 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
93 goto bail;
94 }
95
96 /* we haven't locked out transactions, so a commit
97 * could've happened. Since we've got a reference on
98 * the bh, even if it commits while we're doing the
99 * copy, the data is still good. */
100 if (buffer_jbd(buffer_cache_bh)
101 && ocfs2_inode_is_new(inode)) {
102 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
103 if (!kaddr) {
104 mlog(ML_ERROR, "couldn't kmap!\n");
105 goto bail;
106 }
107 memcpy(kaddr + (bh_result->b_size * iblock),
108 buffer_cache_bh->b_data,
109 bh_result->b_size);
110 kunmap_atomic(kaddr, KM_USER0);
111 set_buffer_uptodate(bh_result);
112 }
113 brelse(buffer_cache_bh);
114 }
115
116 map_bh(bh_result, inode->i_sb,
117 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
118
119 err = 0;
120
121bail:
a81cb88b 122 brelse(bh);
ccd979bd
MF
123
124 mlog_exit(err);
125 return err;
126}
127
128static int ocfs2_get_block(struct inode *inode, sector_t iblock,
129 struct buffer_head *bh_result, int create)
130{
131 int err = 0;
49cb8d2d 132 unsigned int ext_flags;
628a24f5
MF
133 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
134 u64 p_blkno, count, past_eof;
25baf2da 135 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
136
137 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
138 (unsigned long long)iblock, bh_result, create);
139
140 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
141 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
142 inode, inode->i_ino);
143
144 if (S_ISLNK(inode->i_mode)) {
145 /* this always does I/O for some reason. */
146 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
147 goto bail;
148 }
149
628a24f5 150 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 151 &ext_flags);
ccd979bd
MF
152 if (err) {
153 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
154 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
155 (unsigned long long)p_blkno);
ccd979bd
MF
156 goto bail;
157 }
158
628a24f5
MF
159 if (max_blocks < count)
160 count = max_blocks;
161
25baf2da
MF
162 /*
163 * ocfs2 never allocates in this function - the only time we
164 * need to use BH_New is when we're extending i_size on a file
165 * system which doesn't support holes, in which case BH_New
166 * allows block_prepare_write() to zero.
c0420ad2
CL
167 *
168 * If we see this on a sparse file system, then a truncate has
169 * raced us and removed the cluster. In this case, we clear
170 * the buffers dirty and uptodate bits and let the buffer code
171 * ignore it as a hole.
25baf2da 172 */
c0420ad2
CL
173 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
174 clear_buffer_dirty(bh_result);
175 clear_buffer_uptodate(bh_result);
176 goto bail;
177 }
25baf2da 178
49cb8d2d
MF
179 /* Treat the unwritten extent as a hole for zeroing purposes. */
180 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
181 map_bh(bh_result, inode->i_sb, p_blkno);
182
628a24f5
MF
183 bh_result->b_size = count << inode->i_blkbits;
184
25baf2da
MF
185 if (!ocfs2_sparse_alloc(osb)) {
186 if (p_blkno == 0) {
187 err = -EIO;
188 mlog(ML_ERROR,
189 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
190 (unsigned long long)iblock,
191 (unsigned long long)p_blkno,
192 (unsigned long long)OCFS2_I(inode)->ip_blkno);
193 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
194 dump_stack();
195 }
ccd979bd 196
25baf2da
MF
197 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
198 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
199 (unsigned long long)past_eof);
ccd979bd 200
25baf2da
MF
201 if (create && (iblock >= past_eof))
202 set_buffer_new(bh_result);
203 }
ccd979bd
MF
204
205bail:
206 if (err < 0)
207 err = -EIO;
208
209 mlog_exit(err);
210 return err;
211}
212
1afc32b9
MF
213int ocfs2_read_inline_data(struct inode *inode, struct page *page,
214 struct buffer_head *di_bh)
6798d35a
MF
215{
216 void *kaddr;
d2849fb2 217 loff_t size;
6798d35a
MF
218 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
219
220 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
221 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
222 (unsigned long long)OCFS2_I(inode)->ip_blkno);
223 return -EROFS;
224 }
225
226 size = i_size_read(inode);
227
228 if (size > PAGE_CACHE_SIZE ||
229 size > ocfs2_max_inline_data(inode->i_sb)) {
230 ocfs2_error(inode->i_sb,
d2849fb2
JK
231 "Inode %llu has with inline data has bad size: %Lu",
232 (unsigned long long)OCFS2_I(inode)->ip_blkno,
233 (unsigned long long)size);
6798d35a
MF
234 return -EROFS;
235 }
236
237 kaddr = kmap_atomic(page, KM_USER0);
238 if (size)
239 memcpy(kaddr, di->id2.i_data.id_data, size);
240 /* Clear the remaining part of the page */
241 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
242 flush_dcache_page(page);
243 kunmap_atomic(kaddr, KM_USER0);
244
245 SetPageUptodate(page);
246
247 return 0;
248}
249
250static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
251{
252 int ret;
253 struct buffer_head *di_bh = NULL;
6798d35a
MF
254
255 BUG_ON(!PageLocked(page));
86c838b0 256 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 257
b657c95c 258 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
259 if (ret) {
260 mlog_errno(ret);
261 goto out;
262 }
263
264 ret = ocfs2_read_inline_data(inode, page, di_bh);
265out:
266 unlock_page(page);
267
268 brelse(di_bh);
269 return ret;
270}
271
ccd979bd
MF
272static int ocfs2_readpage(struct file *file, struct page *page)
273{
274 struct inode *inode = page->mapping->host;
6798d35a 275 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
276 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
277 int ret, unlock = 1;
278
279 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
280
e63aecb6 281 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
282 if (ret != 0) {
283 if (ret == AOP_TRUNCATED_PAGE)
284 unlock = 0;
285 mlog_errno(ret);
286 goto out;
287 }
288
6798d35a 289 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 290 ret = AOP_TRUNCATED_PAGE;
e63aecb6 291 goto out_inode_unlock;
e9dfc0b2 292 }
ccd979bd
MF
293
294 /*
295 * i_size might have just been updated as we grabed the meta lock. We
296 * might now be discovering a truncate that hit on another node.
297 * block_read_full_page->get_block freaks out if it is asked to read
298 * beyond the end of a file, so we check here. Callers
54cb8821 299 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
300 * and notice that the page they just read isn't needed.
301 *
302 * XXX sys_readahead() seems to get that wrong?
303 */
304 if (start >= i_size_read(inode)) {
eebd2aa3 305 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
306 SetPageUptodate(page);
307 ret = 0;
308 goto out_alloc;
309 }
310
6798d35a
MF
311 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
312 ret = ocfs2_readpage_inline(inode, page);
313 else
314 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
315 unlock = 0;
316
ccd979bd
MF
317out_alloc:
318 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
319out_inode_unlock:
320 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
321out:
322 if (unlock)
323 unlock_page(page);
324 mlog_exit(ret);
325 return ret;
326}
327
628a24f5
MF
328/*
329 * This is used only for read-ahead. Failures or difficult to handle
330 * situations are safe to ignore.
331 *
332 * Right now, we don't bother with BH_Boundary - in-inode extent lists
333 * are quite large (243 extents on 4k blocks), so most inodes don't
334 * grow out to a tree. If need be, detecting boundary extents could
335 * trivially be added in a future version of ocfs2_get_block().
336 */
337static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
338 struct list_head *pages, unsigned nr_pages)
339{
340 int ret, err = -EIO;
341 struct inode *inode = mapping->host;
342 struct ocfs2_inode_info *oi = OCFS2_I(inode);
343 loff_t start;
344 struct page *last;
345
346 /*
347 * Use the nonblocking flag for the dlm code to avoid page
348 * lock inversion, but don't bother with retrying.
349 */
350 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
351 if (ret)
352 return err;
353
354 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
355 ocfs2_inode_unlock(inode, 0);
356 return err;
357 }
358
359 /*
360 * Don't bother with inline-data. There isn't anything
361 * to read-ahead in that case anyway...
362 */
363 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
364 goto out_unlock;
365
366 /*
367 * Check whether a remote node truncated this file - we just
368 * drop out in that case as it's not worth handling here.
369 */
370 last = list_entry(pages->prev, struct page, lru);
371 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
372 if (start >= i_size_read(inode))
373 goto out_unlock;
374
375 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
376
377out_unlock:
378 up_read(&oi->ip_alloc_sem);
379 ocfs2_inode_unlock(inode, 0);
380
381 return err;
382}
383
ccd979bd
MF
384/* Note: Because we don't support holes, our allocation has
385 * already happened (allocation writes zeros to the file data)
386 * so we don't have to worry about ordered writes in
387 * ocfs2_writepage.
388 *
389 * ->writepage is called during the process of invalidating the page cache
390 * during blocked lock processing. It can't block on any cluster locks
391 * to during block mapping. It's relying on the fact that the block
392 * mapping can't have disappeared under the dirty pages that it is
393 * being asked to write back.
394 */
395static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
396{
397 int ret;
398
399 mlog_entry("(0x%p)\n", page);
400
401 ret = block_write_full_page(page, ocfs2_get_block, wbc);
402
403 mlog_exit(ret);
404
405 return ret;
406}
407
5069120b
MF
408/*
409 * This is called from ocfs2_write_zero_page() which has handled it's
410 * own cluster locking and has ensured allocation exists for those
411 * blocks to be written.
412 */
53013cba
MF
413int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
414 unsigned from, unsigned to)
415{
416 int ret;
417
53013cba
MF
418 ret = block_prepare_write(page, from, to, ocfs2_get_block);
419
53013cba
MF
420 return ret;
421}
422
ccd979bd
MF
423/* Taken from ext3. We don't necessarily need the full blown
424 * functionality yet, but IMHO it's better to cut and paste the whole
425 * thing so we can avoid introducing our own bugs (and easily pick up
426 * their fixes when they happen) --Mark */
60b11392
MF
427int walk_page_buffers( handle_t *handle,
428 struct buffer_head *head,
429 unsigned from,
430 unsigned to,
431 int *partial,
432 int (*fn)( handle_t *handle,
433 struct buffer_head *bh))
ccd979bd
MF
434{
435 struct buffer_head *bh;
436 unsigned block_start, block_end;
437 unsigned blocksize = head->b_size;
438 int err, ret = 0;
439 struct buffer_head *next;
440
441 for ( bh = head, block_start = 0;
442 ret == 0 && (bh != head || !block_start);
443 block_start = block_end, bh = next)
444 {
445 next = bh->b_this_page;
446 block_end = block_start + blocksize;
447 if (block_end <= from || block_start >= to) {
448 if (partial && !buffer_uptodate(bh))
449 *partial = 1;
450 continue;
451 }
452 err = (*fn)(handle, bh);
453 if (!ret)
454 ret = err;
455 }
456 return ret;
457}
458
1fabe148 459handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
460 struct page *page,
461 unsigned from,
462 unsigned to)
463{
464 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58dadcdb 465 handle_t *handle;
ccd979bd
MF
466 int ret = 0;
467
65eff9cc 468 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
58dadcdb 469 if (IS_ERR(handle)) {
ccd979bd
MF
470 ret = -ENOMEM;
471 mlog_errno(ret);
472 goto out;
473 }
474
475 if (ocfs2_should_order_data(inode)) {
2b4e30fb
JB
476 ret = ocfs2_jbd2_file_inode(handle, inode);
477#ifdef CONFIG_OCFS2_COMPAT_JBD
1fabe148 478 ret = walk_page_buffers(handle,
ccd979bd
MF
479 page_buffers(page),
480 from, to, NULL,
481 ocfs2_journal_dirty_data);
2b4e30fb
JB
482#endif
483 if (ret < 0)
ccd979bd
MF
484 mlog_errno(ret);
485 }
486out:
487 if (ret) {
58dadcdb 488 if (!IS_ERR(handle))
02dc1af4 489 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
490 handle = ERR_PTR(ret);
491 }
492 return handle;
493}
494
ccd979bd
MF
495static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
496{
497 sector_t status;
498 u64 p_blkno = 0;
499 int err = 0;
500 struct inode *inode = mapping->host;
501
502 mlog_entry("(block = %llu)\n", (unsigned long long)block);
503
504 /* We don't need to lock journal system files, since they aren't
505 * accessed concurrently from multiple nodes.
506 */
507 if (!INODE_JOURNAL(inode)) {
e63aecb6 508 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
509 if (err) {
510 if (err != -ENOENT)
511 mlog_errno(err);
512 goto bail;
513 }
514 down_read(&OCFS2_I(inode)->ip_alloc_sem);
515 }
516
6798d35a
MF
517 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
518 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
519 NULL);
ccd979bd
MF
520
521 if (!INODE_JOURNAL(inode)) {
522 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 523 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
524 }
525
526 if (err) {
527 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
528 (unsigned long long)block);
529 mlog_errno(err);
530 goto bail;
531 }
532
ccd979bd
MF
533bail:
534 status = err ? 0 : p_blkno;
535
536 mlog_exit((int)status);
537
538 return status;
539}
540
541/*
542 * TODO: Make this into a generic get_blocks function.
543 *
544 * From do_direct_io in direct-io.c:
545 * "So what we do is to permit the ->get_blocks function to populate
546 * bh.b_size with the size of IO which is permitted at this offset and
547 * this i_blkbits."
548 *
549 * This function is called directly from get_more_blocks in direct-io.c.
550 *
551 * called like this: dio->get_blocks(dio->inode, fs_startblk,
552 * fs_count, map_bh, dio->rw == WRITE);
553 */
554static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
555 struct buffer_head *bh_result, int create)
556{
557 int ret;
4f902c37 558 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 559 unsigned int ext_flags;
184d7d20 560 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 561 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 562
ccd979bd
MF
563 /* This function won't even be called if the request isn't all
564 * nicely aligned and of the right size, so there's no need
565 * for us to check any of that. */
566
25baf2da 567 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
568
569 /*
570 * Any write past EOF is not allowed because we'd be extending.
571 */
572 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
573 ret = -EIO;
574 goto bail;
575 }
ccd979bd
MF
576
577 /* This figures out the size of the next contiguous block, and
578 * our logical offset */
363041a5 579 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 580 &contig_blocks, &ext_flags);
ccd979bd
MF
581 if (ret) {
582 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
583 (unsigned long long)iblock);
584 ret = -EIO;
585 goto bail;
586 }
587
0e116227 588 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
25baf2da
MF
589 ocfs2_error(inode->i_sb,
590 "Inode %llu has a hole at block %llu\n",
591 (unsigned long long)OCFS2_I(inode)->ip_blkno,
592 (unsigned long long)iblock);
593 ret = -EROFS;
594 goto bail;
595 }
596
597 /*
598 * get_more_blocks() expects us to describe a hole by clearing
599 * the mapped bit on bh_result().
49cb8d2d
MF
600 *
601 * Consider an unwritten extent as a hole.
25baf2da 602 */
49cb8d2d 603 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
604 map_bh(bh_result, inode->i_sb, p_blkno);
605 else {
606 /*
607 * ocfs2_prepare_inode_for_write() should have caught
608 * the case where we'd be filling a hole and triggered
609 * a buffered write instead.
610 */
611 if (create) {
612 ret = -EIO;
613 mlog_errno(ret);
614 goto bail;
615 }
616
617 clear_buffer_mapped(bh_result);
618 }
ccd979bd
MF
619
620 /* make sure we don't map more than max_blocks blocks here as
621 that's all the kernel will handle at this point. */
622 if (max_blocks < contig_blocks)
623 contig_blocks = max_blocks;
624 bh_result->b_size = contig_blocks << blocksize_bits;
625bail:
626 return ret;
627}
628
629/*
630 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
631 * particularly interested in the aio/dio case. Like the core uses
632 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
633 * truncation on another.
634 */
635static void ocfs2_dio_end_io(struct kiocb *iocb,
636 loff_t offset,
637 ssize_t bytes,
638 void *private)
639{
d28c9174 640 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 641 int level;
ccd979bd
MF
642
643 /* this io's submitter should not have unlocked this before we could */
644 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 645
ccd979bd 646 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
647
648 level = ocfs2_iocb_rw_locked_level(iocb);
649 if (!level)
650 up_read(&inode->i_alloc_sem);
651 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
652}
653
03f981cf
JB
654/*
655 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
656 * from ext3. PageChecked() bits have been removed as OCFS2 does not
657 * do journalled data.
658 */
659static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
660{
661 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
662
2b4e30fb 663 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
664}
665
666static int ocfs2_releasepage(struct page *page, gfp_t wait)
667{
668 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
669
670 if (!page_has_buffers(page))
671 return 0;
2b4e30fb 672 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
673}
674
ccd979bd
MF
675static ssize_t ocfs2_direct_IO(int rw,
676 struct kiocb *iocb,
677 const struct iovec *iov,
678 loff_t offset,
679 unsigned long nr_segs)
680{
681 struct file *file = iocb->ki_filp;
d28c9174 682 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
683 int ret;
684
685 mlog_entry_void();
53013cba 686
6798d35a
MF
687 /*
688 * Fallback to buffered I/O if we see an inode without
689 * extents.
690 */
691 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
692 return 0;
693
ccd979bd
MF
694 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
695 inode->i_sb->s_bdev, iov, offset,
696 nr_segs,
697 ocfs2_direct_IO_get_blocks,
698 ocfs2_dio_end_io);
c934a92d 699
ccd979bd
MF
700 mlog_exit(ret);
701 return ret;
702}
703
9517bac6
MF
704static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
705 u32 cpos,
706 unsigned int *start,
707 unsigned int *end)
708{
709 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
710
711 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
712 unsigned int cpp;
713
714 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
715
716 cluster_start = cpos % cpp;
717 cluster_start = cluster_start << osb->s_clustersize_bits;
718
719 cluster_end = cluster_start + osb->s_clustersize;
720 }
721
722 BUG_ON(cluster_start > PAGE_SIZE);
723 BUG_ON(cluster_end > PAGE_SIZE);
724
725 if (start)
726 *start = cluster_start;
727 if (end)
728 *end = cluster_end;
729}
730
731/*
732 * 'from' and 'to' are the region in the page to avoid zeroing.
733 *
734 * If pagesize > clustersize, this function will avoid zeroing outside
735 * of the cluster boundary.
736 *
737 * from == to == 0 is code for "zero the entire cluster region"
738 */
739static void ocfs2_clear_page_regions(struct page *page,
740 struct ocfs2_super *osb, u32 cpos,
741 unsigned from, unsigned to)
742{
743 void *kaddr;
744 unsigned int cluster_start, cluster_end;
745
746 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
747
748 kaddr = kmap_atomic(page, KM_USER0);
749
750 if (from || to) {
751 if (from > cluster_start)
752 memset(kaddr + cluster_start, 0, from - cluster_start);
753 if (to < cluster_end)
754 memset(kaddr + to, 0, cluster_end - to);
755 } else {
756 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
757 }
758
759 kunmap_atomic(kaddr, KM_USER0);
760}
761
4e9563fd
MF
762/*
763 * Nonsparse file systems fully allocate before we get to the write
764 * code. This prevents ocfs2_write() from tagging the write as an
765 * allocating one, which means ocfs2_map_page_blocks() might try to
766 * read-in the blocks at the tail of our file. Avoid reading them by
767 * testing i_size against each block offset.
768 */
769static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
770 unsigned int block_start)
771{
772 u64 offset = page_offset(page) + block_start;
773
774 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
775 return 1;
776
777 if (i_size_read(inode) > offset)
778 return 1;
779
780 return 0;
781}
782
9517bac6
MF
783/*
784 * Some of this taken from block_prepare_write(). We already have our
785 * mapping by now though, and the entire write will be allocating or
786 * it won't, so not much need to use BH_New.
787 *
788 * This will also skip zeroing, which is handled externally.
789 */
60b11392
MF
790int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
791 struct inode *inode, unsigned int from,
792 unsigned int to, int new)
9517bac6
MF
793{
794 int ret = 0;
795 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
796 unsigned int block_end, block_start;
797 unsigned int bsize = 1 << inode->i_blkbits;
798
799 if (!page_has_buffers(page))
800 create_empty_buffers(page, bsize, 0);
801
802 head = page_buffers(page);
803 for (bh = head, block_start = 0; bh != head || !block_start;
804 bh = bh->b_this_page, block_start += bsize) {
805 block_end = block_start + bsize;
806
3a307ffc
MF
807 clear_buffer_new(bh);
808
9517bac6
MF
809 /*
810 * Ignore blocks outside of our i/o range -
811 * they may belong to unallocated clusters.
812 */
60b11392 813 if (block_start >= to || block_end <= from) {
9517bac6
MF
814 if (PageUptodate(page))
815 set_buffer_uptodate(bh);
816 continue;
817 }
818
819 /*
820 * For an allocating write with cluster size >= page
821 * size, we always write the entire page.
822 */
3a307ffc
MF
823 if (new)
824 set_buffer_new(bh);
9517bac6
MF
825
826 if (!buffer_mapped(bh)) {
827 map_bh(bh, inode->i_sb, *p_blkno);
828 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
829 }
830
831 if (PageUptodate(page)) {
832 if (!buffer_uptodate(bh))
833 set_buffer_uptodate(bh);
834 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 835 !buffer_new(bh) &&
4e9563fd 836 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 837 (block_start < from || block_end > to)) {
9517bac6
MF
838 ll_rw_block(READ, 1, &bh);
839 *wait_bh++=bh;
840 }
841
842 *p_blkno = *p_blkno + 1;
843 }
844
845 /*
846 * If we issued read requests - let them complete.
847 */
848 while(wait_bh > wait) {
849 wait_on_buffer(*--wait_bh);
850 if (!buffer_uptodate(*wait_bh))
851 ret = -EIO;
852 }
853
854 if (ret == 0 || !new)
855 return ret;
856
857 /*
858 * If we get -EIO above, zero out any newly allocated blocks
859 * to avoid exposing stale data.
860 */
861 bh = head;
862 block_start = 0;
863 do {
9517bac6
MF
864 block_end = block_start + bsize;
865 if (block_end <= from)
866 goto next_bh;
867 if (block_start >= to)
868 break;
869
eebd2aa3 870 zero_user(page, block_start, bh->b_size);
9517bac6
MF
871 set_buffer_uptodate(bh);
872 mark_buffer_dirty(bh);
873
874next_bh:
875 block_start = block_end;
876 bh = bh->b_this_page;
877 } while (bh != head);
878
879 return ret;
880}
881
3a307ffc
MF
882#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
883#define OCFS2_MAX_CTXT_PAGES 1
884#else
885#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
886#endif
887
888#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
889
6af67d82 890/*
3a307ffc 891 * Describe the state of a single cluster to be written to.
6af67d82 892 */
3a307ffc
MF
893struct ocfs2_write_cluster_desc {
894 u32 c_cpos;
895 u32 c_phys;
896 /*
897 * Give this a unique field because c_phys eventually gets
898 * filled.
899 */
900 unsigned c_new;
b27b7cbc 901 unsigned c_unwritten;
3a307ffc 902};
6af67d82 903
b27b7cbc
MF
904static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
905{
906 return d->c_new || d->c_unwritten;
907}
908
3a307ffc
MF
909struct ocfs2_write_ctxt {
910 /* Logical cluster position / len of write */
911 u32 w_cpos;
912 u32 w_clen;
6af67d82 913
3a307ffc 914 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 915
3a307ffc
MF
916 /*
917 * This is true if page_size > cluster_size.
918 *
919 * It triggers a set of special cases during write which might
920 * have to deal with allocating writes to partial pages.
921 */
922 unsigned int w_large_pages;
6af67d82 923
3a307ffc
MF
924 /*
925 * Pages involved in this write.
926 *
927 * w_target_page is the page being written to by the user.
928 *
929 * w_pages is an array of pages which always contains
930 * w_target_page, and in the case of an allocating write with
931 * page_size < cluster size, it will contain zero'd and mapped
932 * pages adjacent to w_target_page which need to be written
933 * out in so that future reads from that region will get
934 * zero's.
935 */
936 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
937 unsigned int w_num_pages;
938 struct page *w_target_page;
eeb47d12 939
3a307ffc
MF
940 /*
941 * ocfs2_write_end() uses this to know what the real range to
942 * write in the target should be.
943 */
944 unsigned int w_target_from;
945 unsigned int w_target_to;
946
947 /*
948 * We could use journal_current_handle() but this is cleaner,
949 * IMHO -Mark
950 */
951 handle_t *w_handle;
952
953 struct buffer_head *w_di_bh;
b27b7cbc
MF
954
955 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
956};
957
1d410a6e 958void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
959{
960 int i;
961
1d410a6e
MF
962 for(i = 0; i < num_pages; i++) {
963 if (pages[i]) {
964 unlock_page(pages[i]);
965 mark_page_accessed(pages[i]);
966 page_cache_release(pages[i]);
967 }
6af67d82 968 }
1d410a6e
MF
969}
970
971static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
972{
973 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 974
3a307ffc
MF
975 brelse(wc->w_di_bh);
976 kfree(wc);
977}
978
979static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
980 struct ocfs2_super *osb, loff_t pos,
607d44aa 981 unsigned len, struct buffer_head *di_bh)
3a307ffc 982{
30b8548f 983 u32 cend;
3a307ffc
MF
984 struct ocfs2_write_ctxt *wc;
985
986 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
987 if (!wc)
988 return -ENOMEM;
6af67d82 989
3a307ffc 990 wc->w_cpos = pos >> osb->s_clustersize_bits;
30b8548f 991 cend = (pos + len - 1) >> osb->s_clustersize_bits;
992 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
993 get_bh(di_bh);
994 wc->w_di_bh = di_bh;
6af67d82 995
3a307ffc
MF
996 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
997 wc->w_large_pages = 1;
998 else
999 wc->w_large_pages = 0;
1000
b27b7cbc
MF
1001 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1002
3a307ffc 1003 *wcp = wc;
6af67d82 1004
3a307ffc 1005 return 0;
6af67d82
MF
1006}
1007
9517bac6 1008/*
3a307ffc
MF
1009 * If a page has any new buffers, zero them out here, and mark them uptodate
1010 * and dirty so they'll be written out (in order to prevent uninitialised
1011 * block data from leaking). And clear the new bit.
9517bac6 1012 */
3a307ffc 1013static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1014{
3a307ffc
MF
1015 unsigned int block_start, block_end;
1016 struct buffer_head *head, *bh;
9517bac6 1017
3a307ffc
MF
1018 BUG_ON(!PageLocked(page));
1019 if (!page_has_buffers(page))
1020 return;
9517bac6 1021
3a307ffc
MF
1022 bh = head = page_buffers(page);
1023 block_start = 0;
1024 do {
1025 block_end = block_start + bh->b_size;
1026
1027 if (buffer_new(bh)) {
1028 if (block_end > from && block_start < to) {
1029 if (!PageUptodate(page)) {
1030 unsigned start, end;
3a307ffc
MF
1031
1032 start = max(from, block_start);
1033 end = min(to, block_end);
1034
eebd2aa3 1035 zero_user_segment(page, start, end);
3a307ffc
MF
1036 set_buffer_uptodate(bh);
1037 }
1038
1039 clear_buffer_new(bh);
1040 mark_buffer_dirty(bh);
1041 }
1042 }
9517bac6 1043
3a307ffc
MF
1044 block_start = block_end;
1045 bh = bh->b_this_page;
1046 } while (bh != head);
1047}
1048
1049/*
1050 * Only called when we have a failure during allocating write to write
1051 * zero's to the newly allocated region.
1052 */
1053static void ocfs2_write_failure(struct inode *inode,
1054 struct ocfs2_write_ctxt *wc,
1055 loff_t user_pos, unsigned user_len)
1056{
1057 int i;
5c26a7b7
MF
1058 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1059 to = user_pos + user_len;
3a307ffc
MF
1060 struct page *tmppage;
1061
5c26a7b7 1062 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1063
3a307ffc
MF
1064 for(i = 0; i < wc->w_num_pages; i++) {
1065 tmppage = wc->w_pages[i];
9517bac6 1066
961cecbe 1067 if (page_has_buffers(tmppage)) {
2b4e30fb
JB
1068 if (ocfs2_should_order_data(inode)) {
1069 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1070#ifdef CONFIG_OCFS2_COMPAT_JBD
961cecbe
SM
1071 walk_page_buffers(wc->w_handle,
1072 page_buffers(tmppage),
1073 from, to, NULL,
1074 ocfs2_journal_dirty_data);
2b4e30fb
JB
1075#endif
1076 }
961cecbe
SM
1077
1078 block_commit_write(tmppage, from, to);
1079 }
9517bac6 1080 }
9517bac6
MF
1081}
1082
3a307ffc
MF
1083static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1084 struct ocfs2_write_ctxt *wc,
1085 struct page *page, u32 cpos,
1086 loff_t user_pos, unsigned user_len,
1087 int new)
9517bac6 1088{
3a307ffc
MF
1089 int ret;
1090 unsigned int map_from = 0, map_to = 0;
9517bac6 1091 unsigned int cluster_start, cluster_end;
3a307ffc 1092 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1093
3a307ffc 1094 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1095 &cluster_start, &cluster_end);
1096
3a307ffc
MF
1097 if (page == wc->w_target_page) {
1098 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1099 map_to = map_from + user_len;
1100
1101 if (new)
1102 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1103 cluster_start, cluster_end,
1104 new);
1105 else
1106 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1107 map_from, map_to, new);
1108 if (ret) {
9517bac6
MF
1109 mlog_errno(ret);
1110 goto out;
1111 }
1112
3a307ffc
MF
1113 user_data_from = map_from;
1114 user_data_to = map_to;
9517bac6 1115 if (new) {
3a307ffc
MF
1116 map_from = cluster_start;
1117 map_to = cluster_end;
9517bac6
MF
1118 }
1119 } else {
1120 /*
1121 * If we haven't allocated the new page yet, we
1122 * shouldn't be writing it out without copying user
1123 * data. This is likely a math error from the caller.
1124 */
1125 BUG_ON(!new);
1126
3a307ffc
MF
1127 map_from = cluster_start;
1128 map_to = cluster_end;
9517bac6
MF
1129
1130 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1131 cluster_start, cluster_end, new);
9517bac6
MF
1132 if (ret) {
1133 mlog_errno(ret);
1134 goto out;
1135 }
1136 }
1137
1138 /*
1139 * Parts of newly allocated pages need to be zero'd.
1140 *
1141 * Above, we have also rewritten 'to' and 'from' - as far as
1142 * the rest of the function is concerned, the entire cluster
1143 * range inside of a page needs to be written.
1144 *
1145 * We can skip this if the page is up to date - it's already
1146 * been zero'd from being read in as a hole.
1147 */
1148 if (new && !PageUptodate(page))
1149 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1150 cpos, user_data_from, user_data_to);
9517bac6
MF
1151
1152 flush_dcache_page(page);
1153
9517bac6 1154out:
3a307ffc 1155 return ret;
9517bac6
MF
1156}
1157
1158/*
3a307ffc 1159 * This function will only grab one clusters worth of pages.
9517bac6 1160 */
3a307ffc
MF
1161static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1162 struct ocfs2_write_ctxt *wc,
7307de80
MF
1163 u32 cpos, loff_t user_pos, int new,
1164 struct page *mmap_page)
9517bac6 1165{
3a307ffc
MF
1166 int ret = 0, i;
1167 unsigned long start, target_index, index;
9517bac6 1168 struct inode *inode = mapping->host;
9517bac6 1169
3a307ffc 1170 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1171
1172 /*
1173 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1174 * non allocating write, we just change the one
1175 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1176 */
9517bac6 1177 if (new) {
3a307ffc
MF
1178 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1179 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1180 } else {
3a307ffc
MF
1181 wc->w_num_pages = 1;
1182 start = target_index;
9517bac6
MF
1183 }
1184
3a307ffc 1185 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1186 index = start + i;
1187
7307de80
MF
1188 if (index == target_index && mmap_page) {
1189 /*
1190 * ocfs2_pagemkwrite() is a little different
1191 * and wants us to directly use the page
1192 * passed in.
1193 */
1194 lock_page(mmap_page);
1195
1196 if (mmap_page->mapping != mapping) {
1197 unlock_page(mmap_page);
1198 /*
1199 * Sanity check - the locking in
1200 * ocfs2_pagemkwrite() should ensure
1201 * that this code doesn't trigger.
1202 */
1203 ret = -EINVAL;
1204 mlog_errno(ret);
1205 goto out;
1206 }
1207
1208 page_cache_get(mmap_page);
1209 wc->w_pages[i] = mmap_page;
1210 } else {
1211 wc->w_pages[i] = find_or_create_page(mapping, index,
1212 GFP_NOFS);
1213 if (!wc->w_pages[i]) {
1214 ret = -ENOMEM;
1215 mlog_errno(ret);
1216 goto out;
1217 }
9517bac6 1218 }
3a307ffc
MF
1219
1220 if (index == target_index)
1221 wc->w_target_page = wc->w_pages[i];
9517bac6 1222 }
3a307ffc
MF
1223out:
1224 return ret;
1225}
1226
1227/*
1228 * Prepare a single cluster for write one cluster into the file.
1229 */
1230static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc
MF
1231 u32 phys, unsigned int unwritten,
1232 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1233 struct ocfs2_alloc_context *meta_ac,
1234 struct ocfs2_write_ctxt *wc, u32 cpos,
1235 loff_t user_pos, unsigned user_len)
1236{
b27b7cbc 1237 int ret, i, new, should_zero = 0;
3a307ffc
MF
1238 u64 v_blkno, p_blkno;
1239 struct inode *inode = mapping->host;
f99b9b7c 1240 struct ocfs2_extent_tree et;
3a307ffc
MF
1241
1242 new = phys == 0 ? 1 : 0;
b27b7cbc
MF
1243 if (new || unwritten)
1244 should_zero = 1;
9517bac6
MF
1245
1246 if (new) {
3a307ffc
MF
1247 u32 tmp_pos;
1248
9517bac6
MF
1249 /*
1250 * This is safe to call with the page locks - it won't take
1251 * any additional semaphores or cluster locks.
1252 */
3a307ffc 1253 tmp_pos = cpos;
0eb8d47e
TM
1254 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1255 &tmp_pos, 1, 0, wc->w_di_bh,
1256 wc->w_handle, data_ac,
1257 meta_ac, NULL);
9517bac6
MF
1258 /*
1259 * This shouldn't happen because we must have already
1260 * calculated the correct meta data allocation required. The
1261 * internal tree allocation code should know how to increase
1262 * transaction credits itself.
1263 *
1264 * If need be, we could handle -EAGAIN for a
1265 * RESTART_TRANS here.
1266 */
1267 mlog_bug_on_msg(ret == -EAGAIN,
1268 "Inode %llu: EAGAIN return during allocation.\n",
1269 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1270 if (ret < 0) {
1271 mlog_errno(ret);
1272 goto out;
1273 }
b27b7cbc 1274 } else if (unwritten) {
8d6220d6 1275 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1276 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1277 wc->w_handle, cpos, 1, phys,
f99b9b7c 1278 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1279 if (ret < 0) {
1280 mlog_errno(ret);
1281 goto out;
1282 }
1283 }
3a307ffc 1284
b27b7cbc 1285 if (should_zero)
3a307ffc 1286 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1287 else
3a307ffc 1288 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1289
3a307ffc
MF
1290 /*
1291 * The only reason this should fail is due to an inability to
1292 * find the extent added.
1293 */
49cb8d2d
MF
1294 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1295 NULL);
9517bac6 1296 if (ret < 0) {
3a307ffc
MF
1297 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1298 "at logical block %llu",
1299 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1300 (unsigned long long)v_blkno);
9517bac6
MF
1301 goto out;
1302 }
1303
1304 BUG_ON(p_blkno == 0);
1305
3a307ffc
MF
1306 for(i = 0; i < wc->w_num_pages; i++) {
1307 int tmpret;
9517bac6 1308
3a307ffc
MF
1309 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1310 wc->w_pages[i], cpos,
b27b7cbc
MF
1311 user_pos, user_len,
1312 should_zero);
3a307ffc
MF
1313 if (tmpret) {
1314 mlog_errno(tmpret);
1315 if (ret == 0)
1316 tmpret = ret;
1317 }
9517bac6
MF
1318 }
1319
3a307ffc
MF
1320 /*
1321 * We only have cleanup to do in case of allocating write.
1322 */
1323 if (ret && new)
1324 ocfs2_write_failure(inode, wc, user_pos, user_len);
1325
9517bac6 1326out:
9517bac6 1327
3a307ffc 1328 return ret;
9517bac6
MF
1329}
1330
0d172baa
MF
1331static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1332 struct ocfs2_alloc_context *data_ac,
1333 struct ocfs2_alloc_context *meta_ac,
1334 struct ocfs2_write_ctxt *wc,
1335 loff_t pos, unsigned len)
1336{
1337 int ret, i;
db56246c
MF
1338 loff_t cluster_off;
1339 unsigned int local_len = len;
0d172baa 1340 struct ocfs2_write_cluster_desc *desc;
db56246c 1341 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1342
1343 for (i = 0; i < wc->w_clen; i++) {
1344 desc = &wc->w_desc[i];
1345
db56246c
MF
1346 /*
1347 * We have to make sure that the total write passed in
1348 * doesn't extend past a single cluster.
1349 */
1350 local_len = len;
1351 cluster_off = pos & (osb->s_clustersize - 1);
1352 if ((cluster_off + local_len) > osb->s_clustersize)
1353 local_len = osb->s_clustersize - cluster_off;
1354
b27b7cbc
MF
1355 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1356 desc->c_unwritten, data_ac, meta_ac,
db56246c 1357 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1358 if (ret) {
1359 mlog_errno(ret);
1360 goto out;
1361 }
db56246c
MF
1362
1363 len -= local_len;
1364 pos += local_len;
0d172baa
MF
1365 }
1366
1367 ret = 0;
1368out:
1369 return ret;
1370}
1371
3a307ffc
MF
1372/*
1373 * ocfs2_write_end() wants to know which parts of the target page it
1374 * should complete the write on. It's easiest to compute them ahead of
1375 * time when a more complete view of the write is available.
1376 */
1377static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1378 struct ocfs2_write_ctxt *wc,
1379 loff_t pos, unsigned len, int alloc)
9517bac6 1380{
3a307ffc 1381 struct ocfs2_write_cluster_desc *desc;
9517bac6 1382
3a307ffc
MF
1383 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1384 wc->w_target_to = wc->w_target_from + len;
1385
1386 if (alloc == 0)
1387 return;
1388
1389 /*
1390 * Allocating write - we may have different boundaries based
1391 * on page size and cluster size.
1392 *
1393 * NOTE: We can no longer compute one value from the other as
1394 * the actual write length and user provided length may be
1395 * different.
1396 */
9517bac6 1397
3a307ffc
MF
1398 if (wc->w_large_pages) {
1399 /*
1400 * We only care about the 1st and last cluster within
b27b7cbc 1401 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1402 * value may be extended out to the start/end of a
1403 * newly allocated cluster.
1404 */
1405 desc = &wc->w_desc[0];
b27b7cbc 1406 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1407 ocfs2_figure_cluster_boundaries(osb,
1408 desc->c_cpos,
1409 &wc->w_target_from,
1410 NULL);
1411
1412 desc = &wc->w_desc[wc->w_clen - 1];
b27b7cbc 1413 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1414 ocfs2_figure_cluster_boundaries(osb,
1415 desc->c_cpos,
1416 NULL,
1417 &wc->w_target_to);
1418 } else {
1419 wc->w_target_from = 0;
1420 wc->w_target_to = PAGE_CACHE_SIZE;
1421 }
9517bac6
MF
1422}
1423
0d172baa
MF
1424/*
1425 * Populate each single-cluster write descriptor in the write context
1426 * with information about the i/o to be done.
b27b7cbc
MF
1427 *
1428 * Returns the number of clusters that will have to be allocated, as
1429 * well as a worst case estimate of the number of extent records that
1430 * would have to be created during a write to an unwritten region.
0d172baa
MF
1431 */
1432static int ocfs2_populate_write_desc(struct inode *inode,
1433 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1434 unsigned int *clusters_to_alloc,
1435 unsigned int *extents_to_split)
9517bac6 1436{
0d172baa 1437 int ret;
3a307ffc 1438 struct ocfs2_write_cluster_desc *desc;
0d172baa 1439 unsigned int num_clusters = 0;
b27b7cbc 1440 unsigned int ext_flags = 0;
0d172baa
MF
1441 u32 phys = 0;
1442 int i;
9517bac6 1443
b27b7cbc
MF
1444 *clusters_to_alloc = 0;
1445 *extents_to_split = 0;
1446
3a307ffc
MF
1447 for (i = 0; i < wc->w_clen; i++) {
1448 desc = &wc->w_desc[i];
1449 desc->c_cpos = wc->w_cpos + i;
1450
1451 if (num_clusters == 0) {
b27b7cbc
MF
1452 /*
1453 * Need to look up the next extent record.
1454 */
3a307ffc 1455 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1456 &num_clusters, &ext_flags);
3a307ffc
MF
1457 if (ret) {
1458 mlog_errno(ret);
607d44aa 1459 goto out;
3a307ffc 1460 }
b27b7cbc
MF
1461
1462 /*
1463 * Assume worst case - that we're writing in
1464 * the middle of the extent.
1465 *
1466 * We can assume that the write proceeds from
1467 * left to right, in which case the extent
1468 * insert code is smart enough to coalesce the
1469 * next splits into the previous records created.
1470 */
1471 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1472 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1473 } else if (phys) {
1474 /*
1475 * Only increment phys if it doesn't describe
1476 * a hole.
1477 */
1478 phys++;
1479 }
1480
1481 desc->c_phys = phys;
1482 if (phys == 0) {
1483 desc->c_new = 1;
0d172baa 1484 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1485 }
b27b7cbc
MF
1486 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1487 desc->c_unwritten = 1;
3a307ffc
MF
1488
1489 num_clusters--;
9517bac6
MF
1490 }
1491
0d172baa
MF
1492 ret = 0;
1493out:
1494 return ret;
1495}
1496
1afc32b9
MF
1497static int ocfs2_write_begin_inline(struct address_space *mapping,
1498 struct inode *inode,
1499 struct ocfs2_write_ctxt *wc)
1500{
1501 int ret;
1502 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1503 struct page *page;
1504 handle_t *handle;
1505 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1506
1507 page = find_or_create_page(mapping, 0, GFP_NOFS);
1508 if (!page) {
1509 ret = -ENOMEM;
1510 mlog_errno(ret);
1511 goto out;
1512 }
1513 /*
1514 * If we don't set w_num_pages then this page won't get unlocked
1515 * and freed on cleanup of the write context.
1516 */
1517 wc->w_pages[0] = wc->w_target_page = page;
1518 wc->w_num_pages = 1;
1519
1520 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1521 if (IS_ERR(handle)) {
1522 ret = PTR_ERR(handle);
1523 mlog_errno(ret);
1524 goto out;
1525 }
1526
1527 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1528 OCFS2_JOURNAL_ACCESS_WRITE);
1529 if (ret) {
1530 ocfs2_commit_trans(osb, handle);
1531
1532 mlog_errno(ret);
1533 goto out;
1534 }
1535
1536 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1537 ocfs2_set_inode_data_inline(inode, di);
1538
1539 if (!PageUptodate(page)) {
1540 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1541 if (ret) {
1542 ocfs2_commit_trans(osb, handle);
1543
1544 goto out;
1545 }
1546 }
1547
1548 wc->w_handle = handle;
1549out:
1550 return ret;
1551}
1552
1553int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1554{
1555 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1556
0d8a4e0c 1557 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1558 return 1;
1559 return 0;
1560}
1561
1562static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1563 struct inode *inode, loff_t pos,
1564 unsigned len, struct page *mmap_page,
1565 struct ocfs2_write_ctxt *wc)
1566{
1567 int ret, written = 0;
1568 loff_t end = pos + len;
1569 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1570
1571 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1572 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1573 oi->ip_dyn_features);
1574
1575 /*
1576 * Handle inodes which already have inline data 1st.
1577 */
1578 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579 if (mmap_page == NULL &&
1580 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581 goto do_inline_write;
1582
1583 /*
1584 * The write won't fit - we have to give this inode an
1585 * inline extent list now.
1586 */
1587 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588 if (ret)
1589 mlog_errno(ret);
1590 goto out;
1591 }
1592
1593 /*
1594 * Check whether the inode can accept inline data.
1595 */
1596 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597 return 0;
1598
1599 /*
1600 * Check whether the write can fit.
1601 */
1602 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1603 return 0;
1604
1605do_inline_write:
1606 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1607 if (ret) {
1608 mlog_errno(ret);
1609 goto out;
1610 }
1611
1612 /*
1613 * This signals to the caller that the data can be written
1614 * inline.
1615 */
1616 written = 1;
1617out:
1618 return written ? written : ret;
1619}
1620
65ed39d6
MF
1621/*
1622 * This function only does anything for file systems which can't
1623 * handle sparse files.
1624 *
1625 * What we want to do here is fill in any hole between the current end
1626 * of allocation and the end of our write. That way the rest of the
1627 * write path can treat it as an non-allocating write, which has no
1628 * special case code for sparse/nonsparse files.
1629 */
1630static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1631 unsigned len,
1632 struct ocfs2_write_ctxt *wc)
1633{
1634 int ret;
1635 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1636 loff_t newsize = pos + len;
1637
1638 if (ocfs2_sparse_alloc(osb))
1639 return 0;
1640
1641 if (newsize <= i_size_read(inode))
1642 return 0;
1643
1644 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1645 if (ret)
1646 mlog_errno(ret);
1647
1648 return ret;
1649}
1650
0d172baa
MF
1651int ocfs2_write_begin_nolock(struct address_space *mapping,
1652 loff_t pos, unsigned len, unsigned flags,
1653 struct page **pagep, void **fsdata,
1654 struct buffer_head *di_bh, struct page *mmap_page)
1655{
1656 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1657 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1658 struct ocfs2_write_ctxt *wc;
1659 struct inode *inode = mapping->host;
1660 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1661 struct ocfs2_dinode *di;
1662 struct ocfs2_alloc_context *data_ac = NULL;
1663 struct ocfs2_alloc_context *meta_ac = NULL;
1664 handle_t *handle;
f99b9b7c 1665 struct ocfs2_extent_tree et;
0d172baa
MF
1666
1667 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1668 if (ret) {
1669 mlog_errno(ret);
1670 return ret;
1671 }
1672
1afc32b9
MF
1673 if (ocfs2_supports_inline_data(osb)) {
1674 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1675 mmap_page, wc);
1676 if (ret == 1) {
1677 ret = 0;
1678 goto success;
1679 }
1680 if (ret < 0) {
1681 mlog_errno(ret);
1682 goto out;
1683 }
1684 }
1685
65ed39d6
MF
1686 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1687 if (ret) {
1688 mlog_errno(ret);
1689 goto out;
1690 }
1691
b27b7cbc
MF
1692 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1693 &extents_to_split);
0d172baa
MF
1694 if (ret) {
1695 mlog_errno(ret);
1696 goto out;
1697 }
1698
1699 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1700
3a307ffc
MF
1701 /*
1702 * We set w_target_from, w_target_to here so that
1703 * ocfs2_write_end() knows which range in the target page to
1704 * write out. An allocation requires that we write the entire
1705 * cluster range.
1706 */
b27b7cbc 1707 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1708 /*
1709 * XXX: We are stretching the limits of
b27b7cbc 1710 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1711 * the work to be done.
1712 */
e7d4cb6b
TM
1713 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1714 " clusters_to_add = %u, extents_to_split = %u\n",
1715 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1716 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1717 clusters_to_alloc, extents_to_split);
1718
8d6220d6 1719 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1720 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1721 clusters_to_alloc, extents_to_split,
f99b9b7c 1722 &data_ac, &meta_ac);
9517bac6
MF
1723 if (ret) {
1724 mlog_errno(ret);
607d44aa 1725 goto out;
9517bac6
MF
1726 }
1727
811f933d
TM
1728 credits = ocfs2_calc_extend_credits(inode->i_sb,
1729 &di->id2.i_list,
3a307ffc
MF
1730 clusters_to_alloc);
1731
9517bac6
MF
1732 }
1733
b27b7cbc
MF
1734 ocfs2_set_target_boundaries(osb, wc, pos, len,
1735 clusters_to_alloc + extents_to_split);
3a307ffc 1736
9517bac6
MF
1737 handle = ocfs2_start_trans(osb, credits);
1738 if (IS_ERR(handle)) {
1739 ret = PTR_ERR(handle);
1740 mlog_errno(ret);
607d44aa 1741 goto out;
9517bac6
MF
1742 }
1743
3a307ffc
MF
1744 wc->w_handle = handle;
1745
1746 /*
1747 * We don't want this to fail in ocfs2_write_end(), so do it
1748 * here.
1749 */
1750 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1751 OCFS2_JOURNAL_ACCESS_WRITE);
1752 if (ret) {
9517bac6
MF
1753 mlog_errno(ret);
1754 goto out_commit;
1755 }
1756
3a307ffc
MF
1757 /*
1758 * Fill our page array first. That way we've grabbed enough so
1759 * that we can zero and flush if we error after adding the
1760 * extent.
1761 */
1762 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
b27b7cbc
MF
1763 clusters_to_alloc + extents_to_split,
1764 mmap_page);
9517bac6
MF
1765 if (ret) {
1766 mlog_errno(ret);
1767 goto out_commit;
1768 }
1769
0d172baa
MF
1770 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1771 len);
1772 if (ret) {
1773 mlog_errno(ret);
1774 goto out_commit;
9517bac6 1775 }
9517bac6 1776
3a307ffc
MF
1777 if (data_ac)
1778 ocfs2_free_alloc_context(data_ac);
1779 if (meta_ac)
1780 ocfs2_free_alloc_context(meta_ac);
9517bac6 1781
1afc32b9 1782success:
3a307ffc
MF
1783 *pagep = wc->w_target_page;
1784 *fsdata = wc;
1785 return 0;
9517bac6
MF
1786out_commit:
1787 ocfs2_commit_trans(osb, handle);
1788
9517bac6 1789out:
3a307ffc
MF
1790 ocfs2_free_write_ctxt(wc);
1791
9517bac6
MF
1792 if (data_ac)
1793 ocfs2_free_alloc_context(data_ac);
1794 if (meta_ac)
1795 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1796 return ret;
1797}
1798
b6af1bcd
NP
1799static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1800 loff_t pos, unsigned len, unsigned flags,
1801 struct page **pagep, void **fsdata)
607d44aa
MF
1802{
1803 int ret;
1804 struct buffer_head *di_bh = NULL;
1805 struct inode *inode = mapping->host;
1806
e63aecb6 1807 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1808 if (ret) {
1809 mlog_errno(ret);
1810 return ret;
1811 }
1812
1813 /*
1814 * Take alloc sem here to prevent concurrent lookups. That way
1815 * the mapping, zeroing and tree manipulation within
1816 * ocfs2_write() will be safe against ->readpage(). This
1817 * should also serve to lock out allocation from a shared
1818 * writeable region.
1819 */
1820 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1821
607d44aa 1822 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1823 fsdata, di_bh, NULL);
607d44aa
MF
1824 if (ret) {
1825 mlog_errno(ret);
c934a92d 1826 goto out_fail;
607d44aa
MF
1827 }
1828
1829 brelse(di_bh);
1830
1831 return 0;
1832
607d44aa
MF
1833out_fail:
1834 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1835
1836 brelse(di_bh);
e63aecb6 1837 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1838
1839 return ret;
1840}
1841
1afc32b9
MF
1842static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1843 unsigned len, unsigned *copied,
1844 struct ocfs2_dinode *di,
1845 struct ocfs2_write_ctxt *wc)
1846{
1847 void *kaddr;
1848
1849 if (unlikely(*copied < len)) {
1850 if (!PageUptodate(wc->w_target_page)) {
1851 *copied = 0;
1852 return;
1853 }
1854 }
1855
1856 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1857 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1858 kunmap_atomic(kaddr, KM_USER0);
1859
1860 mlog(0, "Data written to inode at offset %llu. "
1861 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1862 (unsigned long long)pos, *copied,
1863 le16_to_cpu(di->id2.i_data.id_count),
1864 le16_to_cpu(di->i_dyn_features));
1865}
1866
7307de80
MF
1867int ocfs2_write_end_nolock(struct address_space *mapping,
1868 loff_t pos, unsigned len, unsigned copied,
1869 struct page *page, void *fsdata)
3a307ffc
MF
1870{
1871 int i;
1872 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1873 struct inode *inode = mapping->host;
1874 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1875 struct ocfs2_write_ctxt *wc = fsdata;
1876 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1877 handle_t *handle = wc->w_handle;
1878 struct page *tmppage;
1879
1afc32b9
MF
1880 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1881 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1882 goto out_write_size;
1883 }
1884
3a307ffc
MF
1885 if (unlikely(copied < len)) {
1886 if (!PageUptodate(wc->w_target_page))
1887 copied = 0;
1888
1889 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1890 start+len);
1891 }
1892 flush_dcache_page(wc->w_target_page);
1893
1894 for(i = 0; i < wc->w_num_pages; i++) {
1895 tmppage = wc->w_pages[i];
1896
1897 if (tmppage == wc->w_target_page) {
1898 from = wc->w_target_from;
1899 to = wc->w_target_to;
1900
1901 BUG_ON(from > PAGE_CACHE_SIZE ||
1902 to > PAGE_CACHE_SIZE ||
1903 to < from);
1904 } else {
1905 /*
1906 * Pages adjacent to the target (if any) imply
1907 * a hole-filling write in which case we want
1908 * to flush their entire range.
1909 */
1910 from = 0;
1911 to = PAGE_CACHE_SIZE;
1912 }
1913
961cecbe 1914 if (page_has_buffers(tmppage)) {
2b4e30fb
JB
1915 if (ocfs2_should_order_data(inode)) {
1916 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1917#ifdef CONFIG_OCFS2_COMPAT_JBD
961cecbe
SM
1918 walk_page_buffers(wc->w_handle,
1919 page_buffers(tmppage),
1920 from, to, NULL,
1921 ocfs2_journal_dirty_data);
2b4e30fb
JB
1922#endif
1923 }
961cecbe
SM
1924 block_commit_write(tmppage, from, to);
1925 }
3a307ffc
MF
1926 }
1927
1afc32b9 1928out_write_size:
3a307ffc
MF
1929 pos += copied;
1930 if (pos > inode->i_size) {
1931 i_size_write(inode, pos);
1932 mark_inode_dirty(inode);
1933 }
1934 inode->i_blocks = ocfs2_inode_sector_count(inode);
1935 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1936 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1937 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1938 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1939 ocfs2_journal_dirty(handle, wc->w_di_bh);
1940
1941 ocfs2_commit_trans(osb, handle);
59a5e416 1942
b27b7cbc
MF
1943 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1944
607d44aa
MF
1945 ocfs2_free_write_ctxt(wc);
1946
1947 return copied;
1948}
1949
b6af1bcd
NP
1950static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1951 loff_t pos, unsigned len, unsigned copied,
1952 struct page *page, void *fsdata)
607d44aa
MF
1953{
1954 int ret;
1955 struct inode *inode = mapping->host;
1956
1957 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1958
3a307ffc 1959 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 1960 ocfs2_inode_unlock(inode, 1);
9517bac6 1961
607d44aa 1962 return ret;
9517bac6
MF
1963}
1964
f5e54d6e 1965const struct address_space_operations ocfs2_aops = {
ccd979bd 1966 .readpage = ocfs2_readpage,
628a24f5 1967 .readpages = ocfs2_readpages,
ccd979bd 1968 .writepage = ocfs2_writepage,
b6af1bcd
NP
1969 .write_begin = ocfs2_write_begin,
1970 .write_end = ocfs2_write_end,
ccd979bd
MF
1971 .bmap = ocfs2_bmap,
1972 .sync_page = block_sync_page,
03f981cf
JB
1973 .direct_IO = ocfs2_direct_IO,
1974 .invalidatepage = ocfs2_invalidatepage,
1975 .releasepage = ocfs2_releasepage,
1976 .migratepage = buffer_migrate_page,
ccd979bd 1977};