ocfs2: Allow smaller allocations during large writes
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
ccd979bd
MF
29
30#define MLOG_MASK_PREFIX ML_FILE_IO
31#include <cluster/masklog.h>
32
33#include "ocfs2.h"
34
35#include "alloc.h"
36#include "aops.h"
37#include "dlmglue.h"
38#include "extent_map.h"
39#include "file.h"
40#include "inode.h"
41#include "journal.h"
9517bac6 42#include "suballoc.h"
ccd979bd
MF
43#include "super.h"
44#include "symlink.h"
45
46#include "buffer_head_io.h"
47
48static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
50{
51 int err = -EIO;
52 int status;
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 void *kaddr;
58
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
61
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
67 goto bail;
68 }
69
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
76 }
77 fe = (struct ocfs2_dinode *) bh->b_data;
78
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
b0697053 80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
1ca1a111
MF
81 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
82 fe->i_signature);
ccd979bd
MF
83 goto bail;
84 }
85
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
90 goto bail;
91 }
92
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 iblock;
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
100 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
101 goto bail;
102 }
103
104 /* we haven't locked out transactions, so a commit
105 * could've happened. Since we've got a reference on
106 * the bh, even if it commits while we're doing the
107 * copy, the data is still good. */
108 if (buffer_jbd(buffer_cache_bh)
109 && ocfs2_inode_is_new(inode)) {
110 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111 if (!kaddr) {
112 mlog(ML_ERROR, "couldn't kmap!\n");
113 goto bail;
114 }
115 memcpy(kaddr + (bh_result->b_size * iblock),
116 buffer_cache_bh->b_data,
117 bh_result->b_size);
118 kunmap_atomic(kaddr, KM_USER0);
119 set_buffer_uptodate(bh_result);
120 }
121 brelse(buffer_cache_bh);
122 }
123
124 map_bh(bh_result, inode->i_sb,
125 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
126
127 err = 0;
128
129bail:
130 if (bh)
131 brelse(bh);
132
133 mlog_exit(err);
134 return err;
135}
136
137static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
ccd979bd 142 u64 p_blkno, past_eof;
25baf2da 143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
144
145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 (unsigned long long)iblock, bh_result, create);
147
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
151
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
156 }
157
49cb8d2d
MF
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
159 &ext_flags);
ccd979bd
MF
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
ccd979bd
MF
164 goto bail;
165 }
166
25baf2da
MF
167 /*
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows block_prepare_write() to zero.
172 */
173 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 "ino %lu, iblock %llu\n", inode->i_ino,
175 (unsigned long long)iblock);
176
49cb8d2d
MF
177 /* Treat the unwritten extent as a hole for zeroing purposes. */
178 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
179 map_bh(bh_result, inode->i_sb, p_blkno);
180
181 if (!ocfs2_sparse_alloc(osb)) {
182 if (p_blkno == 0) {
183 err = -EIO;
184 mlog(ML_ERROR,
185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 (unsigned long long)iblock,
187 (unsigned long long)p_blkno,
188 (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
190 dump_stack();
191 }
ccd979bd 192
25baf2da
MF
193 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 (unsigned long long)past_eof);
ccd979bd 196
25baf2da
MF
197 if (create && (iblock >= past_eof))
198 set_buffer_new(bh_result);
199 }
ccd979bd
MF
200
201bail:
202 if (err < 0)
203 err = -EIO;
204
205 mlog_exit(err);
206 return err;
207}
208
209static int ocfs2_readpage(struct file *file, struct page *page)
210{
211 struct inode *inode = page->mapping->host;
212 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
213 int ret, unlock = 1;
214
215 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
216
4bcec184 217 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
218 if (ret != 0) {
219 if (ret == AOP_TRUNCATED_PAGE)
220 unlock = 0;
221 mlog_errno(ret);
222 goto out;
223 }
224
e9dfc0b2
MF
225 if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
226 ret = AOP_TRUNCATED_PAGE;
227 goto out_meta_unlock;
228 }
ccd979bd
MF
229
230 /*
231 * i_size might have just been updated as we grabed the meta lock. We
232 * might now be discovering a truncate that hit on another node.
233 * block_read_full_page->get_block freaks out if it is asked to read
234 * beyond the end of a file, so we check here. Callers
54cb8821 235 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
236 * and notice that the page they just read isn't needed.
237 *
238 * XXX sys_readahead() seems to get that wrong?
239 */
240 if (start >= i_size_read(inode)) {
5c3c6bb7 241 zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
ccd979bd
MF
242 SetPageUptodate(page);
243 ret = 0;
244 goto out_alloc;
245 }
246
247 ret = ocfs2_data_lock_with_page(inode, 0, page);
248 if (ret != 0) {
249 if (ret == AOP_TRUNCATED_PAGE)
250 unlock = 0;
251 mlog_errno(ret);
252 goto out_alloc;
253 }
254
255 ret = block_read_full_page(page, ocfs2_get_block);
256 unlock = 0;
257
258 ocfs2_data_unlock(inode, 0);
259out_alloc:
260 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e9dfc0b2 261out_meta_unlock:
ccd979bd
MF
262 ocfs2_meta_unlock(inode, 0);
263out:
264 if (unlock)
265 unlock_page(page);
266 mlog_exit(ret);
267 return ret;
268}
269
270/* Note: Because we don't support holes, our allocation has
271 * already happened (allocation writes zeros to the file data)
272 * so we don't have to worry about ordered writes in
273 * ocfs2_writepage.
274 *
275 * ->writepage is called during the process of invalidating the page cache
276 * during blocked lock processing. It can't block on any cluster locks
277 * to during block mapping. It's relying on the fact that the block
278 * mapping can't have disappeared under the dirty pages that it is
279 * being asked to write back.
280 */
281static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
282{
283 int ret;
284
285 mlog_entry("(0x%p)\n", page);
286
287 ret = block_write_full_page(page, ocfs2_get_block, wbc);
288
289 mlog_exit(ret);
290
291 return ret;
292}
293
5069120b
MF
294/*
295 * This is called from ocfs2_write_zero_page() which has handled it's
296 * own cluster locking and has ensured allocation exists for those
297 * blocks to be written.
298 */
53013cba
MF
299int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
300 unsigned from, unsigned to)
301{
302 int ret;
303
304 down_read(&OCFS2_I(inode)->ip_alloc_sem);
305
306 ret = block_prepare_write(page, from, to, ocfs2_get_block);
307
308 up_read(&OCFS2_I(inode)->ip_alloc_sem);
309
310 return ret;
311}
312
ccd979bd
MF
313/* Taken from ext3. We don't necessarily need the full blown
314 * functionality yet, but IMHO it's better to cut and paste the whole
315 * thing so we can avoid introducing our own bugs (and easily pick up
316 * their fixes when they happen) --Mark */
60b11392
MF
317int walk_page_buffers( handle_t *handle,
318 struct buffer_head *head,
319 unsigned from,
320 unsigned to,
321 int *partial,
322 int (*fn)( handle_t *handle,
323 struct buffer_head *bh))
ccd979bd
MF
324{
325 struct buffer_head *bh;
326 unsigned block_start, block_end;
327 unsigned blocksize = head->b_size;
328 int err, ret = 0;
329 struct buffer_head *next;
330
331 for ( bh = head, block_start = 0;
332 ret == 0 && (bh != head || !block_start);
333 block_start = block_end, bh = next)
334 {
335 next = bh->b_this_page;
336 block_end = block_start + blocksize;
337 if (block_end <= from || block_start >= to) {
338 if (partial && !buffer_uptodate(bh))
339 *partial = 1;
340 continue;
341 }
342 err = (*fn)(handle, bh);
343 if (!ret)
344 ret = err;
345 }
346 return ret;
347}
348
1fabe148 349handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
350 struct page *page,
351 unsigned from,
352 unsigned to)
353{
354 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1fabe148 355 handle_t *handle = NULL;
ccd979bd
MF
356 int ret = 0;
357
65eff9cc 358 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
ccd979bd
MF
359 if (!handle) {
360 ret = -ENOMEM;
361 mlog_errno(ret);
362 goto out;
363 }
364
365 if (ocfs2_should_order_data(inode)) {
1fabe148 366 ret = walk_page_buffers(handle,
ccd979bd
MF
367 page_buffers(page),
368 from, to, NULL,
369 ocfs2_journal_dirty_data);
370 if (ret < 0)
371 mlog_errno(ret);
372 }
373out:
374 if (ret) {
375 if (handle)
02dc1af4 376 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
377 handle = ERR_PTR(ret);
378 }
379 return handle;
380}
381
ccd979bd
MF
382static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
383{
384 sector_t status;
385 u64 p_blkno = 0;
386 int err = 0;
387 struct inode *inode = mapping->host;
388
389 mlog_entry("(block = %llu)\n", (unsigned long long)block);
390
391 /* We don't need to lock journal system files, since they aren't
392 * accessed concurrently from multiple nodes.
393 */
394 if (!INODE_JOURNAL(inode)) {
4bcec184 395 err = ocfs2_meta_lock(inode, NULL, 0);
ccd979bd
MF
396 if (err) {
397 if (err != -ENOENT)
398 mlog_errno(err);
399 goto bail;
400 }
401 down_read(&OCFS2_I(inode)->ip_alloc_sem);
402 }
403
49cb8d2d 404 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
ccd979bd
MF
405
406 if (!INODE_JOURNAL(inode)) {
407 up_read(&OCFS2_I(inode)->ip_alloc_sem);
408 ocfs2_meta_unlock(inode, 0);
409 }
410
411 if (err) {
412 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
413 (unsigned long long)block);
414 mlog_errno(err);
415 goto bail;
416 }
417
418
419bail:
420 status = err ? 0 : p_blkno;
421
422 mlog_exit((int)status);
423
424 return status;
425}
426
427/*
428 * TODO: Make this into a generic get_blocks function.
429 *
430 * From do_direct_io in direct-io.c:
431 * "So what we do is to permit the ->get_blocks function to populate
432 * bh.b_size with the size of IO which is permitted at this offset and
433 * this i_blkbits."
434 *
435 * This function is called directly from get_more_blocks in direct-io.c.
436 *
437 * called like this: dio->get_blocks(dio->inode, fs_startblk,
438 * fs_count, map_bh, dio->rw == WRITE);
439 */
440static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
441 struct buffer_head *bh_result, int create)
442{
443 int ret;
4f902c37 444 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 445 unsigned int ext_flags;
184d7d20 446 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 447 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 448
ccd979bd
MF
449 /* This function won't even be called if the request isn't all
450 * nicely aligned and of the right size, so there's no need
451 * for us to check any of that. */
452
25baf2da 453 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
454
455 /*
456 * Any write past EOF is not allowed because we'd be extending.
457 */
458 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
459 ret = -EIO;
460 goto bail;
461 }
ccd979bd
MF
462
463 /* This figures out the size of the next contiguous block, and
464 * our logical offset */
363041a5 465 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 466 &contig_blocks, &ext_flags);
ccd979bd
MF
467 if (ret) {
468 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
469 (unsigned long long)iblock);
470 ret = -EIO;
471 goto bail;
472 }
473
25baf2da
MF
474 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
475 ocfs2_error(inode->i_sb,
476 "Inode %llu has a hole at block %llu\n",
477 (unsigned long long)OCFS2_I(inode)->ip_blkno,
478 (unsigned long long)iblock);
479 ret = -EROFS;
480 goto bail;
481 }
482
483 /*
484 * get_more_blocks() expects us to describe a hole by clearing
485 * the mapped bit on bh_result().
49cb8d2d
MF
486 *
487 * Consider an unwritten extent as a hole.
25baf2da 488 */
49cb8d2d 489 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
490 map_bh(bh_result, inode->i_sb, p_blkno);
491 else {
492 /*
493 * ocfs2_prepare_inode_for_write() should have caught
494 * the case where we'd be filling a hole and triggered
495 * a buffered write instead.
496 */
497 if (create) {
498 ret = -EIO;
499 mlog_errno(ret);
500 goto bail;
501 }
502
503 clear_buffer_mapped(bh_result);
504 }
ccd979bd
MF
505
506 /* make sure we don't map more than max_blocks blocks here as
507 that's all the kernel will handle at this point. */
508 if (max_blocks < contig_blocks)
509 contig_blocks = max_blocks;
510 bh_result->b_size = contig_blocks << blocksize_bits;
511bail:
512 return ret;
513}
514
515/*
516 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
517 * particularly interested in the aio/dio case. Like the core uses
518 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
519 * truncation on another.
520 */
521static void ocfs2_dio_end_io(struct kiocb *iocb,
522 loff_t offset,
523 ssize_t bytes,
524 void *private)
525{
d28c9174 526 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 527 int level;
ccd979bd
MF
528
529 /* this io's submitter should not have unlocked this before we could */
530 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 531
ccd979bd 532 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
533
534 level = ocfs2_iocb_rw_locked_level(iocb);
535 if (!level)
536 up_read(&inode->i_alloc_sem);
537 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
538}
539
03f981cf
JB
540/*
541 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
542 * from ext3. PageChecked() bits have been removed as OCFS2 does not
543 * do journalled data.
544 */
545static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
546{
547 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
548
549 journal_invalidatepage(journal, page, offset);
550}
551
552static int ocfs2_releasepage(struct page *page, gfp_t wait)
553{
554 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
555
556 if (!page_has_buffers(page))
557 return 0;
558 return journal_try_to_free_buffers(journal, page, wait);
559}
560
ccd979bd
MF
561static ssize_t ocfs2_direct_IO(int rw,
562 struct kiocb *iocb,
563 const struct iovec *iov,
564 loff_t offset,
565 unsigned long nr_segs)
566{
567 struct file *file = iocb->ki_filp;
d28c9174 568 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
569 int ret;
570
571 mlog_entry_void();
53013cba 572
9517bac6
MF
573 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
574 /*
575 * We get PR data locks even for O_DIRECT. This
576 * allows concurrent O_DIRECT I/O but doesn't let
577 * O_DIRECT with extending and buffered zeroing writes
578 * race. If they did race then the buffered zeroing
579 * could be written back after the O_DIRECT I/O. It's
580 * one thing to tell people not to mix buffered and
581 * O_DIRECT writes, but expecting them to understand
582 * that file extension is also an implicit buffered
583 * write is too much. By getting the PR we force
584 * writeback of the buffered zeroing before
585 * proceeding.
586 */
587 ret = ocfs2_data_lock(inode, 0);
588 if (ret < 0) {
589 mlog_errno(ret);
590 goto out;
591 }
592 ocfs2_data_unlock(inode, 0);
53013cba 593 }
53013cba 594
ccd979bd
MF
595 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
596 inode->i_sb->s_bdev, iov, offset,
597 nr_segs,
598 ocfs2_direct_IO_get_blocks,
599 ocfs2_dio_end_io);
53013cba 600out:
ccd979bd
MF
601 mlog_exit(ret);
602 return ret;
603}
604
9517bac6
MF
605static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
606 u32 cpos,
607 unsigned int *start,
608 unsigned int *end)
609{
610 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
611
612 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
613 unsigned int cpp;
614
615 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
616
617 cluster_start = cpos % cpp;
618 cluster_start = cluster_start << osb->s_clustersize_bits;
619
620 cluster_end = cluster_start + osb->s_clustersize;
621 }
622
623 BUG_ON(cluster_start > PAGE_SIZE);
624 BUG_ON(cluster_end > PAGE_SIZE);
625
626 if (start)
627 *start = cluster_start;
628 if (end)
629 *end = cluster_end;
630}
631
632/*
633 * 'from' and 'to' are the region in the page to avoid zeroing.
634 *
635 * If pagesize > clustersize, this function will avoid zeroing outside
636 * of the cluster boundary.
637 *
638 * from == to == 0 is code for "zero the entire cluster region"
639 */
640static void ocfs2_clear_page_regions(struct page *page,
641 struct ocfs2_super *osb, u32 cpos,
642 unsigned from, unsigned to)
643{
644 void *kaddr;
645 unsigned int cluster_start, cluster_end;
646
647 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
648
649 kaddr = kmap_atomic(page, KM_USER0);
650
651 if (from || to) {
652 if (from > cluster_start)
653 memset(kaddr + cluster_start, 0, from - cluster_start);
654 if (to < cluster_end)
655 memset(kaddr + to, 0, cluster_end - to);
656 } else {
657 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
658 }
659
660 kunmap_atomic(kaddr, KM_USER0);
661}
662
663/*
664 * Some of this taken from block_prepare_write(). We already have our
665 * mapping by now though, and the entire write will be allocating or
666 * it won't, so not much need to use BH_New.
667 *
668 * This will also skip zeroing, which is handled externally.
669 */
60b11392
MF
670int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
671 struct inode *inode, unsigned int from,
672 unsigned int to, int new)
9517bac6
MF
673{
674 int ret = 0;
675 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
676 unsigned int block_end, block_start;
677 unsigned int bsize = 1 << inode->i_blkbits;
678
679 if (!page_has_buffers(page))
680 create_empty_buffers(page, bsize, 0);
681
682 head = page_buffers(page);
683 for (bh = head, block_start = 0; bh != head || !block_start;
684 bh = bh->b_this_page, block_start += bsize) {
685 block_end = block_start + bsize;
686
3a307ffc
MF
687 clear_buffer_new(bh);
688
9517bac6
MF
689 /*
690 * Ignore blocks outside of our i/o range -
691 * they may belong to unallocated clusters.
692 */
60b11392 693 if (block_start >= to || block_end <= from) {
9517bac6
MF
694 if (PageUptodate(page))
695 set_buffer_uptodate(bh);
696 continue;
697 }
698
699 /*
700 * For an allocating write with cluster size >= page
701 * size, we always write the entire page.
702 */
3a307ffc
MF
703 if (new)
704 set_buffer_new(bh);
9517bac6
MF
705
706 if (!buffer_mapped(bh)) {
707 map_bh(bh, inode->i_sb, *p_blkno);
708 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
709 }
710
711 if (PageUptodate(page)) {
712 if (!buffer_uptodate(bh))
713 set_buffer_uptodate(bh);
714 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768
MF
715 !buffer_new(bh) &&
716 (block_start < from || block_end > to)) {
9517bac6
MF
717 ll_rw_block(READ, 1, &bh);
718 *wait_bh++=bh;
719 }
720
721 *p_blkno = *p_blkno + 1;
722 }
723
724 /*
725 * If we issued read requests - let them complete.
726 */
727 while(wait_bh > wait) {
728 wait_on_buffer(*--wait_bh);
729 if (!buffer_uptodate(*wait_bh))
730 ret = -EIO;
731 }
732
733 if (ret == 0 || !new)
734 return ret;
735
736 /*
737 * If we get -EIO above, zero out any newly allocated blocks
738 * to avoid exposing stale data.
739 */
740 bh = head;
741 block_start = 0;
742 do {
9517bac6
MF
743 block_end = block_start + bsize;
744 if (block_end <= from)
745 goto next_bh;
746 if (block_start >= to)
747 break;
748
54c57dc3 749 zero_user_page(page, block_start, bh->b_size, KM_USER0);
9517bac6
MF
750 set_buffer_uptodate(bh);
751 mark_buffer_dirty(bh);
752
753next_bh:
754 block_start = block_end;
755 bh = bh->b_this_page;
756 } while (bh != head);
757
758 return ret;
759}
760
3a307ffc
MF
761#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
762#define OCFS2_MAX_CTXT_PAGES 1
763#else
764#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
765#endif
766
767#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
768
6af67d82 769/*
3a307ffc 770 * Describe the state of a single cluster to be written to.
6af67d82 771 */
3a307ffc
MF
772struct ocfs2_write_cluster_desc {
773 u32 c_cpos;
774 u32 c_phys;
775 /*
776 * Give this a unique field because c_phys eventually gets
777 * filled.
778 */
779 unsigned c_new;
b27b7cbc 780 unsigned c_unwritten;
3a307ffc 781};
6af67d82 782
b27b7cbc
MF
783static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
784{
785 return d->c_new || d->c_unwritten;
786}
787
3a307ffc
MF
788struct ocfs2_write_ctxt {
789 /* Logical cluster position / len of write */
790 u32 w_cpos;
791 u32 w_clen;
6af67d82 792
3a307ffc 793 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 794
3a307ffc
MF
795 /*
796 * This is true if page_size > cluster_size.
797 *
798 * It triggers a set of special cases during write which might
799 * have to deal with allocating writes to partial pages.
800 */
801 unsigned int w_large_pages;
6af67d82 802
3a307ffc
MF
803 /*
804 * Pages involved in this write.
805 *
806 * w_target_page is the page being written to by the user.
807 *
808 * w_pages is an array of pages which always contains
809 * w_target_page, and in the case of an allocating write with
810 * page_size < cluster size, it will contain zero'd and mapped
811 * pages adjacent to w_target_page which need to be written
812 * out in so that future reads from that region will get
813 * zero's.
814 */
815 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
816 unsigned int w_num_pages;
817 struct page *w_target_page;
eeb47d12 818
3a307ffc
MF
819 /*
820 * ocfs2_write_end() uses this to know what the real range to
821 * write in the target should be.
822 */
823 unsigned int w_target_from;
824 unsigned int w_target_to;
825
826 /*
827 * We could use journal_current_handle() but this is cleaner,
828 * IMHO -Mark
829 */
830 handle_t *w_handle;
831
832 struct buffer_head *w_di_bh;
b27b7cbc
MF
833
834 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
835};
836
837static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
838{
839 int i;
840
841 for(i = 0; i < wc->w_num_pages; i++) {
842 if (wc->w_pages[i] == NULL)
843 continue;
844
845 unlock_page(wc->w_pages[i]);
846 mark_page_accessed(wc->w_pages[i]);
847 page_cache_release(wc->w_pages[i]);
6af67d82
MF
848 }
849
3a307ffc
MF
850 brelse(wc->w_di_bh);
851 kfree(wc);
852}
853
854static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
855 struct ocfs2_super *osb, loff_t pos,
607d44aa 856 unsigned len, struct buffer_head *di_bh)
3a307ffc 857{
30b8548f 858 u32 cend;
3a307ffc
MF
859 struct ocfs2_write_ctxt *wc;
860
861 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
862 if (!wc)
863 return -ENOMEM;
6af67d82 864
3a307ffc 865 wc->w_cpos = pos >> osb->s_clustersize_bits;
30b8548f 866 cend = (pos + len - 1) >> osb->s_clustersize_bits;
867 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
868 get_bh(di_bh);
869 wc->w_di_bh = di_bh;
6af67d82 870
3a307ffc
MF
871 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
872 wc->w_large_pages = 1;
873 else
874 wc->w_large_pages = 0;
875
b27b7cbc
MF
876 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
877
3a307ffc 878 *wcp = wc;
6af67d82 879
3a307ffc 880 return 0;
6af67d82
MF
881}
882
9517bac6 883/*
3a307ffc
MF
884 * If a page has any new buffers, zero them out here, and mark them uptodate
885 * and dirty so they'll be written out (in order to prevent uninitialised
886 * block data from leaking). And clear the new bit.
9517bac6 887 */
3a307ffc 888static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 889{
3a307ffc
MF
890 unsigned int block_start, block_end;
891 struct buffer_head *head, *bh;
9517bac6 892
3a307ffc
MF
893 BUG_ON(!PageLocked(page));
894 if (!page_has_buffers(page))
895 return;
9517bac6 896
3a307ffc
MF
897 bh = head = page_buffers(page);
898 block_start = 0;
899 do {
900 block_end = block_start + bh->b_size;
901
902 if (buffer_new(bh)) {
903 if (block_end > from && block_start < to) {
904 if (!PageUptodate(page)) {
905 unsigned start, end;
3a307ffc
MF
906
907 start = max(from, block_start);
908 end = min(to, block_end);
909
54c57dc3 910 zero_user_page(page, start, end - start, KM_USER0);
3a307ffc
MF
911 set_buffer_uptodate(bh);
912 }
913
914 clear_buffer_new(bh);
915 mark_buffer_dirty(bh);
916 }
917 }
9517bac6 918
3a307ffc
MF
919 block_start = block_end;
920 bh = bh->b_this_page;
921 } while (bh != head);
922}
923
924/*
925 * Only called when we have a failure during allocating write to write
926 * zero's to the newly allocated region.
927 */
928static void ocfs2_write_failure(struct inode *inode,
929 struct ocfs2_write_ctxt *wc,
930 loff_t user_pos, unsigned user_len)
931{
932 int i;
933 unsigned from, to;
934 struct page *tmppage;
935
936 ocfs2_zero_new_buffers(wc->w_target_page, user_pos, user_len);
9517bac6 937
9517bac6 938 if (wc->w_large_pages) {
3a307ffc
MF
939 from = wc->w_target_from;
940 to = wc->w_target_to;
9517bac6 941 } else {
3a307ffc
MF
942 from = 0;
943 to = PAGE_CACHE_SIZE;
9517bac6
MF
944 }
945
3a307ffc
MF
946 for(i = 0; i < wc->w_num_pages; i++) {
947 tmppage = wc->w_pages[i];
9517bac6 948
3a307ffc
MF
949 if (ocfs2_should_order_data(inode))
950 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
951 from, to, NULL,
952 ocfs2_journal_dirty_data);
eeb47d12 953
3a307ffc 954 block_commit_write(tmppage, from, to);
9517bac6 955 }
9517bac6
MF
956}
957
3a307ffc
MF
958static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
959 struct ocfs2_write_ctxt *wc,
960 struct page *page, u32 cpos,
961 loff_t user_pos, unsigned user_len,
962 int new)
9517bac6 963{
3a307ffc
MF
964 int ret;
965 unsigned int map_from = 0, map_to = 0;
9517bac6 966 unsigned int cluster_start, cluster_end;
3a307ffc 967 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 968
3a307ffc 969 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
970 &cluster_start, &cluster_end);
971
3a307ffc
MF
972 if (page == wc->w_target_page) {
973 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
974 map_to = map_from + user_len;
975
976 if (new)
977 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
978 cluster_start, cluster_end,
979 new);
980 else
981 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
982 map_from, map_to, new);
983 if (ret) {
9517bac6
MF
984 mlog_errno(ret);
985 goto out;
986 }
987
3a307ffc
MF
988 user_data_from = map_from;
989 user_data_to = map_to;
9517bac6 990 if (new) {
3a307ffc
MF
991 map_from = cluster_start;
992 map_to = cluster_end;
9517bac6 993 }
3a307ffc
MF
994
995 wc->w_target_from = map_from;
996 wc->w_target_to = map_to;
9517bac6
MF
997 } else {
998 /*
999 * If we haven't allocated the new page yet, we
1000 * shouldn't be writing it out without copying user
1001 * data. This is likely a math error from the caller.
1002 */
1003 BUG_ON(!new);
1004
3a307ffc
MF
1005 map_from = cluster_start;
1006 map_to = cluster_end;
9517bac6
MF
1007
1008 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1009 cluster_start, cluster_end, new);
9517bac6
MF
1010 if (ret) {
1011 mlog_errno(ret);
1012 goto out;
1013 }
1014 }
1015
1016 /*
1017 * Parts of newly allocated pages need to be zero'd.
1018 *
1019 * Above, we have also rewritten 'to' and 'from' - as far as
1020 * the rest of the function is concerned, the entire cluster
1021 * range inside of a page needs to be written.
1022 *
1023 * We can skip this if the page is up to date - it's already
1024 * been zero'd from being read in as a hole.
1025 */
1026 if (new && !PageUptodate(page))
1027 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1028 cpos, user_data_from, user_data_to);
9517bac6
MF
1029
1030 flush_dcache_page(page);
1031
9517bac6 1032out:
3a307ffc 1033 return ret;
9517bac6
MF
1034}
1035
1036/*
3a307ffc 1037 * This function will only grab one clusters worth of pages.
9517bac6 1038 */
3a307ffc
MF
1039static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1040 struct ocfs2_write_ctxt *wc,
7307de80
MF
1041 u32 cpos, loff_t user_pos, int new,
1042 struct page *mmap_page)
9517bac6 1043{
3a307ffc
MF
1044 int ret = 0, i;
1045 unsigned long start, target_index, index;
9517bac6 1046 struct inode *inode = mapping->host;
9517bac6 1047
3a307ffc 1048 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1049
1050 /*
1051 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1052 * non allocating write, we just change the one
1053 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1054 */
9517bac6 1055 if (new) {
3a307ffc
MF
1056 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1057 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1058 } else {
3a307ffc
MF
1059 wc->w_num_pages = 1;
1060 start = target_index;
9517bac6
MF
1061 }
1062
3a307ffc 1063 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1064 index = start + i;
1065
7307de80
MF
1066 if (index == target_index && mmap_page) {
1067 /*
1068 * ocfs2_pagemkwrite() is a little different
1069 * and wants us to directly use the page
1070 * passed in.
1071 */
1072 lock_page(mmap_page);
1073
1074 if (mmap_page->mapping != mapping) {
1075 unlock_page(mmap_page);
1076 /*
1077 * Sanity check - the locking in
1078 * ocfs2_pagemkwrite() should ensure
1079 * that this code doesn't trigger.
1080 */
1081 ret = -EINVAL;
1082 mlog_errno(ret);
1083 goto out;
1084 }
1085
1086 page_cache_get(mmap_page);
1087 wc->w_pages[i] = mmap_page;
1088 } else {
1089 wc->w_pages[i] = find_or_create_page(mapping, index,
1090 GFP_NOFS);
1091 if (!wc->w_pages[i]) {
1092 ret = -ENOMEM;
1093 mlog_errno(ret);
1094 goto out;
1095 }
9517bac6 1096 }
3a307ffc
MF
1097
1098 if (index == target_index)
1099 wc->w_target_page = wc->w_pages[i];
9517bac6 1100 }
3a307ffc
MF
1101out:
1102 return ret;
1103}
1104
1105/*
1106 * Prepare a single cluster for write one cluster into the file.
1107 */
1108static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc
MF
1109 u32 phys, unsigned int unwritten,
1110 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1111 struct ocfs2_alloc_context *meta_ac,
1112 struct ocfs2_write_ctxt *wc, u32 cpos,
1113 loff_t user_pos, unsigned user_len)
1114{
b27b7cbc 1115 int ret, i, new, should_zero = 0;
3a307ffc
MF
1116 u64 v_blkno, p_blkno;
1117 struct inode *inode = mapping->host;
1118
1119 new = phys == 0 ? 1 : 0;
b27b7cbc
MF
1120 if (new || unwritten)
1121 should_zero = 1;
9517bac6
MF
1122
1123 if (new) {
3a307ffc
MF
1124 u32 tmp_pos;
1125
9517bac6
MF
1126 /*
1127 * This is safe to call with the page locks - it won't take
1128 * any additional semaphores or cluster locks.
1129 */
3a307ffc 1130 tmp_pos = cpos;
9517bac6 1131 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
2ae99a60 1132 &tmp_pos, 1, 0, wc->w_di_bh,
3a307ffc
MF
1133 wc->w_handle, data_ac,
1134 meta_ac, NULL);
9517bac6
MF
1135 /*
1136 * This shouldn't happen because we must have already
1137 * calculated the correct meta data allocation required. The
1138 * internal tree allocation code should know how to increase
1139 * transaction credits itself.
1140 *
1141 * If need be, we could handle -EAGAIN for a
1142 * RESTART_TRANS here.
1143 */
1144 mlog_bug_on_msg(ret == -EAGAIN,
1145 "Inode %llu: EAGAIN return during allocation.\n",
1146 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1147 if (ret < 0) {
1148 mlog_errno(ret);
1149 goto out;
1150 }
b27b7cbc
MF
1151 } else if (unwritten) {
1152 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1153 wc->w_handle, cpos, 1, phys,
1154 meta_ac, &wc->w_dealloc);
1155 if (ret < 0) {
1156 mlog_errno(ret);
1157 goto out;
1158 }
1159 }
3a307ffc 1160
b27b7cbc 1161 if (should_zero)
3a307ffc 1162 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1163 else
3a307ffc 1164 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1165
3a307ffc
MF
1166 /*
1167 * The only reason this should fail is due to an inability to
1168 * find the extent added.
1169 */
49cb8d2d
MF
1170 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1171 NULL);
9517bac6 1172 if (ret < 0) {
3a307ffc
MF
1173 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1174 "at logical block %llu",
1175 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1176 (unsigned long long)v_blkno);
9517bac6
MF
1177 goto out;
1178 }
1179
1180 BUG_ON(p_blkno == 0);
1181
3a307ffc
MF
1182 for(i = 0; i < wc->w_num_pages; i++) {
1183 int tmpret;
9517bac6 1184
3a307ffc
MF
1185 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1186 wc->w_pages[i], cpos,
b27b7cbc
MF
1187 user_pos, user_len,
1188 should_zero);
3a307ffc
MF
1189 if (tmpret) {
1190 mlog_errno(tmpret);
1191 if (ret == 0)
1192 tmpret = ret;
1193 }
9517bac6
MF
1194 }
1195
3a307ffc
MF
1196 /*
1197 * We only have cleanup to do in case of allocating write.
1198 */
1199 if (ret && new)
1200 ocfs2_write_failure(inode, wc, user_pos, user_len);
1201
9517bac6 1202out:
9517bac6 1203
3a307ffc 1204 return ret;
9517bac6
MF
1205}
1206
0d172baa
MF
1207static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1208 struct ocfs2_alloc_context *data_ac,
1209 struct ocfs2_alloc_context *meta_ac,
1210 struct ocfs2_write_ctxt *wc,
1211 loff_t pos, unsigned len)
1212{
1213 int ret, i;
1214 struct ocfs2_write_cluster_desc *desc;
1215
1216 for (i = 0; i < wc->w_clen; i++) {
1217 desc = &wc->w_desc[i];
1218
b27b7cbc
MF
1219 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1220 desc->c_unwritten, data_ac, meta_ac,
1221 wc, desc->c_cpos, pos, len);
0d172baa
MF
1222 if (ret) {
1223 mlog_errno(ret);
1224 goto out;
1225 }
1226 }
1227
1228 ret = 0;
1229out:
1230 return ret;
1231}
1232
3a307ffc
MF
1233/*
1234 * ocfs2_write_end() wants to know which parts of the target page it
1235 * should complete the write on. It's easiest to compute them ahead of
1236 * time when a more complete view of the write is available.
1237 */
1238static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1239 struct ocfs2_write_ctxt *wc,
1240 loff_t pos, unsigned len, int alloc)
9517bac6 1241{
3a307ffc 1242 struct ocfs2_write_cluster_desc *desc;
9517bac6 1243
3a307ffc
MF
1244 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1245 wc->w_target_to = wc->w_target_from + len;
1246
1247 if (alloc == 0)
1248 return;
1249
1250 /*
1251 * Allocating write - we may have different boundaries based
1252 * on page size and cluster size.
1253 *
1254 * NOTE: We can no longer compute one value from the other as
1255 * the actual write length and user provided length may be
1256 * different.
1257 */
9517bac6 1258
3a307ffc
MF
1259 if (wc->w_large_pages) {
1260 /*
1261 * We only care about the 1st and last cluster within
b27b7cbc 1262 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1263 * value may be extended out to the start/end of a
1264 * newly allocated cluster.
1265 */
1266 desc = &wc->w_desc[0];
b27b7cbc 1267 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1268 ocfs2_figure_cluster_boundaries(osb,
1269 desc->c_cpos,
1270 &wc->w_target_from,
1271 NULL);
1272
1273 desc = &wc->w_desc[wc->w_clen - 1];
b27b7cbc 1274 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1275 ocfs2_figure_cluster_boundaries(osb,
1276 desc->c_cpos,
1277 NULL,
1278 &wc->w_target_to);
1279 } else {
1280 wc->w_target_from = 0;
1281 wc->w_target_to = PAGE_CACHE_SIZE;
1282 }
9517bac6
MF
1283}
1284
0d172baa
MF
1285/*
1286 * Populate each single-cluster write descriptor in the write context
1287 * with information about the i/o to be done.
b27b7cbc
MF
1288 *
1289 * Returns the number of clusters that will have to be allocated, as
1290 * well as a worst case estimate of the number of extent records that
1291 * would have to be created during a write to an unwritten region.
0d172baa
MF
1292 */
1293static int ocfs2_populate_write_desc(struct inode *inode,
1294 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1295 unsigned int *clusters_to_alloc,
1296 unsigned int *extents_to_split)
9517bac6 1297{
0d172baa 1298 int ret;
3a307ffc 1299 struct ocfs2_write_cluster_desc *desc;
0d172baa 1300 unsigned int num_clusters = 0;
b27b7cbc 1301 unsigned int ext_flags = 0;
0d172baa
MF
1302 u32 phys = 0;
1303 int i;
9517bac6 1304
b27b7cbc
MF
1305 *clusters_to_alloc = 0;
1306 *extents_to_split = 0;
1307
3a307ffc
MF
1308 for (i = 0; i < wc->w_clen; i++) {
1309 desc = &wc->w_desc[i];
1310 desc->c_cpos = wc->w_cpos + i;
1311
1312 if (num_clusters == 0) {
b27b7cbc
MF
1313 /*
1314 * Need to look up the next extent record.
1315 */
3a307ffc 1316 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1317 &num_clusters, &ext_flags);
3a307ffc
MF
1318 if (ret) {
1319 mlog_errno(ret);
607d44aa 1320 goto out;
3a307ffc 1321 }
b27b7cbc
MF
1322
1323 /*
1324 * Assume worst case - that we're writing in
1325 * the middle of the extent.
1326 *
1327 * We can assume that the write proceeds from
1328 * left to right, in which case the extent
1329 * insert code is smart enough to coalesce the
1330 * next splits into the previous records created.
1331 */
1332 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1333 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1334 } else if (phys) {
1335 /*
1336 * Only increment phys if it doesn't describe
1337 * a hole.
1338 */
1339 phys++;
1340 }
1341
1342 desc->c_phys = phys;
1343 if (phys == 0) {
1344 desc->c_new = 1;
0d172baa 1345 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1346 }
b27b7cbc
MF
1347 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1348 desc->c_unwritten = 1;
3a307ffc
MF
1349
1350 num_clusters--;
9517bac6
MF
1351 }
1352
0d172baa
MF
1353 ret = 0;
1354out:
1355 return ret;
1356}
1357
1358int ocfs2_write_begin_nolock(struct address_space *mapping,
1359 loff_t pos, unsigned len, unsigned flags,
1360 struct page **pagep, void **fsdata,
1361 struct buffer_head *di_bh, struct page *mmap_page)
1362{
1363 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1364 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1365 struct ocfs2_write_ctxt *wc;
1366 struct inode *inode = mapping->host;
1367 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1368 struct ocfs2_dinode *di;
1369 struct ocfs2_alloc_context *data_ac = NULL;
1370 struct ocfs2_alloc_context *meta_ac = NULL;
1371 handle_t *handle;
1372
1373 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1374 if (ret) {
1375 mlog_errno(ret);
1376 return ret;
1377 }
1378
b27b7cbc
MF
1379 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1380 &extents_to_split);
0d172baa
MF
1381 if (ret) {
1382 mlog_errno(ret);
1383 goto out;
1384 }
1385
1386 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1387
3a307ffc
MF
1388 /*
1389 * We set w_target_from, w_target_to here so that
1390 * ocfs2_write_end() knows which range in the target page to
1391 * write out. An allocation requires that we write the entire
1392 * cluster range.
1393 */
b27b7cbc 1394 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1395 /*
1396 * XXX: We are stretching the limits of
b27b7cbc 1397 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1398 * the work to be done.
1399 */
1400 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
b27b7cbc 1401 extents_to_split, &data_ac, &meta_ac);
9517bac6
MF
1402 if (ret) {
1403 mlog_errno(ret);
607d44aa 1404 goto out;
9517bac6
MF
1405 }
1406
3a307ffc
MF
1407 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1408 clusters_to_alloc);
1409
9517bac6
MF
1410 }
1411
b27b7cbc
MF
1412 ocfs2_set_target_boundaries(osb, wc, pos, len,
1413 clusters_to_alloc + extents_to_split);
3a307ffc 1414
9517bac6
MF
1415 handle = ocfs2_start_trans(osb, credits);
1416 if (IS_ERR(handle)) {
1417 ret = PTR_ERR(handle);
1418 mlog_errno(ret);
607d44aa 1419 goto out;
9517bac6
MF
1420 }
1421
3a307ffc
MF
1422 wc->w_handle = handle;
1423
1424 /*
1425 * We don't want this to fail in ocfs2_write_end(), so do it
1426 * here.
1427 */
1428 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1429 OCFS2_JOURNAL_ACCESS_WRITE);
1430 if (ret) {
9517bac6
MF
1431 mlog_errno(ret);
1432 goto out_commit;
1433 }
1434
3a307ffc
MF
1435 /*
1436 * Fill our page array first. That way we've grabbed enough so
1437 * that we can zero and flush if we error after adding the
1438 * extent.
1439 */
1440 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
b27b7cbc
MF
1441 clusters_to_alloc + extents_to_split,
1442 mmap_page);
9517bac6
MF
1443 if (ret) {
1444 mlog_errno(ret);
1445 goto out_commit;
1446 }
1447
0d172baa
MF
1448 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1449 len);
1450 if (ret) {
1451 mlog_errno(ret);
1452 goto out_commit;
9517bac6 1453 }
9517bac6 1454
3a307ffc
MF
1455 if (data_ac)
1456 ocfs2_free_alloc_context(data_ac);
1457 if (meta_ac)
1458 ocfs2_free_alloc_context(meta_ac);
9517bac6 1459
3a307ffc
MF
1460 *pagep = wc->w_target_page;
1461 *fsdata = wc;
1462 return 0;
9517bac6
MF
1463out_commit:
1464 ocfs2_commit_trans(osb, handle);
1465
9517bac6 1466out:
3a307ffc
MF
1467 ocfs2_free_write_ctxt(wc);
1468
9517bac6
MF
1469 if (data_ac)
1470 ocfs2_free_alloc_context(data_ac);
1471 if (meta_ac)
1472 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1473 return ret;
1474}
1475
607d44aa
MF
1476int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1477 loff_t pos, unsigned len, unsigned flags,
1478 struct page **pagep, void **fsdata)
1479{
1480 int ret;
1481 struct buffer_head *di_bh = NULL;
1482 struct inode *inode = mapping->host;
1483
1484 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1485 if (ret) {
1486 mlog_errno(ret);
1487 return ret;
1488 }
1489
1490 /*
1491 * Take alloc sem here to prevent concurrent lookups. That way
1492 * the mapping, zeroing and tree manipulation within
1493 * ocfs2_write() will be safe against ->readpage(). This
1494 * should also serve to lock out allocation from a shared
1495 * writeable region.
1496 */
1497 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1498
1499 ret = ocfs2_data_lock(inode, 1);
1500 if (ret) {
1501 mlog_errno(ret);
1502 goto out_fail;
1503 }
1504
1505 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1506 fsdata, di_bh, NULL);
607d44aa
MF
1507 if (ret) {
1508 mlog_errno(ret);
1509 goto out_fail_data;
1510 }
1511
1512 brelse(di_bh);
1513
1514 return 0;
1515
1516out_fail_data:
1517 ocfs2_data_unlock(inode, 1);
1518out_fail:
1519 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1520
1521 brelse(di_bh);
1522 ocfs2_meta_unlock(inode, 1);
1523
1524 return ret;
1525}
1526
7307de80
MF
1527int ocfs2_write_end_nolock(struct address_space *mapping,
1528 loff_t pos, unsigned len, unsigned copied,
1529 struct page *page, void *fsdata)
3a307ffc
MF
1530{
1531 int i;
1532 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1533 struct inode *inode = mapping->host;
1534 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1535 struct ocfs2_write_ctxt *wc = fsdata;
1536 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1537 handle_t *handle = wc->w_handle;
1538 struct page *tmppage;
1539
1540 if (unlikely(copied < len)) {
1541 if (!PageUptodate(wc->w_target_page))
1542 copied = 0;
1543
1544 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1545 start+len);
1546 }
1547 flush_dcache_page(wc->w_target_page);
1548
1549 for(i = 0; i < wc->w_num_pages; i++) {
1550 tmppage = wc->w_pages[i];
1551
1552 if (tmppage == wc->w_target_page) {
1553 from = wc->w_target_from;
1554 to = wc->w_target_to;
1555
1556 BUG_ON(from > PAGE_CACHE_SIZE ||
1557 to > PAGE_CACHE_SIZE ||
1558 to < from);
1559 } else {
1560 /*
1561 * Pages adjacent to the target (if any) imply
1562 * a hole-filling write in which case we want
1563 * to flush their entire range.
1564 */
1565 from = 0;
1566 to = PAGE_CACHE_SIZE;
1567 }
1568
1569 if (ocfs2_should_order_data(inode))
1570 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1571 from, to, NULL,
1572 ocfs2_journal_dirty_data);
1573
1574 block_commit_write(tmppage, from, to);
1575 }
1576
1577 pos += copied;
1578 if (pos > inode->i_size) {
1579 i_size_write(inode, pos);
1580 mark_inode_dirty(inode);
1581 }
1582 inode->i_blocks = ocfs2_inode_sector_count(inode);
1583 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1584 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1585 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1586 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1587 ocfs2_journal_dirty(handle, wc->w_di_bh);
1588
1589 ocfs2_commit_trans(osb, handle);
59a5e416 1590
b27b7cbc
MF
1591 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1592
607d44aa
MF
1593 ocfs2_free_write_ctxt(wc);
1594
1595 return copied;
1596}
1597
1598int ocfs2_write_end(struct file *file, struct address_space *mapping,
1599 loff_t pos, unsigned len, unsigned copied,
1600 struct page *page, void *fsdata)
1601{
1602 int ret;
1603 struct inode *inode = mapping->host;
1604
1605 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1606
3a307ffc
MF
1607 ocfs2_data_unlock(inode, 1);
1608 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1609 ocfs2_meta_unlock(inode, 1);
9517bac6 1610
607d44aa 1611 return ret;
9517bac6
MF
1612}
1613
f5e54d6e 1614const struct address_space_operations ocfs2_aops = {
ccd979bd
MF
1615 .readpage = ocfs2_readpage,
1616 .writepage = ocfs2_writepage,
ccd979bd
MF
1617 .bmap = ocfs2_bmap,
1618 .sync_page = block_sync_page,
03f981cf
JB
1619 .direct_IO = ocfs2_direct_IO,
1620 .invalidatepage = ocfs2_invalidatepage,
1621 .releasepage = ocfs2_releasepage,
1622 .migratepage = buffer_migrate_page,
ccd979bd 1623};