ocfs2: move ip_created_trans to struct ocfs2_caching_info
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd
MF
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
47
48#include "buffer_head_io.h"
49
50static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
51 struct buffer_head *bh_result, int create)
52{
53 int err = -EIO;
54 int status;
55 struct ocfs2_dinode *fe = NULL;
56 struct buffer_head *bh = NULL;
57 struct buffer_head *buffer_cache_bh = NULL;
58 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
59 void *kaddr;
60
61 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
62 (unsigned long long)iblock, bh_result, create);
63
64 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
65
66 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
67 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
68 (unsigned long long)iblock);
69 goto bail;
70 }
71
b657c95c 72 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
76 }
77 fe = (struct ocfs2_dinode *) bh->b_data;
78
ccd979bd
MF
79 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
80 le32_to_cpu(fe->i_clusters))) {
81 mlog(ML_ERROR, "block offset is outside the allocated size: "
82 "%llu\n", (unsigned long long)iblock);
83 goto bail;
84 }
85
86 /* We don't use the page cache to create symlink data, so if
87 * need be, copy it over from the buffer cache. */
88 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
89 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
90 iblock;
91 buffer_cache_bh = sb_getblk(osb->sb, blkno);
92 if (!buffer_cache_bh) {
93 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
94 goto bail;
95 }
96
97 /* we haven't locked out transactions, so a commit
98 * could've happened. Since we've got a reference on
99 * the bh, even if it commits while we're doing the
100 * copy, the data is still good. */
101 if (buffer_jbd(buffer_cache_bh)
102 && ocfs2_inode_is_new(inode)) {
103 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
104 if (!kaddr) {
105 mlog(ML_ERROR, "couldn't kmap!\n");
106 goto bail;
107 }
108 memcpy(kaddr + (bh_result->b_size * iblock),
109 buffer_cache_bh->b_data,
110 bh_result->b_size);
111 kunmap_atomic(kaddr, KM_USER0);
112 set_buffer_uptodate(bh_result);
113 }
114 brelse(buffer_cache_bh);
115 }
116
117 map_bh(bh_result, inode->i_sb,
118 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
119
120 err = 0;
121
122bail:
a81cb88b 123 brelse(bh);
ccd979bd
MF
124
125 mlog_exit(err);
126 return err;
127}
128
129static int ocfs2_get_block(struct inode *inode, sector_t iblock,
130 struct buffer_head *bh_result, int create)
131{
132 int err = 0;
49cb8d2d 133 unsigned int ext_flags;
628a24f5
MF
134 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
135 u64 p_blkno, count, past_eof;
25baf2da 136 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
137
138 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
139 (unsigned long long)iblock, bh_result, create);
140
141 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
142 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
143 inode, inode->i_ino);
144
145 if (S_ISLNK(inode->i_mode)) {
146 /* this always does I/O for some reason. */
147 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
148 goto bail;
149 }
150
628a24f5 151 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 152 &ext_flags);
ccd979bd
MF
153 if (err) {
154 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
155 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
156 (unsigned long long)p_blkno);
ccd979bd
MF
157 goto bail;
158 }
159
628a24f5
MF
160 if (max_blocks < count)
161 count = max_blocks;
162
25baf2da
MF
163 /*
164 * ocfs2 never allocates in this function - the only time we
165 * need to use BH_New is when we're extending i_size on a file
166 * system which doesn't support holes, in which case BH_New
167 * allows block_prepare_write() to zero.
c0420ad2
CL
168 *
169 * If we see this on a sparse file system, then a truncate has
170 * raced us and removed the cluster. In this case, we clear
171 * the buffers dirty and uptodate bits and let the buffer code
172 * ignore it as a hole.
25baf2da 173 */
c0420ad2
CL
174 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
175 clear_buffer_dirty(bh_result);
176 clear_buffer_uptodate(bh_result);
177 goto bail;
178 }
25baf2da 179
49cb8d2d
MF
180 /* Treat the unwritten extent as a hole for zeroing purposes. */
181 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
182 map_bh(bh_result, inode->i_sb, p_blkno);
183
628a24f5
MF
184 bh_result->b_size = count << inode->i_blkbits;
185
25baf2da
MF
186 if (!ocfs2_sparse_alloc(osb)) {
187 if (p_blkno == 0) {
188 err = -EIO;
189 mlog(ML_ERROR,
190 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
191 (unsigned long long)iblock,
192 (unsigned long long)p_blkno,
193 (unsigned long long)OCFS2_I(inode)->ip_blkno);
194 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
195 dump_stack();
1f4cea37 196 goto bail;
25baf2da 197 }
ccd979bd 198
25baf2da
MF
199 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
200 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
201 (unsigned long long)past_eof);
ccd979bd 202
25baf2da
MF
203 if (create && (iblock >= past_eof))
204 set_buffer_new(bh_result);
205 }
ccd979bd
MF
206
207bail:
208 if (err < 0)
209 err = -EIO;
210
211 mlog_exit(err);
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282
e63aecb6 283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
284 if (ret != 0) {
285 if (ret == AOP_TRUNCATED_PAGE)
286 unlock = 0;
287 mlog_errno(ret);
288 goto out;
289 }
290
6798d35a 291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 292 ret = AOP_TRUNCATED_PAGE;
e63aecb6 293 goto out_inode_unlock;
e9dfc0b2 294 }
ccd979bd
MF
295
296 /*
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
54cb8821 301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
302 * and notice that the page they just read isn't needed.
303 *
304 * XXX sys_readahead() seems to get that wrong?
305 */
306 if (start >= i_size_read(inode)) {
eebd2aa3 307 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
308 SetPageUptodate(page);
309 ret = 0;
310 goto out_alloc;
311 }
312
6798d35a
MF
313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 ret = ocfs2_readpage_inline(inode, page);
315 else
316 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
317 unlock = 0;
318
ccd979bd
MF
319out_alloc:
320 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
321out_inode_unlock:
322 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
323out:
324 if (unlock)
325 unlock_page(page);
326 mlog_exit(ret);
327 return ret;
328}
329
628a24f5
MF
330/*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341{
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384}
385
ccd979bd
MF
386/* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398{
399 int ret;
400
401 mlog_entry("(0x%p)\n", page);
402
403 ret = block_write_full_page(page, ocfs2_get_block, wbc);
404
405 mlog_exit(ret);
406
407 return ret;
408}
409
5069120b
MF
410/*
411 * This is called from ocfs2_write_zero_page() which has handled it's
412 * own cluster locking and has ensured allocation exists for those
413 * blocks to be written.
414 */
53013cba
MF
415int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416 unsigned from, unsigned to)
417{
418 int ret;
419
53013cba
MF
420 ret = block_prepare_write(page, from, to, ocfs2_get_block);
421
53013cba
MF
422 return ret;
423}
424
ccd979bd
MF
425/* Taken from ext3. We don't necessarily need the full blown
426 * functionality yet, but IMHO it's better to cut and paste the whole
427 * thing so we can avoid introducing our own bugs (and easily pick up
428 * their fixes when they happen) --Mark */
60b11392
MF
429int walk_page_buffers( handle_t *handle,
430 struct buffer_head *head,
431 unsigned from,
432 unsigned to,
433 int *partial,
434 int (*fn)( handle_t *handle,
435 struct buffer_head *bh))
ccd979bd
MF
436{
437 struct buffer_head *bh;
438 unsigned block_start, block_end;
439 unsigned blocksize = head->b_size;
440 int err, ret = 0;
441 struct buffer_head *next;
442
443 for ( bh = head, block_start = 0;
444 ret == 0 && (bh != head || !block_start);
445 block_start = block_end, bh = next)
446 {
447 next = bh->b_this_page;
448 block_end = block_start + blocksize;
449 if (block_end <= from || block_start >= to) {
450 if (partial && !buffer_uptodate(bh))
451 *partial = 1;
452 continue;
453 }
454 err = (*fn)(handle, bh);
455 if (!ret)
456 ret = err;
457 }
458 return ret;
459}
460
1fabe148 461handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
462 struct page *page,
463 unsigned from,
464 unsigned to)
465{
466 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58dadcdb 467 handle_t *handle;
ccd979bd
MF
468 int ret = 0;
469
65eff9cc 470 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
58dadcdb 471 if (IS_ERR(handle)) {
ccd979bd
MF
472 ret = -ENOMEM;
473 mlog_errno(ret);
474 goto out;
475 }
476
477 if (ocfs2_should_order_data(inode)) {
2b4e30fb 478 ret = ocfs2_jbd2_file_inode(handle, inode);
2b4e30fb 479 if (ret < 0)
ccd979bd
MF
480 mlog_errno(ret);
481 }
482out:
483 if (ret) {
58dadcdb 484 if (!IS_ERR(handle))
02dc1af4 485 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
486 handle = ERR_PTR(ret);
487 }
488 return handle;
489}
490
ccd979bd
MF
491static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
492{
493 sector_t status;
494 u64 p_blkno = 0;
495 int err = 0;
496 struct inode *inode = mapping->host;
497
498 mlog_entry("(block = %llu)\n", (unsigned long long)block);
499
500 /* We don't need to lock journal system files, since they aren't
501 * accessed concurrently from multiple nodes.
502 */
503 if (!INODE_JOURNAL(inode)) {
e63aecb6 504 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
505 if (err) {
506 if (err != -ENOENT)
507 mlog_errno(err);
508 goto bail;
509 }
510 down_read(&OCFS2_I(inode)->ip_alloc_sem);
511 }
512
6798d35a
MF
513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
514 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
515 NULL);
ccd979bd
MF
516
517 if (!INODE_JOURNAL(inode)) {
518 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 519 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
520 }
521
522 if (err) {
523 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
524 (unsigned long long)block);
525 mlog_errno(err);
526 goto bail;
527 }
528
ccd979bd
MF
529bail:
530 status = err ? 0 : p_blkno;
531
532 mlog_exit((int)status);
533
534 return status;
535}
536
537/*
538 * TODO: Make this into a generic get_blocks function.
539 *
540 * From do_direct_io in direct-io.c:
541 * "So what we do is to permit the ->get_blocks function to populate
542 * bh.b_size with the size of IO which is permitted at this offset and
543 * this i_blkbits."
544 *
545 * This function is called directly from get_more_blocks in direct-io.c.
546 *
547 * called like this: dio->get_blocks(dio->inode, fs_startblk,
548 * fs_count, map_bh, dio->rw == WRITE);
549 */
550static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
551 struct buffer_head *bh_result, int create)
552{
553 int ret;
4f902c37 554 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 555 unsigned int ext_flags;
184d7d20 556 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 557 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 558
ccd979bd
MF
559 /* This function won't even be called if the request isn't all
560 * nicely aligned and of the right size, so there's no need
561 * for us to check any of that. */
562
25baf2da 563 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
564
565 /*
566 * Any write past EOF is not allowed because we'd be extending.
567 */
568 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
569 ret = -EIO;
570 goto bail;
571 }
ccd979bd
MF
572
573 /* This figures out the size of the next contiguous block, and
574 * our logical offset */
363041a5 575 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 576 &contig_blocks, &ext_flags);
ccd979bd
MF
577 if (ret) {
578 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
579 (unsigned long long)iblock);
580 ret = -EIO;
581 goto bail;
582 }
583
0e116227 584 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
25baf2da
MF
585 ocfs2_error(inode->i_sb,
586 "Inode %llu has a hole at block %llu\n",
587 (unsigned long long)OCFS2_I(inode)->ip_blkno,
588 (unsigned long long)iblock);
589 ret = -EROFS;
590 goto bail;
591 }
592
593 /*
594 * get_more_blocks() expects us to describe a hole by clearing
595 * the mapped bit on bh_result().
49cb8d2d
MF
596 *
597 * Consider an unwritten extent as a hole.
25baf2da 598 */
49cb8d2d 599 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
600 map_bh(bh_result, inode->i_sb, p_blkno);
601 else {
602 /*
603 * ocfs2_prepare_inode_for_write() should have caught
604 * the case where we'd be filling a hole and triggered
605 * a buffered write instead.
606 */
607 if (create) {
608 ret = -EIO;
609 mlog_errno(ret);
610 goto bail;
611 }
612
613 clear_buffer_mapped(bh_result);
614 }
ccd979bd
MF
615
616 /* make sure we don't map more than max_blocks blocks here as
617 that's all the kernel will handle at this point. */
618 if (max_blocks < contig_blocks)
619 contig_blocks = max_blocks;
620 bh_result->b_size = contig_blocks << blocksize_bits;
621bail:
622 return ret;
623}
624
625/*
626 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
627 * particularly interested in the aio/dio case. Like the core uses
628 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
629 * truncation on another.
630 */
631static void ocfs2_dio_end_io(struct kiocb *iocb,
632 loff_t offset,
633 ssize_t bytes,
634 void *private)
635{
d28c9174 636 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 637 int level;
ccd979bd
MF
638
639 /* this io's submitter should not have unlocked this before we could */
640 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 641
ccd979bd 642 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
643
644 level = ocfs2_iocb_rw_locked_level(iocb);
645 if (!level)
646 up_read(&inode->i_alloc_sem);
647 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
648}
649
03f981cf
JB
650/*
651 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
652 * from ext3. PageChecked() bits have been removed as OCFS2 does not
653 * do journalled data.
654 */
655static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
656{
657 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
658
2b4e30fb 659 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
660}
661
662static int ocfs2_releasepage(struct page *page, gfp_t wait)
663{
664 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
665
666 if (!page_has_buffers(page))
667 return 0;
2b4e30fb 668 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
669}
670
ccd979bd
MF
671static ssize_t ocfs2_direct_IO(int rw,
672 struct kiocb *iocb,
673 const struct iovec *iov,
674 loff_t offset,
675 unsigned long nr_segs)
676{
677 struct file *file = iocb->ki_filp;
d28c9174 678 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
679 int ret;
680
681 mlog_entry_void();
53013cba 682
6798d35a
MF
683 /*
684 * Fallback to buffered I/O if we see an inode without
685 * extents.
686 */
687 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
688 return 0;
689
ccd979bd
MF
690 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
691 inode->i_sb->s_bdev, iov, offset,
692 nr_segs,
693 ocfs2_direct_IO_get_blocks,
694 ocfs2_dio_end_io);
c934a92d 695
ccd979bd
MF
696 mlog_exit(ret);
697 return ret;
698}
699
9517bac6
MF
700static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
701 u32 cpos,
702 unsigned int *start,
703 unsigned int *end)
704{
705 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
706
707 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
708 unsigned int cpp;
709
710 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
711
712 cluster_start = cpos % cpp;
713 cluster_start = cluster_start << osb->s_clustersize_bits;
714
715 cluster_end = cluster_start + osb->s_clustersize;
716 }
717
718 BUG_ON(cluster_start > PAGE_SIZE);
719 BUG_ON(cluster_end > PAGE_SIZE);
720
721 if (start)
722 *start = cluster_start;
723 if (end)
724 *end = cluster_end;
725}
726
727/*
728 * 'from' and 'to' are the region in the page to avoid zeroing.
729 *
730 * If pagesize > clustersize, this function will avoid zeroing outside
731 * of the cluster boundary.
732 *
733 * from == to == 0 is code for "zero the entire cluster region"
734 */
735static void ocfs2_clear_page_regions(struct page *page,
736 struct ocfs2_super *osb, u32 cpos,
737 unsigned from, unsigned to)
738{
739 void *kaddr;
740 unsigned int cluster_start, cluster_end;
741
742 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
743
744 kaddr = kmap_atomic(page, KM_USER0);
745
746 if (from || to) {
747 if (from > cluster_start)
748 memset(kaddr + cluster_start, 0, from - cluster_start);
749 if (to < cluster_end)
750 memset(kaddr + to, 0, cluster_end - to);
751 } else {
752 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
753 }
754
755 kunmap_atomic(kaddr, KM_USER0);
756}
757
4e9563fd
MF
758/*
759 * Nonsparse file systems fully allocate before we get to the write
760 * code. This prevents ocfs2_write() from tagging the write as an
761 * allocating one, which means ocfs2_map_page_blocks() might try to
762 * read-in the blocks at the tail of our file. Avoid reading them by
763 * testing i_size against each block offset.
764 */
765static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
766 unsigned int block_start)
767{
768 u64 offset = page_offset(page) + block_start;
769
770 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
771 return 1;
772
773 if (i_size_read(inode) > offset)
774 return 1;
775
776 return 0;
777}
778
9517bac6
MF
779/*
780 * Some of this taken from block_prepare_write(). We already have our
781 * mapping by now though, and the entire write will be allocating or
782 * it won't, so not much need to use BH_New.
783 *
784 * This will also skip zeroing, which is handled externally.
785 */
60b11392
MF
786int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
787 struct inode *inode, unsigned int from,
788 unsigned int to, int new)
9517bac6
MF
789{
790 int ret = 0;
791 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
792 unsigned int block_end, block_start;
793 unsigned int bsize = 1 << inode->i_blkbits;
794
795 if (!page_has_buffers(page))
796 create_empty_buffers(page, bsize, 0);
797
798 head = page_buffers(page);
799 for (bh = head, block_start = 0; bh != head || !block_start;
800 bh = bh->b_this_page, block_start += bsize) {
801 block_end = block_start + bsize;
802
3a307ffc
MF
803 clear_buffer_new(bh);
804
9517bac6
MF
805 /*
806 * Ignore blocks outside of our i/o range -
807 * they may belong to unallocated clusters.
808 */
60b11392 809 if (block_start >= to || block_end <= from) {
9517bac6
MF
810 if (PageUptodate(page))
811 set_buffer_uptodate(bh);
812 continue;
813 }
814
815 /*
816 * For an allocating write with cluster size >= page
817 * size, we always write the entire page.
818 */
3a307ffc
MF
819 if (new)
820 set_buffer_new(bh);
9517bac6
MF
821
822 if (!buffer_mapped(bh)) {
823 map_bh(bh, inode->i_sb, *p_blkno);
824 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
825 }
826
827 if (PageUptodate(page)) {
828 if (!buffer_uptodate(bh))
829 set_buffer_uptodate(bh);
830 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 831 !buffer_new(bh) &&
4e9563fd 832 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 833 (block_start < from || block_end > to)) {
9517bac6
MF
834 ll_rw_block(READ, 1, &bh);
835 *wait_bh++=bh;
836 }
837
838 *p_blkno = *p_blkno + 1;
839 }
840
841 /*
842 * If we issued read requests - let them complete.
843 */
844 while(wait_bh > wait) {
845 wait_on_buffer(*--wait_bh);
846 if (!buffer_uptodate(*wait_bh))
847 ret = -EIO;
848 }
849
850 if (ret == 0 || !new)
851 return ret;
852
853 /*
854 * If we get -EIO above, zero out any newly allocated blocks
855 * to avoid exposing stale data.
856 */
857 bh = head;
858 block_start = 0;
859 do {
9517bac6
MF
860 block_end = block_start + bsize;
861 if (block_end <= from)
862 goto next_bh;
863 if (block_start >= to)
864 break;
865
eebd2aa3 866 zero_user(page, block_start, bh->b_size);
9517bac6
MF
867 set_buffer_uptodate(bh);
868 mark_buffer_dirty(bh);
869
870next_bh:
871 block_start = block_end;
872 bh = bh->b_this_page;
873 } while (bh != head);
874
875 return ret;
876}
877
3a307ffc
MF
878#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
879#define OCFS2_MAX_CTXT_PAGES 1
880#else
881#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
882#endif
883
884#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
885
6af67d82 886/*
3a307ffc 887 * Describe the state of a single cluster to be written to.
6af67d82 888 */
3a307ffc
MF
889struct ocfs2_write_cluster_desc {
890 u32 c_cpos;
891 u32 c_phys;
892 /*
893 * Give this a unique field because c_phys eventually gets
894 * filled.
895 */
896 unsigned c_new;
b27b7cbc 897 unsigned c_unwritten;
e7432675 898 unsigned c_needs_zero;
3a307ffc 899};
6af67d82 900
3a307ffc
MF
901struct ocfs2_write_ctxt {
902 /* Logical cluster position / len of write */
903 u32 w_cpos;
904 u32 w_clen;
6af67d82 905
e7432675
SM
906 /* First cluster allocated in a nonsparse extend */
907 u32 w_first_new_cpos;
908
3a307ffc 909 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 910
3a307ffc
MF
911 /*
912 * This is true if page_size > cluster_size.
913 *
914 * It triggers a set of special cases during write which might
915 * have to deal with allocating writes to partial pages.
916 */
917 unsigned int w_large_pages;
6af67d82 918
3a307ffc
MF
919 /*
920 * Pages involved in this write.
921 *
922 * w_target_page is the page being written to by the user.
923 *
924 * w_pages is an array of pages which always contains
925 * w_target_page, and in the case of an allocating write with
926 * page_size < cluster size, it will contain zero'd and mapped
927 * pages adjacent to w_target_page which need to be written
928 * out in so that future reads from that region will get
929 * zero's.
930 */
931 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
932 unsigned int w_num_pages;
933 struct page *w_target_page;
eeb47d12 934
3a307ffc
MF
935 /*
936 * ocfs2_write_end() uses this to know what the real range to
937 * write in the target should be.
938 */
939 unsigned int w_target_from;
940 unsigned int w_target_to;
941
942 /*
943 * We could use journal_current_handle() but this is cleaner,
944 * IMHO -Mark
945 */
946 handle_t *w_handle;
947
948 struct buffer_head *w_di_bh;
b27b7cbc
MF
949
950 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
951};
952
1d410a6e 953void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
954{
955 int i;
956
1d410a6e
MF
957 for(i = 0; i < num_pages; i++) {
958 if (pages[i]) {
959 unlock_page(pages[i]);
960 mark_page_accessed(pages[i]);
961 page_cache_release(pages[i]);
962 }
6af67d82 963 }
1d410a6e
MF
964}
965
966static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
967{
968 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 969
3a307ffc
MF
970 brelse(wc->w_di_bh);
971 kfree(wc);
972}
973
974static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
975 struct ocfs2_super *osb, loff_t pos,
607d44aa 976 unsigned len, struct buffer_head *di_bh)
3a307ffc 977{
30b8548f 978 u32 cend;
3a307ffc
MF
979 struct ocfs2_write_ctxt *wc;
980
981 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
982 if (!wc)
983 return -ENOMEM;
6af67d82 984
3a307ffc 985 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 986 wc->w_first_new_cpos = UINT_MAX;
30b8548f 987 cend = (pos + len - 1) >> osb->s_clustersize_bits;
988 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
989 get_bh(di_bh);
990 wc->w_di_bh = di_bh;
6af67d82 991
3a307ffc
MF
992 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
993 wc->w_large_pages = 1;
994 else
995 wc->w_large_pages = 0;
996
b27b7cbc
MF
997 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
998
3a307ffc 999 *wcp = wc;
6af67d82 1000
3a307ffc 1001 return 0;
6af67d82
MF
1002}
1003
9517bac6 1004/*
3a307ffc
MF
1005 * If a page has any new buffers, zero them out here, and mark them uptodate
1006 * and dirty so they'll be written out (in order to prevent uninitialised
1007 * block data from leaking). And clear the new bit.
9517bac6 1008 */
3a307ffc 1009static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1010{
3a307ffc
MF
1011 unsigned int block_start, block_end;
1012 struct buffer_head *head, *bh;
9517bac6 1013
3a307ffc
MF
1014 BUG_ON(!PageLocked(page));
1015 if (!page_has_buffers(page))
1016 return;
9517bac6 1017
3a307ffc
MF
1018 bh = head = page_buffers(page);
1019 block_start = 0;
1020 do {
1021 block_end = block_start + bh->b_size;
1022
1023 if (buffer_new(bh)) {
1024 if (block_end > from && block_start < to) {
1025 if (!PageUptodate(page)) {
1026 unsigned start, end;
3a307ffc
MF
1027
1028 start = max(from, block_start);
1029 end = min(to, block_end);
1030
eebd2aa3 1031 zero_user_segment(page, start, end);
3a307ffc
MF
1032 set_buffer_uptodate(bh);
1033 }
1034
1035 clear_buffer_new(bh);
1036 mark_buffer_dirty(bh);
1037 }
1038 }
9517bac6 1039
3a307ffc
MF
1040 block_start = block_end;
1041 bh = bh->b_this_page;
1042 } while (bh != head);
1043}
1044
1045/*
1046 * Only called when we have a failure during allocating write to write
1047 * zero's to the newly allocated region.
1048 */
1049static void ocfs2_write_failure(struct inode *inode,
1050 struct ocfs2_write_ctxt *wc,
1051 loff_t user_pos, unsigned user_len)
1052{
1053 int i;
5c26a7b7
MF
1054 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1055 to = user_pos + user_len;
3a307ffc
MF
1056 struct page *tmppage;
1057
5c26a7b7 1058 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1059
3a307ffc
MF
1060 for(i = 0; i < wc->w_num_pages; i++) {
1061 tmppage = wc->w_pages[i];
9517bac6 1062
961cecbe 1063 if (page_has_buffers(tmppage)) {
53ef99ca 1064 if (ocfs2_should_order_data(inode))
2b4e30fb 1065 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1066
1067 block_commit_write(tmppage, from, to);
1068 }
9517bac6 1069 }
9517bac6
MF
1070}
1071
3a307ffc
MF
1072static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1073 struct ocfs2_write_ctxt *wc,
1074 struct page *page, u32 cpos,
1075 loff_t user_pos, unsigned user_len,
1076 int new)
9517bac6 1077{
3a307ffc
MF
1078 int ret;
1079 unsigned int map_from = 0, map_to = 0;
9517bac6 1080 unsigned int cluster_start, cluster_end;
3a307ffc 1081 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1082
3a307ffc 1083 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1084 &cluster_start, &cluster_end);
1085
3a307ffc
MF
1086 if (page == wc->w_target_page) {
1087 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1088 map_to = map_from + user_len;
1089
1090 if (new)
1091 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1092 cluster_start, cluster_end,
1093 new);
1094 else
1095 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1096 map_from, map_to, new);
1097 if (ret) {
9517bac6
MF
1098 mlog_errno(ret);
1099 goto out;
1100 }
1101
3a307ffc
MF
1102 user_data_from = map_from;
1103 user_data_to = map_to;
9517bac6 1104 if (new) {
3a307ffc
MF
1105 map_from = cluster_start;
1106 map_to = cluster_end;
9517bac6
MF
1107 }
1108 } else {
1109 /*
1110 * If we haven't allocated the new page yet, we
1111 * shouldn't be writing it out without copying user
1112 * data. This is likely a math error from the caller.
1113 */
1114 BUG_ON(!new);
1115
3a307ffc
MF
1116 map_from = cluster_start;
1117 map_to = cluster_end;
9517bac6
MF
1118
1119 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1120 cluster_start, cluster_end, new);
9517bac6
MF
1121 if (ret) {
1122 mlog_errno(ret);
1123 goto out;
1124 }
1125 }
1126
1127 /*
1128 * Parts of newly allocated pages need to be zero'd.
1129 *
1130 * Above, we have also rewritten 'to' and 'from' - as far as
1131 * the rest of the function is concerned, the entire cluster
1132 * range inside of a page needs to be written.
1133 *
1134 * We can skip this if the page is up to date - it's already
1135 * been zero'd from being read in as a hole.
1136 */
1137 if (new && !PageUptodate(page))
1138 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1139 cpos, user_data_from, user_data_to);
9517bac6
MF
1140
1141 flush_dcache_page(page);
1142
9517bac6 1143out:
3a307ffc 1144 return ret;
9517bac6
MF
1145}
1146
1147/*
3a307ffc 1148 * This function will only grab one clusters worth of pages.
9517bac6 1149 */
3a307ffc
MF
1150static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1151 struct ocfs2_write_ctxt *wc,
7307de80
MF
1152 u32 cpos, loff_t user_pos, int new,
1153 struct page *mmap_page)
9517bac6 1154{
3a307ffc
MF
1155 int ret = 0, i;
1156 unsigned long start, target_index, index;
9517bac6 1157 struct inode *inode = mapping->host;
9517bac6 1158
3a307ffc 1159 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1160
1161 /*
1162 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1163 * non allocating write, we just change the one
1164 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1165 */
9517bac6 1166 if (new) {
3a307ffc
MF
1167 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1168 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1169 } else {
3a307ffc
MF
1170 wc->w_num_pages = 1;
1171 start = target_index;
9517bac6
MF
1172 }
1173
3a307ffc 1174 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1175 index = start + i;
1176
7307de80
MF
1177 if (index == target_index && mmap_page) {
1178 /*
1179 * ocfs2_pagemkwrite() is a little different
1180 * and wants us to directly use the page
1181 * passed in.
1182 */
1183 lock_page(mmap_page);
1184
1185 if (mmap_page->mapping != mapping) {
1186 unlock_page(mmap_page);
1187 /*
1188 * Sanity check - the locking in
1189 * ocfs2_pagemkwrite() should ensure
1190 * that this code doesn't trigger.
1191 */
1192 ret = -EINVAL;
1193 mlog_errno(ret);
1194 goto out;
1195 }
1196
1197 page_cache_get(mmap_page);
1198 wc->w_pages[i] = mmap_page;
1199 } else {
1200 wc->w_pages[i] = find_or_create_page(mapping, index,
1201 GFP_NOFS);
1202 if (!wc->w_pages[i]) {
1203 ret = -ENOMEM;
1204 mlog_errno(ret);
1205 goto out;
1206 }
9517bac6 1207 }
3a307ffc
MF
1208
1209 if (index == target_index)
1210 wc->w_target_page = wc->w_pages[i];
9517bac6 1211 }
3a307ffc
MF
1212out:
1213 return ret;
1214}
1215
1216/*
1217 * Prepare a single cluster for write one cluster into the file.
1218 */
1219static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1220 u32 phys, unsigned int unwritten,
e7432675 1221 unsigned int should_zero,
b27b7cbc 1222 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1223 struct ocfs2_alloc_context *meta_ac,
1224 struct ocfs2_write_ctxt *wc, u32 cpos,
1225 loff_t user_pos, unsigned user_len)
1226{
e7432675 1227 int ret, i, new;
3a307ffc
MF
1228 u64 v_blkno, p_blkno;
1229 struct inode *inode = mapping->host;
f99b9b7c 1230 struct ocfs2_extent_tree et;
3a307ffc
MF
1231
1232 new = phys == 0 ? 1 : 0;
9517bac6 1233 if (new) {
3a307ffc
MF
1234 u32 tmp_pos;
1235
9517bac6
MF
1236 /*
1237 * This is safe to call with the page locks - it won't take
1238 * any additional semaphores or cluster locks.
1239 */
3a307ffc 1240 tmp_pos = cpos;
0eb8d47e
TM
1241 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1242 &tmp_pos, 1, 0, wc->w_di_bh,
1243 wc->w_handle, data_ac,
1244 meta_ac, NULL);
9517bac6
MF
1245 /*
1246 * This shouldn't happen because we must have already
1247 * calculated the correct meta data allocation required. The
1248 * internal tree allocation code should know how to increase
1249 * transaction credits itself.
1250 *
1251 * If need be, we could handle -EAGAIN for a
1252 * RESTART_TRANS here.
1253 */
1254 mlog_bug_on_msg(ret == -EAGAIN,
1255 "Inode %llu: EAGAIN return during allocation.\n",
1256 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1257 if (ret < 0) {
1258 mlog_errno(ret);
1259 goto out;
1260 }
b27b7cbc 1261 } else if (unwritten) {
8d6220d6 1262 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1263 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1264 wc->w_handle, cpos, 1, phys,
f99b9b7c 1265 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1266 if (ret < 0) {
1267 mlog_errno(ret);
1268 goto out;
1269 }
1270 }
3a307ffc 1271
b27b7cbc 1272 if (should_zero)
3a307ffc 1273 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1274 else
3a307ffc 1275 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1276
3a307ffc
MF
1277 /*
1278 * The only reason this should fail is due to an inability to
1279 * find the extent added.
1280 */
49cb8d2d
MF
1281 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1282 NULL);
9517bac6 1283 if (ret < 0) {
3a307ffc
MF
1284 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1285 "at logical block %llu",
1286 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1287 (unsigned long long)v_blkno);
9517bac6
MF
1288 goto out;
1289 }
1290
1291 BUG_ON(p_blkno == 0);
1292
3a307ffc
MF
1293 for(i = 0; i < wc->w_num_pages; i++) {
1294 int tmpret;
9517bac6 1295
3a307ffc
MF
1296 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1297 wc->w_pages[i], cpos,
b27b7cbc
MF
1298 user_pos, user_len,
1299 should_zero);
3a307ffc
MF
1300 if (tmpret) {
1301 mlog_errno(tmpret);
1302 if (ret == 0)
cbfa9639 1303 ret = tmpret;
3a307ffc 1304 }
9517bac6
MF
1305 }
1306
3a307ffc
MF
1307 /*
1308 * We only have cleanup to do in case of allocating write.
1309 */
1310 if (ret && new)
1311 ocfs2_write_failure(inode, wc, user_pos, user_len);
1312
9517bac6 1313out:
9517bac6 1314
3a307ffc 1315 return ret;
9517bac6
MF
1316}
1317
0d172baa
MF
1318static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1319 struct ocfs2_alloc_context *data_ac,
1320 struct ocfs2_alloc_context *meta_ac,
1321 struct ocfs2_write_ctxt *wc,
1322 loff_t pos, unsigned len)
1323{
1324 int ret, i;
db56246c
MF
1325 loff_t cluster_off;
1326 unsigned int local_len = len;
0d172baa 1327 struct ocfs2_write_cluster_desc *desc;
db56246c 1328 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1329
1330 for (i = 0; i < wc->w_clen; i++) {
1331 desc = &wc->w_desc[i];
1332
db56246c
MF
1333 /*
1334 * We have to make sure that the total write passed in
1335 * doesn't extend past a single cluster.
1336 */
1337 local_len = len;
1338 cluster_off = pos & (osb->s_clustersize - 1);
1339 if ((cluster_off + local_len) > osb->s_clustersize)
1340 local_len = osb->s_clustersize - cluster_off;
1341
b27b7cbc 1342 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1343 desc->c_unwritten,
1344 desc->c_needs_zero,
1345 data_ac, meta_ac,
db56246c 1346 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1347 if (ret) {
1348 mlog_errno(ret);
1349 goto out;
1350 }
db56246c
MF
1351
1352 len -= local_len;
1353 pos += local_len;
0d172baa
MF
1354 }
1355
1356 ret = 0;
1357out:
1358 return ret;
1359}
1360
3a307ffc
MF
1361/*
1362 * ocfs2_write_end() wants to know which parts of the target page it
1363 * should complete the write on. It's easiest to compute them ahead of
1364 * time when a more complete view of the write is available.
1365 */
1366static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1367 struct ocfs2_write_ctxt *wc,
1368 loff_t pos, unsigned len, int alloc)
9517bac6 1369{
3a307ffc 1370 struct ocfs2_write_cluster_desc *desc;
9517bac6 1371
3a307ffc
MF
1372 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1373 wc->w_target_to = wc->w_target_from + len;
1374
1375 if (alloc == 0)
1376 return;
1377
1378 /*
1379 * Allocating write - we may have different boundaries based
1380 * on page size and cluster size.
1381 *
1382 * NOTE: We can no longer compute one value from the other as
1383 * the actual write length and user provided length may be
1384 * different.
1385 */
9517bac6 1386
3a307ffc
MF
1387 if (wc->w_large_pages) {
1388 /*
1389 * We only care about the 1st and last cluster within
b27b7cbc 1390 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1391 * value may be extended out to the start/end of a
1392 * newly allocated cluster.
1393 */
1394 desc = &wc->w_desc[0];
e7432675 1395 if (desc->c_needs_zero)
3a307ffc
MF
1396 ocfs2_figure_cluster_boundaries(osb,
1397 desc->c_cpos,
1398 &wc->w_target_from,
1399 NULL);
1400
1401 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1402 if (desc->c_needs_zero)
3a307ffc
MF
1403 ocfs2_figure_cluster_boundaries(osb,
1404 desc->c_cpos,
1405 NULL,
1406 &wc->w_target_to);
1407 } else {
1408 wc->w_target_from = 0;
1409 wc->w_target_to = PAGE_CACHE_SIZE;
1410 }
9517bac6
MF
1411}
1412
0d172baa
MF
1413/*
1414 * Populate each single-cluster write descriptor in the write context
1415 * with information about the i/o to be done.
b27b7cbc
MF
1416 *
1417 * Returns the number of clusters that will have to be allocated, as
1418 * well as a worst case estimate of the number of extent records that
1419 * would have to be created during a write to an unwritten region.
0d172baa
MF
1420 */
1421static int ocfs2_populate_write_desc(struct inode *inode,
1422 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1423 unsigned int *clusters_to_alloc,
1424 unsigned int *extents_to_split)
9517bac6 1425{
0d172baa 1426 int ret;
3a307ffc 1427 struct ocfs2_write_cluster_desc *desc;
0d172baa 1428 unsigned int num_clusters = 0;
b27b7cbc 1429 unsigned int ext_flags = 0;
0d172baa
MF
1430 u32 phys = 0;
1431 int i;
9517bac6 1432
b27b7cbc
MF
1433 *clusters_to_alloc = 0;
1434 *extents_to_split = 0;
1435
3a307ffc
MF
1436 for (i = 0; i < wc->w_clen; i++) {
1437 desc = &wc->w_desc[i];
1438 desc->c_cpos = wc->w_cpos + i;
1439
1440 if (num_clusters == 0) {
b27b7cbc
MF
1441 /*
1442 * Need to look up the next extent record.
1443 */
3a307ffc 1444 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1445 &num_clusters, &ext_flags);
3a307ffc
MF
1446 if (ret) {
1447 mlog_errno(ret);
607d44aa 1448 goto out;
3a307ffc 1449 }
b27b7cbc
MF
1450
1451 /*
1452 * Assume worst case - that we're writing in
1453 * the middle of the extent.
1454 *
1455 * We can assume that the write proceeds from
1456 * left to right, in which case the extent
1457 * insert code is smart enough to coalesce the
1458 * next splits into the previous records created.
1459 */
1460 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1461 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1462 } else if (phys) {
1463 /*
1464 * Only increment phys if it doesn't describe
1465 * a hole.
1466 */
1467 phys++;
1468 }
1469
e7432675
SM
1470 /*
1471 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1472 * file that got extended. w_first_new_cpos tells us
1473 * where the newly allocated clusters are so we can
1474 * zero them.
1475 */
1476 if (desc->c_cpos >= wc->w_first_new_cpos) {
1477 BUG_ON(phys == 0);
1478 desc->c_needs_zero = 1;
1479 }
1480
3a307ffc
MF
1481 desc->c_phys = phys;
1482 if (phys == 0) {
1483 desc->c_new = 1;
e7432675 1484 desc->c_needs_zero = 1;
0d172baa 1485 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1486 }
e7432675
SM
1487
1488 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1489 desc->c_unwritten = 1;
e7432675
SM
1490 desc->c_needs_zero = 1;
1491 }
3a307ffc
MF
1492
1493 num_clusters--;
9517bac6
MF
1494 }
1495
0d172baa
MF
1496 ret = 0;
1497out:
1498 return ret;
1499}
1500
1afc32b9
MF
1501static int ocfs2_write_begin_inline(struct address_space *mapping,
1502 struct inode *inode,
1503 struct ocfs2_write_ctxt *wc)
1504{
1505 int ret;
1506 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1507 struct page *page;
1508 handle_t *handle;
1509 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1510
1511 page = find_or_create_page(mapping, 0, GFP_NOFS);
1512 if (!page) {
1513 ret = -ENOMEM;
1514 mlog_errno(ret);
1515 goto out;
1516 }
1517 /*
1518 * If we don't set w_num_pages then this page won't get unlocked
1519 * and freed on cleanup of the write context.
1520 */
1521 wc->w_pages[0] = wc->w_target_page = page;
1522 wc->w_num_pages = 1;
1523
1524 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1525 if (IS_ERR(handle)) {
1526 ret = PTR_ERR(handle);
1527 mlog_errno(ret);
1528 goto out;
1529 }
1530
13723d00
JB
1531 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1532 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1533 if (ret) {
1534 ocfs2_commit_trans(osb, handle);
1535
1536 mlog_errno(ret);
1537 goto out;
1538 }
1539
1540 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1541 ocfs2_set_inode_data_inline(inode, di);
1542
1543 if (!PageUptodate(page)) {
1544 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1545 if (ret) {
1546 ocfs2_commit_trans(osb, handle);
1547
1548 goto out;
1549 }
1550 }
1551
1552 wc->w_handle = handle;
1553out:
1554 return ret;
1555}
1556
1557int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1558{
1559 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1560
0d8a4e0c 1561 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1562 return 1;
1563 return 0;
1564}
1565
1566static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1567 struct inode *inode, loff_t pos,
1568 unsigned len, struct page *mmap_page,
1569 struct ocfs2_write_ctxt *wc)
1570{
1571 int ret, written = 0;
1572 loff_t end = pos + len;
1573 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1574 struct ocfs2_dinode *di = NULL;
1afc32b9
MF
1575
1576 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1577 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1578 oi->ip_dyn_features);
1579
1580 /*
1581 * Handle inodes which already have inline data 1st.
1582 */
1583 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1584 if (mmap_page == NULL &&
1585 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1586 goto do_inline_write;
1587
1588 /*
1589 * The write won't fit - we have to give this inode an
1590 * inline extent list now.
1591 */
1592 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1593 if (ret)
1594 mlog_errno(ret);
1595 goto out;
1596 }
1597
1598 /*
1599 * Check whether the inode can accept inline data.
1600 */
1601 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1602 return 0;
1603
1604 /*
1605 * Check whether the write can fit.
1606 */
d9ae49d6
TY
1607 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1608 if (mmap_page ||
1609 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1610 return 0;
1611
1612do_inline_write:
1613 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1614 if (ret) {
1615 mlog_errno(ret);
1616 goto out;
1617 }
1618
1619 /*
1620 * This signals to the caller that the data can be written
1621 * inline.
1622 */
1623 written = 1;
1624out:
1625 return written ? written : ret;
1626}
1627
65ed39d6
MF
1628/*
1629 * This function only does anything for file systems which can't
1630 * handle sparse files.
1631 *
1632 * What we want to do here is fill in any hole between the current end
1633 * of allocation and the end of our write. That way the rest of the
1634 * write path can treat it as an non-allocating write, which has no
1635 * special case code for sparse/nonsparse files.
1636 */
1637static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1638 unsigned len,
1639 struct ocfs2_write_ctxt *wc)
1640{
1641 int ret;
1642 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1643 loff_t newsize = pos + len;
1644
1645 if (ocfs2_sparse_alloc(osb))
1646 return 0;
1647
1648 if (newsize <= i_size_read(inode))
1649 return 0;
1650
e7432675 1651 ret = ocfs2_extend_no_holes(inode, newsize, pos);
65ed39d6
MF
1652 if (ret)
1653 mlog_errno(ret);
1654
e7432675
SM
1655 wc->w_first_new_cpos =
1656 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1657
65ed39d6
MF
1658 return ret;
1659}
1660
0d172baa
MF
1661int ocfs2_write_begin_nolock(struct address_space *mapping,
1662 loff_t pos, unsigned len, unsigned flags,
1663 struct page **pagep, void **fsdata,
1664 struct buffer_head *di_bh, struct page *mmap_page)
1665{
e7432675 1666 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1667 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1668 struct ocfs2_write_ctxt *wc;
1669 struct inode *inode = mapping->host;
1670 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1671 struct ocfs2_dinode *di;
1672 struct ocfs2_alloc_context *data_ac = NULL;
1673 struct ocfs2_alloc_context *meta_ac = NULL;
1674 handle_t *handle;
f99b9b7c 1675 struct ocfs2_extent_tree et;
0d172baa
MF
1676
1677 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1678 if (ret) {
1679 mlog_errno(ret);
1680 return ret;
1681 }
1682
1afc32b9
MF
1683 if (ocfs2_supports_inline_data(osb)) {
1684 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1685 mmap_page, wc);
1686 if (ret == 1) {
1687 ret = 0;
1688 goto success;
1689 }
1690 if (ret < 0) {
1691 mlog_errno(ret);
1692 goto out;
1693 }
1694 }
1695
65ed39d6
MF
1696 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1697 if (ret) {
1698 mlog_errno(ret);
1699 goto out;
1700 }
1701
b27b7cbc
MF
1702 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1703 &extents_to_split);
0d172baa
MF
1704 if (ret) {
1705 mlog_errno(ret);
1706 goto out;
1707 }
1708
1709 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1710
3a307ffc
MF
1711 /*
1712 * We set w_target_from, w_target_to here so that
1713 * ocfs2_write_end() knows which range in the target page to
1714 * write out. An allocation requires that we write the entire
1715 * cluster range.
1716 */
b27b7cbc 1717 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1718 /*
1719 * XXX: We are stretching the limits of
b27b7cbc 1720 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1721 * the work to be done.
1722 */
e7d4cb6b
TM
1723 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1724 " clusters_to_add = %u, extents_to_split = %u\n",
1725 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1726 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1727 clusters_to_alloc, extents_to_split);
1728
8d6220d6 1729 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1730 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1731 clusters_to_alloc, extents_to_split,
f99b9b7c 1732 &data_ac, &meta_ac);
9517bac6
MF
1733 if (ret) {
1734 mlog_errno(ret);
607d44aa 1735 goto out;
9517bac6
MF
1736 }
1737
811f933d
TM
1738 credits = ocfs2_calc_extend_credits(inode->i_sb,
1739 &di->id2.i_list,
3a307ffc
MF
1740 clusters_to_alloc);
1741
9517bac6
MF
1742 }
1743
e7432675
SM
1744 /*
1745 * We have to zero sparse allocated clusters, unwritten extent clusters,
1746 * and non-sparse clusters we just extended. For non-sparse writes,
1747 * we know zeros will only be needed in the first and/or last cluster.
1748 */
1749 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1750 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1751 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1752 cluster_of_pages = 1;
1753 else
1754 cluster_of_pages = 0;
1755
1756 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1757
9517bac6
MF
1758 handle = ocfs2_start_trans(osb, credits);
1759 if (IS_ERR(handle)) {
1760 ret = PTR_ERR(handle);
1761 mlog_errno(ret);
607d44aa 1762 goto out;
9517bac6
MF
1763 }
1764
3a307ffc
MF
1765 wc->w_handle = handle;
1766
a90714c1
JK
1767 if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1768 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1769 ret = -EDQUOT;
1770 goto out_commit;
1771 }
3a307ffc
MF
1772 /*
1773 * We don't want this to fail in ocfs2_write_end(), so do it
1774 * here.
1775 */
13723d00
JB
1776 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1777 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1778 if (ret) {
9517bac6 1779 mlog_errno(ret);
a90714c1 1780 goto out_quota;
9517bac6
MF
1781 }
1782
3a307ffc
MF
1783 /*
1784 * Fill our page array first. That way we've grabbed enough so
1785 * that we can zero and flush if we error after adding the
1786 * extent.
1787 */
1788 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
e7432675 1789 cluster_of_pages, mmap_page);
9517bac6
MF
1790 if (ret) {
1791 mlog_errno(ret);
a90714c1 1792 goto out_quota;
9517bac6
MF
1793 }
1794
0d172baa
MF
1795 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1796 len);
1797 if (ret) {
1798 mlog_errno(ret);
a90714c1 1799 goto out_quota;
9517bac6 1800 }
9517bac6 1801
3a307ffc
MF
1802 if (data_ac)
1803 ocfs2_free_alloc_context(data_ac);
1804 if (meta_ac)
1805 ocfs2_free_alloc_context(meta_ac);
9517bac6 1806
1afc32b9 1807success:
3a307ffc
MF
1808 *pagep = wc->w_target_page;
1809 *fsdata = wc;
1810 return 0;
a90714c1
JK
1811out_quota:
1812 if (clusters_to_alloc)
1813 vfs_dq_free_space(inode,
1814 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1815out_commit:
1816 ocfs2_commit_trans(osb, handle);
1817
9517bac6 1818out:
3a307ffc
MF
1819 ocfs2_free_write_ctxt(wc);
1820
9517bac6
MF
1821 if (data_ac)
1822 ocfs2_free_alloc_context(data_ac);
1823 if (meta_ac)
1824 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1825 return ret;
1826}
1827
b6af1bcd
NP
1828static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1829 loff_t pos, unsigned len, unsigned flags,
1830 struct page **pagep, void **fsdata)
607d44aa
MF
1831{
1832 int ret;
1833 struct buffer_head *di_bh = NULL;
1834 struct inode *inode = mapping->host;
1835
e63aecb6 1836 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1837 if (ret) {
1838 mlog_errno(ret);
1839 return ret;
1840 }
1841
1842 /*
1843 * Take alloc sem here to prevent concurrent lookups. That way
1844 * the mapping, zeroing and tree manipulation within
1845 * ocfs2_write() will be safe against ->readpage(). This
1846 * should also serve to lock out allocation from a shared
1847 * writeable region.
1848 */
1849 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1850
607d44aa 1851 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1852 fsdata, di_bh, NULL);
607d44aa
MF
1853 if (ret) {
1854 mlog_errno(ret);
c934a92d 1855 goto out_fail;
607d44aa
MF
1856 }
1857
1858 brelse(di_bh);
1859
1860 return 0;
1861
607d44aa
MF
1862out_fail:
1863 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1864
1865 brelse(di_bh);
e63aecb6 1866 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1867
1868 return ret;
1869}
1870
1afc32b9
MF
1871static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1872 unsigned len, unsigned *copied,
1873 struct ocfs2_dinode *di,
1874 struct ocfs2_write_ctxt *wc)
1875{
1876 void *kaddr;
1877
1878 if (unlikely(*copied < len)) {
1879 if (!PageUptodate(wc->w_target_page)) {
1880 *copied = 0;
1881 return;
1882 }
1883 }
1884
1885 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1886 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1887 kunmap_atomic(kaddr, KM_USER0);
1888
1889 mlog(0, "Data written to inode at offset %llu. "
1890 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1891 (unsigned long long)pos, *copied,
1892 le16_to_cpu(di->id2.i_data.id_count),
1893 le16_to_cpu(di->i_dyn_features));
1894}
1895
7307de80
MF
1896int ocfs2_write_end_nolock(struct address_space *mapping,
1897 loff_t pos, unsigned len, unsigned copied,
1898 struct page *page, void *fsdata)
3a307ffc
MF
1899{
1900 int i;
1901 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1902 struct inode *inode = mapping->host;
1903 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1904 struct ocfs2_write_ctxt *wc = fsdata;
1905 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1906 handle_t *handle = wc->w_handle;
1907 struct page *tmppage;
1908
1afc32b9
MF
1909 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1910 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1911 goto out_write_size;
1912 }
1913
3a307ffc
MF
1914 if (unlikely(copied < len)) {
1915 if (!PageUptodate(wc->w_target_page))
1916 copied = 0;
1917
1918 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1919 start+len);
1920 }
1921 flush_dcache_page(wc->w_target_page);
1922
1923 for(i = 0; i < wc->w_num_pages; i++) {
1924 tmppage = wc->w_pages[i];
1925
1926 if (tmppage == wc->w_target_page) {
1927 from = wc->w_target_from;
1928 to = wc->w_target_to;
1929
1930 BUG_ON(from > PAGE_CACHE_SIZE ||
1931 to > PAGE_CACHE_SIZE ||
1932 to < from);
1933 } else {
1934 /*
1935 * Pages adjacent to the target (if any) imply
1936 * a hole-filling write in which case we want
1937 * to flush their entire range.
1938 */
1939 from = 0;
1940 to = PAGE_CACHE_SIZE;
1941 }
1942
961cecbe 1943 if (page_has_buffers(tmppage)) {
53ef99ca 1944 if (ocfs2_should_order_data(inode))
2b4e30fb 1945 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1946 block_commit_write(tmppage, from, to);
1947 }
3a307ffc
MF
1948 }
1949
1afc32b9 1950out_write_size:
3a307ffc
MF
1951 pos += copied;
1952 if (pos > inode->i_size) {
1953 i_size_write(inode, pos);
1954 mark_inode_dirty(inode);
1955 }
1956 inode->i_blocks = ocfs2_inode_sector_count(inode);
1957 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1958 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1959 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1960 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1961 ocfs2_journal_dirty(handle, wc->w_di_bh);
1962
1963 ocfs2_commit_trans(osb, handle);
59a5e416 1964
b27b7cbc
MF
1965 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1966
607d44aa
MF
1967 ocfs2_free_write_ctxt(wc);
1968
1969 return copied;
1970}
1971
b6af1bcd
NP
1972static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1973 loff_t pos, unsigned len, unsigned copied,
1974 struct page *page, void *fsdata)
607d44aa
MF
1975{
1976 int ret;
1977 struct inode *inode = mapping->host;
1978
1979 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1980
3a307ffc 1981 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 1982 ocfs2_inode_unlock(inode, 1);
9517bac6 1983
607d44aa 1984 return ret;
9517bac6
MF
1985}
1986
f5e54d6e 1987const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
1988 .readpage = ocfs2_readpage,
1989 .readpages = ocfs2_readpages,
1990 .writepage = ocfs2_writepage,
1991 .write_begin = ocfs2_write_begin,
1992 .write_end = ocfs2_write_end,
1993 .bmap = ocfs2_bmap,
1994 .sync_page = block_sync_page,
1995 .direct_IO = ocfs2_direct_IO,
1996 .invalidatepage = ocfs2_invalidatepage,
1997 .releasepage = ocfs2_releasepage,
1998 .migratepage = buffer_migrate_page,
1999 .is_partially_uptodate = block_is_partially_uptodate,
ccd979bd 2000};