ocfs2: Remove masklog ML_REFCOUNT.
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd
MF
31
32#define MLOG_MASK_PREFIX ML_FILE_IO
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
293b2f70 47#include "refcounttree.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
ef6b689b
TM
62 mlog(0, "(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
64
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
71 }
72
b657c95c 73 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
77 }
78 fe = (struct ocfs2_dinode *) bh->b_data;
79
ccd979bd
MF
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
85 }
86
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
96 }
97
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
108 }
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
114 }
115 brelse(buffer_cache_bh);
116 }
117
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121 err = 0;
122
123bail:
a81cb88b 124 brelse(bh);
ccd979bd 125
ccd979bd
MF
126 return err;
127}
128
6f70fa51
TM
129int ocfs2_get_block(struct inode *inode, sector_t iblock,
130 struct buffer_head *bh_result, int create)
ccd979bd
MF
131{
132 int err = 0;
49cb8d2d 133 unsigned int ext_flags;
628a24f5
MF
134 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
135 u64 p_blkno, count, past_eof;
25baf2da 136 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 137
ef6b689b
TM
138 mlog(0, "(0x%p, %llu, 0x%p, %d)\n", inode,
139 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
140
141 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
142 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
143 inode, inode->i_ino);
144
145 if (S_ISLNK(inode->i_mode)) {
146 /* this always does I/O for some reason. */
147 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
148 goto bail;
149 }
150
628a24f5 151 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 152 &ext_flags);
ccd979bd
MF
153 if (err) {
154 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
155 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
156 (unsigned long long)p_blkno);
ccd979bd
MF
157 goto bail;
158 }
159
628a24f5
MF
160 if (max_blocks < count)
161 count = max_blocks;
162
25baf2da
MF
163 /*
164 * ocfs2 never allocates in this function - the only time we
165 * need to use BH_New is when we're extending i_size on a file
166 * system which doesn't support holes, in which case BH_New
ebdec241 167 * allows __block_write_begin() to zero.
c0420ad2
CL
168 *
169 * If we see this on a sparse file system, then a truncate has
170 * raced us and removed the cluster. In this case, we clear
171 * the buffers dirty and uptodate bits and let the buffer code
172 * ignore it as a hole.
25baf2da 173 */
c0420ad2
CL
174 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
175 clear_buffer_dirty(bh_result);
176 clear_buffer_uptodate(bh_result);
177 goto bail;
178 }
25baf2da 179
49cb8d2d
MF
180 /* Treat the unwritten extent as a hole for zeroing purposes. */
181 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
182 map_bh(bh_result, inode->i_sb, p_blkno);
183
628a24f5
MF
184 bh_result->b_size = count << inode->i_blkbits;
185
25baf2da
MF
186 if (!ocfs2_sparse_alloc(osb)) {
187 if (p_blkno == 0) {
188 err = -EIO;
189 mlog(ML_ERROR,
190 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
191 (unsigned long long)iblock,
192 (unsigned long long)p_blkno,
193 (unsigned long long)OCFS2_I(inode)->ip_blkno);
194 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
195 dump_stack();
1f4cea37 196 goto bail;
25baf2da 197 }
25baf2da 198 }
ccd979bd 199
5693486b
JB
200 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202 (unsigned long long)past_eof);
203 if (create && (iblock >= past_eof))
204 set_buffer_new(bh_result);
205
ccd979bd
MF
206bail:
207 if (err < 0)
208 err = -EIO;
209
ccd979bd
MF
210 return err;
211}
212
1afc32b9
MF
213int ocfs2_read_inline_data(struct inode *inode, struct page *page,
214 struct buffer_head *di_bh)
6798d35a
MF
215{
216 void *kaddr;
d2849fb2 217 loff_t size;
6798d35a
MF
218 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
219
220 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
221 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
222 (unsigned long long)OCFS2_I(inode)->ip_blkno);
223 return -EROFS;
224 }
225
226 size = i_size_read(inode);
227
228 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 229 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 230 ocfs2_error(inode->i_sb,
d2849fb2
JK
231 "Inode %llu has with inline data has bad size: %Lu",
232 (unsigned long long)OCFS2_I(inode)->ip_blkno,
233 (unsigned long long)size);
6798d35a
MF
234 return -EROFS;
235 }
236
237 kaddr = kmap_atomic(page, KM_USER0);
238 if (size)
239 memcpy(kaddr, di->id2.i_data.id_data, size);
240 /* Clear the remaining part of the page */
241 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
242 flush_dcache_page(page);
243 kunmap_atomic(kaddr, KM_USER0);
244
245 SetPageUptodate(page);
246
247 return 0;
248}
249
250static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
251{
252 int ret;
253 struct buffer_head *di_bh = NULL;
6798d35a
MF
254
255 BUG_ON(!PageLocked(page));
86c838b0 256 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 257
b657c95c 258 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
259 if (ret) {
260 mlog_errno(ret);
261 goto out;
262 }
263
264 ret = ocfs2_read_inline_data(inode, page, di_bh);
265out:
266 unlock_page(page);
267
268 brelse(di_bh);
269 return ret;
270}
271
ccd979bd
MF
272static int ocfs2_readpage(struct file *file, struct page *page)
273{
274 struct inode *inode = page->mapping->host;
6798d35a 275 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
276 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
277 int ret, unlock = 1;
278
ef6b689b 279 mlog(0, "(0x%p, %lu)\n", file, (page ? page->index : 0));
ccd979bd 280
e63aecb6 281 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
282 if (ret != 0) {
283 if (ret == AOP_TRUNCATED_PAGE)
284 unlock = 0;
285 mlog_errno(ret);
286 goto out;
287 }
288
6798d35a 289 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 290 ret = AOP_TRUNCATED_PAGE;
e63aecb6 291 goto out_inode_unlock;
e9dfc0b2 292 }
ccd979bd
MF
293
294 /*
295 * i_size might have just been updated as we grabed the meta lock. We
296 * might now be discovering a truncate that hit on another node.
297 * block_read_full_page->get_block freaks out if it is asked to read
298 * beyond the end of a file, so we check here. Callers
54cb8821 299 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
300 * and notice that the page they just read isn't needed.
301 *
302 * XXX sys_readahead() seems to get that wrong?
303 */
304 if (start >= i_size_read(inode)) {
eebd2aa3 305 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
306 SetPageUptodate(page);
307 ret = 0;
308 goto out_alloc;
309 }
310
6798d35a
MF
311 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
312 ret = ocfs2_readpage_inline(inode, page);
313 else
314 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
315 unlock = 0;
316
ccd979bd
MF
317out_alloc:
318 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
319out_inode_unlock:
320 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
321out:
322 if (unlock)
323 unlock_page(page);
ccd979bd
MF
324 return ret;
325}
326
628a24f5
MF
327/*
328 * This is used only for read-ahead. Failures or difficult to handle
329 * situations are safe to ignore.
330 *
331 * Right now, we don't bother with BH_Boundary - in-inode extent lists
332 * are quite large (243 extents on 4k blocks), so most inodes don't
333 * grow out to a tree. If need be, detecting boundary extents could
334 * trivially be added in a future version of ocfs2_get_block().
335 */
336static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
337 struct list_head *pages, unsigned nr_pages)
338{
339 int ret, err = -EIO;
340 struct inode *inode = mapping->host;
341 struct ocfs2_inode_info *oi = OCFS2_I(inode);
342 loff_t start;
343 struct page *last;
344
345 /*
346 * Use the nonblocking flag for the dlm code to avoid page
347 * lock inversion, but don't bother with retrying.
348 */
349 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
350 if (ret)
351 return err;
352
353 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
354 ocfs2_inode_unlock(inode, 0);
355 return err;
356 }
357
358 /*
359 * Don't bother with inline-data. There isn't anything
360 * to read-ahead in that case anyway...
361 */
362 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
363 goto out_unlock;
364
365 /*
366 * Check whether a remote node truncated this file - we just
367 * drop out in that case as it's not worth handling here.
368 */
369 last = list_entry(pages->prev, struct page, lru);
370 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
371 if (start >= i_size_read(inode))
372 goto out_unlock;
373
374 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
375
376out_unlock:
377 up_read(&oi->ip_alloc_sem);
378 ocfs2_inode_unlock(inode, 0);
379
380 return err;
381}
382
ccd979bd
MF
383/* Note: Because we don't support holes, our allocation has
384 * already happened (allocation writes zeros to the file data)
385 * so we don't have to worry about ordered writes in
386 * ocfs2_writepage.
387 *
388 * ->writepage is called during the process of invalidating the page cache
389 * during blocked lock processing. It can't block on any cluster locks
390 * to during block mapping. It's relying on the fact that the block
391 * mapping can't have disappeared under the dirty pages that it is
392 * being asked to write back.
393 */
394static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
395{
396 int ret;
397
ef6b689b 398 mlog(0, "(0x%p)\n", page);
ccd979bd
MF
399
400 ret = block_write_full_page(page, ocfs2_get_block, wbc);
401
ccd979bd
MF
402 return ret;
403}
404
ccd979bd
MF
405/* Taken from ext3. We don't necessarily need the full blown
406 * functionality yet, but IMHO it's better to cut and paste the whole
407 * thing so we can avoid introducing our own bugs (and easily pick up
408 * their fixes when they happen) --Mark */
60b11392
MF
409int walk_page_buffers( handle_t *handle,
410 struct buffer_head *head,
411 unsigned from,
412 unsigned to,
413 int *partial,
414 int (*fn)( handle_t *handle,
415 struct buffer_head *bh))
ccd979bd
MF
416{
417 struct buffer_head *bh;
418 unsigned block_start, block_end;
419 unsigned blocksize = head->b_size;
420 int err, ret = 0;
421 struct buffer_head *next;
422
423 for ( bh = head, block_start = 0;
424 ret == 0 && (bh != head || !block_start);
425 block_start = block_end, bh = next)
426 {
427 next = bh->b_this_page;
428 block_end = block_start + blocksize;
429 if (block_end <= from || block_start >= to) {
430 if (partial && !buffer_uptodate(bh))
431 *partial = 1;
432 continue;
433 }
434 err = (*fn)(handle, bh);
435 if (!ret)
436 ret = err;
437 }
438 return ret;
439}
440
ccd979bd
MF
441static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
442{
443 sector_t status;
444 u64 p_blkno = 0;
445 int err = 0;
446 struct inode *inode = mapping->host;
447
ef6b689b 448 mlog(0, "(block = %llu)\n", (unsigned long long)block);
ccd979bd
MF
449
450 /* We don't need to lock journal system files, since they aren't
451 * accessed concurrently from multiple nodes.
452 */
453 if (!INODE_JOURNAL(inode)) {
e63aecb6 454 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
455 if (err) {
456 if (err != -ENOENT)
457 mlog_errno(err);
458 goto bail;
459 }
460 down_read(&OCFS2_I(inode)->ip_alloc_sem);
461 }
462
6798d35a
MF
463 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
464 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
465 NULL);
ccd979bd
MF
466
467 if (!INODE_JOURNAL(inode)) {
468 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 469 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
470 }
471
472 if (err) {
473 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
474 (unsigned long long)block);
475 mlog_errno(err);
476 goto bail;
477 }
478
ccd979bd
MF
479bail:
480 status = err ? 0 : p_blkno;
481
ccd979bd
MF
482 return status;
483}
484
485/*
486 * TODO: Make this into a generic get_blocks function.
487 *
488 * From do_direct_io in direct-io.c:
489 * "So what we do is to permit the ->get_blocks function to populate
490 * bh.b_size with the size of IO which is permitted at this offset and
491 * this i_blkbits."
492 *
493 * This function is called directly from get_more_blocks in direct-io.c.
494 *
495 * called like this: dio->get_blocks(dio->inode, fs_startblk,
496 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
497 *
498 * Note that we never bother to allocate blocks here, and thus ignore the
499 * create argument.
ccd979bd
MF
500 */
501static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
502 struct buffer_head *bh_result, int create)
503{
504 int ret;
4f902c37 505 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 506 unsigned int ext_flags;
184d7d20 507 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 508 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 509
ccd979bd
MF
510 /* This function won't even be called if the request isn't all
511 * nicely aligned and of the right size, so there's no need
512 * for us to check any of that. */
513
25baf2da 514 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 515
ccd979bd
MF
516 /* This figures out the size of the next contiguous block, and
517 * our logical offset */
363041a5 518 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 519 &contig_blocks, &ext_flags);
ccd979bd
MF
520 if (ret) {
521 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
522 (unsigned long long)iblock);
523 ret = -EIO;
524 goto bail;
525 }
526
cbaee472
TM
527 /* We should already CoW the refcounted extent in case of create. */
528 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
529
25baf2da
MF
530 /*
531 * get_more_blocks() expects us to describe a hole by clearing
532 * the mapped bit on bh_result().
49cb8d2d
MF
533 *
534 * Consider an unwritten extent as a hole.
25baf2da 535 */
49cb8d2d 536 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 537 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 538 else
25baf2da 539 clear_buffer_mapped(bh_result);
ccd979bd
MF
540
541 /* make sure we don't map more than max_blocks blocks here as
542 that's all the kernel will handle at this point. */
543 if (max_blocks < contig_blocks)
544 contig_blocks = max_blocks;
545 bh_result->b_size = contig_blocks << blocksize_bits;
546bail:
547 return ret;
548}
549
2bd63216 550/*
ccd979bd
MF
551 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
552 * particularly interested in the aio/dio case. Like the core uses
553 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
554 * truncation on another.
555 */
556static void ocfs2_dio_end_io(struct kiocb *iocb,
557 loff_t offset,
558 ssize_t bytes,
40e2e973
CH
559 void *private,
560 int ret,
561 bool is_async)
ccd979bd 562{
d28c9174 563 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 564 int level;
ccd979bd
MF
565
566 /* this io's submitter should not have unlocked this before we could */
567 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 568
39c99f12
TY
569 if (ocfs2_iocb_is_sem_locked(iocb)) {
570 up_read(&inode->i_alloc_sem);
571 ocfs2_iocb_clear_sem_locked(iocb);
572 }
573
ccd979bd 574 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
575
576 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 577 ocfs2_rw_unlock(inode, level);
40e2e973
CH
578
579 if (is_async)
580 aio_complete(iocb, ret, 0);
ccd979bd
MF
581}
582
03f981cf
JB
583/*
584 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
585 * from ext3. PageChecked() bits have been removed as OCFS2 does not
586 * do journalled data.
587 */
588static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
589{
590 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
591
2b4e30fb 592 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
593}
594
595static int ocfs2_releasepage(struct page *page, gfp_t wait)
596{
597 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
598
599 if (!page_has_buffers(page))
600 return 0;
2b4e30fb 601 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
602}
603
ccd979bd
MF
604static ssize_t ocfs2_direct_IO(int rw,
605 struct kiocb *iocb,
606 const struct iovec *iov,
607 loff_t offset,
608 unsigned long nr_segs)
609{
610 struct file *file = iocb->ki_filp;
d28c9174 611 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd 612
6798d35a
MF
613 /*
614 * Fallback to buffered I/O if we see an inode without
615 * extents.
616 */
617 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618 return 0;
619
b80474b4
TM
620 /* Fallback to buffered I/O if we are appending. */
621 if (i_size_read(inode) <= offset)
622 return 0;
623
c1e8d35e
TM
624 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625 iov, offset, nr_segs,
626 ocfs2_direct_IO_get_blocks,
627 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
628}
629
9517bac6
MF
630static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631 u32 cpos,
632 unsigned int *start,
633 unsigned int *end)
634{
635 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636
637 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638 unsigned int cpp;
639
640 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641
642 cluster_start = cpos % cpp;
643 cluster_start = cluster_start << osb->s_clustersize_bits;
644
645 cluster_end = cluster_start + osb->s_clustersize;
646 }
647
648 BUG_ON(cluster_start > PAGE_SIZE);
649 BUG_ON(cluster_end > PAGE_SIZE);
650
651 if (start)
652 *start = cluster_start;
653 if (end)
654 *end = cluster_end;
655}
656
657/*
658 * 'from' and 'to' are the region in the page to avoid zeroing.
659 *
660 * If pagesize > clustersize, this function will avoid zeroing outside
661 * of the cluster boundary.
662 *
663 * from == to == 0 is code for "zero the entire cluster region"
664 */
665static void ocfs2_clear_page_regions(struct page *page,
666 struct ocfs2_super *osb, u32 cpos,
667 unsigned from, unsigned to)
668{
669 void *kaddr;
670 unsigned int cluster_start, cluster_end;
671
672 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673
674 kaddr = kmap_atomic(page, KM_USER0);
675
676 if (from || to) {
677 if (from > cluster_start)
678 memset(kaddr + cluster_start, 0, from - cluster_start);
679 if (to < cluster_end)
680 memset(kaddr + to, 0, cluster_end - to);
681 } else {
682 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683 }
684
685 kunmap_atomic(kaddr, KM_USER0);
686}
687
4e9563fd
MF
688/*
689 * Nonsparse file systems fully allocate before we get to the write
690 * code. This prevents ocfs2_write() from tagging the write as an
691 * allocating one, which means ocfs2_map_page_blocks() might try to
692 * read-in the blocks at the tail of our file. Avoid reading them by
693 * testing i_size against each block offset.
694 */
695static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696 unsigned int block_start)
697{
698 u64 offset = page_offset(page) + block_start;
699
700 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701 return 1;
702
703 if (i_size_read(inode) > offset)
704 return 1;
705
706 return 0;
707}
708
9517bac6 709/*
ebdec241 710 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
711 * mapping by now though, and the entire write will be allocating or
712 * it won't, so not much need to use BH_New.
713 *
714 * This will also skip zeroing, which is handled externally.
715 */
60b11392
MF
716int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717 struct inode *inode, unsigned int from,
718 unsigned int to, int new)
9517bac6
MF
719{
720 int ret = 0;
721 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722 unsigned int block_end, block_start;
723 unsigned int bsize = 1 << inode->i_blkbits;
724
725 if (!page_has_buffers(page))
726 create_empty_buffers(page, bsize, 0);
727
728 head = page_buffers(page);
729 for (bh = head, block_start = 0; bh != head || !block_start;
730 bh = bh->b_this_page, block_start += bsize) {
731 block_end = block_start + bsize;
732
3a307ffc
MF
733 clear_buffer_new(bh);
734
9517bac6
MF
735 /*
736 * Ignore blocks outside of our i/o range -
737 * they may belong to unallocated clusters.
738 */
60b11392 739 if (block_start >= to || block_end <= from) {
9517bac6
MF
740 if (PageUptodate(page))
741 set_buffer_uptodate(bh);
742 continue;
743 }
744
745 /*
746 * For an allocating write with cluster size >= page
747 * size, we always write the entire page.
748 */
3a307ffc
MF
749 if (new)
750 set_buffer_new(bh);
9517bac6
MF
751
752 if (!buffer_mapped(bh)) {
753 map_bh(bh, inode->i_sb, *p_blkno);
754 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755 }
756
757 if (PageUptodate(page)) {
758 if (!buffer_uptodate(bh))
759 set_buffer_uptodate(bh);
760 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 761 !buffer_new(bh) &&
4e9563fd 762 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 763 (block_start < from || block_end > to)) {
9517bac6
MF
764 ll_rw_block(READ, 1, &bh);
765 *wait_bh++=bh;
766 }
767
768 *p_blkno = *p_blkno + 1;
769 }
770
771 /*
772 * If we issued read requests - let them complete.
773 */
774 while(wait_bh > wait) {
775 wait_on_buffer(*--wait_bh);
776 if (!buffer_uptodate(*wait_bh))
777 ret = -EIO;
778 }
779
780 if (ret == 0 || !new)
781 return ret;
782
783 /*
784 * If we get -EIO above, zero out any newly allocated blocks
785 * to avoid exposing stale data.
786 */
787 bh = head;
788 block_start = 0;
789 do {
9517bac6
MF
790 block_end = block_start + bsize;
791 if (block_end <= from)
792 goto next_bh;
793 if (block_start >= to)
794 break;
795
eebd2aa3 796 zero_user(page, block_start, bh->b_size);
9517bac6
MF
797 set_buffer_uptodate(bh);
798 mark_buffer_dirty(bh);
799
800next_bh:
801 block_start = block_end;
802 bh = bh->b_this_page;
803 } while (bh != head);
804
805 return ret;
806}
807
3a307ffc
MF
808#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809#define OCFS2_MAX_CTXT_PAGES 1
810#else
811#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812#endif
813
814#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815
6af67d82 816/*
3a307ffc 817 * Describe the state of a single cluster to be written to.
6af67d82 818 */
3a307ffc
MF
819struct ocfs2_write_cluster_desc {
820 u32 c_cpos;
821 u32 c_phys;
822 /*
823 * Give this a unique field because c_phys eventually gets
824 * filled.
825 */
826 unsigned c_new;
b27b7cbc 827 unsigned c_unwritten;
e7432675 828 unsigned c_needs_zero;
3a307ffc 829};
6af67d82 830
3a307ffc
MF
831struct ocfs2_write_ctxt {
832 /* Logical cluster position / len of write */
833 u32 w_cpos;
834 u32 w_clen;
6af67d82 835
e7432675
SM
836 /* First cluster allocated in a nonsparse extend */
837 u32 w_first_new_cpos;
838
3a307ffc 839 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 840
3a307ffc
MF
841 /*
842 * This is true if page_size > cluster_size.
843 *
844 * It triggers a set of special cases during write which might
845 * have to deal with allocating writes to partial pages.
846 */
847 unsigned int w_large_pages;
6af67d82 848
3a307ffc
MF
849 /*
850 * Pages involved in this write.
851 *
852 * w_target_page is the page being written to by the user.
853 *
854 * w_pages is an array of pages which always contains
855 * w_target_page, and in the case of an allocating write with
856 * page_size < cluster size, it will contain zero'd and mapped
857 * pages adjacent to w_target_page which need to be written
858 * out in so that future reads from that region will get
859 * zero's.
860 */
3a307ffc 861 unsigned int w_num_pages;
83fd9c7f 862 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 863 struct page *w_target_page;
eeb47d12 864
3a307ffc
MF
865 /*
866 * ocfs2_write_end() uses this to know what the real range to
867 * write in the target should be.
868 */
869 unsigned int w_target_from;
870 unsigned int w_target_to;
871
872 /*
873 * We could use journal_current_handle() but this is cleaner,
874 * IMHO -Mark
875 */
876 handle_t *w_handle;
877
878 struct buffer_head *w_di_bh;
b27b7cbc
MF
879
880 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
881};
882
1d410a6e 883void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
884{
885 int i;
886
1d410a6e
MF
887 for(i = 0; i < num_pages; i++) {
888 if (pages[i]) {
889 unlock_page(pages[i]);
890 mark_page_accessed(pages[i]);
891 page_cache_release(pages[i]);
892 }
6af67d82 893 }
1d410a6e
MF
894}
895
896static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
897{
898 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 899
3a307ffc
MF
900 brelse(wc->w_di_bh);
901 kfree(wc);
902}
903
904static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
905 struct ocfs2_super *osb, loff_t pos,
607d44aa 906 unsigned len, struct buffer_head *di_bh)
3a307ffc 907{
30b8548f 908 u32 cend;
3a307ffc
MF
909 struct ocfs2_write_ctxt *wc;
910
911 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
912 if (!wc)
913 return -ENOMEM;
6af67d82 914
3a307ffc 915 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 916 wc->w_first_new_cpos = UINT_MAX;
30b8548f 917 cend = (pos + len - 1) >> osb->s_clustersize_bits;
918 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
919 get_bh(di_bh);
920 wc->w_di_bh = di_bh;
6af67d82 921
3a307ffc
MF
922 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
923 wc->w_large_pages = 1;
924 else
925 wc->w_large_pages = 0;
926
b27b7cbc
MF
927 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
928
3a307ffc 929 *wcp = wc;
6af67d82 930
3a307ffc 931 return 0;
6af67d82
MF
932}
933
9517bac6 934/*
3a307ffc
MF
935 * If a page has any new buffers, zero them out here, and mark them uptodate
936 * and dirty so they'll be written out (in order to prevent uninitialised
937 * block data from leaking). And clear the new bit.
9517bac6 938 */
3a307ffc 939static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 940{
3a307ffc
MF
941 unsigned int block_start, block_end;
942 struct buffer_head *head, *bh;
9517bac6 943
3a307ffc
MF
944 BUG_ON(!PageLocked(page));
945 if (!page_has_buffers(page))
946 return;
9517bac6 947
3a307ffc
MF
948 bh = head = page_buffers(page);
949 block_start = 0;
950 do {
951 block_end = block_start + bh->b_size;
952
953 if (buffer_new(bh)) {
954 if (block_end > from && block_start < to) {
955 if (!PageUptodate(page)) {
956 unsigned start, end;
3a307ffc
MF
957
958 start = max(from, block_start);
959 end = min(to, block_end);
960
eebd2aa3 961 zero_user_segment(page, start, end);
3a307ffc
MF
962 set_buffer_uptodate(bh);
963 }
964
965 clear_buffer_new(bh);
966 mark_buffer_dirty(bh);
967 }
968 }
9517bac6 969
3a307ffc
MF
970 block_start = block_end;
971 bh = bh->b_this_page;
972 } while (bh != head);
973}
974
975/*
976 * Only called when we have a failure during allocating write to write
977 * zero's to the newly allocated region.
978 */
979static void ocfs2_write_failure(struct inode *inode,
980 struct ocfs2_write_ctxt *wc,
981 loff_t user_pos, unsigned user_len)
982{
983 int i;
5c26a7b7
MF
984 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
985 to = user_pos + user_len;
3a307ffc
MF
986 struct page *tmppage;
987
5c26a7b7 988 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 989
3a307ffc
MF
990 for(i = 0; i < wc->w_num_pages; i++) {
991 tmppage = wc->w_pages[i];
9517bac6 992
961cecbe 993 if (page_has_buffers(tmppage)) {
53ef99ca 994 if (ocfs2_should_order_data(inode))
2b4e30fb 995 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
996
997 block_commit_write(tmppage, from, to);
998 }
9517bac6 999 }
9517bac6
MF
1000}
1001
3a307ffc
MF
1002static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1003 struct ocfs2_write_ctxt *wc,
1004 struct page *page, u32 cpos,
1005 loff_t user_pos, unsigned user_len,
1006 int new)
9517bac6 1007{
3a307ffc
MF
1008 int ret;
1009 unsigned int map_from = 0, map_to = 0;
9517bac6 1010 unsigned int cluster_start, cluster_end;
3a307ffc 1011 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1012
3a307ffc 1013 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1014 &cluster_start, &cluster_end);
1015
3a307ffc
MF
1016 if (page == wc->w_target_page) {
1017 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1018 map_to = map_from + user_len;
1019
1020 if (new)
1021 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1022 cluster_start, cluster_end,
1023 new);
1024 else
1025 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1026 map_from, map_to, new);
1027 if (ret) {
9517bac6
MF
1028 mlog_errno(ret);
1029 goto out;
1030 }
1031
3a307ffc
MF
1032 user_data_from = map_from;
1033 user_data_to = map_to;
9517bac6 1034 if (new) {
3a307ffc
MF
1035 map_from = cluster_start;
1036 map_to = cluster_end;
9517bac6
MF
1037 }
1038 } else {
1039 /*
1040 * If we haven't allocated the new page yet, we
1041 * shouldn't be writing it out without copying user
1042 * data. This is likely a math error from the caller.
1043 */
1044 BUG_ON(!new);
1045
3a307ffc
MF
1046 map_from = cluster_start;
1047 map_to = cluster_end;
9517bac6
MF
1048
1049 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1050 cluster_start, cluster_end, new);
9517bac6
MF
1051 if (ret) {
1052 mlog_errno(ret);
1053 goto out;
1054 }
1055 }
1056
1057 /*
1058 * Parts of newly allocated pages need to be zero'd.
1059 *
1060 * Above, we have also rewritten 'to' and 'from' - as far as
1061 * the rest of the function is concerned, the entire cluster
1062 * range inside of a page needs to be written.
1063 *
1064 * We can skip this if the page is up to date - it's already
1065 * been zero'd from being read in as a hole.
1066 */
1067 if (new && !PageUptodate(page))
1068 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1069 cpos, user_data_from, user_data_to);
9517bac6
MF
1070
1071 flush_dcache_page(page);
1072
9517bac6 1073out:
3a307ffc 1074 return ret;
9517bac6
MF
1075}
1076
1077/*
3a307ffc 1078 * This function will only grab one clusters worth of pages.
9517bac6 1079 */
3a307ffc
MF
1080static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1081 struct ocfs2_write_ctxt *wc,
693c241a
JB
1082 u32 cpos, loff_t user_pos,
1083 unsigned user_len, int new,
7307de80 1084 struct page *mmap_page)
9517bac6 1085{
3a307ffc 1086 int ret = 0, i;
693c241a 1087 unsigned long start, target_index, end_index, index;
9517bac6 1088 struct inode *inode = mapping->host;
693c241a 1089 loff_t last_byte;
9517bac6 1090
3a307ffc 1091 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1092
1093 /*
1094 * Figure out how many pages we'll be manipulating here. For
60b11392 1095 * non allocating write, we just change the one
693c241a
JB
1096 * page. Otherwise, we'll need a whole clusters worth. If we're
1097 * writing past i_size, we only need enough pages to cover the
1098 * last page of the write.
9517bac6 1099 */
9517bac6 1100 if (new) {
3a307ffc
MF
1101 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1102 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1103 /*
1104 * We need the index *past* the last page we could possibly
1105 * touch. This is the page past the end of the write or
1106 * i_size, whichever is greater.
1107 */
1108 last_byte = max(user_pos + user_len, i_size_read(inode));
1109 BUG_ON(last_byte < 1);
1110 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1111 if ((start + wc->w_num_pages) > end_index)
1112 wc->w_num_pages = end_index - start;
9517bac6 1113 } else {
3a307ffc
MF
1114 wc->w_num_pages = 1;
1115 start = target_index;
9517bac6
MF
1116 }
1117
3a307ffc 1118 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1119 index = start + i;
1120
7307de80
MF
1121 if (index == target_index && mmap_page) {
1122 /*
1123 * ocfs2_pagemkwrite() is a little different
1124 * and wants us to directly use the page
1125 * passed in.
1126 */
1127 lock_page(mmap_page);
1128
1129 if (mmap_page->mapping != mapping) {
1130 unlock_page(mmap_page);
1131 /*
1132 * Sanity check - the locking in
1133 * ocfs2_pagemkwrite() should ensure
1134 * that this code doesn't trigger.
1135 */
1136 ret = -EINVAL;
1137 mlog_errno(ret);
1138 goto out;
1139 }
1140
1141 page_cache_get(mmap_page);
1142 wc->w_pages[i] = mmap_page;
1143 } else {
1144 wc->w_pages[i] = find_or_create_page(mapping, index,
1145 GFP_NOFS);
1146 if (!wc->w_pages[i]) {
1147 ret = -ENOMEM;
1148 mlog_errno(ret);
1149 goto out;
1150 }
9517bac6 1151 }
3a307ffc
MF
1152
1153 if (index == target_index)
1154 wc->w_target_page = wc->w_pages[i];
9517bac6 1155 }
3a307ffc
MF
1156out:
1157 return ret;
1158}
1159
1160/*
1161 * Prepare a single cluster for write one cluster into the file.
1162 */
1163static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1164 u32 phys, unsigned int unwritten,
e7432675 1165 unsigned int should_zero,
b27b7cbc 1166 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1167 struct ocfs2_alloc_context *meta_ac,
1168 struct ocfs2_write_ctxt *wc, u32 cpos,
1169 loff_t user_pos, unsigned user_len)
1170{
e7432675 1171 int ret, i, new;
3a307ffc
MF
1172 u64 v_blkno, p_blkno;
1173 struct inode *inode = mapping->host;
f99b9b7c 1174 struct ocfs2_extent_tree et;
3a307ffc
MF
1175
1176 new = phys == 0 ? 1 : 0;
9517bac6 1177 if (new) {
3a307ffc
MF
1178 u32 tmp_pos;
1179
9517bac6
MF
1180 /*
1181 * This is safe to call with the page locks - it won't take
1182 * any additional semaphores or cluster locks.
1183 */
3a307ffc 1184 tmp_pos = cpos;
0eb8d47e
TM
1185 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1186 &tmp_pos, 1, 0, wc->w_di_bh,
1187 wc->w_handle, data_ac,
1188 meta_ac, NULL);
9517bac6
MF
1189 /*
1190 * This shouldn't happen because we must have already
1191 * calculated the correct meta data allocation required. The
1192 * internal tree allocation code should know how to increase
1193 * transaction credits itself.
1194 *
1195 * If need be, we could handle -EAGAIN for a
1196 * RESTART_TRANS here.
1197 */
1198 mlog_bug_on_msg(ret == -EAGAIN,
1199 "Inode %llu: EAGAIN return during allocation.\n",
1200 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1201 if (ret < 0) {
1202 mlog_errno(ret);
1203 goto out;
1204 }
b27b7cbc 1205 } else if (unwritten) {
5e404e9e
JB
1206 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1207 wc->w_di_bh);
f99b9b7c 1208 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1209 wc->w_handle, cpos, 1, phys,
f99b9b7c 1210 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1211 if (ret < 0) {
1212 mlog_errno(ret);
1213 goto out;
1214 }
1215 }
3a307ffc 1216
b27b7cbc 1217 if (should_zero)
3a307ffc 1218 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1219 else
3a307ffc 1220 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1221
3a307ffc
MF
1222 /*
1223 * The only reason this should fail is due to an inability to
1224 * find the extent added.
1225 */
49cb8d2d
MF
1226 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1227 NULL);
9517bac6 1228 if (ret < 0) {
3a307ffc
MF
1229 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1230 "at logical block %llu",
1231 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1232 (unsigned long long)v_blkno);
9517bac6
MF
1233 goto out;
1234 }
1235
1236 BUG_ON(p_blkno == 0);
1237
3a307ffc
MF
1238 for(i = 0; i < wc->w_num_pages; i++) {
1239 int tmpret;
9517bac6 1240
3a307ffc
MF
1241 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1242 wc->w_pages[i], cpos,
b27b7cbc
MF
1243 user_pos, user_len,
1244 should_zero);
3a307ffc
MF
1245 if (tmpret) {
1246 mlog_errno(tmpret);
1247 if (ret == 0)
cbfa9639 1248 ret = tmpret;
3a307ffc 1249 }
9517bac6
MF
1250 }
1251
3a307ffc
MF
1252 /*
1253 * We only have cleanup to do in case of allocating write.
1254 */
1255 if (ret && new)
1256 ocfs2_write_failure(inode, wc, user_pos, user_len);
1257
9517bac6 1258out:
9517bac6 1259
3a307ffc 1260 return ret;
9517bac6
MF
1261}
1262
0d172baa
MF
1263static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1264 struct ocfs2_alloc_context *data_ac,
1265 struct ocfs2_alloc_context *meta_ac,
1266 struct ocfs2_write_ctxt *wc,
1267 loff_t pos, unsigned len)
1268{
1269 int ret, i;
db56246c
MF
1270 loff_t cluster_off;
1271 unsigned int local_len = len;
0d172baa 1272 struct ocfs2_write_cluster_desc *desc;
db56246c 1273 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1274
1275 for (i = 0; i < wc->w_clen; i++) {
1276 desc = &wc->w_desc[i];
1277
db56246c
MF
1278 /*
1279 * We have to make sure that the total write passed in
1280 * doesn't extend past a single cluster.
1281 */
1282 local_len = len;
1283 cluster_off = pos & (osb->s_clustersize - 1);
1284 if ((cluster_off + local_len) > osb->s_clustersize)
1285 local_len = osb->s_clustersize - cluster_off;
1286
b27b7cbc 1287 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1288 desc->c_unwritten,
1289 desc->c_needs_zero,
1290 data_ac, meta_ac,
db56246c 1291 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1292 if (ret) {
1293 mlog_errno(ret);
1294 goto out;
1295 }
db56246c
MF
1296
1297 len -= local_len;
1298 pos += local_len;
0d172baa
MF
1299 }
1300
1301 ret = 0;
1302out:
1303 return ret;
1304}
1305
3a307ffc
MF
1306/*
1307 * ocfs2_write_end() wants to know which parts of the target page it
1308 * should complete the write on. It's easiest to compute them ahead of
1309 * time when a more complete view of the write is available.
1310 */
1311static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1312 struct ocfs2_write_ctxt *wc,
1313 loff_t pos, unsigned len, int alloc)
9517bac6 1314{
3a307ffc 1315 struct ocfs2_write_cluster_desc *desc;
9517bac6 1316
3a307ffc
MF
1317 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1318 wc->w_target_to = wc->w_target_from + len;
1319
1320 if (alloc == 0)
1321 return;
1322
1323 /*
1324 * Allocating write - we may have different boundaries based
1325 * on page size and cluster size.
1326 *
1327 * NOTE: We can no longer compute one value from the other as
1328 * the actual write length and user provided length may be
1329 * different.
1330 */
9517bac6 1331
3a307ffc
MF
1332 if (wc->w_large_pages) {
1333 /*
1334 * We only care about the 1st and last cluster within
b27b7cbc 1335 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1336 * value may be extended out to the start/end of a
1337 * newly allocated cluster.
1338 */
1339 desc = &wc->w_desc[0];
e7432675 1340 if (desc->c_needs_zero)
3a307ffc
MF
1341 ocfs2_figure_cluster_boundaries(osb,
1342 desc->c_cpos,
1343 &wc->w_target_from,
1344 NULL);
1345
1346 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1347 if (desc->c_needs_zero)
3a307ffc
MF
1348 ocfs2_figure_cluster_boundaries(osb,
1349 desc->c_cpos,
1350 NULL,
1351 &wc->w_target_to);
1352 } else {
1353 wc->w_target_from = 0;
1354 wc->w_target_to = PAGE_CACHE_SIZE;
1355 }
9517bac6
MF
1356}
1357
0d172baa
MF
1358/*
1359 * Populate each single-cluster write descriptor in the write context
1360 * with information about the i/o to be done.
b27b7cbc
MF
1361 *
1362 * Returns the number of clusters that will have to be allocated, as
1363 * well as a worst case estimate of the number of extent records that
1364 * would have to be created during a write to an unwritten region.
0d172baa
MF
1365 */
1366static int ocfs2_populate_write_desc(struct inode *inode,
1367 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1368 unsigned int *clusters_to_alloc,
1369 unsigned int *extents_to_split)
9517bac6 1370{
0d172baa 1371 int ret;
3a307ffc 1372 struct ocfs2_write_cluster_desc *desc;
0d172baa 1373 unsigned int num_clusters = 0;
b27b7cbc 1374 unsigned int ext_flags = 0;
0d172baa
MF
1375 u32 phys = 0;
1376 int i;
9517bac6 1377
b27b7cbc
MF
1378 *clusters_to_alloc = 0;
1379 *extents_to_split = 0;
1380
3a307ffc
MF
1381 for (i = 0; i < wc->w_clen; i++) {
1382 desc = &wc->w_desc[i];
1383 desc->c_cpos = wc->w_cpos + i;
1384
1385 if (num_clusters == 0) {
b27b7cbc
MF
1386 /*
1387 * Need to look up the next extent record.
1388 */
3a307ffc 1389 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1390 &num_clusters, &ext_flags);
3a307ffc
MF
1391 if (ret) {
1392 mlog_errno(ret);
607d44aa 1393 goto out;
3a307ffc 1394 }
b27b7cbc 1395
293b2f70
TM
1396 /* We should already CoW the refcountd extent. */
1397 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1398
b27b7cbc
MF
1399 /*
1400 * Assume worst case - that we're writing in
1401 * the middle of the extent.
1402 *
1403 * We can assume that the write proceeds from
1404 * left to right, in which case the extent
1405 * insert code is smart enough to coalesce the
1406 * next splits into the previous records created.
1407 */
1408 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1409 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1410 } else if (phys) {
1411 /*
1412 * Only increment phys if it doesn't describe
1413 * a hole.
1414 */
1415 phys++;
1416 }
1417
e7432675
SM
1418 /*
1419 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1420 * file that got extended. w_first_new_cpos tells us
1421 * where the newly allocated clusters are so we can
1422 * zero them.
1423 */
1424 if (desc->c_cpos >= wc->w_first_new_cpos) {
1425 BUG_ON(phys == 0);
1426 desc->c_needs_zero = 1;
1427 }
1428
3a307ffc
MF
1429 desc->c_phys = phys;
1430 if (phys == 0) {
1431 desc->c_new = 1;
e7432675 1432 desc->c_needs_zero = 1;
0d172baa 1433 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1434 }
e7432675
SM
1435
1436 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1437 desc->c_unwritten = 1;
e7432675
SM
1438 desc->c_needs_zero = 1;
1439 }
3a307ffc
MF
1440
1441 num_clusters--;
9517bac6
MF
1442 }
1443
0d172baa
MF
1444 ret = 0;
1445out:
1446 return ret;
1447}
1448
1afc32b9
MF
1449static int ocfs2_write_begin_inline(struct address_space *mapping,
1450 struct inode *inode,
1451 struct ocfs2_write_ctxt *wc)
1452{
1453 int ret;
1454 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1455 struct page *page;
1456 handle_t *handle;
1457 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1458
1459 page = find_or_create_page(mapping, 0, GFP_NOFS);
1460 if (!page) {
1461 ret = -ENOMEM;
1462 mlog_errno(ret);
1463 goto out;
1464 }
1465 /*
1466 * If we don't set w_num_pages then this page won't get unlocked
1467 * and freed on cleanup of the write context.
1468 */
1469 wc->w_pages[0] = wc->w_target_page = page;
1470 wc->w_num_pages = 1;
1471
1472 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1473 if (IS_ERR(handle)) {
1474 ret = PTR_ERR(handle);
1475 mlog_errno(ret);
1476 goto out;
1477 }
1478
0cf2f763 1479 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1480 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1481 if (ret) {
1482 ocfs2_commit_trans(osb, handle);
1483
1484 mlog_errno(ret);
1485 goto out;
1486 }
1487
1488 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1489 ocfs2_set_inode_data_inline(inode, di);
1490
1491 if (!PageUptodate(page)) {
1492 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1493 if (ret) {
1494 ocfs2_commit_trans(osb, handle);
1495
1496 goto out;
1497 }
1498 }
1499
1500 wc->w_handle = handle;
1501out:
1502 return ret;
1503}
1504
1505int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1506{
1507 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1508
0d8a4e0c 1509 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1510 return 1;
1511 return 0;
1512}
1513
1514static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1515 struct inode *inode, loff_t pos,
1516 unsigned len, struct page *mmap_page,
1517 struct ocfs2_write_ctxt *wc)
1518{
1519 int ret, written = 0;
1520 loff_t end = pos + len;
1521 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1522 struct ocfs2_dinode *di = NULL;
1afc32b9
MF
1523
1524 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1525 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1526 oi->ip_dyn_features);
1527
1528 /*
1529 * Handle inodes which already have inline data 1st.
1530 */
1531 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1532 if (mmap_page == NULL &&
1533 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1534 goto do_inline_write;
1535
1536 /*
1537 * The write won't fit - we have to give this inode an
1538 * inline extent list now.
1539 */
1540 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1541 if (ret)
1542 mlog_errno(ret);
1543 goto out;
1544 }
1545
1546 /*
1547 * Check whether the inode can accept inline data.
1548 */
1549 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1550 return 0;
1551
1552 /*
1553 * Check whether the write can fit.
1554 */
d9ae49d6
TY
1555 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1556 if (mmap_page ||
1557 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1558 return 0;
1559
1560do_inline_write:
1561 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1562 if (ret) {
1563 mlog_errno(ret);
1564 goto out;
1565 }
1566
1567 /*
1568 * This signals to the caller that the data can be written
1569 * inline.
1570 */
1571 written = 1;
1572out:
1573 return written ? written : ret;
1574}
1575
65ed39d6
MF
1576/*
1577 * This function only does anything for file systems which can't
1578 * handle sparse files.
1579 *
1580 * What we want to do here is fill in any hole between the current end
1581 * of allocation and the end of our write. That way the rest of the
1582 * write path can treat it as an non-allocating write, which has no
1583 * special case code for sparse/nonsparse files.
1584 */
5693486b
JB
1585static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1586 struct buffer_head *di_bh,
1587 loff_t pos, unsigned len,
65ed39d6
MF
1588 struct ocfs2_write_ctxt *wc)
1589{
1590 int ret;
65ed39d6
MF
1591 loff_t newsize = pos + len;
1592
5693486b 1593 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1594
1595 if (newsize <= i_size_read(inode))
1596 return 0;
1597
5693486b 1598 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1599 if (ret)
1600 mlog_errno(ret);
1601
e7432675
SM
1602 wc->w_first_new_cpos =
1603 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1604
65ed39d6
MF
1605 return ret;
1606}
1607
5693486b
JB
1608static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1609 loff_t pos)
1610{
1611 int ret = 0;
1612
1613 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1614 if (pos > i_size_read(inode))
1615 ret = ocfs2_zero_extend(inode, di_bh, pos);
1616
1617 return ret;
1618}
1619
50308d81
TM
1620/*
1621 * Try to flush truncate logs if we can free enough clusters from it.
1622 * As for return value, "< 0" means error, "0" no space and "1" means
1623 * we have freed enough spaces and let the caller try to allocate again.
1624 */
1625static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1626 unsigned int needed)
1627{
1628 tid_t target;
1629 int ret = 0;
1630 unsigned int truncated_clusters;
1631
1632 mutex_lock(&osb->osb_tl_inode->i_mutex);
1633 truncated_clusters = osb->truncated_clusters;
1634 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1635
1636 /*
1637 * Check whether we can succeed in allocating if we free
1638 * the truncate log.
1639 */
1640 if (truncated_clusters < needed)
1641 goto out;
1642
1643 ret = ocfs2_flush_truncate_log(osb);
1644 if (ret) {
1645 mlog_errno(ret);
1646 goto out;
1647 }
1648
1649 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1650 jbd2_log_wait_commit(osb->journal->j_journal, target);
1651 ret = 1;
1652 }
1653out:
1654 return ret;
1655}
1656
0378da0f
TM
1657int ocfs2_write_begin_nolock(struct file *filp,
1658 struct address_space *mapping,
0d172baa
MF
1659 loff_t pos, unsigned len, unsigned flags,
1660 struct page **pagep, void **fsdata,
1661 struct buffer_head *di_bh, struct page *mmap_page)
1662{
e7432675 1663 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1664 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1665 struct ocfs2_write_ctxt *wc;
1666 struct inode *inode = mapping->host;
1667 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1668 struct ocfs2_dinode *di;
1669 struct ocfs2_alloc_context *data_ac = NULL;
1670 struct ocfs2_alloc_context *meta_ac = NULL;
1671 handle_t *handle;
f99b9b7c 1672 struct ocfs2_extent_tree et;
50308d81 1673 int try_free = 1, ret1;
0d172baa 1674
50308d81 1675try_again:
0d172baa
MF
1676 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1677 if (ret) {
1678 mlog_errno(ret);
1679 return ret;
1680 }
1681
1afc32b9
MF
1682 if (ocfs2_supports_inline_data(osb)) {
1683 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1684 mmap_page, wc);
1685 if (ret == 1) {
1686 ret = 0;
1687 goto success;
1688 }
1689 if (ret < 0) {
1690 mlog_errno(ret);
1691 goto out;
1692 }
1693 }
1694
5693486b
JB
1695 if (ocfs2_sparse_alloc(osb))
1696 ret = ocfs2_zero_tail(inode, di_bh, pos);
1697 else
1698 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1699 wc);
65ed39d6
MF
1700 if (ret) {
1701 mlog_errno(ret);
1702 goto out;
1703 }
1704
293b2f70
TM
1705 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1706 if (ret < 0) {
1707 mlog_errno(ret);
1708 goto out;
1709 } else if (ret == 1) {
50308d81 1710 clusters_need = wc->w_clen;
15502712 1711 ret = ocfs2_refcount_cow(inode, filp, di_bh,
37f8a2bf 1712 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1713 if (ret) {
1714 mlog_errno(ret);
1715 goto out;
1716 }
1717 }
1718
b27b7cbc
MF
1719 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1720 &extents_to_split);
0d172baa
MF
1721 if (ret) {
1722 mlog_errno(ret);
1723 goto out;
1724 }
50308d81 1725 clusters_need += clusters_to_alloc;
0d172baa
MF
1726
1727 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1728
3a307ffc
MF
1729 /*
1730 * We set w_target_from, w_target_to here so that
1731 * ocfs2_write_end() knows which range in the target page to
1732 * write out. An allocation requires that we write the entire
1733 * cluster range.
1734 */
b27b7cbc 1735 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1736 /*
1737 * XXX: We are stretching the limits of
b27b7cbc 1738 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1739 * the work to be done.
1740 */
e7d4cb6b
TM
1741 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1742 " clusters_to_add = %u, extents_to_split = %u\n",
1743 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1744 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1745 clusters_to_alloc, extents_to_split);
1746
5e404e9e
JB
1747 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1748 wc->w_di_bh);
f99b9b7c 1749 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1750 clusters_to_alloc, extents_to_split,
f99b9b7c 1751 &data_ac, &meta_ac);
9517bac6
MF
1752 if (ret) {
1753 mlog_errno(ret);
607d44aa 1754 goto out;
9517bac6
MF
1755 }
1756
4fe370af
MF
1757 if (data_ac)
1758 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1759
811f933d
TM
1760 credits = ocfs2_calc_extend_credits(inode->i_sb,
1761 &di->id2.i_list,
3a307ffc
MF
1762 clusters_to_alloc);
1763
9517bac6
MF
1764 }
1765
e7432675
SM
1766 /*
1767 * We have to zero sparse allocated clusters, unwritten extent clusters,
1768 * and non-sparse clusters we just extended. For non-sparse writes,
1769 * we know zeros will only be needed in the first and/or last cluster.
1770 */
1771 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1772 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1773 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1774 cluster_of_pages = 1;
1775 else
1776 cluster_of_pages = 0;
1777
1778 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1779
9517bac6
MF
1780 handle = ocfs2_start_trans(osb, credits);
1781 if (IS_ERR(handle)) {
1782 ret = PTR_ERR(handle);
1783 mlog_errno(ret);
607d44aa 1784 goto out;
9517bac6
MF
1785 }
1786
3a307ffc
MF
1787 wc->w_handle = handle;
1788
5dd4056d
CH
1789 if (clusters_to_alloc) {
1790 ret = dquot_alloc_space_nodirty(inode,
1791 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1792 if (ret)
1793 goto out_commit;
a90714c1 1794 }
3a307ffc
MF
1795 /*
1796 * We don't want this to fail in ocfs2_write_end(), so do it
1797 * here.
1798 */
0cf2f763 1799 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1800 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1801 if (ret) {
9517bac6 1802 mlog_errno(ret);
a90714c1 1803 goto out_quota;
9517bac6
MF
1804 }
1805
3a307ffc
MF
1806 /*
1807 * Fill our page array first. That way we've grabbed enough so
1808 * that we can zero and flush if we error after adding the
1809 * extent.
1810 */
693c241a 1811 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1812 cluster_of_pages, mmap_page);
9517bac6
MF
1813 if (ret) {
1814 mlog_errno(ret);
a90714c1 1815 goto out_quota;
9517bac6
MF
1816 }
1817
0d172baa
MF
1818 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1819 len);
1820 if (ret) {
1821 mlog_errno(ret);
a90714c1 1822 goto out_quota;
9517bac6 1823 }
9517bac6 1824
3a307ffc
MF
1825 if (data_ac)
1826 ocfs2_free_alloc_context(data_ac);
1827 if (meta_ac)
1828 ocfs2_free_alloc_context(meta_ac);
9517bac6 1829
1afc32b9 1830success:
3a307ffc
MF
1831 *pagep = wc->w_target_page;
1832 *fsdata = wc;
1833 return 0;
a90714c1
JK
1834out_quota:
1835 if (clusters_to_alloc)
5dd4056d 1836 dquot_free_space(inode,
a90714c1 1837 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1838out_commit:
1839 ocfs2_commit_trans(osb, handle);
1840
9517bac6 1841out:
3a307ffc
MF
1842 ocfs2_free_write_ctxt(wc);
1843
9517bac6
MF
1844 if (data_ac)
1845 ocfs2_free_alloc_context(data_ac);
1846 if (meta_ac)
1847 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1848
1849 if (ret == -ENOSPC && try_free) {
1850 /*
1851 * Try to free some truncate log so that we can have enough
1852 * clusters to allocate.
1853 */
1854 try_free = 0;
1855
1856 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1857 if (ret1 == 1)
1858 goto try_again;
1859
1860 if (ret1 < 0)
1861 mlog_errno(ret1);
1862 }
1863
3a307ffc
MF
1864 return ret;
1865}
1866
b6af1bcd
NP
1867static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1868 loff_t pos, unsigned len, unsigned flags,
1869 struct page **pagep, void **fsdata)
607d44aa
MF
1870{
1871 int ret;
1872 struct buffer_head *di_bh = NULL;
1873 struct inode *inode = mapping->host;
1874
e63aecb6 1875 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1876 if (ret) {
1877 mlog_errno(ret);
1878 return ret;
1879 }
1880
1881 /*
1882 * Take alloc sem here to prevent concurrent lookups. That way
1883 * the mapping, zeroing and tree manipulation within
1884 * ocfs2_write() will be safe against ->readpage(). This
1885 * should also serve to lock out allocation from a shared
1886 * writeable region.
1887 */
1888 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1889
0378da0f 1890 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1891 fsdata, di_bh, NULL);
607d44aa
MF
1892 if (ret) {
1893 mlog_errno(ret);
c934a92d 1894 goto out_fail;
607d44aa
MF
1895 }
1896
1897 brelse(di_bh);
1898
1899 return 0;
1900
607d44aa
MF
1901out_fail:
1902 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1903
1904 brelse(di_bh);
e63aecb6 1905 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1906
1907 return ret;
1908}
1909
1afc32b9
MF
1910static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1911 unsigned len, unsigned *copied,
1912 struct ocfs2_dinode *di,
1913 struct ocfs2_write_ctxt *wc)
1914{
1915 void *kaddr;
1916
1917 if (unlikely(*copied < len)) {
1918 if (!PageUptodate(wc->w_target_page)) {
1919 *copied = 0;
1920 return;
1921 }
1922 }
1923
1924 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1925 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1926 kunmap_atomic(kaddr, KM_USER0);
1927
1928 mlog(0, "Data written to inode at offset %llu. "
1929 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1930 (unsigned long long)pos, *copied,
1931 le16_to_cpu(di->id2.i_data.id_count),
1932 le16_to_cpu(di->i_dyn_features));
1933}
1934
7307de80
MF
1935int ocfs2_write_end_nolock(struct address_space *mapping,
1936 loff_t pos, unsigned len, unsigned copied,
1937 struct page *page, void *fsdata)
3a307ffc
MF
1938{
1939 int i;
1940 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1941 struct inode *inode = mapping->host;
1942 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1943 struct ocfs2_write_ctxt *wc = fsdata;
1944 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1945 handle_t *handle = wc->w_handle;
1946 struct page *tmppage;
1947
1afc32b9
MF
1948 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1949 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1950 goto out_write_size;
1951 }
1952
3a307ffc
MF
1953 if (unlikely(copied < len)) {
1954 if (!PageUptodate(wc->w_target_page))
1955 copied = 0;
1956
1957 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1958 start+len);
1959 }
1960 flush_dcache_page(wc->w_target_page);
1961
1962 for(i = 0; i < wc->w_num_pages; i++) {
1963 tmppage = wc->w_pages[i];
1964
1965 if (tmppage == wc->w_target_page) {
1966 from = wc->w_target_from;
1967 to = wc->w_target_to;
1968
1969 BUG_ON(from > PAGE_CACHE_SIZE ||
1970 to > PAGE_CACHE_SIZE ||
1971 to < from);
1972 } else {
1973 /*
1974 * Pages adjacent to the target (if any) imply
1975 * a hole-filling write in which case we want
1976 * to flush their entire range.
1977 */
1978 from = 0;
1979 to = PAGE_CACHE_SIZE;
1980 }
1981
961cecbe 1982 if (page_has_buffers(tmppage)) {
53ef99ca 1983 if (ocfs2_should_order_data(inode))
2b4e30fb 1984 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1985 block_commit_write(tmppage, from, to);
1986 }
3a307ffc
MF
1987 }
1988
1afc32b9 1989out_write_size:
3a307ffc
MF
1990 pos += copied;
1991 if (pos > inode->i_size) {
1992 i_size_write(inode, pos);
1993 mark_inode_dirty(inode);
1994 }
1995 inode->i_blocks = ocfs2_inode_sector_count(inode);
1996 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1997 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1998 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1999 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2000 ocfs2_journal_dirty(handle, wc->w_di_bh);
2001
2002 ocfs2_commit_trans(osb, handle);
59a5e416 2003
b27b7cbc
MF
2004 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2005
607d44aa
MF
2006 ocfs2_free_write_ctxt(wc);
2007
2008 return copied;
2009}
2010
b6af1bcd
NP
2011static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2012 loff_t pos, unsigned len, unsigned copied,
2013 struct page *page, void *fsdata)
607d44aa
MF
2014{
2015 int ret;
2016 struct inode *inode = mapping->host;
2017
2018 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2019
3a307ffc 2020 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2021 ocfs2_inode_unlock(inode, 1);
9517bac6 2022
607d44aa 2023 return ret;
9517bac6
MF
2024}
2025
f5e54d6e 2026const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2027 .readpage = ocfs2_readpage,
2028 .readpages = ocfs2_readpages,
2029 .writepage = ocfs2_writepage,
2030 .write_begin = ocfs2_write_begin,
2031 .write_end = ocfs2_write_end,
2032 .bmap = ocfs2_bmap,
2033 .sync_page = block_sync_page,
2034 .direct_IO = ocfs2_direct_IO,
2035 .invalidatepage = ocfs2_invalidatepage,
2036 .releasepage = ocfs2_releasepage,
2037 .migratepage = buffer_migrate_page,
2038 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2039 .error_remove_page = generic_error_remove_page,
ccd979bd 2040};