ocfs2: fix null pointer dereference when access dlm_state before launching dlm thread
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd 31
ccd979bd
MF
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
293b2f70 46#include "refcounttree.h"
9558156b 47#include "ocfs2_trace.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
9558156b
TM
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
b657c95c 74 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
ccd979bd
MF
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
7391a294 83 err = -ENOMEM;
ccd979bd
MF
84 mlog(ML_ERROR, "block offset is outside the allocated size: "
85 "%llu\n", (unsigned long long)iblock);
86 goto bail;
87 }
88
89 /* We don't use the page cache to create symlink data, so if
90 * need be, copy it over from the buffer cache. */
91 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93 iblock;
94 buffer_cache_bh = sb_getblk(osb->sb, blkno);
95 if (!buffer_cache_bh) {
7391a294 96 err = -ENOMEM;
ccd979bd
MF
97 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98 goto bail;
99 }
100
101 /* we haven't locked out transactions, so a commit
102 * could've happened. Since we've got a reference on
103 * the bh, even if it commits while we're doing the
104 * copy, the data is still good. */
105 if (buffer_jbd(buffer_cache_bh)
106 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 107 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
108 if (!kaddr) {
109 mlog(ML_ERROR, "couldn't kmap!\n");
110 goto bail;
111 }
112 memcpy(kaddr + (bh_result->b_size * iblock),
113 buffer_cache_bh->b_data,
114 bh_result->b_size);
c4bc8dcb 115 kunmap_atomic(kaddr);
ccd979bd
MF
116 set_buffer_uptodate(bh_result);
117 }
118 brelse(buffer_cache_bh);
119 }
120
121 map_bh(bh_result, inode->i_sb,
122 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
123
124 err = 0;
125
126bail:
a81cb88b 127 brelse(bh);
ccd979bd 128
ccd979bd
MF
129 return err;
130}
131
6f70fa51
TM
132int ocfs2_get_block(struct inode *inode, sector_t iblock,
133 struct buffer_head *bh_result, int create)
ccd979bd
MF
134{
135 int err = 0;
49cb8d2d 136 unsigned int ext_flags;
628a24f5
MF
137 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138 u64 p_blkno, count, past_eof;
25baf2da 139 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 140
9558156b
TM
141 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
143
144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146 inode, inode->i_ino);
147
148 if (S_ISLNK(inode->i_mode)) {
149 /* this always does I/O for some reason. */
150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 goto bail;
152 }
153
628a24f5 154 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 155 &ext_flags);
ccd979bd
MF
156 if (err) {
157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159 (unsigned long long)p_blkno);
ccd979bd
MF
160 goto bail;
161 }
162
628a24f5
MF
163 if (max_blocks < count)
164 count = max_blocks;
165
25baf2da
MF
166 /*
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
ebdec241 170 * allows __block_write_begin() to zero.
c0420ad2
CL
171 *
172 * If we see this on a sparse file system, then a truncate has
173 * raced us and removed the cluster. In this case, we clear
174 * the buffers dirty and uptodate bits and let the buffer code
175 * ignore it as a hole.
25baf2da 176 */
c0420ad2
CL
177 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178 clear_buffer_dirty(bh_result);
179 clear_buffer_uptodate(bh_result);
180 goto bail;
181 }
25baf2da 182
49cb8d2d
MF
183 /* Treat the unwritten extent as a hole for zeroing purposes. */
184 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
185 map_bh(bh_result, inode->i_sb, p_blkno);
186
628a24f5
MF
187 bh_result->b_size = count << inode->i_blkbits;
188
25baf2da
MF
189 if (!ocfs2_sparse_alloc(osb)) {
190 if (p_blkno == 0) {
191 err = -EIO;
192 mlog(ML_ERROR,
193 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194 (unsigned long long)iblock,
195 (unsigned long long)p_blkno,
196 (unsigned long long)OCFS2_I(inode)->ip_blkno);
197 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198 dump_stack();
1f4cea37 199 goto bail;
25baf2da 200 }
25baf2da 201 }
ccd979bd 202
5693486b 203 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
204
205 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206 (unsigned long long)past_eof);
5693486b
JB
207 if (create && (iblock >= past_eof))
208 set_buffer_new(bh_result);
209
ccd979bd
MF
210bail:
211 if (err < 0)
212 err = -EIO;
213
ccd979bd
MF
214 return err;
215}
216
1afc32b9
MF
217int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218 struct buffer_head *di_bh)
6798d35a
MF
219{
220 void *kaddr;
d2849fb2 221 loff_t size;
6798d35a
MF
222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223
224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 return -EROFS;
228 }
229
230 size = i_size_read(inode);
231
232 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 234 ocfs2_error(inode->i_sb,
d2849fb2
JK
235 "Inode %llu has with inline data has bad size: %Lu",
236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
237 (unsigned long long)size);
6798d35a
MF
238 return -EROFS;
239 }
240
c4bc8dcb 241 kaddr = kmap_atomic(page);
6798d35a
MF
242 if (size)
243 memcpy(kaddr, di->id2.i_data.id_data, size);
244 /* Clear the remaining part of the page */
245 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246 flush_dcache_page(page);
c4bc8dcb 247 kunmap_atomic(kaddr);
6798d35a
MF
248
249 SetPageUptodate(page);
250
251 return 0;
252}
253
254static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255{
256 int ret;
257 struct buffer_head *di_bh = NULL;
6798d35a
MF
258
259 BUG_ON(!PageLocked(page));
86c838b0 260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 261
b657c95c 262 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
263 if (ret) {
264 mlog_errno(ret);
265 goto out;
266 }
267
268 ret = ocfs2_read_inline_data(inode, page, di_bh);
269out:
270 unlock_page(page);
271
272 brelse(di_bh);
273 return ret;
274}
275
ccd979bd
MF
276static int ocfs2_readpage(struct file *file, struct page *page)
277{
278 struct inode *inode = page->mapping->host;
6798d35a 279 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
280 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281 int ret, unlock = 1;
282
9558156b
TM
283 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284 (page ? page->index : 0));
ccd979bd 285
e63aecb6 286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
287 if (ret != 0) {
288 if (ret == AOP_TRUNCATED_PAGE)
289 unlock = 0;
290 mlog_errno(ret);
291 goto out;
292 }
293
6798d35a 294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
295 /*
296 * Unlock the page and cycle ip_alloc_sem so that we don't
297 * busyloop waiting for ip_alloc_sem to unlock
298 */
e9dfc0b2 299 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
300 unlock_page(page);
301 unlock = 0;
302 down_read(&oi->ip_alloc_sem);
303 up_read(&oi->ip_alloc_sem);
e63aecb6 304 goto out_inode_unlock;
e9dfc0b2 305 }
ccd979bd
MF
306
307 /*
308 * i_size might have just been updated as we grabed the meta lock. We
309 * might now be discovering a truncate that hit on another node.
310 * block_read_full_page->get_block freaks out if it is asked to read
311 * beyond the end of a file, so we check here. Callers
54cb8821 312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
313 * and notice that the page they just read isn't needed.
314 *
315 * XXX sys_readahead() seems to get that wrong?
316 */
317 if (start >= i_size_read(inode)) {
eebd2aa3 318 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
319 SetPageUptodate(page);
320 ret = 0;
321 goto out_alloc;
322 }
323
6798d35a
MF
324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 ret = ocfs2_readpage_inline(inode, page);
326 else
327 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
328 unlock = 0;
329
ccd979bd
MF
330out_alloc:
331 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
332out_inode_unlock:
333 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
334out:
335 if (unlock)
336 unlock_page(page);
ccd979bd
MF
337 return ret;
338}
339
628a24f5
MF
340/*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
349static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
351{
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
357
358 /*
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
361 */
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
365
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
369 }
370
371 /*
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
374 */
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
377
378 /*
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
381 */
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
386
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
392
393 return err;
394}
395
ccd979bd
MF
396/* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
400 *
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
406 */
407static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408{
9558156b
TM
409 trace_ocfs2_writepage(
410 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411 page->index);
ccd979bd 412
9558156b 413 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
414}
415
ccd979bd
MF
416/* Taken from ext3. We don't necessarily need the full blown
417 * functionality yet, but IMHO it's better to cut and paste the whole
418 * thing so we can avoid introducing our own bugs (and easily pick up
419 * their fixes when they happen) --Mark */
60b11392
MF
420int walk_page_buffers( handle_t *handle,
421 struct buffer_head *head,
422 unsigned from,
423 unsigned to,
424 int *partial,
425 int (*fn)( handle_t *handle,
426 struct buffer_head *bh))
ccd979bd
MF
427{
428 struct buffer_head *bh;
429 unsigned block_start, block_end;
430 unsigned blocksize = head->b_size;
431 int err, ret = 0;
432 struct buffer_head *next;
433
434 for ( bh = head, block_start = 0;
435 ret == 0 && (bh != head || !block_start);
436 block_start = block_end, bh = next)
437 {
438 next = bh->b_this_page;
439 block_end = block_start + blocksize;
440 if (block_end <= from || block_start >= to) {
441 if (partial && !buffer_uptodate(bh))
442 *partial = 1;
443 continue;
444 }
445 err = (*fn)(handle, bh);
446 if (!ret)
447 ret = err;
448 }
449 return ret;
450}
451
ccd979bd
MF
452static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
453{
454 sector_t status;
455 u64 p_blkno = 0;
456 int err = 0;
457 struct inode *inode = mapping->host;
458
9558156b
TM
459 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 (unsigned long long)block);
ccd979bd
MF
461
462 /* We don't need to lock journal system files, since they aren't
463 * accessed concurrently from multiple nodes.
464 */
465 if (!INODE_JOURNAL(inode)) {
e63aecb6 466 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
467 if (err) {
468 if (err != -ENOENT)
469 mlog_errno(err);
470 goto bail;
471 }
472 down_read(&OCFS2_I(inode)->ip_alloc_sem);
473 }
474
6798d35a
MF
475 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477 NULL);
ccd979bd
MF
478
479 if (!INODE_JOURNAL(inode)) {
480 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 481 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
482 }
483
484 if (err) {
485 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486 (unsigned long long)block);
487 mlog_errno(err);
488 goto bail;
489 }
490
ccd979bd
MF
491bail:
492 status = err ? 0 : p_blkno;
493
ccd979bd
MF
494 return status;
495}
496
497/*
498 * TODO: Make this into a generic get_blocks function.
499 *
500 * From do_direct_io in direct-io.c:
501 * "So what we do is to permit the ->get_blocks function to populate
502 * bh.b_size with the size of IO which is permitted at this offset and
503 * this i_blkbits."
504 *
505 * This function is called directly from get_more_blocks in direct-io.c.
506 *
507 * called like this: dio->get_blocks(dio->inode, fs_startblk,
508 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
509 *
510 * Note that we never bother to allocate blocks here, and thus ignore the
511 * create argument.
ccd979bd
MF
512 */
513static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
514 struct buffer_head *bh_result, int create)
515{
516 int ret;
4f902c37 517 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 518 unsigned int ext_flags;
184d7d20 519 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 520 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 521
ccd979bd
MF
522 /* This function won't even be called if the request isn't all
523 * nicely aligned and of the right size, so there's no need
524 * for us to check any of that. */
525
25baf2da 526 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 527
ccd979bd
MF
528 /* This figures out the size of the next contiguous block, and
529 * our logical offset */
363041a5 530 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 531 &contig_blocks, &ext_flags);
ccd979bd
MF
532 if (ret) {
533 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534 (unsigned long long)iblock);
535 ret = -EIO;
536 goto bail;
537 }
538
cbaee472
TM
539 /* We should already CoW the refcounted extent in case of create. */
540 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541
25baf2da
MF
542 /*
543 * get_more_blocks() expects us to describe a hole by clearing
544 * the mapped bit on bh_result().
49cb8d2d
MF
545 *
546 * Consider an unwritten extent as a hole.
25baf2da 547 */
49cb8d2d 548 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 549 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 550 else
25baf2da 551 clear_buffer_mapped(bh_result);
ccd979bd
MF
552
553 /* make sure we don't map more than max_blocks blocks here as
554 that's all the kernel will handle at this point. */
555 if (max_blocks < contig_blocks)
556 contig_blocks = max_blocks;
557 bh_result->b_size = contig_blocks << blocksize_bits;
558bail:
559 return ret;
560}
561
2bd63216 562/*
ccd979bd 563 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
564 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
565 * to protect io on one node from truncation on another.
ccd979bd
MF
566 */
567static void ocfs2_dio_end_io(struct kiocb *iocb,
568 loff_t offset,
569 ssize_t bytes,
7b7a8665 570 void *private)
ccd979bd 571{
496ad9aa 572 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 573 int level;
a11f7e63 574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
ccd979bd
MF
575
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 578
df2d6f26 579 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 580 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 581
a11f7e63
MF
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
588 }
589 }
590
ccd979bd 591 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 594 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
595}
596
03f981cf
JB
597static int ocfs2_releasepage(struct page *page, gfp_t wait)
598{
03f981cf
JB
599 if (!page_has_buffers(page))
600 return 0;
41ecc345 601 return try_to_free_buffers(page);
03f981cf
JB
602}
603
ccd979bd
MF
604static ssize_t ocfs2_direct_IO(int rw,
605 struct kiocb *iocb,
606 const struct iovec *iov,
607 loff_t offset,
608 unsigned long nr_segs)
609{
610 struct file *file = iocb->ki_filp;
496ad9aa 611 struct inode *inode = file_inode(file)->i_mapping->host;
53013cba 612
6798d35a
MF
613 /*
614 * Fallback to buffered I/O if we see an inode without
615 * extents.
616 */
617 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618 return 0;
619
b80474b4
TM
620 /* Fallback to buffered I/O if we are appending. */
621 if (i_size_read(inode) <= offset)
622 return 0;
623
c1e8d35e
TM
624 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625 iov, offset, nr_segs,
626 ocfs2_direct_IO_get_blocks,
627 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
628}
629
9517bac6
MF
630static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631 u32 cpos,
632 unsigned int *start,
633 unsigned int *end)
634{
635 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
636
637 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638 unsigned int cpp;
639
640 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
641
642 cluster_start = cpos % cpp;
643 cluster_start = cluster_start << osb->s_clustersize_bits;
644
645 cluster_end = cluster_start + osb->s_clustersize;
646 }
647
648 BUG_ON(cluster_start > PAGE_SIZE);
649 BUG_ON(cluster_end > PAGE_SIZE);
650
651 if (start)
652 *start = cluster_start;
653 if (end)
654 *end = cluster_end;
655}
656
657/*
658 * 'from' and 'to' are the region in the page to avoid zeroing.
659 *
660 * If pagesize > clustersize, this function will avoid zeroing outside
661 * of the cluster boundary.
662 *
663 * from == to == 0 is code for "zero the entire cluster region"
664 */
665static void ocfs2_clear_page_regions(struct page *page,
666 struct ocfs2_super *osb, u32 cpos,
667 unsigned from, unsigned to)
668{
669 void *kaddr;
670 unsigned int cluster_start, cluster_end;
671
672 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
673
c4bc8dcb 674 kaddr = kmap_atomic(page);
9517bac6
MF
675
676 if (from || to) {
677 if (from > cluster_start)
678 memset(kaddr + cluster_start, 0, from - cluster_start);
679 if (to < cluster_end)
680 memset(kaddr + to, 0, cluster_end - to);
681 } else {
682 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
683 }
684
c4bc8dcb 685 kunmap_atomic(kaddr);
9517bac6
MF
686}
687
4e9563fd
MF
688/*
689 * Nonsparse file systems fully allocate before we get to the write
690 * code. This prevents ocfs2_write() from tagging the write as an
691 * allocating one, which means ocfs2_map_page_blocks() might try to
692 * read-in the blocks at the tail of our file. Avoid reading them by
693 * testing i_size against each block offset.
694 */
695static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696 unsigned int block_start)
697{
698 u64 offset = page_offset(page) + block_start;
699
700 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701 return 1;
702
703 if (i_size_read(inode) > offset)
704 return 1;
705
706 return 0;
707}
708
9517bac6 709/*
ebdec241 710 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
711 * mapping by now though, and the entire write will be allocating or
712 * it won't, so not much need to use BH_New.
713 *
714 * This will also skip zeroing, which is handled externally.
715 */
60b11392
MF
716int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717 struct inode *inode, unsigned int from,
718 unsigned int to, int new)
9517bac6
MF
719{
720 int ret = 0;
721 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722 unsigned int block_end, block_start;
723 unsigned int bsize = 1 << inode->i_blkbits;
724
725 if (!page_has_buffers(page))
726 create_empty_buffers(page, bsize, 0);
727
728 head = page_buffers(page);
729 for (bh = head, block_start = 0; bh != head || !block_start;
730 bh = bh->b_this_page, block_start += bsize) {
731 block_end = block_start + bsize;
732
3a307ffc
MF
733 clear_buffer_new(bh);
734
9517bac6
MF
735 /*
736 * Ignore blocks outside of our i/o range -
737 * they may belong to unallocated clusters.
738 */
60b11392 739 if (block_start >= to || block_end <= from) {
9517bac6
MF
740 if (PageUptodate(page))
741 set_buffer_uptodate(bh);
742 continue;
743 }
744
745 /*
746 * For an allocating write with cluster size >= page
747 * size, we always write the entire page.
748 */
3a307ffc
MF
749 if (new)
750 set_buffer_new(bh);
9517bac6
MF
751
752 if (!buffer_mapped(bh)) {
753 map_bh(bh, inode->i_sb, *p_blkno);
754 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
755 }
756
757 if (PageUptodate(page)) {
758 if (!buffer_uptodate(bh))
759 set_buffer_uptodate(bh);
760 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 761 !buffer_new(bh) &&
4e9563fd 762 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 763 (block_start < from || block_end > to)) {
9517bac6
MF
764 ll_rw_block(READ, 1, &bh);
765 *wait_bh++=bh;
766 }
767
768 *p_blkno = *p_blkno + 1;
769 }
770
771 /*
772 * If we issued read requests - let them complete.
773 */
774 while(wait_bh > wait) {
775 wait_on_buffer(*--wait_bh);
776 if (!buffer_uptodate(*wait_bh))
777 ret = -EIO;
778 }
779
780 if (ret == 0 || !new)
781 return ret;
782
783 /*
784 * If we get -EIO above, zero out any newly allocated blocks
785 * to avoid exposing stale data.
786 */
787 bh = head;
788 block_start = 0;
789 do {
9517bac6
MF
790 block_end = block_start + bsize;
791 if (block_end <= from)
792 goto next_bh;
793 if (block_start >= to)
794 break;
795
eebd2aa3 796 zero_user(page, block_start, bh->b_size);
9517bac6
MF
797 set_buffer_uptodate(bh);
798 mark_buffer_dirty(bh);
799
800next_bh:
801 block_start = block_end;
802 bh = bh->b_this_page;
803 } while (bh != head);
804
805 return ret;
806}
807
3a307ffc
MF
808#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809#define OCFS2_MAX_CTXT_PAGES 1
810#else
811#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812#endif
813
814#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
815
6af67d82 816/*
3a307ffc 817 * Describe the state of a single cluster to be written to.
6af67d82 818 */
3a307ffc
MF
819struct ocfs2_write_cluster_desc {
820 u32 c_cpos;
821 u32 c_phys;
822 /*
823 * Give this a unique field because c_phys eventually gets
824 * filled.
825 */
826 unsigned c_new;
b27b7cbc 827 unsigned c_unwritten;
e7432675 828 unsigned c_needs_zero;
3a307ffc 829};
6af67d82 830
3a307ffc
MF
831struct ocfs2_write_ctxt {
832 /* Logical cluster position / len of write */
833 u32 w_cpos;
834 u32 w_clen;
6af67d82 835
e7432675
SM
836 /* First cluster allocated in a nonsparse extend */
837 u32 w_first_new_cpos;
838
3a307ffc 839 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 840
3a307ffc
MF
841 /*
842 * This is true if page_size > cluster_size.
843 *
844 * It triggers a set of special cases during write which might
845 * have to deal with allocating writes to partial pages.
846 */
847 unsigned int w_large_pages;
6af67d82 848
3a307ffc
MF
849 /*
850 * Pages involved in this write.
851 *
852 * w_target_page is the page being written to by the user.
853 *
854 * w_pages is an array of pages which always contains
855 * w_target_page, and in the case of an allocating write with
856 * page_size < cluster size, it will contain zero'd and mapped
857 * pages adjacent to w_target_page which need to be written
858 * out in so that future reads from that region will get
859 * zero's.
860 */
3a307ffc 861 unsigned int w_num_pages;
83fd9c7f 862 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 863 struct page *w_target_page;
eeb47d12 864
5cffff9e
WW
865 /*
866 * w_target_locked is used for page_mkwrite path indicating no unlocking
867 * against w_target_page in ocfs2_write_end_nolock.
868 */
869 unsigned int w_target_locked:1;
870
3a307ffc
MF
871 /*
872 * ocfs2_write_end() uses this to know what the real range to
873 * write in the target should be.
874 */
875 unsigned int w_target_from;
876 unsigned int w_target_to;
877
878 /*
879 * We could use journal_current_handle() but this is cleaner,
880 * IMHO -Mark
881 */
882 handle_t *w_handle;
883
884 struct buffer_head *w_di_bh;
b27b7cbc
MF
885
886 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
887};
888
1d410a6e 889void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
890{
891 int i;
892
1d410a6e
MF
893 for(i = 0; i < num_pages; i++) {
894 if (pages[i]) {
895 unlock_page(pages[i]);
896 mark_page_accessed(pages[i]);
897 page_cache_release(pages[i]);
898 }
6af67d82 899 }
1d410a6e
MF
900}
901
902static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
903{
5cffff9e
WW
904 int i;
905
906 /*
907 * w_target_locked is only set to true in the page_mkwrite() case.
908 * The intent is to allow us to lock the target page from write_begin()
909 * to write_end(). The caller must hold a ref on w_target_page.
910 */
911 if (wc->w_target_locked) {
912 BUG_ON(!wc->w_target_page);
913 for (i = 0; i < wc->w_num_pages; i++) {
914 if (wc->w_target_page == wc->w_pages[i]) {
915 wc->w_pages[i] = NULL;
916 break;
917 }
918 }
919 mark_page_accessed(wc->w_target_page);
920 page_cache_release(wc->w_target_page);
921 }
1d410a6e 922 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 923
3a307ffc
MF
924 brelse(wc->w_di_bh);
925 kfree(wc);
926}
927
928static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
929 struct ocfs2_super *osb, loff_t pos,
607d44aa 930 unsigned len, struct buffer_head *di_bh)
3a307ffc 931{
30b8548f 932 u32 cend;
3a307ffc
MF
933 struct ocfs2_write_ctxt *wc;
934
935 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
936 if (!wc)
937 return -ENOMEM;
6af67d82 938
3a307ffc 939 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 940 wc->w_first_new_cpos = UINT_MAX;
30b8548f 941 cend = (pos + len - 1) >> osb->s_clustersize_bits;
942 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
943 get_bh(di_bh);
944 wc->w_di_bh = di_bh;
6af67d82 945
3a307ffc
MF
946 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
947 wc->w_large_pages = 1;
948 else
949 wc->w_large_pages = 0;
950
b27b7cbc
MF
951 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
952
3a307ffc 953 *wcp = wc;
6af67d82 954
3a307ffc 955 return 0;
6af67d82
MF
956}
957
9517bac6 958/*
3a307ffc
MF
959 * If a page has any new buffers, zero them out here, and mark them uptodate
960 * and dirty so they'll be written out (in order to prevent uninitialised
961 * block data from leaking). And clear the new bit.
9517bac6 962 */
3a307ffc 963static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 964{
3a307ffc
MF
965 unsigned int block_start, block_end;
966 struct buffer_head *head, *bh;
9517bac6 967
3a307ffc
MF
968 BUG_ON(!PageLocked(page));
969 if (!page_has_buffers(page))
970 return;
9517bac6 971
3a307ffc
MF
972 bh = head = page_buffers(page);
973 block_start = 0;
974 do {
975 block_end = block_start + bh->b_size;
976
977 if (buffer_new(bh)) {
978 if (block_end > from && block_start < to) {
979 if (!PageUptodate(page)) {
980 unsigned start, end;
3a307ffc
MF
981
982 start = max(from, block_start);
983 end = min(to, block_end);
984
eebd2aa3 985 zero_user_segment(page, start, end);
3a307ffc
MF
986 set_buffer_uptodate(bh);
987 }
988
989 clear_buffer_new(bh);
990 mark_buffer_dirty(bh);
991 }
992 }
9517bac6 993
3a307ffc
MF
994 block_start = block_end;
995 bh = bh->b_this_page;
996 } while (bh != head);
997}
998
999/*
1000 * Only called when we have a failure during allocating write to write
1001 * zero's to the newly allocated region.
1002 */
1003static void ocfs2_write_failure(struct inode *inode,
1004 struct ocfs2_write_ctxt *wc,
1005 loff_t user_pos, unsigned user_len)
1006{
1007 int i;
5c26a7b7
MF
1008 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1009 to = user_pos + user_len;
3a307ffc
MF
1010 struct page *tmppage;
1011
5c26a7b7 1012 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1013
3a307ffc
MF
1014 for(i = 0; i < wc->w_num_pages; i++) {
1015 tmppage = wc->w_pages[i];
9517bac6 1016
961cecbe 1017 if (page_has_buffers(tmppage)) {
53ef99ca 1018 if (ocfs2_should_order_data(inode))
2b4e30fb 1019 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1020
1021 block_commit_write(tmppage, from, to);
1022 }
9517bac6 1023 }
9517bac6
MF
1024}
1025
3a307ffc
MF
1026static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1027 struct ocfs2_write_ctxt *wc,
1028 struct page *page, u32 cpos,
1029 loff_t user_pos, unsigned user_len,
1030 int new)
9517bac6 1031{
3a307ffc
MF
1032 int ret;
1033 unsigned int map_from = 0, map_to = 0;
9517bac6 1034 unsigned int cluster_start, cluster_end;
3a307ffc 1035 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1036
3a307ffc 1037 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1038 &cluster_start, &cluster_end);
1039
272b62c1
GR
1040 /* treat the write as new if the a hole/lseek spanned across
1041 * the page boundary.
1042 */
1043 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1044 (page_offset(page) <= user_pos));
1045
3a307ffc
MF
1046 if (page == wc->w_target_page) {
1047 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1048 map_to = map_from + user_len;
1049
1050 if (new)
1051 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1052 cluster_start, cluster_end,
1053 new);
1054 else
1055 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1056 map_from, map_to, new);
1057 if (ret) {
9517bac6
MF
1058 mlog_errno(ret);
1059 goto out;
1060 }
1061
3a307ffc
MF
1062 user_data_from = map_from;
1063 user_data_to = map_to;
9517bac6 1064 if (new) {
3a307ffc
MF
1065 map_from = cluster_start;
1066 map_to = cluster_end;
9517bac6
MF
1067 }
1068 } else {
1069 /*
1070 * If we haven't allocated the new page yet, we
1071 * shouldn't be writing it out without copying user
1072 * data. This is likely a math error from the caller.
1073 */
1074 BUG_ON(!new);
1075
3a307ffc
MF
1076 map_from = cluster_start;
1077 map_to = cluster_end;
9517bac6
MF
1078
1079 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1080 cluster_start, cluster_end, new);
9517bac6
MF
1081 if (ret) {
1082 mlog_errno(ret);
1083 goto out;
1084 }
1085 }
1086
1087 /*
1088 * Parts of newly allocated pages need to be zero'd.
1089 *
1090 * Above, we have also rewritten 'to' and 'from' - as far as
1091 * the rest of the function is concerned, the entire cluster
1092 * range inside of a page needs to be written.
1093 *
1094 * We can skip this if the page is up to date - it's already
1095 * been zero'd from being read in as a hole.
1096 */
1097 if (new && !PageUptodate(page))
1098 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1099 cpos, user_data_from, user_data_to);
9517bac6
MF
1100
1101 flush_dcache_page(page);
1102
9517bac6 1103out:
3a307ffc 1104 return ret;
9517bac6
MF
1105}
1106
1107/*
3a307ffc 1108 * This function will only grab one clusters worth of pages.
9517bac6 1109 */
3a307ffc
MF
1110static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1111 struct ocfs2_write_ctxt *wc,
693c241a
JB
1112 u32 cpos, loff_t user_pos,
1113 unsigned user_len, int new,
7307de80 1114 struct page *mmap_page)
9517bac6 1115{
3a307ffc 1116 int ret = 0, i;
693c241a 1117 unsigned long start, target_index, end_index, index;
9517bac6 1118 struct inode *inode = mapping->host;
693c241a 1119 loff_t last_byte;
9517bac6 1120
3a307ffc 1121 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1122
1123 /*
1124 * Figure out how many pages we'll be manipulating here. For
60b11392 1125 * non allocating write, we just change the one
693c241a
JB
1126 * page. Otherwise, we'll need a whole clusters worth. If we're
1127 * writing past i_size, we only need enough pages to cover the
1128 * last page of the write.
9517bac6 1129 */
9517bac6 1130 if (new) {
3a307ffc
MF
1131 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1132 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1133 /*
1134 * We need the index *past* the last page we could possibly
1135 * touch. This is the page past the end of the write or
1136 * i_size, whichever is greater.
1137 */
1138 last_byte = max(user_pos + user_len, i_size_read(inode));
1139 BUG_ON(last_byte < 1);
1140 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1141 if ((start + wc->w_num_pages) > end_index)
1142 wc->w_num_pages = end_index - start;
9517bac6 1143 } else {
3a307ffc
MF
1144 wc->w_num_pages = 1;
1145 start = target_index;
9517bac6
MF
1146 }
1147
3a307ffc 1148 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1149 index = start + i;
1150
7307de80
MF
1151 if (index == target_index && mmap_page) {
1152 /*
1153 * ocfs2_pagemkwrite() is a little different
1154 * and wants us to directly use the page
1155 * passed in.
1156 */
1157 lock_page(mmap_page);
1158
5cffff9e 1159 /* Exit and let the caller retry */
7307de80 1160 if (mmap_page->mapping != mapping) {
5cffff9e 1161 WARN_ON(mmap_page->mapping);
7307de80 1162 unlock_page(mmap_page);
5cffff9e 1163 ret = -EAGAIN;
7307de80
MF
1164 goto out;
1165 }
1166
1167 page_cache_get(mmap_page);
1168 wc->w_pages[i] = mmap_page;
5cffff9e 1169 wc->w_target_locked = true;
7307de80
MF
1170 } else {
1171 wc->w_pages[i] = find_or_create_page(mapping, index,
1172 GFP_NOFS);
1173 if (!wc->w_pages[i]) {
1174 ret = -ENOMEM;
1175 mlog_errno(ret);
1176 goto out;
1177 }
9517bac6 1178 }
1269529b 1179 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1180
1181 if (index == target_index)
1182 wc->w_target_page = wc->w_pages[i];
9517bac6 1183 }
3a307ffc 1184out:
5cffff9e
WW
1185 if (ret)
1186 wc->w_target_locked = false;
3a307ffc
MF
1187 return ret;
1188}
1189
1190/*
1191 * Prepare a single cluster for write one cluster into the file.
1192 */
1193static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1194 u32 phys, unsigned int unwritten,
e7432675 1195 unsigned int should_zero,
b27b7cbc 1196 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1197 struct ocfs2_alloc_context *meta_ac,
1198 struct ocfs2_write_ctxt *wc, u32 cpos,
1199 loff_t user_pos, unsigned user_len)
1200{
e7432675 1201 int ret, i, new;
3a307ffc
MF
1202 u64 v_blkno, p_blkno;
1203 struct inode *inode = mapping->host;
f99b9b7c 1204 struct ocfs2_extent_tree et;
3a307ffc
MF
1205
1206 new = phys == 0 ? 1 : 0;
9517bac6 1207 if (new) {
3a307ffc
MF
1208 u32 tmp_pos;
1209
9517bac6
MF
1210 /*
1211 * This is safe to call with the page locks - it won't take
1212 * any additional semaphores or cluster locks.
1213 */
3a307ffc 1214 tmp_pos = cpos;
0eb8d47e
TM
1215 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1216 &tmp_pos, 1, 0, wc->w_di_bh,
1217 wc->w_handle, data_ac,
1218 meta_ac, NULL);
9517bac6
MF
1219 /*
1220 * This shouldn't happen because we must have already
1221 * calculated the correct meta data allocation required. The
1222 * internal tree allocation code should know how to increase
1223 * transaction credits itself.
1224 *
1225 * If need be, we could handle -EAGAIN for a
1226 * RESTART_TRANS here.
1227 */
1228 mlog_bug_on_msg(ret == -EAGAIN,
1229 "Inode %llu: EAGAIN return during allocation.\n",
1230 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1231 if (ret < 0) {
1232 mlog_errno(ret);
1233 goto out;
1234 }
b27b7cbc 1235 } else if (unwritten) {
5e404e9e
JB
1236 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1237 wc->w_di_bh);
f99b9b7c 1238 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1239 wc->w_handle, cpos, 1, phys,
f99b9b7c 1240 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1241 if (ret < 0) {
1242 mlog_errno(ret);
1243 goto out;
1244 }
1245 }
3a307ffc 1246
b27b7cbc 1247 if (should_zero)
3a307ffc 1248 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1249 else
3a307ffc 1250 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1251
3a307ffc
MF
1252 /*
1253 * The only reason this should fail is due to an inability to
1254 * find the extent added.
1255 */
49cb8d2d
MF
1256 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1257 NULL);
9517bac6 1258 if (ret < 0) {
3a307ffc
MF
1259 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1260 "at logical block %llu",
1261 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1262 (unsigned long long)v_blkno);
9517bac6
MF
1263 goto out;
1264 }
1265
1266 BUG_ON(p_blkno == 0);
1267
3a307ffc
MF
1268 for(i = 0; i < wc->w_num_pages; i++) {
1269 int tmpret;
9517bac6 1270
3a307ffc
MF
1271 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1272 wc->w_pages[i], cpos,
b27b7cbc
MF
1273 user_pos, user_len,
1274 should_zero);
3a307ffc
MF
1275 if (tmpret) {
1276 mlog_errno(tmpret);
1277 if (ret == 0)
cbfa9639 1278 ret = tmpret;
3a307ffc 1279 }
9517bac6
MF
1280 }
1281
3a307ffc
MF
1282 /*
1283 * We only have cleanup to do in case of allocating write.
1284 */
1285 if (ret && new)
1286 ocfs2_write_failure(inode, wc, user_pos, user_len);
1287
9517bac6 1288out:
9517bac6 1289
3a307ffc 1290 return ret;
9517bac6
MF
1291}
1292
0d172baa
MF
1293static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1294 struct ocfs2_alloc_context *data_ac,
1295 struct ocfs2_alloc_context *meta_ac,
1296 struct ocfs2_write_ctxt *wc,
1297 loff_t pos, unsigned len)
1298{
1299 int ret, i;
db56246c
MF
1300 loff_t cluster_off;
1301 unsigned int local_len = len;
0d172baa 1302 struct ocfs2_write_cluster_desc *desc;
db56246c 1303 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1304
1305 for (i = 0; i < wc->w_clen; i++) {
1306 desc = &wc->w_desc[i];
1307
db56246c
MF
1308 /*
1309 * We have to make sure that the total write passed in
1310 * doesn't extend past a single cluster.
1311 */
1312 local_len = len;
1313 cluster_off = pos & (osb->s_clustersize - 1);
1314 if ((cluster_off + local_len) > osb->s_clustersize)
1315 local_len = osb->s_clustersize - cluster_off;
1316
b27b7cbc 1317 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1318 desc->c_unwritten,
1319 desc->c_needs_zero,
1320 data_ac, meta_ac,
db56246c 1321 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1322 if (ret) {
1323 mlog_errno(ret);
1324 goto out;
1325 }
db56246c
MF
1326
1327 len -= local_len;
1328 pos += local_len;
0d172baa
MF
1329 }
1330
1331 ret = 0;
1332out:
1333 return ret;
1334}
1335
3a307ffc
MF
1336/*
1337 * ocfs2_write_end() wants to know which parts of the target page it
1338 * should complete the write on. It's easiest to compute them ahead of
1339 * time when a more complete view of the write is available.
1340 */
1341static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1342 struct ocfs2_write_ctxt *wc,
1343 loff_t pos, unsigned len, int alloc)
9517bac6 1344{
3a307ffc 1345 struct ocfs2_write_cluster_desc *desc;
9517bac6 1346
3a307ffc
MF
1347 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1348 wc->w_target_to = wc->w_target_from + len;
1349
1350 if (alloc == 0)
1351 return;
1352
1353 /*
1354 * Allocating write - we may have different boundaries based
1355 * on page size and cluster size.
1356 *
1357 * NOTE: We can no longer compute one value from the other as
1358 * the actual write length and user provided length may be
1359 * different.
1360 */
9517bac6 1361
3a307ffc
MF
1362 if (wc->w_large_pages) {
1363 /*
1364 * We only care about the 1st and last cluster within
b27b7cbc 1365 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1366 * value may be extended out to the start/end of a
1367 * newly allocated cluster.
1368 */
1369 desc = &wc->w_desc[0];
e7432675 1370 if (desc->c_needs_zero)
3a307ffc
MF
1371 ocfs2_figure_cluster_boundaries(osb,
1372 desc->c_cpos,
1373 &wc->w_target_from,
1374 NULL);
1375
1376 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1377 if (desc->c_needs_zero)
3a307ffc
MF
1378 ocfs2_figure_cluster_boundaries(osb,
1379 desc->c_cpos,
1380 NULL,
1381 &wc->w_target_to);
1382 } else {
1383 wc->w_target_from = 0;
1384 wc->w_target_to = PAGE_CACHE_SIZE;
1385 }
9517bac6
MF
1386}
1387
0d172baa
MF
1388/*
1389 * Populate each single-cluster write descriptor in the write context
1390 * with information about the i/o to be done.
b27b7cbc
MF
1391 *
1392 * Returns the number of clusters that will have to be allocated, as
1393 * well as a worst case estimate of the number of extent records that
1394 * would have to be created during a write to an unwritten region.
0d172baa
MF
1395 */
1396static int ocfs2_populate_write_desc(struct inode *inode,
1397 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1398 unsigned int *clusters_to_alloc,
1399 unsigned int *extents_to_split)
9517bac6 1400{
0d172baa 1401 int ret;
3a307ffc 1402 struct ocfs2_write_cluster_desc *desc;
0d172baa 1403 unsigned int num_clusters = 0;
b27b7cbc 1404 unsigned int ext_flags = 0;
0d172baa
MF
1405 u32 phys = 0;
1406 int i;
9517bac6 1407
b27b7cbc
MF
1408 *clusters_to_alloc = 0;
1409 *extents_to_split = 0;
1410
3a307ffc
MF
1411 for (i = 0; i < wc->w_clen; i++) {
1412 desc = &wc->w_desc[i];
1413 desc->c_cpos = wc->w_cpos + i;
1414
1415 if (num_clusters == 0) {
b27b7cbc
MF
1416 /*
1417 * Need to look up the next extent record.
1418 */
3a307ffc 1419 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1420 &num_clusters, &ext_flags);
3a307ffc
MF
1421 if (ret) {
1422 mlog_errno(ret);
607d44aa 1423 goto out;
3a307ffc 1424 }
b27b7cbc 1425
293b2f70
TM
1426 /* We should already CoW the refcountd extent. */
1427 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1428
b27b7cbc
MF
1429 /*
1430 * Assume worst case - that we're writing in
1431 * the middle of the extent.
1432 *
1433 * We can assume that the write proceeds from
1434 * left to right, in which case the extent
1435 * insert code is smart enough to coalesce the
1436 * next splits into the previous records created.
1437 */
1438 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1439 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1440 } else if (phys) {
1441 /*
1442 * Only increment phys if it doesn't describe
1443 * a hole.
1444 */
1445 phys++;
1446 }
1447
e7432675
SM
1448 /*
1449 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1450 * file that got extended. w_first_new_cpos tells us
1451 * where the newly allocated clusters are so we can
1452 * zero them.
1453 */
1454 if (desc->c_cpos >= wc->w_first_new_cpos) {
1455 BUG_ON(phys == 0);
1456 desc->c_needs_zero = 1;
1457 }
1458
3a307ffc
MF
1459 desc->c_phys = phys;
1460 if (phys == 0) {
1461 desc->c_new = 1;
e7432675 1462 desc->c_needs_zero = 1;
0d172baa 1463 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1464 }
e7432675
SM
1465
1466 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1467 desc->c_unwritten = 1;
e7432675
SM
1468 desc->c_needs_zero = 1;
1469 }
3a307ffc
MF
1470
1471 num_clusters--;
9517bac6
MF
1472 }
1473
0d172baa
MF
1474 ret = 0;
1475out:
1476 return ret;
1477}
1478
1afc32b9
MF
1479static int ocfs2_write_begin_inline(struct address_space *mapping,
1480 struct inode *inode,
1481 struct ocfs2_write_ctxt *wc)
1482{
1483 int ret;
1484 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1485 struct page *page;
1486 handle_t *handle;
1487 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1488
1489 page = find_or_create_page(mapping, 0, GFP_NOFS);
1490 if (!page) {
1491 ret = -ENOMEM;
1492 mlog_errno(ret);
1493 goto out;
1494 }
1495 /*
1496 * If we don't set w_num_pages then this page won't get unlocked
1497 * and freed on cleanup of the write context.
1498 */
1499 wc->w_pages[0] = wc->w_target_page = page;
1500 wc->w_num_pages = 1;
1501
1502 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1503 if (IS_ERR(handle)) {
1504 ret = PTR_ERR(handle);
1505 mlog_errno(ret);
1506 goto out;
1507 }
1508
0cf2f763 1509 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1510 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1511 if (ret) {
1512 ocfs2_commit_trans(osb, handle);
1513
1514 mlog_errno(ret);
1515 goto out;
1516 }
1517
1518 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1519 ocfs2_set_inode_data_inline(inode, di);
1520
1521 if (!PageUptodate(page)) {
1522 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1523 if (ret) {
1524 ocfs2_commit_trans(osb, handle);
1525
1526 goto out;
1527 }
1528 }
1529
1530 wc->w_handle = handle;
1531out:
1532 return ret;
1533}
1534
1535int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1536{
1537 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1538
0d8a4e0c 1539 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1540 return 1;
1541 return 0;
1542}
1543
1544static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1545 struct inode *inode, loff_t pos,
1546 unsigned len, struct page *mmap_page,
1547 struct ocfs2_write_ctxt *wc)
1548{
1549 int ret, written = 0;
1550 loff_t end = pos + len;
1551 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1552 struct ocfs2_dinode *di = NULL;
1afc32b9 1553
9558156b
TM
1554 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1555 len, (unsigned long long)pos,
1556 oi->ip_dyn_features);
1afc32b9
MF
1557
1558 /*
1559 * Handle inodes which already have inline data 1st.
1560 */
1561 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1562 if (mmap_page == NULL &&
1563 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1564 goto do_inline_write;
1565
1566 /*
1567 * The write won't fit - we have to give this inode an
1568 * inline extent list now.
1569 */
1570 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1571 if (ret)
1572 mlog_errno(ret);
1573 goto out;
1574 }
1575
1576 /*
1577 * Check whether the inode can accept inline data.
1578 */
1579 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1580 return 0;
1581
1582 /*
1583 * Check whether the write can fit.
1584 */
d9ae49d6
TY
1585 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1586 if (mmap_page ||
1587 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1588 return 0;
1589
1590do_inline_write:
1591 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1592 if (ret) {
1593 mlog_errno(ret);
1594 goto out;
1595 }
1596
1597 /*
1598 * This signals to the caller that the data can be written
1599 * inline.
1600 */
1601 written = 1;
1602out:
1603 return written ? written : ret;
1604}
1605
65ed39d6
MF
1606/*
1607 * This function only does anything for file systems which can't
1608 * handle sparse files.
1609 *
1610 * What we want to do here is fill in any hole between the current end
1611 * of allocation and the end of our write. That way the rest of the
1612 * write path can treat it as an non-allocating write, which has no
1613 * special case code for sparse/nonsparse files.
1614 */
5693486b
JB
1615static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1616 struct buffer_head *di_bh,
1617 loff_t pos, unsigned len,
65ed39d6
MF
1618 struct ocfs2_write_ctxt *wc)
1619{
1620 int ret;
65ed39d6
MF
1621 loff_t newsize = pos + len;
1622
5693486b 1623 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1624
1625 if (newsize <= i_size_read(inode))
1626 return 0;
1627
5693486b 1628 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1629 if (ret)
1630 mlog_errno(ret);
1631
e7432675
SM
1632 wc->w_first_new_cpos =
1633 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1634
65ed39d6
MF
1635 return ret;
1636}
1637
5693486b
JB
1638static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1639 loff_t pos)
1640{
1641 int ret = 0;
1642
1643 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644 if (pos > i_size_read(inode))
1645 ret = ocfs2_zero_extend(inode, di_bh, pos);
1646
1647 return ret;
1648}
1649
50308d81
TM
1650/*
1651 * Try to flush truncate logs if we can free enough clusters from it.
1652 * As for return value, "< 0" means error, "0" no space and "1" means
1653 * we have freed enough spaces and let the caller try to allocate again.
1654 */
1655static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1656 unsigned int needed)
1657{
1658 tid_t target;
1659 int ret = 0;
1660 unsigned int truncated_clusters;
1661
1662 mutex_lock(&osb->osb_tl_inode->i_mutex);
1663 truncated_clusters = osb->truncated_clusters;
1664 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1665
1666 /*
1667 * Check whether we can succeed in allocating if we free
1668 * the truncate log.
1669 */
1670 if (truncated_clusters < needed)
1671 goto out;
1672
1673 ret = ocfs2_flush_truncate_log(osb);
1674 if (ret) {
1675 mlog_errno(ret);
1676 goto out;
1677 }
1678
1679 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1680 jbd2_log_wait_commit(osb->journal->j_journal, target);
1681 ret = 1;
1682 }
1683out:
1684 return ret;
1685}
1686
0378da0f
TM
1687int ocfs2_write_begin_nolock(struct file *filp,
1688 struct address_space *mapping,
0d172baa
MF
1689 loff_t pos, unsigned len, unsigned flags,
1690 struct page **pagep, void **fsdata,
1691 struct buffer_head *di_bh, struct page *mmap_page)
1692{
e7432675 1693 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1694 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1695 struct ocfs2_write_ctxt *wc;
1696 struct inode *inode = mapping->host;
1697 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1698 struct ocfs2_dinode *di;
1699 struct ocfs2_alloc_context *data_ac = NULL;
1700 struct ocfs2_alloc_context *meta_ac = NULL;
1701 handle_t *handle;
f99b9b7c 1702 struct ocfs2_extent_tree et;
50308d81 1703 int try_free = 1, ret1;
0d172baa 1704
50308d81 1705try_again:
0d172baa
MF
1706 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1707 if (ret) {
1708 mlog_errno(ret);
1709 return ret;
1710 }
1711
1afc32b9
MF
1712 if (ocfs2_supports_inline_data(osb)) {
1713 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1714 mmap_page, wc);
1715 if (ret == 1) {
1716 ret = 0;
1717 goto success;
1718 }
1719 if (ret < 0) {
1720 mlog_errno(ret);
1721 goto out;
1722 }
1723 }
1724
5693486b
JB
1725 if (ocfs2_sparse_alloc(osb))
1726 ret = ocfs2_zero_tail(inode, di_bh, pos);
1727 else
1728 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1729 wc);
65ed39d6
MF
1730 if (ret) {
1731 mlog_errno(ret);
1732 goto out;
1733 }
1734
293b2f70
TM
1735 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1736 if (ret < 0) {
1737 mlog_errno(ret);
1738 goto out;
1739 } else if (ret == 1) {
50308d81 1740 clusters_need = wc->w_clen;
c7dd3392 1741 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1742 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1743 if (ret) {
1744 mlog_errno(ret);
1745 goto out;
1746 }
1747 }
1748
b27b7cbc
MF
1749 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1750 &extents_to_split);
0d172baa
MF
1751 if (ret) {
1752 mlog_errno(ret);
1753 goto out;
1754 }
50308d81 1755 clusters_need += clusters_to_alloc;
0d172baa
MF
1756
1757 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1758
9558156b
TM
1759 trace_ocfs2_write_begin_nolock(
1760 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1761 (long long)i_size_read(inode),
1762 le32_to_cpu(di->i_clusters),
1763 pos, len, flags, mmap_page,
1764 clusters_to_alloc, extents_to_split);
1765
3a307ffc
MF
1766 /*
1767 * We set w_target_from, w_target_to here so that
1768 * ocfs2_write_end() knows which range in the target page to
1769 * write out. An allocation requires that we write the entire
1770 * cluster range.
1771 */
b27b7cbc 1772 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1773 /*
1774 * XXX: We are stretching the limits of
b27b7cbc 1775 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1776 * the work to be done.
1777 */
5e404e9e
JB
1778 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1779 wc->w_di_bh);
f99b9b7c 1780 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1781 clusters_to_alloc, extents_to_split,
f99b9b7c 1782 &data_ac, &meta_ac);
9517bac6
MF
1783 if (ret) {
1784 mlog_errno(ret);
607d44aa 1785 goto out;
9517bac6
MF
1786 }
1787
4fe370af
MF
1788 if (data_ac)
1789 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1790
811f933d 1791 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 1792 &di->id2.i_list);
3a307ffc 1793
9517bac6
MF
1794 }
1795
e7432675
SM
1796 /*
1797 * We have to zero sparse allocated clusters, unwritten extent clusters,
1798 * and non-sparse clusters we just extended. For non-sparse writes,
1799 * we know zeros will only be needed in the first and/or last cluster.
1800 */
1801 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1802 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1803 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1804 cluster_of_pages = 1;
1805 else
1806 cluster_of_pages = 0;
1807
1808 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1809
9517bac6
MF
1810 handle = ocfs2_start_trans(osb, credits);
1811 if (IS_ERR(handle)) {
1812 ret = PTR_ERR(handle);
1813 mlog_errno(ret);
607d44aa 1814 goto out;
9517bac6
MF
1815 }
1816
3a307ffc
MF
1817 wc->w_handle = handle;
1818
5dd4056d
CH
1819 if (clusters_to_alloc) {
1820 ret = dquot_alloc_space_nodirty(inode,
1821 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1822 if (ret)
1823 goto out_commit;
a90714c1 1824 }
3a307ffc
MF
1825 /*
1826 * We don't want this to fail in ocfs2_write_end(), so do it
1827 * here.
1828 */
0cf2f763 1829 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1830 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1831 if (ret) {
9517bac6 1832 mlog_errno(ret);
a90714c1 1833 goto out_quota;
9517bac6
MF
1834 }
1835
3a307ffc
MF
1836 /*
1837 * Fill our page array first. That way we've grabbed enough so
1838 * that we can zero and flush if we error after adding the
1839 * extent.
1840 */
693c241a 1841 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1842 cluster_of_pages, mmap_page);
5cffff9e 1843 if (ret && ret != -EAGAIN) {
9517bac6 1844 mlog_errno(ret);
a90714c1 1845 goto out_quota;
9517bac6
MF
1846 }
1847
5cffff9e
WW
1848 /*
1849 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1850 * the target page. In this case, we exit with no error and no target
1851 * page. This will trigger the caller, page_mkwrite(), to re-try
1852 * the operation.
1853 */
1854 if (ret == -EAGAIN) {
1855 BUG_ON(wc->w_target_page);
1856 ret = 0;
1857 goto out_quota;
1858 }
1859
0d172baa
MF
1860 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1861 len);
1862 if (ret) {
1863 mlog_errno(ret);
a90714c1 1864 goto out_quota;
9517bac6 1865 }
9517bac6 1866
3a307ffc
MF
1867 if (data_ac)
1868 ocfs2_free_alloc_context(data_ac);
1869 if (meta_ac)
1870 ocfs2_free_alloc_context(meta_ac);
9517bac6 1871
1afc32b9 1872success:
3a307ffc
MF
1873 *pagep = wc->w_target_page;
1874 *fsdata = wc;
1875 return 0;
a90714c1
JK
1876out_quota:
1877 if (clusters_to_alloc)
5dd4056d 1878 dquot_free_space(inode,
a90714c1 1879 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1880out_commit:
1881 ocfs2_commit_trans(osb, handle);
1882
9517bac6 1883out:
3a307ffc
MF
1884 ocfs2_free_write_ctxt(wc);
1885
b1214e47 1886 if (data_ac) {
9517bac6 1887 ocfs2_free_alloc_context(data_ac);
b1214e47
X
1888 data_ac = NULL;
1889 }
1890 if (meta_ac) {
9517bac6 1891 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
1892 meta_ac = NULL;
1893 }
50308d81
TM
1894
1895 if (ret == -ENOSPC && try_free) {
1896 /*
1897 * Try to free some truncate log so that we can have enough
1898 * clusters to allocate.
1899 */
1900 try_free = 0;
1901
1902 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1903 if (ret1 == 1)
1904 goto try_again;
1905
1906 if (ret1 < 0)
1907 mlog_errno(ret1);
1908 }
1909
3a307ffc
MF
1910 return ret;
1911}
1912
b6af1bcd
NP
1913static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1914 loff_t pos, unsigned len, unsigned flags,
1915 struct page **pagep, void **fsdata)
607d44aa
MF
1916{
1917 int ret;
1918 struct buffer_head *di_bh = NULL;
1919 struct inode *inode = mapping->host;
1920
e63aecb6 1921 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1922 if (ret) {
1923 mlog_errno(ret);
1924 return ret;
1925 }
1926
1927 /*
1928 * Take alloc sem here to prevent concurrent lookups. That way
1929 * the mapping, zeroing and tree manipulation within
1930 * ocfs2_write() will be safe against ->readpage(). This
1931 * should also serve to lock out allocation from a shared
1932 * writeable region.
1933 */
1934 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1935
0378da0f 1936 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1937 fsdata, di_bh, NULL);
607d44aa
MF
1938 if (ret) {
1939 mlog_errno(ret);
c934a92d 1940 goto out_fail;
607d44aa
MF
1941 }
1942
1943 brelse(di_bh);
1944
1945 return 0;
1946
607d44aa
MF
1947out_fail:
1948 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1949
1950 brelse(di_bh);
e63aecb6 1951 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1952
1953 return ret;
1954}
1955
1afc32b9
MF
1956static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1957 unsigned len, unsigned *copied,
1958 struct ocfs2_dinode *di,
1959 struct ocfs2_write_ctxt *wc)
1960{
1961 void *kaddr;
1962
1963 if (unlikely(*copied < len)) {
1964 if (!PageUptodate(wc->w_target_page)) {
1965 *copied = 0;
1966 return;
1967 }
1968 }
1969
c4bc8dcb 1970 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1971 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1972 kunmap_atomic(kaddr);
1afc32b9 1973
9558156b
TM
1974 trace_ocfs2_write_end_inline(
1975 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1976 (unsigned long long)pos, *copied,
1977 le16_to_cpu(di->id2.i_data.id_count),
1978 le16_to_cpu(di->i_dyn_features));
1979}
1980
7307de80
MF
1981int ocfs2_write_end_nolock(struct address_space *mapping,
1982 loff_t pos, unsigned len, unsigned copied,
1983 struct page *page, void *fsdata)
3a307ffc
MF
1984{
1985 int i;
1986 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1987 struct inode *inode = mapping->host;
1988 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1989 struct ocfs2_write_ctxt *wc = fsdata;
1990 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1991 handle_t *handle = wc->w_handle;
1992 struct page *tmppage;
1993
1afc32b9
MF
1994 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1995 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1996 goto out_write_size;
1997 }
1998
3a307ffc
MF
1999 if (unlikely(copied < len)) {
2000 if (!PageUptodate(wc->w_target_page))
2001 copied = 0;
2002
2003 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2004 start+len);
2005 }
2006 flush_dcache_page(wc->w_target_page);
2007
2008 for(i = 0; i < wc->w_num_pages; i++) {
2009 tmppage = wc->w_pages[i];
2010
2011 if (tmppage == wc->w_target_page) {
2012 from = wc->w_target_from;
2013 to = wc->w_target_to;
2014
2015 BUG_ON(from > PAGE_CACHE_SIZE ||
2016 to > PAGE_CACHE_SIZE ||
2017 to < from);
2018 } else {
2019 /*
2020 * Pages adjacent to the target (if any) imply
2021 * a hole-filling write in which case we want
2022 * to flush their entire range.
2023 */
2024 from = 0;
2025 to = PAGE_CACHE_SIZE;
2026 }
2027
961cecbe 2028 if (page_has_buffers(tmppage)) {
53ef99ca 2029 if (ocfs2_should_order_data(inode))
2b4e30fb 2030 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2031 block_commit_write(tmppage, from, to);
2032 }
3a307ffc
MF
2033 }
2034
1afc32b9 2035out_write_size:
3a307ffc 2036 pos += copied;
f17c20dd 2037 if (pos > i_size_read(inode)) {
3a307ffc
MF
2038 i_size_write(inode, pos);
2039 mark_inode_dirty(inode);
2040 }
2041 inode->i_blocks = ocfs2_inode_sector_count(inode);
2042 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2043 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2044 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2045 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2046 ocfs2_journal_dirty(handle, wc->w_di_bh);
2047
2048 ocfs2_commit_trans(osb, handle);
59a5e416 2049
b27b7cbc
MF
2050 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2051
607d44aa
MF
2052 ocfs2_free_write_ctxt(wc);
2053
2054 return copied;
2055}
2056
b6af1bcd
NP
2057static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2058 loff_t pos, unsigned len, unsigned copied,
2059 struct page *page, void *fsdata)
607d44aa
MF
2060{
2061 int ret;
2062 struct inode *inode = mapping->host;
2063
2064 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2065
3a307ffc 2066 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2067 ocfs2_inode_unlock(inode, 1);
9517bac6 2068
607d44aa 2069 return ret;
9517bac6
MF
2070}
2071
f5e54d6e 2072const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2073 .readpage = ocfs2_readpage,
2074 .readpages = ocfs2_readpages,
2075 .writepage = ocfs2_writepage,
2076 .write_begin = ocfs2_write_begin,
2077 .write_end = ocfs2_write_end,
2078 .bmap = ocfs2_bmap,
1fca3a05 2079 .direct_IO = ocfs2_direct_IO,
41ecc345 2080 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2081 .releasepage = ocfs2_releasepage,
2082 .migratepage = buffer_migrate_page,
2083 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2084 .error_remove_page = generic_error_remove_page,
ccd979bd 2085};