ocfs2: Add the 'inode64' mount option.
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
ccd979bd
MF
30
31#define MLOG_MASK_PREFIX ML_FILE_IO
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
46
47#include "buffer_head_io.h"
48
49static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 struct buffer_head *bh_result, int create)
51{
52 int err = -EIO;
53 int status;
54 struct ocfs2_dinode *fe = NULL;
55 struct buffer_head *bh = NULL;
56 struct buffer_head *buffer_cache_bh = NULL;
57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 void *kaddr;
59
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 (unsigned long long)iblock, bh_result, create);
62
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock);
68 goto bail;
69 }
70
71 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
72 OCFS2_I(inode)->ip_blkno,
73 &bh, OCFS2_BH_CACHED, inode);
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
77 }
78 fe = (struct ocfs2_dinode *) bh->b_data;
79
80 if (!OCFS2_IS_VALID_DINODE(fe)) {
b0697053 81 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
1ca1a111
MF
82 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
83 fe->i_signature);
ccd979bd
MF
84 goto bail;
85 }
86
87 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
88 le32_to_cpu(fe->i_clusters))) {
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
101 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 goto bail;
103 }
104
105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh)
110 && ocfs2_inode_is_new(inode)) {
111 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112 if (!kaddr) {
113 mlog(ML_ERROR, "couldn't kmap!\n");
114 goto bail;
115 }
116 memcpy(kaddr + (bh_result->b_size * iblock),
117 buffer_cache_bh->b_data,
118 bh_result->b_size);
119 kunmap_atomic(kaddr, KM_USER0);
120 set_buffer_uptodate(bh_result);
121 }
122 brelse(buffer_cache_bh);
123 }
124
125 map_bh(bh_result, inode->i_sb,
126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128 err = 0;
129
130bail:
131 if (bh)
132 brelse(bh);
133
134 mlog_exit(err);
135 return err;
136}
137
138static int ocfs2_get_block(struct inode *inode, sector_t iblock,
139 struct buffer_head *bh_result, int create)
140{
141 int err = 0;
49cb8d2d 142 unsigned int ext_flags;
628a24f5
MF
143 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
144 u64 p_blkno, count, past_eof;
25baf2da 145 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
146
147 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
148 (unsigned long long)iblock, bh_result, create);
149
150 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
151 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
152 inode, inode->i_ino);
153
154 if (S_ISLNK(inode->i_mode)) {
155 /* this always does I/O for some reason. */
156 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157 goto bail;
158 }
159
628a24f5 160 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 161 &ext_flags);
ccd979bd
MF
162 if (err) {
163 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
164 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
165 (unsigned long long)p_blkno);
ccd979bd
MF
166 goto bail;
167 }
168
628a24f5
MF
169 if (max_blocks < count)
170 count = max_blocks;
171
25baf2da
MF
172 /*
173 * ocfs2 never allocates in this function - the only time we
174 * need to use BH_New is when we're extending i_size on a file
175 * system which doesn't support holes, in which case BH_New
176 * allows block_prepare_write() to zero.
c0420ad2
CL
177 *
178 * If we see this on a sparse file system, then a truncate has
179 * raced us and removed the cluster. In this case, we clear
180 * the buffers dirty and uptodate bits and let the buffer code
181 * ignore it as a hole.
25baf2da 182 */
c0420ad2
CL
183 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
184 clear_buffer_dirty(bh_result);
185 clear_buffer_uptodate(bh_result);
186 goto bail;
187 }
25baf2da 188
49cb8d2d
MF
189 /* Treat the unwritten extent as a hole for zeroing purposes. */
190 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
191 map_bh(bh_result, inode->i_sb, p_blkno);
192
628a24f5
MF
193 bh_result->b_size = count << inode->i_blkbits;
194
25baf2da
MF
195 if (!ocfs2_sparse_alloc(osb)) {
196 if (p_blkno == 0) {
197 err = -EIO;
198 mlog(ML_ERROR,
199 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
200 (unsigned long long)iblock,
201 (unsigned long long)p_blkno,
202 (unsigned long long)OCFS2_I(inode)->ip_blkno);
203 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
204 dump_stack();
205 }
ccd979bd 206
25baf2da
MF
207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
209 (unsigned long long)past_eof);
ccd979bd 210
25baf2da
MF
211 if (create && (iblock >= past_eof))
212 set_buffer_new(bh_result);
213 }
ccd979bd
MF
214
215bail:
216 if (err < 0)
217 err = -EIO;
218
219 mlog_exit(err);
220 return err;
221}
222
1afc32b9
MF
223int ocfs2_read_inline_data(struct inode *inode, struct page *page,
224 struct buffer_head *di_bh)
6798d35a
MF
225{
226 void *kaddr;
d2849fb2 227 loff_t size;
6798d35a
MF
228 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
229
230 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
231 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
232 (unsigned long long)OCFS2_I(inode)->ip_blkno);
233 return -EROFS;
234 }
235
236 size = i_size_read(inode);
237
238 if (size > PAGE_CACHE_SIZE ||
239 size > ocfs2_max_inline_data(inode->i_sb)) {
240 ocfs2_error(inode->i_sb,
d2849fb2
JK
241 "Inode %llu has with inline data has bad size: %Lu",
242 (unsigned long long)OCFS2_I(inode)->ip_blkno,
243 (unsigned long long)size);
6798d35a
MF
244 return -EROFS;
245 }
246
247 kaddr = kmap_atomic(page, KM_USER0);
248 if (size)
249 memcpy(kaddr, di->id2.i_data.id_data, size);
250 /* Clear the remaining part of the page */
251 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
252 flush_dcache_page(page);
253 kunmap_atomic(kaddr, KM_USER0);
254
255 SetPageUptodate(page);
256
257 return 0;
258}
259
260static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
261{
262 int ret;
263 struct buffer_head *di_bh = NULL;
264 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
265
266 BUG_ON(!PageLocked(page));
86c838b0 267 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a
MF
268
269 ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
270 OCFS2_BH_CACHED, inode);
271 if (ret) {
272 mlog_errno(ret);
273 goto out;
274 }
275
276 ret = ocfs2_read_inline_data(inode, page, di_bh);
277out:
278 unlock_page(page);
279
280 brelse(di_bh);
281 return ret;
282}
283
ccd979bd
MF
284static int ocfs2_readpage(struct file *file, struct page *page)
285{
286 struct inode *inode = page->mapping->host;
6798d35a 287 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
288 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
289 int ret, unlock = 1;
290
291 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
292
e63aecb6 293 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
294 if (ret != 0) {
295 if (ret == AOP_TRUNCATED_PAGE)
296 unlock = 0;
297 mlog_errno(ret);
298 goto out;
299 }
300
6798d35a 301 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 302 ret = AOP_TRUNCATED_PAGE;
e63aecb6 303 goto out_inode_unlock;
e9dfc0b2 304 }
ccd979bd
MF
305
306 /*
307 * i_size might have just been updated as we grabed the meta lock. We
308 * might now be discovering a truncate that hit on another node.
309 * block_read_full_page->get_block freaks out if it is asked to read
310 * beyond the end of a file, so we check here. Callers
54cb8821 311 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
312 * and notice that the page they just read isn't needed.
313 *
314 * XXX sys_readahead() seems to get that wrong?
315 */
316 if (start >= i_size_read(inode)) {
eebd2aa3 317 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
318 SetPageUptodate(page);
319 ret = 0;
320 goto out_alloc;
321 }
322
6798d35a
MF
323 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
324 ret = ocfs2_readpage_inline(inode, page);
325 else
326 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
327 unlock = 0;
328
ccd979bd
MF
329out_alloc:
330 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
331out_inode_unlock:
332 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
333out:
334 if (unlock)
335 unlock_page(page);
336 mlog_exit(ret);
337 return ret;
338}
339
628a24f5
MF
340/*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
349static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
351{
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
357
358 /*
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
361 */
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
365
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
369 }
370
371 /*
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
374 */
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
377
378 /*
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
381 */
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
386
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
392
393 return err;
394}
395
ccd979bd
MF
396/* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
400 *
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
406 */
407static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408{
409 int ret;
410
411 mlog_entry("(0x%p)\n", page);
412
413 ret = block_write_full_page(page, ocfs2_get_block, wbc);
414
415 mlog_exit(ret);
416
417 return ret;
418}
419
5069120b
MF
420/*
421 * This is called from ocfs2_write_zero_page() which has handled it's
422 * own cluster locking and has ensured allocation exists for those
423 * blocks to be written.
424 */
53013cba
MF
425int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
426 unsigned from, unsigned to)
427{
428 int ret;
429
53013cba
MF
430 ret = block_prepare_write(page, from, to, ocfs2_get_block);
431
53013cba
MF
432 return ret;
433}
434
ccd979bd
MF
435/* Taken from ext3. We don't necessarily need the full blown
436 * functionality yet, but IMHO it's better to cut and paste the whole
437 * thing so we can avoid introducing our own bugs (and easily pick up
438 * their fixes when they happen) --Mark */
60b11392
MF
439int walk_page_buffers( handle_t *handle,
440 struct buffer_head *head,
441 unsigned from,
442 unsigned to,
443 int *partial,
444 int (*fn)( handle_t *handle,
445 struct buffer_head *bh))
ccd979bd
MF
446{
447 struct buffer_head *bh;
448 unsigned block_start, block_end;
449 unsigned blocksize = head->b_size;
450 int err, ret = 0;
451 struct buffer_head *next;
452
453 for ( bh = head, block_start = 0;
454 ret == 0 && (bh != head || !block_start);
455 block_start = block_end, bh = next)
456 {
457 next = bh->b_this_page;
458 block_end = block_start + blocksize;
459 if (block_end <= from || block_start >= to) {
460 if (partial && !buffer_uptodate(bh))
461 *partial = 1;
462 continue;
463 }
464 err = (*fn)(handle, bh);
465 if (!ret)
466 ret = err;
467 }
468 return ret;
469}
470
1fabe148 471handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
472 struct page *page,
473 unsigned from,
474 unsigned to)
475{
476 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58dadcdb 477 handle_t *handle;
ccd979bd
MF
478 int ret = 0;
479
65eff9cc 480 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
58dadcdb 481 if (IS_ERR(handle)) {
ccd979bd
MF
482 ret = -ENOMEM;
483 mlog_errno(ret);
484 goto out;
485 }
486
487 if (ocfs2_should_order_data(inode)) {
1fabe148 488 ret = walk_page_buffers(handle,
ccd979bd
MF
489 page_buffers(page),
490 from, to, NULL,
491 ocfs2_journal_dirty_data);
492 if (ret < 0)
493 mlog_errno(ret);
494 }
495out:
496 if (ret) {
58dadcdb 497 if (!IS_ERR(handle))
02dc1af4 498 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
499 handle = ERR_PTR(ret);
500 }
501 return handle;
502}
503
ccd979bd
MF
504static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
505{
506 sector_t status;
507 u64 p_blkno = 0;
508 int err = 0;
509 struct inode *inode = mapping->host;
510
511 mlog_entry("(block = %llu)\n", (unsigned long long)block);
512
513 /* We don't need to lock journal system files, since they aren't
514 * accessed concurrently from multiple nodes.
515 */
516 if (!INODE_JOURNAL(inode)) {
e63aecb6 517 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
518 if (err) {
519 if (err != -ENOENT)
520 mlog_errno(err);
521 goto bail;
522 }
523 down_read(&OCFS2_I(inode)->ip_alloc_sem);
524 }
525
6798d35a
MF
526 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
527 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
528 NULL);
ccd979bd
MF
529
530 if (!INODE_JOURNAL(inode)) {
531 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 532 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
533 }
534
535 if (err) {
536 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
537 (unsigned long long)block);
538 mlog_errno(err);
539 goto bail;
540 }
541
ccd979bd
MF
542bail:
543 status = err ? 0 : p_blkno;
544
545 mlog_exit((int)status);
546
547 return status;
548}
549
550/*
551 * TODO: Make this into a generic get_blocks function.
552 *
553 * From do_direct_io in direct-io.c:
554 * "So what we do is to permit the ->get_blocks function to populate
555 * bh.b_size with the size of IO which is permitted at this offset and
556 * this i_blkbits."
557 *
558 * This function is called directly from get_more_blocks in direct-io.c.
559 *
560 * called like this: dio->get_blocks(dio->inode, fs_startblk,
561 * fs_count, map_bh, dio->rw == WRITE);
562 */
563static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
564 struct buffer_head *bh_result, int create)
565{
566 int ret;
4f902c37 567 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 568 unsigned int ext_flags;
184d7d20 569 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 570 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 571
ccd979bd
MF
572 /* This function won't even be called if the request isn't all
573 * nicely aligned and of the right size, so there's no need
574 * for us to check any of that. */
575
25baf2da 576 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
577
578 /*
579 * Any write past EOF is not allowed because we'd be extending.
580 */
581 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
582 ret = -EIO;
583 goto bail;
584 }
ccd979bd
MF
585
586 /* This figures out the size of the next contiguous block, and
587 * our logical offset */
363041a5 588 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 589 &contig_blocks, &ext_flags);
ccd979bd
MF
590 if (ret) {
591 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
592 (unsigned long long)iblock);
593 ret = -EIO;
594 goto bail;
595 }
596
0e116227 597 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
25baf2da
MF
598 ocfs2_error(inode->i_sb,
599 "Inode %llu has a hole at block %llu\n",
600 (unsigned long long)OCFS2_I(inode)->ip_blkno,
601 (unsigned long long)iblock);
602 ret = -EROFS;
603 goto bail;
604 }
605
606 /*
607 * get_more_blocks() expects us to describe a hole by clearing
608 * the mapped bit on bh_result().
49cb8d2d
MF
609 *
610 * Consider an unwritten extent as a hole.
25baf2da 611 */
49cb8d2d 612 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
613 map_bh(bh_result, inode->i_sb, p_blkno);
614 else {
615 /*
616 * ocfs2_prepare_inode_for_write() should have caught
617 * the case where we'd be filling a hole and triggered
618 * a buffered write instead.
619 */
620 if (create) {
621 ret = -EIO;
622 mlog_errno(ret);
623 goto bail;
624 }
625
626 clear_buffer_mapped(bh_result);
627 }
ccd979bd
MF
628
629 /* make sure we don't map more than max_blocks blocks here as
630 that's all the kernel will handle at this point. */
631 if (max_blocks < contig_blocks)
632 contig_blocks = max_blocks;
633 bh_result->b_size = contig_blocks << blocksize_bits;
634bail:
635 return ret;
636}
637
638/*
639 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
640 * particularly interested in the aio/dio case. Like the core uses
641 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
642 * truncation on another.
643 */
644static void ocfs2_dio_end_io(struct kiocb *iocb,
645 loff_t offset,
646 ssize_t bytes,
647 void *private)
648{
d28c9174 649 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 650 int level;
ccd979bd
MF
651
652 /* this io's submitter should not have unlocked this before we could */
653 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 654
ccd979bd 655 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
656
657 level = ocfs2_iocb_rw_locked_level(iocb);
658 if (!level)
659 up_read(&inode->i_alloc_sem);
660 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
661}
662
03f981cf
JB
663/*
664 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
665 * from ext3. PageChecked() bits have been removed as OCFS2 does not
666 * do journalled data.
667 */
668static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
669{
670 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
671
672 journal_invalidatepage(journal, page, offset);
673}
674
675static int ocfs2_releasepage(struct page *page, gfp_t wait)
676{
677 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
678
679 if (!page_has_buffers(page))
680 return 0;
681 return journal_try_to_free_buffers(journal, page, wait);
682}
683
ccd979bd
MF
684static ssize_t ocfs2_direct_IO(int rw,
685 struct kiocb *iocb,
686 const struct iovec *iov,
687 loff_t offset,
688 unsigned long nr_segs)
689{
690 struct file *file = iocb->ki_filp;
d28c9174 691 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
692 int ret;
693
694 mlog_entry_void();
53013cba 695
6798d35a
MF
696 /*
697 * Fallback to buffered I/O if we see an inode without
698 * extents.
699 */
700 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
701 return 0;
702
ccd979bd
MF
703 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
704 inode->i_sb->s_bdev, iov, offset,
705 nr_segs,
706 ocfs2_direct_IO_get_blocks,
707 ocfs2_dio_end_io);
c934a92d 708
ccd979bd
MF
709 mlog_exit(ret);
710 return ret;
711}
712
9517bac6
MF
713static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
714 u32 cpos,
715 unsigned int *start,
716 unsigned int *end)
717{
718 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
719
720 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
721 unsigned int cpp;
722
723 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
724
725 cluster_start = cpos % cpp;
726 cluster_start = cluster_start << osb->s_clustersize_bits;
727
728 cluster_end = cluster_start + osb->s_clustersize;
729 }
730
731 BUG_ON(cluster_start > PAGE_SIZE);
732 BUG_ON(cluster_end > PAGE_SIZE);
733
734 if (start)
735 *start = cluster_start;
736 if (end)
737 *end = cluster_end;
738}
739
740/*
741 * 'from' and 'to' are the region in the page to avoid zeroing.
742 *
743 * If pagesize > clustersize, this function will avoid zeroing outside
744 * of the cluster boundary.
745 *
746 * from == to == 0 is code for "zero the entire cluster region"
747 */
748static void ocfs2_clear_page_regions(struct page *page,
749 struct ocfs2_super *osb, u32 cpos,
750 unsigned from, unsigned to)
751{
752 void *kaddr;
753 unsigned int cluster_start, cluster_end;
754
755 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
756
757 kaddr = kmap_atomic(page, KM_USER0);
758
759 if (from || to) {
760 if (from > cluster_start)
761 memset(kaddr + cluster_start, 0, from - cluster_start);
762 if (to < cluster_end)
763 memset(kaddr + to, 0, cluster_end - to);
764 } else {
765 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
766 }
767
768 kunmap_atomic(kaddr, KM_USER0);
769}
770
4e9563fd
MF
771/*
772 * Nonsparse file systems fully allocate before we get to the write
773 * code. This prevents ocfs2_write() from tagging the write as an
774 * allocating one, which means ocfs2_map_page_blocks() might try to
775 * read-in the blocks at the tail of our file. Avoid reading them by
776 * testing i_size against each block offset.
777 */
778static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
779 unsigned int block_start)
780{
781 u64 offset = page_offset(page) + block_start;
782
783 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
784 return 1;
785
786 if (i_size_read(inode) > offset)
787 return 1;
788
789 return 0;
790}
791
9517bac6
MF
792/*
793 * Some of this taken from block_prepare_write(). We already have our
794 * mapping by now though, and the entire write will be allocating or
795 * it won't, so not much need to use BH_New.
796 *
797 * This will also skip zeroing, which is handled externally.
798 */
60b11392
MF
799int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
800 struct inode *inode, unsigned int from,
801 unsigned int to, int new)
9517bac6
MF
802{
803 int ret = 0;
804 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
805 unsigned int block_end, block_start;
806 unsigned int bsize = 1 << inode->i_blkbits;
807
808 if (!page_has_buffers(page))
809 create_empty_buffers(page, bsize, 0);
810
811 head = page_buffers(page);
812 for (bh = head, block_start = 0; bh != head || !block_start;
813 bh = bh->b_this_page, block_start += bsize) {
814 block_end = block_start + bsize;
815
3a307ffc
MF
816 clear_buffer_new(bh);
817
9517bac6
MF
818 /*
819 * Ignore blocks outside of our i/o range -
820 * they may belong to unallocated clusters.
821 */
60b11392 822 if (block_start >= to || block_end <= from) {
9517bac6
MF
823 if (PageUptodate(page))
824 set_buffer_uptodate(bh);
825 continue;
826 }
827
828 /*
829 * For an allocating write with cluster size >= page
830 * size, we always write the entire page.
831 */
3a307ffc
MF
832 if (new)
833 set_buffer_new(bh);
9517bac6
MF
834
835 if (!buffer_mapped(bh)) {
836 map_bh(bh, inode->i_sb, *p_blkno);
837 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
838 }
839
840 if (PageUptodate(page)) {
841 if (!buffer_uptodate(bh))
842 set_buffer_uptodate(bh);
843 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 844 !buffer_new(bh) &&
4e9563fd 845 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 846 (block_start < from || block_end > to)) {
9517bac6
MF
847 ll_rw_block(READ, 1, &bh);
848 *wait_bh++=bh;
849 }
850
851 *p_blkno = *p_blkno + 1;
852 }
853
854 /*
855 * If we issued read requests - let them complete.
856 */
857 while(wait_bh > wait) {
858 wait_on_buffer(*--wait_bh);
859 if (!buffer_uptodate(*wait_bh))
860 ret = -EIO;
861 }
862
863 if (ret == 0 || !new)
864 return ret;
865
866 /*
867 * If we get -EIO above, zero out any newly allocated blocks
868 * to avoid exposing stale data.
869 */
870 bh = head;
871 block_start = 0;
872 do {
9517bac6
MF
873 block_end = block_start + bsize;
874 if (block_end <= from)
875 goto next_bh;
876 if (block_start >= to)
877 break;
878
eebd2aa3 879 zero_user(page, block_start, bh->b_size);
9517bac6
MF
880 set_buffer_uptodate(bh);
881 mark_buffer_dirty(bh);
882
883next_bh:
884 block_start = block_end;
885 bh = bh->b_this_page;
886 } while (bh != head);
887
888 return ret;
889}
890
3a307ffc
MF
891#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
892#define OCFS2_MAX_CTXT_PAGES 1
893#else
894#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
895#endif
896
897#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
898
6af67d82 899/*
3a307ffc 900 * Describe the state of a single cluster to be written to.
6af67d82 901 */
3a307ffc
MF
902struct ocfs2_write_cluster_desc {
903 u32 c_cpos;
904 u32 c_phys;
905 /*
906 * Give this a unique field because c_phys eventually gets
907 * filled.
908 */
909 unsigned c_new;
b27b7cbc 910 unsigned c_unwritten;
3a307ffc 911};
6af67d82 912
b27b7cbc
MF
913static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
914{
915 return d->c_new || d->c_unwritten;
916}
917
3a307ffc
MF
918struct ocfs2_write_ctxt {
919 /* Logical cluster position / len of write */
920 u32 w_cpos;
921 u32 w_clen;
6af67d82 922
3a307ffc 923 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 924
3a307ffc
MF
925 /*
926 * This is true if page_size > cluster_size.
927 *
928 * It triggers a set of special cases during write which might
929 * have to deal with allocating writes to partial pages.
930 */
931 unsigned int w_large_pages;
6af67d82 932
3a307ffc
MF
933 /*
934 * Pages involved in this write.
935 *
936 * w_target_page is the page being written to by the user.
937 *
938 * w_pages is an array of pages which always contains
939 * w_target_page, and in the case of an allocating write with
940 * page_size < cluster size, it will contain zero'd and mapped
941 * pages adjacent to w_target_page which need to be written
942 * out in so that future reads from that region will get
943 * zero's.
944 */
945 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
946 unsigned int w_num_pages;
947 struct page *w_target_page;
eeb47d12 948
3a307ffc
MF
949 /*
950 * ocfs2_write_end() uses this to know what the real range to
951 * write in the target should be.
952 */
953 unsigned int w_target_from;
954 unsigned int w_target_to;
955
956 /*
957 * We could use journal_current_handle() but this is cleaner,
958 * IMHO -Mark
959 */
960 handle_t *w_handle;
961
962 struct buffer_head *w_di_bh;
b27b7cbc
MF
963
964 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
965};
966
1d410a6e 967void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
968{
969 int i;
970
1d410a6e
MF
971 for(i = 0; i < num_pages; i++) {
972 if (pages[i]) {
973 unlock_page(pages[i]);
974 mark_page_accessed(pages[i]);
975 page_cache_release(pages[i]);
976 }
6af67d82 977 }
1d410a6e
MF
978}
979
980static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
981{
982 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 983
3a307ffc
MF
984 brelse(wc->w_di_bh);
985 kfree(wc);
986}
987
988static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
989 struct ocfs2_super *osb, loff_t pos,
607d44aa 990 unsigned len, struct buffer_head *di_bh)
3a307ffc 991{
30b8548f 992 u32 cend;
3a307ffc
MF
993 struct ocfs2_write_ctxt *wc;
994
995 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
996 if (!wc)
997 return -ENOMEM;
6af67d82 998
3a307ffc 999 wc->w_cpos = pos >> osb->s_clustersize_bits;
30b8548f 1000 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1001 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1002 get_bh(di_bh);
1003 wc->w_di_bh = di_bh;
6af67d82 1004
3a307ffc
MF
1005 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1006 wc->w_large_pages = 1;
1007 else
1008 wc->w_large_pages = 0;
1009
b27b7cbc
MF
1010 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1011
3a307ffc 1012 *wcp = wc;
6af67d82 1013
3a307ffc 1014 return 0;
6af67d82
MF
1015}
1016
9517bac6 1017/*
3a307ffc
MF
1018 * If a page has any new buffers, zero them out here, and mark them uptodate
1019 * and dirty so they'll be written out (in order to prevent uninitialised
1020 * block data from leaking). And clear the new bit.
9517bac6 1021 */
3a307ffc 1022static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1023{
3a307ffc
MF
1024 unsigned int block_start, block_end;
1025 struct buffer_head *head, *bh;
9517bac6 1026
3a307ffc
MF
1027 BUG_ON(!PageLocked(page));
1028 if (!page_has_buffers(page))
1029 return;
9517bac6 1030
3a307ffc
MF
1031 bh = head = page_buffers(page);
1032 block_start = 0;
1033 do {
1034 block_end = block_start + bh->b_size;
1035
1036 if (buffer_new(bh)) {
1037 if (block_end > from && block_start < to) {
1038 if (!PageUptodate(page)) {
1039 unsigned start, end;
3a307ffc
MF
1040
1041 start = max(from, block_start);
1042 end = min(to, block_end);
1043
eebd2aa3 1044 zero_user_segment(page, start, end);
3a307ffc
MF
1045 set_buffer_uptodate(bh);
1046 }
1047
1048 clear_buffer_new(bh);
1049 mark_buffer_dirty(bh);
1050 }
1051 }
9517bac6 1052
3a307ffc
MF
1053 block_start = block_end;
1054 bh = bh->b_this_page;
1055 } while (bh != head);
1056}
1057
1058/*
1059 * Only called when we have a failure during allocating write to write
1060 * zero's to the newly allocated region.
1061 */
1062static void ocfs2_write_failure(struct inode *inode,
1063 struct ocfs2_write_ctxt *wc,
1064 loff_t user_pos, unsigned user_len)
1065{
1066 int i;
5c26a7b7
MF
1067 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1068 to = user_pos + user_len;
3a307ffc
MF
1069 struct page *tmppage;
1070
5c26a7b7 1071 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1072
3a307ffc
MF
1073 for(i = 0; i < wc->w_num_pages; i++) {
1074 tmppage = wc->w_pages[i];
9517bac6 1075
961cecbe
SM
1076 if (page_has_buffers(tmppage)) {
1077 if (ocfs2_should_order_data(inode))
1078 walk_page_buffers(wc->w_handle,
1079 page_buffers(tmppage),
1080 from, to, NULL,
1081 ocfs2_journal_dirty_data);
1082
1083 block_commit_write(tmppage, from, to);
1084 }
9517bac6 1085 }
9517bac6
MF
1086}
1087
3a307ffc
MF
1088static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1089 struct ocfs2_write_ctxt *wc,
1090 struct page *page, u32 cpos,
1091 loff_t user_pos, unsigned user_len,
1092 int new)
9517bac6 1093{
3a307ffc
MF
1094 int ret;
1095 unsigned int map_from = 0, map_to = 0;
9517bac6 1096 unsigned int cluster_start, cluster_end;
3a307ffc 1097 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1098
3a307ffc 1099 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1100 &cluster_start, &cluster_end);
1101
3a307ffc
MF
1102 if (page == wc->w_target_page) {
1103 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1104 map_to = map_from + user_len;
1105
1106 if (new)
1107 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1108 cluster_start, cluster_end,
1109 new);
1110 else
1111 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1112 map_from, map_to, new);
1113 if (ret) {
9517bac6
MF
1114 mlog_errno(ret);
1115 goto out;
1116 }
1117
3a307ffc
MF
1118 user_data_from = map_from;
1119 user_data_to = map_to;
9517bac6 1120 if (new) {
3a307ffc
MF
1121 map_from = cluster_start;
1122 map_to = cluster_end;
9517bac6
MF
1123 }
1124 } else {
1125 /*
1126 * If we haven't allocated the new page yet, we
1127 * shouldn't be writing it out without copying user
1128 * data. This is likely a math error from the caller.
1129 */
1130 BUG_ON(!new);
1131
3a307ffc
MF
1132 map_from = cluster_start;
1133 map_to = cluster_end;
9517bac6
MF
1134
1135 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1136 cluster_start, cluster_end, new);
9517bac6
MF
1137 if (ret) {
1138 mlog_errno(ret);
1139 goto out;
1140 }
1141 }
1142
1143 /*
1144 * Parts of newly allocated pages need to be zero'd.
1145 *
1146 * Above, we have also rewritten 'to' and 'from' - as far as
1147 * the rest of the function is concerned, the entire cluster
1148 * range inside of a page needs to be written.
1149 *
1150 * We can skip this if the page is up to date - it's already
1151 * been zero'd from being read in as a hole.
1152 */
1153 if (new && !PageUptodate(page))
1154 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1155 cpos, user_data_from, user_data_to);
9517bac6
MF
1156
1157 flush_dcache_page(page);
1158
9517bac6 1159out:
3a307ffc 1160 return ret;
9517bac6
MF
1161}
1162
1163/*
3a307ffc 1164 * This function will only grab one clusters worth of pages.
9517bac6 1165 */
3a307ffc
MF
1166static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1167 struct ocfs2_write_ctxt *wc,
7307de80
MF
1168 u32 cpos, loff_t user_pos, int new,
1169 struct page *mmap_page)
9517bac6 1170{
3a307ffc
MF
1171 int ret = 0, i;
1172 unsigned long start, target_index, index;
9517bac6 1173 struct inode *inode = mapping->host;
9517bac6 1174
3a307ffc 1175 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1176
1177 /*
1178 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1179 * non allocating write, we just change the one
1180 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1181 */
9517bac6 1182 if (new) {
3a307ffc
MF
1183 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1184 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1185 } else {
3a307ffc
MF
1186 wc->w_num_pages = 1;
1187 start = target_index;
9517bac6
MF
1188 }
1189
3a307ffc 1190 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1191 index = start + i;
1192
7307de80
MF
1193 if (index == target_index && mmap_page) {
1194 /*
1195 * ocfs2_pagemkwrite() is a little different
1196 * and wants us to directly use the page
1197 * passed in.
1198 */
1199 lock_page(mmap_page);
1200
1201 if (mmap_page->mapping != mapping) {
1202 unlock_page(mmap_page);
1203 /*
1204 * Sanity check - the locking in
1205 * ocfs2_pagemkwrite() should ensure
1206 * that this code doesn't trigger.
1207 */
1208 ret = -EINVAL;
1209 mlog_errno(ret);
1210 goto out;
1211 }
1212
1213 page_cache_get(mmap_page);
1214 wc->w_pages[i] = mmap_page;
1215 } else {
1216 wc->w_pages[i] = find_or_create_page(mapping, index,
1217 GFP_NOFS);
1218 if (!wc->w_pages[i]) {
1219 ret = -ENOMEM;
1220 mlog_errno(ret);
1221 goto out;
1222 }
9517bac6 1223 }
3a307ffc
MF
1224
1225 if (index == target_index)
1226 wc->w_target_page = wc->w_pages[i];
9517bac6 1227 }
3a307ffc
MF
1228out:
1229 return ret;
1230}
1231
1232/*
1233 * Prepare a single cluster for write one cluster into the file.
1234 */
1235static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc
MF
1236 u32 phys, unsigned int unwritten,
1237 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1238 struct ocfs2_alloc_context *meta_ac,
1239 struct ocfs2_write_ctxt *wc, u32 cpos,
1240 loff_t user_pos, unsigned user_len)
1241{
b27b7cbc 1242 int ret, i, new, should_zero = 0;
3a307ffc
MF
1243 u64 v_blkno, p_blkno;
1244 struct inode *inode = mapping->host;
f99b9b7c 1245 struct ocfs2_extent_tree et;
3a307ffc
MF
1246
1247 new = phys == 0 ? 1 : 0;
b27b7cbc
MF
1248 if (new || unwritten)
1249 should_zero = 1;
9517bac6
MF
1250
1251 if (new) {
3a307ffc
MF
1252 u32 tmp_pos;
1253
9517bac6
MF
1254 /*
1255 * This is safe to call with the page locks - it won't take
1256 * any additional semaphores or cluster locks.
1257 */
3a307ffc 1258 tmp_pos = cpos;
0eb8d47e
TM
1259 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1260 &tmp_pos, 1, 0, wc->w_di_bh,
1261 wc->w_handle, data_ac,
1262 meta_ac, NULL);
9517bac6
MF
1263 /*
1264 * This shouldn't happen because we must have already
1265 * calculated the correct meta data allocation required. The
1266 * internal tree allocation code should know how to increase
1267 * transaction credits itself.
1268 *
1269 * If need be, we could handle -EAGAIN for a
1270 * RESTART_TRANS here.
1271 */
1272 mlog_bug_on_msg(ret == -EAGAIN,
1273 "Inode %llu: EAGAIN return during allocation.\n",
1274 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1275 if (ret < 0) {
1276 mlog_errno(ret);
1277 goto out;
1278 }
b27b7cbc 1279 } else if (unwritten) {
8d6220d6 1280 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1281 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1282 wc->w_handle, cpos, 1, phys,
f99b9b7c 1283 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1284 if (ret < 0) {
1285 mlog_errno(ret);
1286 goto out;
1287 }
1288 }
3a307ffc 1289
b27b7cbc 1290 if (should_zero)
3a307ffc 1291 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1292 else
3a307ffc 1293 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1294
3a307ffc
MF
1295 /*
1296 * The only reason this should fail is due to an inability to
1297 * find the extent added.
1298 */
49cb8d2d
MF
1299 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1300 NULL);
9517bac6 1301 if (ret < 0) {
3a307ffc
MF
1302 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1303 "at logical block %llu",
1304 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1305 (unsigned long long)v_blkno);
9517bac6
MF
1306 goto out;
1307 }
1308
1309 BUG_ON(p_blkno == 0);
1310
3a307ffc
MF
1311 for(i = 0; i < wc->w_num_pages; i++) {
1312 int tmpret;
9517bac6 1313
3a307ffc
MF
1314 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1315 wc->w_pages[i], cpos,
b27b7cbc
MF
1316 user_pos, user_len,
1317 should_zero);
3a307ffc
MF
1318 if (tmpret) {
1319 mlog_errno(tmpret);
1320 if (ret == 0)
1321 tmpret = ret;
1322 }
9517bac6
MF
1323 }
1324
3a307ffc
MF
1325 /*
1326 * We only have cleanup to do in case of allocating write.
1327 */
1328 if (ret && new)
1329 ocfs2_write_failure(inode, wc, user_pos, user_len);
1330
9517bac6 1331out:
9517bac6 1332
3a307ffc 1333 return ret;
9517bac6
MF
1334}
1335
0d172baa
MF
1336static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1337 struct ocfs2_alloc_context *data_ac,
1338 struct ocfs2_alloc_context *meta_ac,
1339 struct ocfs2_write_ctxt *wc,
1340 loff_t pos, unsigned len)
1341{
1342 int ret, i;
db56246c
MF
1343 loff_t cluster_off;
1344 unsigned int local_len = len;
0d172baa 1345 struct ocfs2_write_cluster_desc *desc;
db56246c 1346 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1347
1348 for (i = 0; i < wc->w_clen; i++) {
1349 desc = &wc->w_desc[i];
1350
db56246c
MF
1351 /*
1352 * We have to make sure that the total write passed in
1353 * doesn't extend past a single cluster.
1354 */
1355 local_len = len;
1356 cluster_off = pos & (osb->s_clustersize - 1);
1357 if ((cluster_off + local_len) > osb->s_clustersize)
1358 local_len = osb->s_clustersize - cluster_off;
1359
b27b7cbc
MF
1360 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1361 desc->c_unwritten, data_ac, meta_ac,
db56246c 1362 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1363 if (ret) {
1364 mlog_errno(ret);
1365 goto out;
1366 }
db56246c
MF
1367
1368 len -= local_len;
1369 pos += local_len;
0d172baa
MF
1370 }
1371
1372 ret = 0;
1373out:
1374 return ret;
1375}
1376
3a307ffc
MF
1377/*
1378 * ocfs2_write_end() wants to know which parts of the target page it
1379 * should complete the write on. It's easiest to compute them ahead of
1380 * time when a more complete view of the write is available.
1381 */
1382static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1383 struct ocfs2_write_ctxt *wc,
1384 loff_t pos, unsigned len, int alloc)
9517bac6 1385{
3a307ffc 1386 struct ocfs2_write_cluster_desc *desc;
9517bac6 1387
3a307ffc
MF
1388 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1389 wc->w_target_to = wc->w_target_from + len;
1390
1391 if (alloc == 0)
1392 return;
1393
1394 /*
1395 * Allocating write - we may have different boundaries based
1396 * on page size and cluster size.
1397 *
1398 * NOTE: We can no longer compute one value from the other as
1399 * the actual write length and user provided length may be
1400 * different.
1401 */
9517bac6 1402
3a307ffc
MF
1403 if (wc->w_large_pages) {
1404 /*
1405 * We only care about the 1st and last cluster within
b27b7cbc 1406 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1407 * value may be extended out to the start/end of a
1408 * newly allocated cluster.
1409 */
1410 desc = &wc->w_desc[0];
b27b7cbc 1411 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1412 ocfs2_figure_cluster_boundaries(osb,
1413 desc->c_cpos,
1414 &wc->w_target_from,
1415 NULL);
1416
1417 desc = &wc->w_desc[wc->w_clen - 1];
b27b7cbc 1418 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1419 ocfs2_figure_cluster_boundaries(osb,
1420 desc->c_cpos,
1421 NULL,
1422 &wc->w_target_to);
1423 } else {
1424 wc->w_target_from = 0;
1425 wc->w_target_to = PAGE_CACHE_SIZE;
1426 }
9517bac6
MF
1427}
1428
0d172baa
MF
1429/*
1430 * Populate each single-cluster write descriptor in the write context
1431 * with information about the i/o to be done.
b27b7cbc
MF
1432 *
1433 * Returns the number of clusters that will have to be allocated, as
1434 * well as a worst case estimate of the number of extent records that
1435 * would have to be created during a write to an unwritten region.
0d172baa
MF
1436 */
1437static int ocfs2_populate_write_desc(struct inode *inode,
1438 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1439 unsigned int *clusters_to_alloc,
1440 unsigned int *extents_to_split)
9517bac6 1441{
0d172baa 1442 int ret;
3a307ffc 1443 struct ocfs2_write_cluster_desc *desc;
0d172baa 1444 unsigned int num_clusters = 0;
b27b7cbc 1445 unsigned int ext_flags = 0;
0d172baa
MF
1446 u32 phys = 0;
1447 int i;
9517bac6 1448
b27b7cbc
MF
1449 *clusters_to_alloc = 0;
1450 *extents_to_split = 0;
1451
3a307ffc
MF
1452 for (i = 0; i < wc->w_clen; i++) {
1453 desc = &wc->w_desc[i];
1454 desc->c_cpos = wc->w_cpos + i;
1455
1456 if (num_clusters == 0) {
b27b7cbc
MF
1457 /*
1458 * Need to look up the next extent record.
1459 */
3a307ffc 1460 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1461 &num_clusters, &ext_flags);
3a307ffc
MF
1462 if (ret) {
1463 mlog_errno(ret);
607d44aa 1464 goto out;
3a307ffc 1465 }
b27b7cbc
MF
1466
1467 /*
1468 * Assume worst case - that we're writing in
1469 * the middle of the extent.
1470 *
1471 * We can assume that the write proceeds from
1472 * left to right, in which case the extent
1473 * insert code is smart enough to coalesce the
1474 * next splits into the previous records created.
1475 */
1476 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1477 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1478 } else if (phys) {
1479 /*
1480 * Only increment phys if it doesn't describe
1481 * a hole.
1482 */
1483 phys++;
1484 }
1485
1486 desc->c_phys = phys;
1487 if (phys == 0) {
1488 desc->c_new = 1;
0d172baa 1489 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1490 }
b27b7cbc
MF
1491 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1492 desc->c_unwritten = 1;
3a307ffc
MF
1493
1494 num_clusters--;
9517bac6
MF
1495 }
1496
0d172baa
MF
1497 ret = 0;
1498out:
1499 return ret;
1500}
1501
1afc32b9
MF
1502static int ocfs2_write_begin_inline(struct address_space *mapping,
1503 struct inode *inode,
1504 struct ocfs2_write_ctxt *wc)
1505{
1506 int ret;
1507 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1508 struct page *page;
1509 handle_t *handle;
1510 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1511
1512 page = find_or_create_page(mapping, 0, GFP_NOFS);
1513 if (!page) {
1514 ret = -ENOMEM;
1515 mlog_errno(ret);
1516 goto out;
1517 }
1518 /*
1519 * If we don't set w_num_pages then this page won't get unlocked
1520 * and freed on cleanup of the write context.
1521 */
1522 wc->w_pages[0] = wc->w_target_page = page;
1523 wc->w_num_pages = 1;
1524
1525 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1526 if (IS_ERR(handle)) {
1527 ret = PTR_ERR(handle);
1528 mlog_errno(ret);
1529 goto out;
1530 }
1531
1532 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1533 OCFS2_JOURNAL_ACCESS_WRITE);
1534 if (ret) {
1535 ocfs2_commit_trans(osb, handle);
1536
1537 mlog_errno(ret);
1538 goto out;
1539 }
1540
1541 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1542 ocfs2_set_inode_data_inline(inode, di);
1543
1544 if (!PageUptodate(page)) {
1545 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1546 if (ret) {
1547 ocfs2_commit_trans(osb, handle);
1548
1549 goto out;
1550 }
1551 }
1552
1553 wc->w_handle = handle;
1554out:
1555 return ret;
1556}
1557
1558int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1559{
1560 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1561
0d8a4e0c 1562 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1563 return 1;
1564 return 0;
1565}
1566
1567static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1568 struct inode *inode, loff_t pos,
1569 unsigned len, struct page *mmap_page,
1570 struct ocfs2_write_ctxt *wc)
1571{
1572 int ret, written = 0;
1573 loff_t end = pos + len;
1574 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1575
1576 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1577 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1578 oi->ip_dyn_features);
1579
1580 /*
1581 * Handle inodes which already have inline data 1st.
1582 */
1583 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1584 if (mmap_page == NULL &&
1585 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1586 goto do_inline_write;
1587
1588 /*
1589 * The write won't fit - we have to give this inode an
1590 * inline extent list now.
1591 */
1592 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1593 if (ret)
1594 mlog_errno(ret);
1595 goto out;
1596 }
1597
1598 /*
1599 * Check whether the inode can accept inline data.
1600 */
1601 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1602 return 0;
1603
1604 /*
1605 * Check whether the write can fit.
1606 */
1607 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1608 return 0;
1609
1610do_inline_write:
1611 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1612 if (ret) {
1613 mlog_errno(ret);
1614 goto out;
1615 }
1616
1617 /*
1618 * This signals to the caller that the data can be written
1619 * inline.
1620 */
1621 written = 1;
1622out:
1623 return written ? written : ret;
1624}
1625
65ed39d6
MF
1626/*
1627 * This function only does anything for file systems which can't
1628 * handle sparse files.
1629 *
1630 * What we want to do here is fill in any hole between the current end
1631 * of allocation and the end of our write. That way the rest of the
1632 * write path can treat it as an non-allocating write, which has no
1633 * special case code for sparse/nonsparse files.
1634 */
1635static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1636 unsigned len,
1637 struct ocfs2_write_ctxt *wc)
1638{
1639 int ret;
1640 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1641 loff_t newsize = pos + len;
1642
1643 if (ocfs2_sparse_alloc(osb))
1644 return 0;
1645
1646 if (newsize <= i_size_read(inode))
1647 return 0;
1648
1649 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1650 if (ret)
1651 mlog_errno(ret);
1652
1653 return ret;
1654}
1655
0d172baa
MF
1656int ocfs2_write_begin_nolock(struct address_space *mapping,
1657 loff_t pos, unsigned len, unsigned flags,
1658 struct page **pagep, void **fsdata,
1659 struct buffer_head *di_bh, struct page *mmap_page)
1660{
1661 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1662 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1663 struct ocfs2_write_ctxt *wc;
1664 struct inode *inode = mapping->host;
1665 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1666 struct ocfs2_dinode *di;
1667 struct ocfs2_alloc_context *data_ac = NULL;
1668 struct ocfs2_alloc_context *meta_ac = NULL;
1669 handle_t *handle;
f99b9b7c 1670 struct ocfs2_extent_tree et;
0d172baa
MF
1671
1672 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1673 if (ret) {
1674 mlog_errno(ret);
1675 return ret;
1676 }
1677
1afc32b9
MF
1678 if (ocfs2_supports_inline_data(osb)) {
1679 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1680 mmap_page, wc);
1681 if (ret == 1) {
1682 ret = 0;
1683 goto success;
1684 }
1685 if (ret < 0) {
1686 mlog_errno(ret);
1687 goto out;
1688 }
1689 }
1690
65ed39d6
MF
1691 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1692 if (ret) {
1693 mlog_errno(ret);
1694 goto out;
1695 }
1696
b27b7cbc
MF
1697 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1698 &extents_to_split);
0d172baa
MF
1699 if (ret) {
1700 mlog_errno(ret);
1701 goto out;
1702 }
1703
1704 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1705
3a307ffc
MF
1706 /*
1707 * We set w_target_from, w_target_to here so that
1708 * ocfs2_write_end() knows which range in the target page to
1709 * write out. An allocation requires that we write the entire
1710 * cluster range.
1711 */
b27b7cbc 1712 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1713 /*
1714 * XXX: We are stretching the limits of
b27b7cbc 1715 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1716 * the work to be done.
1717 */
e7d4cb6b
TM
1718 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1719 " clusters_to_add = %u, extents_to_split = %u\n",
1720 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1721 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1722 clusters_to_alloc, extents_to_split);
1723
8d6220d6 1724 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1725 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1726 clusters_to_alloc, extents_to_split,
f99b9b7c 1727 &data_ac, &meta_ac);
9517bac6
MF
1728 if (ret) {
1729 mlog_errno(ret);
607d44aa 1730 goto out;
9517bac6
MF
1731 }
1732
811f933d
TM
1733 credits = ocfs2_calc_extend_credits(inode->i_sb,
1734 &di->id2.i_list,
3a307ffc
MF
1735 clusters_to_alloc);
1736
9517bac6
MF
1737 }
1738
b27b7cbc
MF
1739 ocfs2_set_target_boundaries(osb, wc, pos, len,
1740 clusters_to_alloc + extents_to_split);
3a307ffc 1741
9517bac6
MF
1742 handle = ocfs2_start_trans(osb, credits);
1743 if (IS_ERR(handle)) {
1744 ret = PTR_ERR(handle);
1745 mlog_errno(ret);
607d44aa 1746 goto out;
9517bac6
MF
1747 }
1748
3a307ffc
MF
1749 wc->w_handle = handle;
1750
1751 /*
1752 * We don't want this to fail in ocfs2_write_end(), so do it
1753 * here.
1754 */
1755 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1756 OCFS2_JOURNAL_ACCESS_WRITE);
1757 if (ret) {
9517bac6
MF
1758 mlog_errno(ret);
1759 goto out_commit;
1760 }
1761
3a307ffc
MF
1762 /*
1763 * Fill our page array first. That way we've grabbed enough so
1764 * that we can zero and flush if we error after adding the
1765 * extent.
1766 */
1767 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
b27b7cbc
MF
1768 clusters_to_alloc + extents_to_split,
1769 mmap_page);
9517bac6
MF
1770 if (ret) {
1771 mlog_errno(ret);
1772 goto out_commit;
1773 }
1774
0d172baa
MF
1775 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1776 len);
1777 if (ret) {
1778 mlog_errno(ret);
1779 goto out_commit;
9517bac6 1780 }
9517bac6 1781
3a307ffc
MF
1782 if (data_ac)
1783 ocfs2_free_alloc_context(data_ac);
1784 if (meta_ac)
1785 ocfs2_free_alloc_context(meta_ac);
9517bac6 1786
1afc32b9 1787success:
3a307ffc
MF
1788 *pagep = wc->w_target_page;
1789 *fsdata = wc;
1790 return 0;
9517bac6
MF
1791out_commit:
1792 ocfs2_commit_trans(osb, handle);
1793
9517bac6 1794out:
3a307ffc
MF
1795 ocfs2_free_write_ctxt(wc);
1796
9517bac6
MF
1797 if (data_ac)
1798 ocfs2_free_alloc_context(data_ac);
1799 if (meta_ac)
1800 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1801 return ret;
1802}
1803
b6af1bcd
NP
1804static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1805 loff_t pos, unsigned len, unsigned flags,
1806 struct page **pagep, void **fsdata)
607d44aa
MF
1807{
1808 int ret;
1809 struct buffer_head *di_bh = NULL;
1810 struct inode *inode = mapping->host;
1811
e63aecb6 1812 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1813 if (ret) {
1814 mlog_errno(ret);
1815 return ret;
1816 }
1817
1818 /*
1819 * Take alloc sem here to prevent concurrent lookups. That way
1820 * the mapping, zeroing and tree manipulation within
1821 * ocfs2_write() will be safe against ->readpage(). This
1822 * should also serve to lock out allocation from a shared
1823 * writeable region.
1824 */
1825 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1826
607d44aa 1827 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1828 fsdata, di_bh, NULL);
607d44aa
MF
1829 if (ret) {
1830 mlog_errno(ret);
c934a92d 1831 goto out_fail;
607d44aa
MF
1832 }
1833
1834 brelse(di_bh);
1835
1836 return 0;
1837
607d44aa
MF
1838out_fail:
1839 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1840
1841 brelse(di_bh);
e63aecb6 1842 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1843
1844 return ret;
1845}
1846
1afc32b9
MF
1847static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1848 unsigned len, unsigned *copied,
1849 struct ocfs2_dinode *di,
1850 struct ocfs2_write_ctxt *wc)
1851{
1852 void *kaddr;
1853
1854 if (unlikely(*copied < len)) {
1855 if (!PageUptodate(wc->w_target_page)) {
1856 *copied = 0;
1857 return;
1858 }
1859 }
1860
1861 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1862 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1863 kunmap_atomic(kaddr, KM_USER0);
1864
1865 mlog(0, "Data written to inode at offset %llu. "
1866 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1867 (unsigned long long)pos, *copied,
1868 le16_to_cpu(di->id2.i_data.id_count),
1869 le16_to_cpu(di->i_dyn_features));
1870}
1871
7307de80
MF
1872int ocfs2_write_end_nolock(struct address_space *mapping,
1873 loff_t pos, unsigned len, unsigned copied,
1874 struct page *page, void *fsdata)
3a307ffc
MF
1875{
1876 int i;
1877 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1878 struct inode *inode = mapping->host;
1879 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1880 struct ocfs2_write_ctxt *wc = fsdata;
1881 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1882 handle_t *handle = wc->w_handle;
1883 struct page *tmppage;
1884
1afc32b9
MF
1885 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1886 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1887 goto out_write_size;
1888 }
1889
3a307ffc
MF
1890 if (unlikely(copied < len)) {
1891 if (!PageUptodate(wc->w_target_page))
1892 copied = 0;
1893
1894 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1895 start+len);
1896 }
1897 flush_dcache_page(wc->w_target_page);
1898
1899 for(i = 0; i < wc->w_num_pages; i++) {
1900 tmppage = wc->w_pages[i];
1901
1902 if (tmppage == wc->w_target_page) {
1903 from = wc->w_target_from;
1904 to = wc->w_target_to;
1905
1906 BUG_ON(from > PAGE_CACHE_SIZE ||
1907 to > PAGE_CACHE_SIZE ||
1908 to < from);
1909 } else {
1910 /*
1911 * Pages adjacent to the target (if any) imply
1912 * a hole-filling write in which case we want
1913 * to flush their entire range.
1914 */
1915 from = 0;
1916 to = PAGE_CACHE_SIZE;
1917 }
1918
961cecbe
SM
1919 if (page_has_buffers(tmppage)) {
1920 if (ocfs2_should_order_data(inode))
1921 walk_page_buffers(wc->w_handle,
1922 page_buffers(tmppage),
1923 from, to, NULL,
1924 ocfs2_journal_dirty_data);
1925 block_commit_write(tmppage, from, to);
1926 }
3a307ffc
MF
1927 }
1928
1afc32b9 1929out_write_size:
3a307ffc
MF
1930 pos += copied;
1931 if (pos > inode->i_size) {
1932 i_size_write(inode, pos);
1933 mark_inode_dirty(inode);
1934 }
1935 inode->i_blocks = ocfs2_inode_sector_count(inode);
1936 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1937 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1938 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1939 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1940 ocfs2_journal_dirty(handle, wc->w_di_bh);
1941
1942 ocfs2_commit_trans(osb, handle);
59a5e416 1943
b27b7cbc
MF
1944 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1945
607d44aa
MF
1946 ocfs2_free_write_ctxt(wc);
1947
1948 return copied;
1949}
1950
b6af1bcd
NP
1951static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1952 loff_t pos, unsigned len, unsigned copied,
1953 struct page *page, void *fsdata)
607d44aa
MF
1954{
1955 int ret;
1956 struct inode *inode = mapping->host;
1957
1958 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1959
3a307ffc 1960 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 1961 ocfs2_inode_unlock(inode, 1);
9517bac6 1962
607d44aa 1963 return ret;
9517bac6
MF
1964}
1965
f5e54d6e 1966const struct address_space_operations ocfs2_aops = {
ccd979bd 1967 .readpage = ocfs2_readpage,
628a24f5 1968 .readpages = ocfs2_readpages,
ccd979bd 1969 .writepage = ocfs2_writepage,
b6af1bcd
NP
1970 .write_begin = ocfs2_write_begin,
1971 .write_end = ocfs2_write_end,
ccd979bd
MF
1972 .bmap = ocfs2_bmap,
1973 .sync_page = block_sync_page,
03f981cf
JB
1974 .direct_IO = ocfs2_direct_IO,
1975 .invalidatepage = ocfs2_invalidatepage,
1976 .releasepage = ocfs2_releasepage,
1977 .migratepage = buffer_migrate_page,
ccd979bd 1978};