NTFS: Fixup handling of sparse, compressed, and encrypted attributes in
[linux-2.6-block.git] / fs / ntfs / aops.c
CommitLineData
1da177e4
LT
1/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
4 *
b6ad6c52 5 * Copyright (c) 2001-2005 Anton Altaparmakov
1da177e4
LT
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30
31#include "aops.h"
32#include "attrib.h"
33#include "debug.h"
34#include "inode.h"
35#include "mft.h"
36#include "runlist.h"
37#include "types.h"
38#include "ntfs.h"
39
40/**
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
44 *
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
48 *
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54 * record size.
55 */
56static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57{
58 static DEFINE_SPINLOCK(page_uptodate_lock);
59 unsigned long flags;
60 struct buffer_head *tmp;
61 struct page *page;
62 ntfs_inode *ni;
63 int page_uptodate = 1;
64
65 page = bh->b_page;
66 ni = NTFS_I(page->mapping->host);
67
68 if (likely(uptodate)) {
07a4e2da 69 s64 file_ofs, initialized_size;
1da177e4
LT
70
71 set_buffer_uptodate(bh);
72
73 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
74 bh_offset(bh);
07a4e2da
AA
75 read_lock_irqsave(&ni->size_lock, flags);
76 initialized_size = ni->initialized_size;
77 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4 78 /* Check for the current buffer head overflowing. */
07a4e2da 79 if (file_ofs + bh->b_size > initialized_size) {
1da177e4
LT
80 char *addr;
81 int ofs = 0;
82
07a4e2da
AA
83 if (file_ofs < initialized_size)
84 ofs = initialized_size - file_ofs;
1da177e4
LT
85 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
86 memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
87 flush_dcache_page(page);
88 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
89 }
90 } else {
91 clear_buffer_uptodate(bh);
92 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
93 (unsigned long long)bh->b_blocknr);
94 SetPageError(page);
95 }
96 spin_lock_irqsave(&page_uptodate_lock, flags);
97 clear_buffer_async_read(bh);
98 unlock_buffer(bh);
99 tmp = bh;
100 do {
101 if (!buffer_uptodate(tmp))
102 page_uptodate = 0;
103 if (buffer_async_read(tmp)) {
104 if (likely(buffer_locked(tmp)))
105 goto still_busy;
106 /* Async buffers must be locked. */
107 BUG();
108 }
109 tmp = tmp->b_this_page;
110 } while (tmp != bh);
111 spin_unlock_irqrestore(&page_uptodate_lock, flags);
112 /*
113 * If none of the buffers had errors then we can set the page uptodate,
114 * but we first have to perform the post read mst fixups, if the
115 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
116 * Note we ignore fixup errors as those are detected when
117 * map_mft_record() is called which gives us per record granularity
118 * rather than per page granularity.
119 */
120 if (!NInoMstProtected(ni)) {
121 if (likely(page_uptodate && !PageError(page)))
122 SetPageUptodate(page);
123 } else {
124 char *addr;
125 unsigned int i, recs;
126 u32 rec_size;
127
128 rec_size = ni->itype.index.block_size;
129 recs = PAGE_CACHE_SIZE / rec_size;
130 /* Should have been verified before we got here... */
131 BUG_ON(!recs);
132 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
133 for (i = 0; i < recs; i++)
134 post_read_mst_fixup((NTFS_RECORD*)(addr +
135 i * rec_size), rec_size);
136 flush_dcache_page(page);
137 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
b6ad6c52 138 if (likely(page_uptodate && !PageError(page)))
1da177e4
LT
139 SetPageUptodate(page);
140 }
141 unlock_page(page);
142 return;
143still_busy:
144 spin_unlock_irqrestore(&page_uptodate_lock, flags);
145 return;
146}
147
148/**
149 * ntfs_read_block - fill a @page of an address space with data
150 * @page: page cache page to fill with data
151 *
152 * Fill the page @page of the address space belonging to the @page->host inode.
153 * We read each buffer asynchronously and when all buffers are read in, our io
154 * completion handler ntfs_end_buffer_read_async(), if required, automatically
155 * applies the mst fixups to the page before finally marking it uptodate and
156 * unlocking it.
157 *
158 * We only enforce allocated_size limit because i_size is checked for in
159 * generic_file_read().
160 *
161 * Return 0 on success and -errno on error.
162 *
163 * Contains an adapted version of fs/buffer.c::block_read_full_page().
164 */
165static int ntfs_read_block(struct page *page)
166{
167 VCN vcn;
168 LCN lcn;
169 ntfs_inode *ni;
170 ntfs_volume *vol;
171 runlist_element *rl;
172 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
173 sector_t iblock, lblock, zblock;
07a4e2da 174 unsigned long flags;
1da177e4
LT
175 unsigned int blocksize, vcn_ofs;
176 int i, nr;
177 unsigned char blocksize_bits;
178
179 ni = NTFS_I(page->mapping->host);
180 vol = ni->vol;
181
182 /* $MFT/$DATA must have its complete runlist in memory at all times. */
183 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
184
185 blocksize_bits = VFS_I(ni)->i_blkbits;
186 blocksize = 1 << blocksize_bits;
187
188 if (!page_has_buffers(page))
189 create_empty_buffers(page, blocksize, 0);
190 bh = head = page_buffers(page);
191 if (unlikely(!bh)) {
192 unlock_page(page);
193 return -ENOMEM;
194 }
195
196 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
07a4e2da 197 read_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
198 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
199 zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
07a4e2da 200 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
201
202 /* Loop through all the buffers in the page. */
203 rl = NULL;
204 nr = i = 0;
205 do {
206 u8 *kaddr;
207
208 if (unlikely(buffer_uptodate(bh)))
209 continue;
210 if (unlikely(buffer_mapped(bh))) {
211 arr[nr++] = bh;
212 continue;
213 }
214 bh->b_bdev = vol->sb->s_bdev;
215 /* Is the block within the allowed limits? */
216 if (iblock < lblock) {
217 BOOL is_retry = FALSE;
218
219 /* Convert iblock into corresponding vcn and offset. */
220 vcn = (VCN)iblock << blocksize_bits >>
221 vol->cluster_size_bits;
222 vcn_ofs = ((VCN)iblock << blocksize_bits) &
223 vol->cluster_size_mask;
224 if (!rl) {
225lock_retry_remap:
226 down_read(&ni->runlist.lock);
227 rl = ni->runlist.rl;
228 }
229 if (likely(rl != NULL)) {
230 /* Seek to element containing target vcn. */
231 while (rl->length && rl[1].vcn <= vcn)
232 rl++;
233 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
234 } else
235 lcn = LCN_RL_NOT_MAPPED;
236 /* Successful remap. */
237 if (lcn >= 0) {
238 /* Setup buffer head to correct block. */
239 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
240 + vcn_ofs) >> blocksize_bits;
241 set_buffer_mapped(bh);
242 /* Only read initialized data blocks. */
243 if (iblock < zblock) {
244 arr[nr++] = bh;
245 continue;
246 }
247 /* Fully non-initialized data block, zero it. */
248 goto handle_zblock;
249 }
250 /* It is a hole, need to zero it. */
251 if (lcn == LCN_HOLE)
252 goto handle_hole;
253 /* If first try and runlist unmapped, map and retry. */
254 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
255 int err;
256 is_retry = TRUE;
257 /*
258 * Attempt to map runlist, dropping lock for
259 * the duration.
260 */
261 up_read(&ni->runlist.lock);
262 err = ntfs_map_runlist(ni, vcn);
263 if (likely(!err))
264 goto lock_retry_remap;
265 rl = NULL;
266 lcn = err;
9f993fe4
AA
267 } else if (!rl)
268 up_read(&ni->runlist.lock);
1da177e4
LT
269 /* Hard error, zero out region. */
270 bh->b_blocknr = -1;
271 SetPageError(page);
272 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
273 "attribute type 0x%x, vcn 0x%llx, "
274 "offset 0x%x because its location on "
275 "disk could not be determined%s "
276 "(error code %lli).", ni->mft_no,
277 ni->type, (unsigned long long)vcn,
278 vcn_ofs, is_retry ? " even after "
279 "retrying" : "", (long long)lcn);
280 }
281 /*
282 * Either iblock was outside lblock limits or
283 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
284 * of the page and set the buffer uptodate.
285 */
286handle_hole:
287 bh->b_blocknr = -1UL;
288 clear_buffer_mapped(bh);
289handle_zblock:
290 kaddr = kmap_atomic(page, KM_USER0);
291 memset(kaddr + i * blocksize, 0, blocksize);
292 flush_dcache_page(page);
293 kunmap_atomic(kaddr, KM_USER0);
294 set_buffer_uptodate(bh);
295 } while (i++, iblock++, (bh = bh->b_this_page) != head);
296
297 /* Release the lock if we took it. */
298 if (rl)
299 up_read(&ni->runlist.lock);
300
301 /* Check we have at least one buffer ready for i/o. */
302 if (nr) {
303 struct buffer_head *tbh;
304
305 /* Lock the buffers. */
306 for (i = 0; i < nr; i++) {
307 tbh = arr[i];
308 lock_buffer(tbh);
309 tbh->b_end_io = ntfs_end_buffer_async_read;
310 set_buffer_async_read(tbh);
311 }
312 /* Finally, start i/o on the buffers. */
313 for (i = 0; i < nr; i++) {
314 tbh = arr[i];
315 if (likely(!buffer_uptodate(tbh)))
316 submit_bh(READ, tbh);
317 else
318 ntfs_end_buffer_async_read(tbh, 1);
319 }
320 return 0;
321 }
322 /* No i/o was scheduled on any of the buffers. */
323 if (likely(!PageError(page)))
324 SetPageUptodate(page);
325 else /* Signal synchronous i/o error. */
326 nr = -EIO;
327 unlock_page(page);
328 return nr;
329}
330
331/**
332 * ntfs_readpage - fill a @page of a @file with data from the device
333 * @file: open file to which the page @page belongs or NULL
334 * @page: page cache page to fill with data
335 *
336 * For non-resident attributes, ntfs_readpage() fills the @page of the open
337 * file @file by calling the ntfs version of the generic block_read_full_page()
338 * function, ntfs_read_block(), which in turn creates and reads in the buffers
339 * associated with the page asynchronously.
340 *
341 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
342 * data from the mft record (which at this stage is most likely in memory) and
343 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
344 * even if the mft record is not cached at this point in time, we need to wait
345 * for it to be read in before we can do the copy.
346 *
347 * Return 0 on success and -errno on error.
348 */
349static int ntfs_readpage(struct file *file, struct page *page)
350{
1da177e4
LT
351 ntfs_inode *ni, *base_ni;
352 u8 *kaddr;
353 ntfs_attr_search_ctx *ctx;
354 MFT_RECORD *mrec;
b6ad6c52 355 unsigned long flags;
1da177e4
LT
356 u32 attr_len;
357 int err = 0;
358
905685f6 359retry_readpage:
1da177e4
LT
360 BUG_ON(!PageLocked(page));
361 /*
362 * This can potentially happen because we clear PageUptodate() during
363 * ntfs_writepage() of MstProtected() attributes.
364 */
365 if (PageUptodate(page)) {
366 unlock_page(page);
367 return 0;
368 }
369 ni = NTFS_I(page->mapping->host);
370
371 /* NInoNonResident() == NInoIndexAllocPresent() */
372 if (NInoNonResident(ni)) {
373 /*
374 * Only unnamed $DATA attributes can be compressed or
375 * encrypted.
376 */
377 if (ni->type == AT_DATA && !ni->name_len) {
378 /* If file is encrypted, deny access, just like NT4. */
379 if (NInoEncrypted(ni)) {
380 err = -EACCES;
381 goto err_out;
382 }
383 /* Compressed data streams are handled in compress.c. */
384 if (NInoCompressed(ni))
385 return ntfs_read_compressed_block(page);
386 }
387 /* Normal data stream. */
388 return ntfs_read_block(page);
389 }
390 /*
391 * Attribute is resident, implying it is not compressed or encrypted.
392 * This also means the attribute is smaller than an mft record and
393 * hence smaller than a page, so can simply zero out any pages with
b6ad6c52 394 * index above 0.
1da177e4 395 */
b6ad6c52 396 if (unlikely(page->index > 0)) {
1da177e4
LT
397 kaddr = kmap_atomic(page, KM_USER0);
398 memset(kaddr, 0, PAGE_CACHE_SIZE);
399 flush_dcache_page(page);
400 kunmap_atomic(kaddr, KM_USER0);
401 goto done;
402 }
403 if (!NInoAttr(ni))
404 base_ni = ni;
405 else
406 base_ni = ni->ext.base_ntfs_ino;
407 /* Map, pin, and lock the mft record. */
408 mrec = map_mft_record(base_ni);
409 if (IS_ERR(mrec)) {
410 err = PTR_ERR(mrec);
411 goto err_out;
412 }
905685f6
AA
413 /*
414 * If a parallel write made the attribute non-resident, drop the mft
415 * record and retry the readpage.
416 */
417 if (unlikely(NInoNonResident(ni))) {
418 unmap_mft_record(base_ni);
419 goto retry_readpage;
420 }
1da177e4
LT
421 ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
422 if (unlikely(!ctx)) {
423 err = -ENOMEM;
424 goto unm_err_out;
425 }
426 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
427 CASE_SENSITIVE, 0, NULL, 0, ctx);
428 if (unlikely(err))
429 goto put_unm_err_out;
430 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
b6ad6c52
AA
431 read_lock_irqsave(&ni->size_lock, flags);
432 if (unlikely(attr_len > ni->initialized_size))
433 attr_len = ni->initialized_size;
434 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
435 kaddr = kmap_atomic(page, KM_USER0);
436 /* Copy the data to the page. */
437 memcpy(kaddr, (u8*)ctx->attr +
438 le16_to_cpu(ctx->attr->data.resident.value_offset),
439 attr_len);
440 /* Zero the remainder of the page. */
441 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
442 flush_dcache_page(page);
443 kunmap_atomic(kaddr, KM_USER0);
444put_unm_err_out:
445 ntfs_attr_put_search_ctx(ctx);
446unm_err_out:
447 unmap_mft_record(base_ni);
448done:
449 SetPageUptodate(page);
450err_out:
451 unlock_page(page);
452 return err;
453}
454
455#ifdef NTFS_RW
456
457/**
458 * ntfs_write_block - write a @page to the backing store
459 * @page: page cache page to write out
460 * @wbc: writeback control structure
461 *
462 * This function is for writing pages belonging to non-resident, non-mst
463 * protected attributes to their backing store.
464 *
465 * For a page with buffers, map and write the dirty buffers asynchronously
466 * under page writeback. For a page without buffers, create buffers for the
467 * page, then proceed as above.
468 *
469 * If a page doesn't have buffers the page dirty state is definitive. If a page
470 * does have buffers, the page dirty state is just a hint, and the buffer dirty
471 * state is definitive. (A hint which has rules: dirty buffers against a clean
472 * page is illegal. Other combinations are legal and need to be handled. In
473 * particular a dirty page containing clean buffers for example.)
474 *
475 * Return 0 on success and -errno on error.
476 *
477 * Based on ntfs_read_block() and __block_write_full_page().
478 */
479static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
480{
481 VCN vcn;
482 LCN lcn;
07a4e2da
AA
483 s64 initialized_size;
484 loff_t i_size;
1da177e4
LT
485 sector_t block, dblock, iblock;
486 struct inode *vi;
487 ntfs_inode *ni;
488 ntfs_volume *vol;
489 runlist_element *rl;
490 struct buffer_head *bh, *head;
07a4e2da 491 unsigned long flags;
1da177e4
LT
492 unsigned int blocksize, vcn_ofs;
493 int err;
494 BOOL need_end_writeback;
495 unsigned char blocksize_bits;
496
497 vi = page->mapping->host;
498 ni = NTFS_I(vi);
499 vol = ni->vol;
500
501 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
502 "0x%lx.", ni->mft_no, ni->type, page->index);
503
504 BUG_ON(!NInoNonResident(ni));
505 BUG_ON(NInoMstProtected(ni));
506
507 blocksize_bits = vi->i_blkbits;
508 blocksize = 1 << blocksize_bits;
509
510 if (!page_has_buffers(page)) {
511 BUG_ON(!PageUptodate(page));
512 create_empty_buffers(page, blocksize,
513 (1 << BH_Uptodate) | (1 << BH_Dirty));
514 }
515 bh = head = page_buffers(page);
516 if (unlikely(!bh)) {
517 ntfs_warning(vol->sb, "Error allocating page buffers. "
518 "Redirtying page so we try again later.");
519 /*
520 * Put the page back on mapping->dirty_pages, but leave its
521 * buffer's dirty state as-is.
522 */
523 redirty_page_for_writepage(wbc, page);
524 unlock_page(page);
525 return 0;
526 }
527
528 /* NOTE: Different naming scheme to ntfs_read_block()! */
529
530 /* The first block in the page. */
531 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
532
07a4e2da
AA
533 read_lock_irqsave(&ni->size_lock, flags);
534 i_size = i_size_read(vi);
535 initialized_size = ni->initialized_size;
536 read_unlock_irqrestore(&ni->size_lock, flags);
537
1da177e4 538 /* The first out of bounds block for the data size. */
07a4e2da 539 dblock = (i_size + blocksize - 1) >> blocksize_bits;
1da177e4
LT
540
541 /* The last (fully or partially) initialized block. */
07a4e2da 542 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
543
544 /*
545 * Be very careful. We have no exclusion from __set_page_dirty_buffers
546 * here, and the (potentially unmapped) buffers may become dirty at
547 * any time. If a buffer becomes dirty here after we've inspected it
548 * then we just miss that fact, and the page stays dirty.
549 *
550 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
551 * handle that here by just cleaning them.
552 */
553
554 /*
555 * Loop through all the buffers in the page, mapping all the dirty
556 * buffers to disk addresses and handling any aliases from the
557 * underlying block device's mapping.
558 */
559 rl = NULL;
560 err = 0;
561 do {
562 BOOL is_retry = FALSE;
563
564 if (unlikely(block >= dblock)) {
565 /*
566 * Mapped buffers outside i_size will occur, because
567 * this page can be outside i_size when there is a
568 * truncate in progress. The contents of such buffers
569 * were zeroed by ntfs_writepage().
570 *
571 * FIXME: What about the small race window where
572 * ntfs_writepage() has not done any clearing because
573 * the page was within i_size but before we get here,
574 * vmtruncate() modifies i_size?
575 */
576 clear_buffer_dirty(bh);
577 set_buffer_uptodate(bh);
578 continue;
579 }
580
581 /* Clean buffers are not written out, so no need to map them. */
582 if (!buffer_dirty(bh))
583 continue;
584
585 /* Make sure we have enough initialized size. */
586 if (unlikely((block >= iblock) &&
07a4e2da 587 (initialized_size < i_size))) {
1da177e4
LT
588 /*
589 * If this page is fully outside initialized size, zero
590 * out all pages between the current initialized size
591 * and the current page. Just use ntfs_readpage() to do
592 * the zeroing transparently.
593 */
594 if (block > iblock) {
595 // TODO:
596 // For each page do:
597 // - read_cache_page()
598 // Again for each page do:
599 // - wait_on_page_locked()
600 // - Check (PageUptodate(page) &&
601 // !PageError(page))
602 // Update initialized size in the attribute and
603 // in the inode.
604 // Again, for each page do:
605 // __set_page_dirty_buffers();
606 // page_cache_release()
607 // We don't need to wait on the writes.
608 // Update iblock.
609 }
610 /*
611 * The current page straddles initialized size. Zero
612 * all non-uptodate buffers and set them uptodate (and
613 * dirty?). Note, there aren't any non-uptodate buffers
614 * if the page is uptodate.
615 * FIXME: For an uptodate page, the buffers may need to
616 * be written out because they were not initialized on
617 * disk before.
618 */
619 if (!PageUptodate(page)) {
620 // TODO:
621 // Zero any non-uptodate buffers up to i_size.
622 // Set them uptodate and dirty.
623 }
624 // TODO:
625 // Update initialized size in the attribute and in the
626 // inode (up to i_size).
627 // Update iblock.
628 // FIXME: This is inefficient. Try to batch the two
629 // size changes to happen in one go.
630 ntfs_error(vol->sb, "Writing beyond initialized size "
631 "is not supported yet. Sorry.");
632 err = -EOPNOTSUPP;
633 break;
634 // Do NOT set_buffer_new() BUT DO clear buffer range
635 // outside write request range.
636 // set_buffer_uptodate() on complete buffers as well as
637 // set_buffer_dirty().
638 }
639
640 /* No need to map buffers that are already mapped. */
641 if (buffer_mapped(bh))
642 continue;
643
644 /* Unmapped, dirty buffer. Need to map it. */
645 bh->b_bdev = vol->sb->s_bdev;
646
647 /* Convert block into corresponding vcn and offset. */
648 vcn = (VCN)block << blocksize_bits;
649 vcn_ofs = vcn & vol->cluster_size_mask;
650 vcn >>= vol->cluster_size_bits;
651 if (!rl) {
652lock_retry_remap:
653 down_read(&ni->runlist.lock);
654 rl = ni->runlist.rl;
655 }
656 if (likely(rl != NULL)) {
657 /* Seek to element containing target vcn. */
658 while (rl->length && rl[1].vcn <= vcn)
659 rl++;
660 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
661 } else
662 lcn = LCN_RL_NOT_MAPPED;
663 /* Successful remap. */
664 if (lcn >= 0) {
665 /* Setup buffer head to point to correct block. */
666 bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
667 vcn_ofs) >> blocksize_bits;
668 set_buffer_mapped(bh);
669 continue;
670 }
671 /* It is a hole, need to instantiate it. */
672 if (lcn == LCN_HOLE) {
8dcdebaf
AA
673 u8 *kaddr;
674 unsigned long *bpos, *bend;
675
676 /* Check if the buffer is zero. */
677 kaddr = kmap_atomic(page, KM_USER0);
678 bpos = (unsigned long *)(kaddr + bh_offset(bh));
679 bend = (unsigned long *)((u8*)bpos + blocksize);
680 do {
681 if (unlikely(*bpos))
682 break;
683 } while (likely(++bpos < bend));
684 kunmap_atomic(kaddr, KM_USER0);
685 if (bpos == bend) {
686 /*
687 * Buffer is zero and sparse, no need to write
688 * it.
689 */
690 bh->b_blocknr = -1;
691 clear_buffer_dirty(bh);
692 continue;
693 }
1da177e4
LT
694 // TODO: Instantiate the hole.
695 // clear_buffer_new(bh);
696 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
697 ntfs_error(vol->sb, "Writing into sparse regions is "
698 "not supported yet. Sorry.");
699 err = -EOPNOTSUPP;
700 break;
701 }
702 /* If first try and runlist unmapped, map and retry. */
703 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
704 is_retry = TRUE;
705 /*
706 * Attempt to map runlist, dropping lock for
707 * the duration.
708 */
709 up_read(&ni->runlist.lock);
710 err = ntfs_map_runlist(ni, vcn);
711 if (likely(!err))
712 goto lock_retry_remap;
713 rl = NULL;
714 lcn = err;
9f993fe4
AA
715 } else if (!rl)
716 up_read(&ni->runlist.lock);
1da177e4
LT
717 /* Failed to map the buffer, even after retrying. */
718 bh->b_blocknr = -1;
719 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
720 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
721 "because its location on disk could not be "
722 "determined%s (error code %lli).", ni->mft_no,
723 ni->type, (unsigned long long)vcn,
724 vcn_ofs, is_retry ? " even after "
725 "retrying" : "", (long long)lcn);
726 if (!err)
727 err = -EIO;
728 break;
729 } while (block++, (bh = bh->b_this_page) != head);
730
731 /* Release the lock if we took it. */
732 if (rl)
733 up_read(&ni->runlist.lock);
734
735 /* For the error case, need to reset bh to the beginning. */
736 bh = head;
737
738 /* Just an optimization, so ->readpage() isn't called later. */
739 if (unlikely(!PageUptodate(page))) {
740 int uptodate = 1;
741 do {
742 if (!buffer_uptodate(bh)) {
743 uptodate = 0;
744 bh = head;
745 break;
746 }
747 } while ((bh = bh->b_this_page) != head);
748 if (uptodate)
749 SetPageUptodate(page);
750 }
751
752 /* Setup all mapped, dirty buffers for async write i/o. */
753 do {
754 get_bh(bh);
755 if (buffer_mapped(bh) && buffer_dirty(bh)) {
756 lock_buffer(bh);
757 if (test_clear_buffer_dirty(bh)) {
758 BUG_ON(!buffer_uptodate(bh));
759 mark_buffer_async_write(bh);
760 } else
761 unlock_buffer(bh);
762 } else if (unlikely(err)) {
763 /*
764 * For the error case. The buffer may have been set
765 * dirty during attachment to a dirty page.
766 */
767 if (err != -ENOMEM)
768 clear_buffer_dirty(bh);
769 }
770 } while ((bh = bh->b_this_page) != head);
771
772 if (unlikely(err)) {
773 // TODO: Remove the -EOPNOTSUPP check later on...
774 if (unlikely(err == -EOPNOTSUPP))
775 err = 0;
776 else if (err == -ENOMEM) {
777 ntfs_warning(vol->sb, "Error allocating memory. "
778 "Redirtying page so we try again "
779 "later.");
780 /*
781 * Put the page back on mapping->dirty_pages, but
782 * leave its buffer's dirty state as-is.
783 */
784 redirty_page_for_writepage(wbc, page);
785 err = 0;
786 } else
787 SetPageError(page);
788 }
789
790 BUG_ON(PageWriteback(page));
791 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
792 unlock_page(page);
793
794 /*
795 * Submit the prepared buffers for i/o. Note the page is unlocked,
796 * and the async write i/o completion handler can end_page_writeback()
797 * at any time after the *first* submit_bh(). So the buffers can then
798 * disappear...
799 */
800 need_end_writeback = TRUE;
801 do {
802 struct buffer_head *next = bh->b_this_page;
803 if (buffer_async_write(bh)) {
804 submit_bh(WRITE, bh);
805 need_end_writeback = FALSE;
806 }
807 put_bh(bh);
808 bh = next;
809 } while (bh != head);
810
811 /* If no i/o was started, need to end_page_writeback(). */
812 if (unlikely(need_end_writeback))
813 end_page_writeback(page);
814
815 ntfs_debug("Done.");
816 return err;
817}
818
819/**
820 * ntfs_write_mst_block - write a @page to the backing store
821 * @page: page cache page to write out
822 * @wbc: writeback control structure
823 *
824 * This function is for writing pages belonging to non-resident, mst protected
825 * attributes to their backing store. The only supported attributes are index
826 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
827 * supported for the index allocation case.
828 *
829 * The page must remain locked for the duration of the write because we apply
830 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
831 * page before undoing the fixups, any other user of the page will see the
832 * page contents as corrupt.
833 *
834 * We clear the page uptodate flag for the duration of the function to ensure
835 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
836 * are about to apply the mst fixups to.
837 *
838 * Return 0 on success and -errno on error.
839 *
840 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
841 * write_mft_record_nolock().
842 */
843static int ntfs_write_mst_block(struct page *page,
844 struct writeback_control *wbc)
845{
846 sector_t block, dblock, rec_block;
847 struct inode *vi = page->mapping->host;
848 ntfs_inode *ni = NTFS_I(vi);
849 ntfs_volume *vol = ni->vol;
850 u8 *kaddr;
1da177e4
LT
851 unsigned int rec_size = ni->itype.index.block_size;
852 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
853 struct buffer_head *bh, *head, *tbh, *rec_start_bh;
d53ee322 854 struct buffer_head *bhs[MAX_BUF_PER_PAGE];
1da177e4 855 runlist_element *rl;
d53ee322
AA
856 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
857 unsigned bh_size, rec_size_bits;
1da177e4 858 BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
d53ee322 859 unsigned char bh_size_bits;
1da177e4
LT
860
861 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
862 "0x%lx.", vi->i_ino, ni->type, page->index);
863 BUG_ON(!NInoNonResident(ni));
864 BUG_ON(!NInoMstProtected(ni));
865 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
866 /*
867 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
868 * in its page cache were to be marked dirty. However this should
869 * never happen with the current driver and considering we do not
870 * handle this case here we do want to BUG(), at least for now.
871 */
872 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
873 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
d53ee322
AA
874 bh_size_bits = vi->i_blkbits;
875 bh_size = 1 << bh_size_bits;
876 max_bhs = PAGE_CACHE_SIZE / bh_size;
1da177e4 877 BUG_ON(!max_bhs);
d53ee322 878 BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
1da177e4
LT
879
880 /* Were we called for sync purposes? */
881 sync = (wbc->sync_mode == WB_SYNC_ALL);
882
883 /* Make sure we have mapped buffers. */
884 BUG_ON(!page_has_buffers(page));
885 bh = head = page_buffers(page);
886 BUG_ON(!bh);
887
888 rec_size_bits = ni->itype.index.block_size_bits;
889 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
890 bhs_per_rec = rec_size >> bh_size_bits;
891 BUG_ON(!bhs_per_rec);
892
893 /* The first block in the page. */
894 rec_block = block = (sector_t)page->index <<
895 (PAGE_CACHE_SHIFT - bh_size_bits);
896
897 /* The first out of bounds block for the data size. */
07a4e2da 898 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
1da177e4
LT
899
900 rl = NULL;
901 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
902 page_is_dirty = rec_is_dirty = FALSE;
903 rec_start_bh = NULL;
904 do {
905 BOOL is_retry = FALSE;
906
907 if (likely(block < rec_block)) {
908 if (unlikely(block >= dblock)) {
909 clear_buffer_dirty(bh);
946929d8 910 set_buffer_uptodate(bh);
1da177e4
LT
911 continue;
912 }
913 /*
914 * This block is not the first one in the record. We
915 * ignore the buffer's dirty state because we could
916 * have raced with a parallel mark_ntfs_record_dirty().
917 */
918 if (!rec_is_dirty)
919 continue;
920 if (unlikely(err2)) {
921 if (err2 != -ENOMEM)
922 clear_buffer_dirty(bh);
923 continue;
924 }
925 } else /* if (block == rec_block) */ {
926 BUG_ON(block > rec_block);
927 /* This block is the first one in the record. */
928 rec_block += bhs_per_rec;
929 err2 = 0;
930 if (unlikely(block >= dblock)) {
931 clear_buffer_dirty(bh);
932 continue;
933 }
934 if (!buffer_dirty(bh)) {
935 /* Clean records are not written out. */
936 rec_is_dirty = FALSE;
937 continue;
938 }
939 rec_is_dirty = TRUE;
940 rec_start_bh = bh;
941 }
942 /* Need to map the buffer if it is not mapped already. */
943 if (unlikely(!buffer_mapped(bh))) {
944 VCN vcn;
945 LCN lcn;
946 unsigned int vcn_ofs;
947
481d0374 948 bh->b_bdev = vol->sb->s_bdev;
1da177e4
LT
949 /* Obtain the vcn and offset of the current block. */
950 vcn = (VCN)block << bh_size_bits;
951 vcn_ofs = vcn & vol->cluster_size_mask;
952 vcn >>= vol->cluster_size_bits;
953 if (!rl) {
954lock_retry_remap:
955 down_read(&ni->runlist.lock);
956 rl = ni->runlist.rl;
957 }
958 if (likely(rl != NULL)) {
959 /* Seek to element containing target vcn. */
960 while (rl->length && rl[1].vcn <= vcn)
961 rl++;
962 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
963 } else
964 lcn = LCN_RL_NOT_MAPPED;
965 /* Successful remap. */
966 if (likely(lcn >= 0)) {
967 /* Setup buffer head to correct block. */
968 bh->b_blocknr = ((lcn <<
969 vol->cluster_size_bits) +
970 vcn_ofs) >> bh_size_bits;
971 set_buffer_mapped(bh);
972 } else {
973 /*
974 * Remap failed. Retry to map the runlist once
975 * unless we are working on $MFT which always
976 * has the whole of its runlist in memory.
977 */
978 if (!is_mft && !is_retry &&
979 lcn == LCN_RL_NOT_MAPPED) {
980 is_retry = TRUE;
981 /*
982 * Attempt to map runlist, dropping
983 * lock for the duration.
984 */
985 up_read(&ni->runlist.lock);
986 err2 = ntfs_map_runlist(ni, vcn);
987 if (likely(!err2))
988 goto lock_retry_remap;
989 if (err2 == -ENOMEM)
990 page_is_dirty = TRUE;
991 lcn = err2;
9f993fe4 992 } else {
1da177e4 993 err2 = -EIO;
9f993fe4
AA
994 if (!rl)
995 up_read(&ni->runlist.lock);
996 }
1da177e4
LT
997 /* Hard error. Abort writing this record. */
998 if (!err || err == -ENOMEM)
999 err = err2;
1000 bh->b_blocknr = -1;
1001 ntfs_error(vol->sb, "Cannot write ntfs record "
1002 "0x%llx (inode 0x%lx, "
1003 "attribute type 0x%x) because "
1004 "its location on disk could "
1005 "not be determined (error "
8907547d
RD
1006 "code %lli).",
1007 (long long)block <<
1da177e4
LT
1008 bh_size_bits >>
1009 vol->mft_record_size_bits,
1010 ni->mft_no, ni->type,
1011 (long long)lcn);
1012 /*
1013 * If this is not the first buffer, remove the
1014 * buffers in this record from the list of
1015 * buffers to write and clear their dirty bit
1016 * if not error -ENOMEM.
1017 */
1018 if (rec_start_bh != bh) {
1019 while (bhs[--nr_bhs] != rec_start_bh)
1020 ;
1021 if (err2 != -ENOMEM) {
1022 do {
1023 clear_buffer_dirty(
1024 rec_start_bh);
1025 } while ((rec_start_bh =
1026 rec_start_bh->
1027 b_this_page) !=
1028 bh);
1029 }
1030 }
1031 continue;
1032 }
1033 }
1034 BUG_ON(!buffer_uptodate(bh));
1035 BUG_ON(nr_bhs >= max_bhs);
1036 bhs[nr_bhs++] = bh;
1037 } while (block++, (bh = bh->b_this_page) != head);
1038 if (unlikely(rl))
1039 up_read(&ni->runlist.lock);
1040 /* If there were no dirty buffers, we are done. */
1041 if (!nr_bhs)
1042 goto done;
1043 /* Map the page so we can access its contents. */
1044 kaddr = kmap(page);
1045 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1046 BUG_ON(!PageUptodate(page));
1047 ClearPageUptodate(page);
1048 for (i = 0; i < nr_bhs; i++) {
1049 unsigned int ofs;
1050
1051 /* Skip buffers which are not at the beginning of records. */
1052 if (i % bhs_per_rec)
1053 continue;
1054 tbh = bhs[i];
1055 ofs = bh_offset(tbh);
1056 if (is_mft) {
1057 ntfs_inode *tni;
1058 unsigned long mft_no;
1059
1060 /* Get the mft record number. */
1061 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1062 >> rec_size_bits;
1063 /* Check whether to write this mft record. */
1064 tni = NULL;
1065 if (!ntfs_may_write_mft_record(vol, mft_no,
1066 (MFT_RECORD*)(kaddr + ofs), &tni)) {
1067 /*
1068 * The record should not be written. This
1069 * means we need to redirty the page before
1070 * returning.
1071 */
1072 page_is_dirty = TRUE;
1073 /*
1074 * Remove the buffers in this mft record from
1075 * the list of buffers to write.
1076 */
1077 do {
1078 bhs[i] = NULL;
1079 } while (++i % bhs_per_rec);
1080 continue;
1081 }
1082 /*
1083 * The record should be written. If a locked ntfs
1084 * inode was returned, add it to the array of locked
1085 * ntfs inodes.
1086 */
1087 if (tni)
1088 locked_nis[nr_locked_nis++] = tni;
1089 }
1090 /* Apply the mst protection fixups. */
1091 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1092 rec_size);
1093 if (unlikely(err2)) {
1094 if (!err || err == -ENOMEM)
1095 err = -EIO;
1096 ntfs_error(vol->sb, "Failed to apply mst fixups "
1097 "(inode 0x%lx, attribute type 0x%x, "
1098 "page index 0x%lx, page offset 0x%x)!"
1099 " Unmount and run chkdsk.", vi->i_ino,
1100 ni->type, page->index, ofs);
1101 /*
1102 * Mark all the buffers in this record clean as we do
1103 * not want to write corrupt data to disk.
1104 */
1105 do {
1106 clear_buffer_dirty(bhs[i]);
1107 bhs[i] = NULL;
1108 } while (++i % bhs_per_rec);
1109 continue;
1110 }
1111 nr_recs++;
1112 }
1113 /* If no records are to be written out, we are done. */
1114 if (!nr_recs)
1115 goto unm_done;
1116 flush_dcache_page(page);
1117 /* Lock buffers and start synchronous write i/o on them. */
1118 for (i = 0; i < nr_bhs; i++) {
1119 tbh = bhs[i];
1120 if (!tbh)
1121 continue;
1122 if (unlikely(test_set_buffer_locked(tbh)))
1123 BUG();
1124 /* The buffer dirty state is now irrelevant, just clean it. */
1125 clear_buffer_dirty(tbh);
1126 BUG_ON(!buffer_uptodate(tbh));
1127 BUG_ON(!buffer_mapped(tbh));
1128 get_bh(tbh);
1129 tbh->b_end_io = end_buffer_write_sync;
1130 submit_bh(WRITE, tbh);
1131 }
1132 /* Synchronize the mft mirror now if not @sync. */
1133 if (is_mft && !sync)
1134 goto do_mirror;
1135do_wait:
1136 /* Wait on i/o completion of buffers. */
1137 for (i = 0; i < nr_bhs; i++) {
1138 tbh = bhs[i];
1139 if (!tbh)
1140 continue;
1141 wait_on_buffer(tbh);
1142 if (unlikely(!buffer_uptodate(tbh))) {
1143 ntfs_error(vol->sb, "I/O error while writing ntfs "
1144 "record buffer (inode 0x%lx, "
1145 "attribute type 0x%x, page index "
1146 "0x%lx, page offset 0x%lx)! Unmount "
1147 "and run chkdsk.", vi->i_ino, ni->type,
1148 page->index, bh_offset(tbh));
1149 if (!err || err == -ENOMEM)
1150 err = -EIO;
1151 /*
1152 * Set the buffer uptodate so the page and buffer
1153 * states do not become out of sync.
1154 */
1155 set_buffer_uptodate(tbh);
1156 }
1157 }
1158 /* If @sync, now synchronize the mft mirror. */
1159 if (is_mft && sync) {
1160do_mirror:
1161 for (i = 0; i < nr_bhs; i++) {
1162 unsigned long mft_no;
1163 unsigned int ofs;
1164
1165 /*
1166 * Skip buffers which are not at the beginning of
1167 * records.
1168 */
1169 if (i % bhs_per_rec)
1170 continue;
1171 tbh = bhs[i];
1172 /* Skip removed buffers (and hence records). */
1173 if (!tbh)
1174 continue;
1175 ofs = bh_offset(tbh);
1176 /* Get the mft record number. */
1177 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1178 >> rec_size_bits;
1179 if (mft_no < vol->mftmirr_size)
1180 ntfs_sync_mft_mirror(vol, mft_no,
1181 (MFT_RECORD*)(kaddr + ofs),
1182 sync);
1183 }
1184 if (!sync)
1185 goto do_wait;
1186 }
1187 /* Remove the mst protection fixups again. */
1188 for (i = 0; i < nr_bhs; i++) {
1189 if (!(i % bhs_per_rec)) {
1190 tbh = bhs[i];
1191 if (!tbh)
1192 continue;
1193 post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1194 bh_offset(tbh)));
1195 }
1196 }
1197 flush_dcache_page(page);
1198unm_done:
1199 /* Unlock any locked inodes. */
1200 while (nr_locked_nis-- > 0) {
1201 ntfs_inode *tni, *base_tni;
1202
1203 tni = locked_nis[nr_locked_nis];
1204 /* Get the base inode. */
1205 down(&tni->extent_lock);
1206 if (tni->nr_extents >= 0)
1207 base_tni = tni;
1208 else {
1209 base_tni = tni->ext.base_ntfs_ino;
1210 BUG_ON(!base_tni);
1211 }
1212 up(&tni->extent_lock);
1213 ntfs_debug("Unlocking %s inode 0x%lx.",
1214 tni == base_tni ? "base" : "extent",
1215 tni->mft_no);
1216 up(&tni->mrec_lock);
1217 atomic_dec(&tni->count);
1218 iput(VFS_I(base_tni));
1219 }
1220 SetPageUptodate(page);
1221 kunmap(page);
1222done:
1223 if (unlikely(err && err != -ENOMEM)) {
1224 /*
1225 * Set page error if there is only one ntfs record in the page.
1226 * Otherwise we would loose per-record granularity.
1227 */
1228 if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1229 SetPageError(page);
1230 NVolSetErrors(vol);
1231 }
1232 if (page_is_dirty) {
1233 ntfs_debug("Page still contains one or more dirty ntfs "
1234 "records. Redirtying the page starting at "
1235 "record 0x%lx.", page->index <<
1236 (PAGE_CACHE_SHIFT - rec_size_bits));
1237 redirty_page_for_writepage(wbc, page);
1238 unlock_page(page);
1239 } else {
1240 /*
1241 * Keep the VM happy. This must be done otherwise the
1242 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1243 * the page is clean.
1244 */
1245 BUG_ON(PageWriteback(page));
1246 set_page_writeback(page);
1247 unlock_page(page);
1248 end_page_writeback(page);
1249 }
1250 if (likely(!err))
1251 ntfs_debug("Done.");
1252 return err;
1253}
1254
1255/**
1256 * ntfs_writepage - write a @page to the backing store
1257 * @page: page cache page to write out
1258 * @wbc: writeback control structure
1259 *
1260 * This is called from the VM when it wants to have a dirty ntfs page cache
1261 * page cleaned. The VM has already locked the page and marked it clean.
1262 *
1263 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1264 * the ntfs version of the generic block_write_full_page() function,
1265 * ntfs_write_block(), which in turn if necessary creates and writes the
1266 * buffers associated with the page asynchronously.
1267 *
1268 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1269 * the data to the mft record (which at this stage is most likely in memory).
1270 * The mft record is then marked dirty and written out asynchronously via the
1271 * vfs inode dirty code path for the inode the mft record belongs to or via the
1272 * vm page dirty code path for the page the mft record is in.
1273 *
1274 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1275 *
1276 * Return 0 on success and -errno on error.
1277 */
1278static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1279{
1280 loff_t i_size;
149f0c52
AA
1281 struct inode *vi = page->mapping->host;
1282 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1da177e4 1283 char *kaddr;
149f0c52
AA
1284 ntfs_attr_search_ctx *ctx = NULL;
1285 MFT_RECORD *m = NULL;
1da177e4
LT
1286 u32 attr_len;
1287 int err;
1288
905685f6 1289retry_writepage:
1da177e4 1290 BUG_ON(!PageLocked(page));
1da177e4 1291 i_size = i_size_read(vi);
1da177e4
LT
1292 /* Is the page fully outside i_size? (truncate in progress) */
1293 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1294 PAGE_CACHE_SHIFT)) {
1295 /*
1296 * The page may have dirty, unmapped buffers. Make them
1297 * freeable here, so the page does not leak.
1298 */
1299 block_invalidatepage(page, 0);
1300 unlock_page(page);
1301 ntfs_debug("Write outside i_size - truncated?");
1302 return 0;
1303 }
bd45fdd2
AA
1304 /*
1305 * Only $DATA attributes can be encrypted and only unnamed $DATA
1306 * attributes can be compressed. Index root can have the flags set but
1307 * this means to create compressed/encrypted files, not that the
1308 * attribute is compressed/encrypted.
1309 */
1310 if (ni->type != AT_INDEX_ROOT) {
1311 /* If file is encrypted, deny access, just like NT4. */
1312 if (NInoEncrypted(ni)) {
1313 unlock_page(page);
1314 BUG_ON(ni->type != AT_DATA);
1315 ntfs_debug("Denying write access to encrypted "
1316 "file.");
1317 return -EACCES;
1318 }
1319 /* Compressed data streams are handled in compress.c. */
1320 if (NInoNonResident(ni) && NInoCompressed(ni)) {
1321 BUG_ON(ni->type != AT_DATA);
1322 BUG_ON(ni->name_len);
1323 // TODO: Implement and replace this with
1324 // return ntfs_write_compressed_block(page);
1325 unlock_page(page);
1326 ntfs_error(vi->i_sb, "Writing to compressed files is "
1327 "not supported yet. Sorry.");
1328 return -EOPNOTSUPP;
1329 }
1330 // TODO: Implement and remove this check.
1331 if (NInoNonResident(ni) && NInoSparse(ni)) {
1332 unlock_page(page);
1333 ntfs_error(vi->i_sb, "Writing to sparse files is not "
1334 "supported yet. Sorry.");
1335 return -EOPNOTSUPP;
1336 }
1337 }
1da177e4
LT
1338 /* NInoNonResident() == NInoIndexAllocPresent() */
1339 if (NInoNonResident(ni)) {
1da177e4
LT
1340 /* We have to zero every time due to mmap-at-end-of-file. */
1341 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1342 /* The page straddles i_size. */
1343 unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1344 kaddr = kmap_atomic(page, KM_USER0);
1345 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1346 flush_dcache_page(page);
1347 kunmap_atomic(kaddr, KM_USER0);
1348 }
1349 /* Handle mst protected attributes. */
1350 if (NInoMstProtected(ni))
1351 return ntfs_write_mst_block(page, wbc);
bd45fdd2 1352 /* Normal, non-resident data stream. */
1da177e4
LT
1353 return ntfs_write_block(page, wbc);
1354 }
1355 /*
bd45fdd2
AA
1356 * Attribute is resident, implying it is not compressed, encrypted, or
1357 * mst protected. This also means the attribute is smaller than an mft
1358 * record and hence smaller than a page, so can simply return error on
1359 * any pages with index above 0. Note the attribute can actually be
1360 * marked compressed but if it is resident the actual data is not
1361 * compressed so we are ok to ignore the compressed flag here.
1da177e4
LT
1362 */
1363 BUG_ON(page_has_buffers(page));
1364 BUG_ON(!PageUptodate(page));
1365 if (unlikely(page->index > 0)) {
1366 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
1367 "Aborting write.", page->index);
1368 BUG_ON(PageWriteback(page));
1369 set_page_writeback(page);
1370 unlock_page(page);
1371 end_page_writeback(page);
1372 return -EIO;
1373 }
1374 if (!NInoAttr(ni))
1375 base_ni = ni;
1376 else
1377 base_ni = ni->ext.base_ntfs_ino;
1378 /* Map, pin, and lock the mft record. */
1379 m = map_mft_record(base_ni);
1380 if (IS_ERR(m)) {
1381 err = PTR_ERR(m);
1382 m = NULL;
1383 ctx = NULL;
1384 goto err_out;
1385 }
905685f6
AA
1386 /*
1387 * If a parallel write made the attribute non-resident, drop the mft
1388 * record and retry the writepage.
1389 */
1390 if (unlikely(NInoNonResident(ni))) {
1391 unmap_mft_record(base_ni);
1392 goto retry_writepage;
1393 }
1da177e4
LT
1394 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1395 if (unlikely(!ctx)) {
1396 err = -ENOMEM;
1397 goto err_out;
1398 }
1399 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1400 CASE_SENSITIVE, 0, NULL, 0, ctx);
1401 if (unlikely(err))
1402 goto err_out;
1403 /*
1404 * Keep the VM happy. This must be done otherwise the radix-tree tag
1405 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1406 */
1407 BUG_ON(PageWriteback(page));
1408 set_page_writeback(page);
1409 unlock_page(page);
1da177e4 1410 /*
bd45fdd2
AA
1411 * Here, we do not need to zero the out of bounds area everytime
1412 * because the below memcpy() already takes care of the
1413 * mmap-at-end-of-file requirements. If the file is converted to a
1414 * non-resident one, then the code path use is switched to the
1415 * non-resident one where the zeroing happens on each ntfs_writepage()
1416 * invocation.
1da177e4 1417 */
1da177e4 1418 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
07a4e2da 1419 i_size = i_size_read(vi);
1da177e4 1420 if (unlikely(attr_len > i_size)) {
1da177e4 1421 attr_len = i_size;
f40661be 1422 ctx->attr->data.resident.value_length = cpu_to_le32(attr_len);
1da177e4 1423 }
f40661be 1424 kaddr = kmap_atomic(page, KM_USER0);
1da177e4
LT
1425 /* Copy the data from the page to the mft record. */
1426 memcpy((u8*)ctx->attr +
1427 le16_to_cpu(ctx->attr->data.resident.value_offset),
1428 kaddr, attr_len);
1429 flush_dcache_mft_record_page(ctx->ntfs_ino);
1430 /* Zero out of bounds area in the page cache page. */
1431 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1432 flush_dcache_page(page);
1433 kunmap_atomic(kaddr, KM_USER0);
1434
1435 end_page_writeback(page);
1436
1437 /* Mark the mft record dirty, so it gets written back. */
1438 mark_mft_record_dirty(ctx->ntfs_ino);
1439 ntfs_attr_put_search_ctx(ctx);
1440 unmap_mft_record(base_ni);
1441 return 0;
1442err_out:
1443 if (err == -ENOMEM) {
1444 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1445 "page so we try again later.");
1446 /*
1447 * Put the page back on mapping->dirty_pages, but leave its
1448 * buffers' dirty state as-is.
1449 */
1450 redirty_page_for_writepage(wbc, page);
1451 err = 0;
1452 } else {
1453 ntfs_error(vi->i_sb, "Resident attribute write failed with "
149f0c52 1454 "error %i.", err);
1da177e4 1455 SetPageError(page);
149f0c52
AA
1456 NVolSetErrors(ni->vol);
1457 make_bad_inode(vi);
1da177e4
LT
1458 }
1459 unlock_page(page);
1460 if (ctx)
1461 ntfs_attr_put_search_ctx(ctx);
1462 if (m)
1463 unmap_mft_record(base_ni);
1464 return err;
1465}
1466
1467/**
1468 * ntfs_prepare_nonresident_write -
1469 *
1470 */
1471static int ntfs_prepare_nonresident_write(struct page *page,
1472 unsigned from, unsigned to)
1473{
1474 VCN vcn;
1475 LCN lcn;
07a4e2da
AA
1476 s64 initialized_size;
1477 loff_t i_size;
1da177e4
LT
1478 sector_t block, ablock, iblock;
1479 struct inode *vi;
1480 ntfs_inode *ni;
1481 ntfs_volume *vol;
1482 runlist_element *rl;
1483 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
07a4e2da 1484 unsigned long flags;
1da177e4
LT
1485 unsigned int vcn_ofs, block_start, block_end, blocksize;
1486 int err;
1487 BOOL is_retry;
1488 unsigned char blocksize_bits;
1489
1490 vi = page->mapping->host;
1491 ni = NTFS_I(vi);
1492 vol = ni->vol;
1493
1494 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1495 "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1496 page->index, from, to);
1497
1498 BUG_ON(!NInoNonResident(ni));
1499
1500 blocksize_bits = vi->i_blkbits;
1501 blocksize = 1 << blocksize_bits;
1502
1503 /*
1504 * create_empty_buffers() will create uptodate/dirty buffers if the
1505 * page is uptodate/dirty.
1506 */
1507 if (!page_has_buffers(page))
1508 create_empty_buffers(page, blocksize, 0);
1509 bh = head = page_buffers(page);
1510 if (unlikely(!bh))
1511 return -ENOMEM;
1512
1513 /* The first block in the page. */
1514 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1515
07a4e2da 1516 read_lock_irqsave(&ni->size_lock, flags);
1da177e4 1517 /*
b6ad6c52 1518 * The first out of bounds block for the allocated size. No need to
1da177e4
LT
1519 * round up as allocated_size is in multiples of cluster size and the
1520 * minimum cluster size is 512 bytes, which is equal to the smallest
1521 * blocksize.
1522 */
1523 ablock = ni->allocated_size >> blocksize_bits;
07a4e2da
AA
1524 i_size = i_size_read(vi);
1525 initialized_size = ni->initialized_size;
1526 read_unlock_irqrestore(&ni->size_lock, flags);
1527
1da177e4 1528 /* The last (fully or partially) initialized block. */
07a4e2da 1529 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
1530
1531 /* Loop through all the buffers in the page. */
1532 block_start = 0;
1533 rl = NULL;
1534 err = 0;
1535 do {
1536 block_end = block_start + blocksize;
1537 /*
1538 * If buffer @bh is outside the write, just mark it uptodate
1539 * if the page is uptodate and continue with the next buffer.
1540 */
1541 if (block_end <= from || block_start >= to) {
1542 if (PageUptodate(page)) {
1543 if (!buffer_uptodate(bh))
1544 set_buffer_uptodate(bh);
1545 }
1546 continue;
1547 }
1548 /*
1549 * @bh is at least partially being written to.
1550 * Make sure it is not marked as new.
1551 */
1552 //if (buffer_new(bh))
1553 // clear_buffer_new(bh);
1554
1555 if (block >= ablock) {
1556 // TODO: block is above allocated_size, need to
1557 // allocate it. Best done in one go to accommodate not
1558 // only block but all above blocks up to and including:
1559 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1560 // - 1) >> blobksize_bits. Obviously will need to round
1561 // up to next cluster boundary, too. This should be
1562 // done with a helper function, so it can be reused.
1563 ntfs_error(vol->sb, "Writing beyond allocated size "
1564 "is not supported yet. Sorry.");
1565 err = -EOPNOTSUPP;
1566 goto err_out;
1567 // Need to update ablock.
1568 // Need to set_buffer_new() on all block bhs that are
1569 // newly allocated.
1570 }
1571 /*
1572 * Now we have enough allocated size to fulfill the whole
1573 * request, i.e. block < ablock is true.
1574 */
1575 if (unlikely((block >= iblock) &&
07a4e2da 1576 (initialized_size < i_size))) {
1da177e4
LT
1577 /*
1578 * If this page is fully outside initialized size, zero
1579 * out all pages between the current initialized size
1580 * and the current page. Just use ntfs_readpage() to do
1581 * the zeroing transparently.
1582 */
1583 if (block > iblock) {
1584 // TODO:
1585 // For each page do:
1586 // - read_cache_page()
1587 // Again for each page do:
1588 // - wait_on_page_locked()
1589 // - Check (PageUptodate(page) &&
1590 // !PageError(page))
1591 // Update initialized size in the attribute and
1592 // in the inode.
1593 // Again, for each page do:
1594 // __set_page_dirty_buffers();
1595 // page_cache_release()
1596 // We don't need to wait on the writes.
1597 // Update iblock.
1598 }
1599 /*
1600 * The current page straddles initialized size. Zero
1601 * all non-uptodate buffers and set them uptodate (and
1602 * dirty?). Note, there aren't any non-uptodate buffers
1603 * if the page is uptodate.
1604 * FIXME: For an uptodate page, the buffers may need to
1605 * be written out because they were not initialized on
1606 * disk before.
1607 */
1608 if (!PageUptodate(page)) {
1609 // TODO:
1610 // Zero any non-uptodate buffers up to i_size.
1611 // Set them uptodate and dirty.
1612 }
1613 // TODO:
1614 // Update initialized size in the attribute and in the
1615 // inode (up to i_size).
1616 // Update iblock.
1617 // FIXME: This is inefficient. Try to batch the two
1618 // size changes to happen in one go.
1619 ntfs_error(vol->sb, "Writing beyond initialized size "
1620 "is not supported yet. Sorry.");
1621 err = -EOPNOTSUPP;
1622 goto err_out;
1623 // Do NOT set_buffer_new() BUT DO clear buffer range
1624 // outside write request range.
1625 // set_buffer_uptodate() on complete buffers as well as
1626 // set_buffer_dirty().
1627 }
1628
1629 /* Need to map unmapped buffers. */
1630 if (!buffer_mapped(bh)) {
1631 /* Unmapped buffer. Need to map it. */
1632 bh->b_bdev = vol->sb->s_bdev;
1633
1634 /* Convert block into corresponding vcn and offset. */
1635 vcn = (VCN)block << blocksize_bits >>
1636 vol->cluster_size_bits;
1637 vcn_ofs = ((VCN)block << blocksize_bits) &
1638 vol->cluster_size_mask;
1639
1640 is_retry = FALSE;
1641 if (!rl) {
1642lock_retry_remap:
1643 down_read(&ni->runlist.lock);
1644 rl = ni->runlist.rl;
1645 }
1646 if (likely(rl != NULL)) {
1647 /* Seek to element containing target vcn. */
1648 while (rl->length && rl[1].vcn <= vcn)
1649 rl++;
1650 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1651 } else
1652 lcn = LCN_RL_NOT_MAPPED;
1653 if (unlikely(lcn < 0)) {
1654 /*
1655 * We extended the attribute allocation above.
1656 * If we hit an ENOENT here it means that the
1657 * allocation was insufficient which is a bug.
1658 */
1659 BUG_ON(lcn == LCN_ENOENT);
1660
1661 /* It is a hole, need to instantiate it. */
1662 if (lcn == LCN_HOLE) {
1663 // TODO: Instantiate the hole.
1664 // clear_buffer_new(bh);
1665 // unmap_underlying_metadata(bh->b_bdev,
1666 // bh->b_blocknr);
1667 // For non-uptodate buffers, need to
1668 // zero out the region outside the
1669 // request in this bh or all bhs,
1670 // depending on what we implemented
1671 // above.
1672 // Need to flush_dcache_page().
1673 // Or could use set_buffer_new()
1674 // instead?
1675 ntfs_error(vol->sb, "Writing into "
1676 "sparse regions is "
1677 "not supported yet. "
1678 "Sorry.");
1679 err = -EOPNOTSUPP;
9f993fe4
AA
1680 if (!rl)
1681 up_read(&ni->runlist.lock);
1da177e4
LT
1682 goto err_out;
1683 } else if (!is_retry &&
1684 lcn == LCN_RL_NOT_MAPPED) {
1685 is_retry = TRUE;
1686 /*
1687 * Attempt to map runlist, dropping
1688 * lock for the duration.
1689 */
1690 up_read(&ni->runlist.lock);
1691 err = ntfs_map_runlist(ni, vcn);
1692 if (likely(!err))
1693 goto lock_retry_remap;
1694 rl = NULL;
1695 lcn = err;
9f993fe4
AA
1696 } else if (!rl)
1697 up_read(&ni->runlist.lock);
1da177e4
LT
1698 /*
1699 * Failed to map the buffer, even after
1700 * retrying.
1701 */
1702 bh->b_blocknr = -1;
1703 ntfs_error(vol->sb, "Failed to write to inode "
1704 "0x%lx, attribute type 0x%x, "
1705 "vcn 0x%llx, offset 0x%x "
1706 "because its location on disk "
1707 "could not be determined%s "
1708 "(error code %lli).",
1709 ni->mft_no, ni->type,
1710 (unsigned long long)vcn,
1711 vcn_ofs, is_retry ? " even "
1712 "after retrying" : "",
1713 (long long)lcn);
1714 if (!err)
1715 err = -EIO;
1716 goto err_out;
1717 }
1718 /* We now have a successful remap, i.e. lcn >= 0. */
1719
1720 /* Setup buffer head to correct block. */
1721 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1722 + vcn_ofs) >> blocksize_bits;
1723 set_buffer_mapped(bh);
1724
1725 // FIXME: Something analogous to this is needed for
1726 // each newly allocated block, i.e. BH_New.
1727 // FIXME: Might need to take this out of the
1728 // if (!buffer_mapped(bh)) {}, depending on how we
1729 // implement things during the allocated_size and
1730 // initialized_size extension code above.
1731 if (buffer_new(bh)) {
1732 clear_buffer_new(bh);
1733 unmap_underlying_metadata(bh->b_bdev,
1734 bh->b_blocknr);
1735 if (PageUptodate(page)) {
1736 set_buffer_uptodate(bh);
1737 continue;
1738 }
1739 /*
1740 * Page is _not_ uptodate, zero surrounding
1741 * region. NOTE: This is how we decide if to
1742 * zero or not!
1743 */
1744 if (block_end > to || block_start < from) {
1745 void *kaddr;
1746
1747 kaddr = kmap_atomic(page, KM_USER0);
1748 if (block_end > to)
1749 memset(kaddr + to, 0,
1750 block_end - to);
1751 if (block_start < from)
1752 memset(kaddr + block_start, 0,
1753 from -
1754 block_start);
1755 flush_dcache_page(page);
1756 kunmap_atomic(kaddr, KM_USER0);
1757 }
1758 continue;
1759 }
1760 }
1761 /* @bh is mapped, set it uptodate if the page is uptodate. */
1762 if (PageUptodate(page)) {
1763 if (!buffer_uptodate(bh))
1764 set_buffer_uptodate(bh);
1765 continue;
1766 }
1767 /*
1768 * The page is not uptodate. The buffer is mapped. If it is not
1769 * uptodate, and it is only partially being written to, we need
1770 * to read the buffer in before the write, i.e. right now.
1771 */
1772 if (!buffer_uptodate(bh) &&
1773 (block_start < from || block_end > to)) {
1774 ll_rw_block(READ, 1, &bh);
1775 *wait_bh++ = bh;
1776 }
1777 } while (block++, block_start = block_end,
1778 (bh = bh->b_this_page) != head);
1779
1780 /* Release the lock if we took it. */
1781 if (rl) {
1782 up_read(&ni->runlist.lock);
1783 rl = NULL;
1784 }
1785
1786 /* If we issued read requests, let them complete. */
1787 while (wait_bh > wait) {
1788 wait_on_buffer(*--wait_bh);
1789 if (!buffer_uptodate(*wait_bh))
1790 return -EIO;
1791 }
1792
1793 ntfs_debug("Done.");
1794 return 0;
1795err_out:
1796 /*
1797 * Zero out any newly allocated blocks to avoid exposing stale data.
1798 * If BH_New is set, we know that the block was newly allocated in the
1799 * above loop.
1800 * FIXME: What about initialized_size increments? Have we done all the
1801 * required zeroing above? If not this error handling is broken, and
1802 * in particular the if (block_end <= from) check is completely bogus.
1803 */
1804 bh = head;
1805 block_start = 0;
1806 is_retry = FALSE;
1807 do {
1808 block_end = block_start + blocksize;
1809 if (block_end <= from)
1810 continue;
1811 if (block_start >= to)
1812 break;
1813 if (buffer_new(bh)) {
1814 void *kaddr;
1815
1816 clear_buffer_new(bh);
1817 kaddr = kmap_atomic(page, KM_USER0);
1818 memset(kaddr + block_start, 0, bh->b_size);
1819 kunmap_atomic(kaddr, KM_USER0);
1820 set_buffer_uptodate(bh);
1821 mark_buffer_dirty(bh);
1822 is_retry = TRUE;
1823 }
1824 } while (block_start = block_end, (bh = bh->b_this_page) != head);
1825 if (is_retry)
1826 flush_dcache_page(page);
1827 if (rl)
1828 up_read(&ni->runlist.lock);
1829 return err;
1830}
1831
1832/**
1833 * ntfs_prepare_write - prepare a page for receiving data
1834 *
1835 * This is called from generic_file_write() with i_sem held on the inode
1836 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1837 * data has not yet been copied into the @page.
1838 *
1839 * Need to extend the attribute/fill in holes if necessary, create blocks and
1840 * make partially overwritten blocks uptodate,
1841 *
1842 * i_size is not to be modified yet.
1843 *
1844 * Return 0 on success or -errno on error.
1845 *
1846 * Should be using block_prepare_write() [support for sparse files] or
1847 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1848 * ntfs specifics but can look at them for implementation guidance.
1849 *
1850 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1851 * the first byte in the page that will be written to and @to is the first byte
1852 * after the last byte that will be written to.
1853 */
1854static int ntfs_prepare_write(struct file *file, struct page *page,
1855 unsigned from, unsigned to)
1856{
1857 s64 new_size;
f40661be 1858 loff_t i_size;
1da177e4
LT
1859 struct inode *vi = page->mapping->host;
1860 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1861 ntfs_volume *vol = ni->vol;
1862 ntfs_attr_search_ctx *ctx = NULL;
1863 MFT_RECORD *m = NULL;
1864 ATTR_RECORD *a;
1865 u8 *kaddr;
1866 u32 attr_len;
1867 int err;
1868
1869 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1870 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1871 page->index, from, to);
1872 BUG_ON(!PageLocked(page));
1873 BUG_ON(from > PAGE_CACHE_SIZE);
1874 BUG_ON(to > PAGE_CACHE_SIZE);
1875 BUG_ON(from > to);
1876 BUG_ON(NInoMstProtected(ni));
1877 /*
1878 * If a previous ntfs_truncate() failed, repeat it and abort if it
1879 * fails again.
1880 */
1881 if (unlikely(NInoTruncateFailed(ni))) {
1882 down_write(&vi->i_alloc_sem);
1883 err = ntfs_truncate(vi);
1884 up_write(&vi->i_alloc_sem);
1885 if (err || NInoTruncateFailed(ni)) {
1886 if (!err)
1887 err = -EIO;
1888 goto err_out;
1889 }
1890 }
1891 /* If the attribute is not resident, deal with it elsewhere. */
1892 if (NInoNonResident(ni)) {
1893 /*
1894 * Only unnamed $DATA attributes can be compressed, encrypted,
1895 * and/or sparse.
1896 */
1897 if (ni->type == AT_DATA && !ni->name_len) {
1898 /* If file is encrypted, deny access, just like NT4. */
1899 if (NInoEncrypted(ni)) {
1900 ntfs_debug("Denying write access to encrypted "
1901 "file.");
1902 return -EACCES;
1903 }
1904 /* Compressed data streams are handled in compress.c. */
1905 if (NInoCompressed(ni)) {
1906 // TODO: Implement and replace this check with
1907 // return ntfs_write_compressed_block(page);
1908 ntfs_error(vi->i_sb, "Writing to compressed "
1909 "files is not supported yet. "
1910 "Sorry.");
1911 return -EOPNOTSUPP;
1912 }
1913 // TODO: Implement and remove this check.
1914 if (NInoSparse(ni)) {
1915 ntfs_error(vi->i_sb, "Writing to sparse files "
1916 "is not supported yet. Sorry.");
1917 return -EOPNOTSUPP;
1918 }
1919 }
1920 /* Normal data stream. */
1921 return ntfs_prepare_nonresident_write(page, from, to);
1922 }
1923 /*
1924 * Attribute is resident, implying it is not compressed, encrypted, or
1925 * sparse.
1926 */
1927 BUG_ON(page_has_buffers(page));
1928 new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1929 /* If we do not need to resize the attribute allocation we are done. */
07a4e2da 1930 if (new_size <= i_size_read(vi))
1da177e4 1931 goto done;
1da177e4
LT
1932 /* Map, pin, and lock the (base) mft record. */
1933 if (!NInoAttr(ni))
1934 base_ni = ni;
1935 else
1936 base_ni = ni->ext.base_ntfs_ino;
1937 m = map_mft_record(base_ni);
1938 if (IS_ERR(m)) {
1939 err = PTR_ERR(m);
1940 m = NULL;
1941 ctx = NULL;
1942 goto err_out;
1943 }
1944 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1945 if (unlikely(!ctx)) {
1946 err = -ENOMEM;
1947 goto err_out;
1948 }
1949 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1950 CASE_SENSITIVE, 0, NULL, 0, ctx);
1951 if (unlikely(err)) {
1952 if (err == -ENOENT)
1953 err = -EIO;
1954 goto err_out;
1955 }
1956 m = ctx->mrec;
1957 a = ctx->attr;
1958 /* The total length of the attribute value. */
1959 attr_len = le32_to_cpu(a->data.resident.value_length);
946929d8 1960 /* Fix an eventual previous failure of ntfs_commit_write(). */
f40661be
AA
1961 i_size = i_size_read(vi);
1962 if (unlikely(attr_len > i_size)) {
1963 attr_len = i_size;
946929d8 1964 a->data.resident.value_length = cpu_to_le32(attr_len);
946929d8 1965 }
946929d8
AA
1966 /* If we do not need to resize the attribute allocation we are done. */
1967 if (new_size <= attr_len)
1968 goto done_unm;
1da177e4
LT
1969 /* Check if new size is allowed in $AttrDef. */
1970 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
1971 if (unlikely(err)) {
1972 if (err == -ERANGE) {
1973 ntfs_error(vol->sb, "Write would cause the inode "
1974 "0x%lx to exceed the maximum size for "
1975 "its attribute type (0x%x). Aborting "
1976 "write.", vi->i_ino,
1977 le32_to_cpu(ni->type));
1978 } else {
1979 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
1980 "attribute type 0x%x. Aborting "
1981 "write.", vi->i_ino,
1982 le32_to_cpu(ni->type));
1983 err = -EIO;
1984 }
1985 goto err_out2;
1986 }
1987 /*
1988 * Extend the attribute record to be able to store the new attribute
1989 * size.
1990 */
1991 if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
1992 le16_to_cpu(a->data.resident.value_offset) +
1993 new_size)) {
1994 /* Not enough space in the mft record. */
1995 ntfs_error(vol->sb, "Not enough space in the mft record for "
1996 "the resized attribute value. This is not "
1997 "supported yet. Aborting write.");
1998 err = -EOPNOTSUPP;
1999 goto err_out2;
2000 }
2001 /*
2002 * We have enough space in the mft record to fit the write. This
2003 * implies the attribute is smaller than the mft record and hence the
2004 * attribute must be in a single page and hence page->index must be 0.
2005 */
2006 BUG_ON(page->index);
2007 /*
2008 * If the beginning of the write is past the old size, enlarge the
2009 * attribute value up to the beginning of the write and fill it with
2010 * zeroes.
2011 */
2012 if (from > attr_len) {
2013 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
2014 attr_len, 0, from - attr_len);
2015 a->data.resident.value_length = cpu_to_le32(from);
2016 /* Zero the corresponding area in the page as well. */
2017 if (PageUptodate(page)) {
2018 kaddr = kmap_atomic(page, KM_USER0);
2019 memset(kaddr + attr_len, 0, from - attr_len);
2020 kunmap_atomic(kaddr, KM_USER0);
2021 flush_dcache_page(page);
2022 }
2023 }
2024 flush_dcache_mft_record_page(ctx->ntfs_ino);
2025 mark_mft_record_dirty(ctx->ntfs_ino);
946929d8 2026done_unm:
1da177e4
LT
2027 ntfs_attr_put_search_ctx(ctx);
2028 unmap_mft_record(base_ni);
2029 /*
2030 * Because resident attributes are handled by memcpy() to/from the
2031 * corresponding MFT record, and because this form of i/o is byte
2032 * aligned rather than block aligned, there is no need to bring the
2033 * page uptodate here as in the non-resident case where we need to
2034 * bring the buffers straddled by the write uptodate before
2035 * generic_file_write() does the copying from userspace.
2036 *
2037 * We thus defer the uptodate bringing of the page region outside the
2038 * region written to to ntfs_commit_write(), which makes the code
2039 * simpler and saves one atomic kmap which is good.
2040 */
2041done:
2042 ntfs_debug("Done.");
2043 return 0;
2044err_out:
2045 if (err == -ENOMEM)
2046 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2047 "prepare the write.");
2048 else {
2049 ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
2050 "with error %i.", err);
2051 NVolSetErrors(vol);
2052 make_bad_inode(vi);
2053 }
2054err_out2:
2055 if (ctx)
2056 ntfs_attr_put_search_ctx(ctx);
2057 if (m)
2058 unmap_mft_record(base_ni);
2059 return err;
2060}
2061
2062/**
2063 * ntfs_commit_nonresident_write -
2064 *
2065 */
2066static int ntfs_commit_nonresident_write(struct page *page,
2067 unsigned from, unsigned to)
2068{
2069 s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2070 struct inode *vi = page->mapping->host;
2071 struct buffer_head *bh, *head;
2072 unsigned int block_start, block_end, blocksize;
2073 BOOL partial;
2074
2075 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2076 "0x%lx, from = %u, to = %u.", vi->i_ino,
2077 NTFS_I(vi)->type, page->index, from, to);
2078 blocksize = 1 << vi->i_blkbits;
2079
2080 // FIXME: We need a whole slew of special cases in here for compressed
2081 // files for example...
2082 // For now, we know ntfs_prepare_write() would have failed so we can't
2083 // get here in any of the cases which we have to special case, so we
2084 // are just a ripped off, unrolled generic_commit_write().
2085
2086 bh = head = page_buffers(page);
2087 block_start = 0;
2088 partial = FALSE;
2089 do {
2090 block_end = block_start + blocksize;
2091 if (block_end <= from || block_start >= to) {
2092 if (!buffer_uptodate(bh))
2093 partial = TRUE;
2094 } else {
2095 set_buffer_uptodate(bh);
2096 mark_buffer_dirty(bh);
2097 }
2098 } while (block_start = block_end, (bh = bh->b_this_page) != head);
2099 /*
2100 * If this is a partial write which happened to make all buffers
2101 * uptodate then we can optimize away a bogus ->readpage() for the next
2102 * read(). Here we 'discover' whether the page went uptodate as a
2103 * result of this (potentially partial) write.
2104 */
2105 if (!partial)
2106 SetPageUptodate(page);
2107 /*
2108 * Not convinced about this at all. See disparity comment above. For
2109 * now we know ntfs_prepare_write() would have failed in the write
2110 * exceeds i_size case, so this will never trigger which is fine.
2111 */
07a4e2da 2112 if (pos > i_size_read(vi)) {
1da177e4
LT
2113 ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2114 "not supported yet. Sorry.");
2115 return -EOPNOTSUPP;
2116 // vi->i_size = pos;
2117 // mark_inode_dirty(vi);
2118 }
2119 ntfs_debug("Done.");
2120 return 0;
2121}
2122
2123/**
2124 * ntfs_commit_write - commit the received data
2125 *
2126 * This is called from generic_file_write() with i_sem held on the inode
2127 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2128 * data has already been copied into the @page. ntfs_prepare_write() has been
2129 * called before the data copied and it returned success so we can take the
2130 * results of various BUG checks and some error handling for granted.
2131 *
2132 * Need to mark modified blocks dirty so they get written out later when
2133 * ntfs_writepage() is invoked by the VM.
2134 *
2135 * Return 0 on success or -errno on error.
2136 *
2137 * Should be using generic_commit_write(). This marks buffers uptodate and
2138 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2139 * updates i_size if the end of io is beyond i_size. In that case, it also
2140 * marks the inode dirty.
2141 *
2142 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2143 * it for implementation guidance.
2144 *
2145 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2146 * need to do any page content modifications here at all, except in the write
2147 * to resident attribute case, where we need to do the uptodate bringing here
2148 * which we combine with the copying into the mft record which means we save
2149 * one atomic kmap.
2150 */
2151static int ntfs_commit_write(struct file *file, struct page *page,
2152 unsigned from, unsigned to)
2153{
2154 struct inode *vi = page->mapping->host;
2155 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2156 char *kaddr, *kattr;
2157 ntfs_attr_search_ctx *ctx;
2158 MFT_RECORD *m;
2159 ATTR_RECORD *a;
2160 u32 attr_len;
2161 int err;
2162
2163 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2164 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2165 page->index, from, to);
2166 /* If the attribute is not resident, deal with it elsewhere. */
2167 if (NInoNonResident(ni)) {
2168 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2169 if (ni->type == AT_DATA && !ni->name_len) {
2170 /* Encrypted files need separate handling. */
2171 if (NInoEncrypted(ni)) {
2172 // We never get here at present!
2173 BUG();
2174 }
2175 /* Compressed data streams are handled in compress.c. */
2176 if (NInoCompressed(ni)) {
2177 // TODO: Implement this!
2178 // return ntfs_write_compressed_block(page);
2179 // We never get here at present!
2180 BUG();
2181 }
2182 }
2183 /* Normal data stream. */
2184 return ntfs_commit_nonresident_write(page, from, to);
2185 }
2186 /*
2187 * Attribute is resident, implying it is not compressed, encrypted, or
2188 * sparse.
2189 */
2190 if (!NInoAttr(ni))
2191 base_ni = ni;
2192 else
2193 base_ni = ni->ext.base_ntfs_ino;
2194 /* Map, pin, and lock the mft record. */
2195 m = map_mft_record(base_ni);
2196 if (IS_ERR(m)) {
2197 err = PTR_ERR(m);
2198 m = NULL;
2199 ctx = NULL;
2200 goto err_out;
2201 }
2202 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2203 if (unlikely(!ctx)) {
2204 err = -ENOMEM;
2205 goto err_out;
2206 }
2207 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2208 CASE_SENSITIVE, 0, NULL, 0, ctx);
2209 if (unlikely(err)) {
2210 if (err == -ENOENT)
2211 err = -EIO;
2212 goto err_out;
2213 }
2214 a = ctx->attr;
2215 /* The total length of the attribute value. */
2216 attr_len = le32_to_cpu(a->data.resident.value_length);
2217 BUG_ON(from > attr_len);
2218 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2219 kaddr = kmap_atomic(page, KM_USER0);
2220 /* Copy the received data from the page to the mft record. */
2221 memcpy(kattr + from, kaddr + from, to - from);
2222 /* Update the attribute length if necessary. */
2223 if (to > attr_len) {
2224 attr_len = to;
2225 a->data.resident.value_length = cpu_to_le32(attr_len);
2226 }
2227 /*
2228 * If the page is not uptodate, bring the out of bounds area(s)
2229 * uptodate by copying data from the mft record to the page.
2230 */
2231 if (!PageUptodate(page)) {
2232 if (from > 0)
2233 memcpy(kaddr, kattr, from);
2234 if (to < attr_len)
2235 memcpy(kaddr + to, kattr + to, attr_len - to);
2236 /* Zero the region outside the end of the attribute value. */
2237 if (attr_len < PAGE_CACHE_SIZE)
2238 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2239 /*
2240 * The probability of not having done any of the above is
2241 * extremely small, so we just flush unconditionally.
2242 */
2243 flush_dcache_page(page);
2244 SetPageUptodate(page);
2245 }
2246 kunmap_atomic(kaddr, KM_USER0);
2247 /* Update i_size if necessary. */
07a4e2da
AA
2248 if (i_size_read(vi) < attr_len) {
2249 unsigned long flags;
2250
2251 write_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
2252 ni->allocated_size = ni->initialized_size = attr_len;
2253 i_size_write(vi, attr_len);
07a4e2da 2254 write_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
2255 }
2256 /* Mark the mft record dirty, so it gets written back. */
2257 flush_dcache_mft_record_page(ctx->ntfs_ino);
2258 mark_mft_record_dirty(ctx->ntfs_ino);
2259 ntfs_attr_put_search_ctx(ctx);
2260 unmap_mft_record(base_ni);
2261 ntfs_debug("Done.");
2262 return 0;
2263err_out:
2264 if (err == -ENOMEM) {
2265 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2266 "commit the write.");
2267 if (PageUptodate(page)) {
2268 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2269 "dirty so the write will be retried "
2270 "later on by the VM.");
2271 /*
2272 * Put the page on mapping->dirty_pages, but leave its
2273 * buffers' dirty state as-is.
2274 */
2275 __set_page_dirty_nobuffers(page);
2276 err = 0;
2277 } else
2278 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
2279 "data has been lost.");
2280 } else {
2281 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2282 "with error %i.", err);
2283 NVolSetErrors(ni->vol);
2284 make_bad_inode(vi);
2285 }
2286 if (ctx)
2287 ntfs_attr_put_search_ctx(ctx);
2288 if (m)
2289 unmap_mft_record(base_ni);
2290 return err;
2291}
2292
2293#endif /* NTFS_RW */
2294
2295/**
2296 * ntfs_aops - general address space operations for inodes and attributes
2297 */
2298struct address_space_operations ntfs_aops = {
2299 .readpage = ntfs_readpage, /* Fill page with data. */
2300 .sync_page = block_sync_page, /* Currently, just unplugs the
2301 disk request queue. */
2302#ifdef NTFS_RW
2303 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2304 .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
2305 ready to receive data. */
2306 .commit_write = ntfs_commit_write, /* Commit received data. */
2307#endif /* NTFS_RW */
2308};
2309
2310/**
2311 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2312 * and attributes
2313 */
2314struct address_space_operations ntfs_mst_aops = {
2315 .readpage = ntfs_readpage, /* Fill page with data. */
2316 .sync_page = block_sync_page, /* Currently, just unplugs the
2317 disk request queue. */
2318#ifdef NTFS_RW
2319 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2320 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
2321 without touching the buffers
2322 belonging to the page. */
2323#endif /* NTFS_RW */
2324};
2325
2326#ifdef NTFS_RW
2327
2328/**
2329 * mark_ntfs_record_dirty - mark an ntfs record dirty
2330 * @page: page containing the ntfs record to mark dirty
2331 * @ofs: byte offset within @page at which the ntfs record begins
2332 *
2333 * Set the buffers and the page in which the ntfs record is located dirty.
2334 *
2335 * The latter also marks the vfs inode the ntfs record belongs to dirty
2336 * (I_DIRTY_PAGES only).
2337 *
2338 * If the page does not have buffers, we create them and set them uptodate.
2339 * The page may not be locked which is why we need to handle the buffers under
2340 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2341 * need the lock since try_to_free_buffers() does not free dirty buffers.
2342 */
2343void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2344 struct address_space *mapping = page->mapping;
2345 ntfs_inode *ni = NTFS_I(mapping->host);
2346 struct buffer_head *bh, *head, *buffers_to_free = NULL;
2347 unsigned int end, bh_size, bh_ofs;
2348
2349 BUG_ON(!PageUptodate(page));
2350 end = ofs + ni->itype.index.block_size;
2351 bh_size = 1 << VFS_I(ni)->i_blkbits;
2352 spin_lock(&mapping->private_lock);
2353 if (unlikely(!page_has_buffers(page))) {
2354 spin_unlock(&mapping->private_lock);
2355 bh = head = alloc_page_buffers(page, bh_size, 1);
2356 spin_lock(&mapping->private_lock);
2357 if (likely(!page_has_buffers(page))) {
2358 struct buffer_head *tail;
2359
2360 do {
2361 set_buffer_uptodate(bh);
2362 tail = bh;
2363 bh = bh->b_this_page;
2364 } while (bh);
2365 tail->b_this_page = head;
2366 attach_page_buffers(page, head);
2367 } else
2368 buffers_to_free = bh;
2369 }
2370 bh = head = page_buffers(page);
2371 do {
2372 bh_ofs = bh_offset(bh);
2373 if (bh_ofs + bh_size <= ofs)
2374 continue;
2375 if (unlikely(bh_ofs >= end))
2376 break;
2377 set_buffer_dirty(bh);
2378 } while ((bh = bh->b_this_page) != head);
2379 spin_unlock(&mapping->private_lock);
2380 __set_page_dirty_nobuffers(page);
2381 if (unlikely(buffers_to_free)) {
2382 do {
2383 bh = buffers_to_free->b_this_page;
2384 free_buffer_head(buffers_to_free);
2385 buffers_to_free = bh;
2386 } while (buffers_to_free);
2387 }
2388}
2389
2390#endif /* NTFS_RW */