NTFS: Minor cleanup: Define and use NTFS_MAX_CLUSTER_SIZE constant instead
[linux-2.6-block.git] / fs / ntfs / aops.c
CommitLineData
1da177e4
LT
1/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
4 *
b6ad6c52 5 * Copyright (c) 2001-2005 Anton Altaparmakov
1da177e4
LT
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30
31#include "aops.h"
32#include "attrib.h"
33#include "debug.h"
34#include "inode.h"
35#include "mft.h"
36#include "runlist.h"
37#include "types.h"
38#include "ntfs.h"
39
40/**
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
44 *
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
48 *
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54 * record size.
55 */
56static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57{
58 static DEFINE_SPINLOCK(page_uptodate_lock);
59 unsigned long flags;
60 struct buffer_head *tmp;
61 struct page *page;
62 ntfs_inode *ni;
63 int page_uptodate = 1;
64
65 page = bh->b_page;
66 ni = NTFS_I(page->mapping->host);
67
68 if (likely(uptodate)) {
07a4e2da 69 s64 file_ofs, initialized_size;
1da177e4
LT
70
71 set_buffer_uptodate(bh);
72
73 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
74 bh_offset(bh);
07a4e2da
AA
75 read_lock_irqsave(&ni->size_lock, flags);
76 initialized_size = ni->initialized_size;
77 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4 78 /* Check for the current buffer head overflowing. */
07a4e2da 79 if (file_ofs + bh->b_size > initialized_size) {
1da177e4
LT
80 char *addr;
81 int ofs = 0;
82
07a4e2da
AA
83 if (file_ofs < initialized_size)
84 ofs = initialized_size - file_ofs;
1da177e4
LT
85 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
86 memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
87 flush_dcache_page(page);
88 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
89 }
90 } else {
91 clear_buffer_uptodate(bh);
92 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
93 (unsigned long long)bh->b_blocknr);
94 SetPageError(page);
95 }
96 spin_lock_irqsave(&page_uptodate_lock, flags);
97 clear_buffer_async_read(bh);
98 unlock_buffer(bh);
99 tmp = bh;
100 do {
101 if (!buffer_uptodate(tmp))
102 page_uptodate = 0;
103 if (buffer_async_read(tmp)) {
104 if (likely(buffer_locked(tmp)))
105 goto still_busy;
106 /* Async buffers must be locked. */
107 BUG();
108 }
109 tmp = tmp->b_this_page;
110 } while (tmp != bh);
111 spin_unlock_irqrestore(&page_uptodate_lock, flags);
112 /*
113 * If none of the buffers had errors then we can set the page uptodate,
114 * but we first have to perform the post read mst fixups, if the
115 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
116 * Note we ignore fixup errors as those are detected when
117 * map_mft_record() is called which gives us per record granularity
118 * rather than per page granularity.
119 */
120 if (!NInoMstProtected(ni)) {
121 if (likely(page_uptodate && !PageError(page)))
122 SetPageUptodate(page);
123 } else {
124 char *addr;
125 unsigned int i, recs;
126 u32 rec_size;
127
128 rec_size = ni->itype.index.block_size;
129 recs = PAGE_CACHE_SIZE / rec_size;
130 /* Should have been verified before we got here... */
131 BUG_ON(!recs);
132 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
133 for (i = 0; i < recs; i++)
134 post_read_mst_fixup((NTFS_RECORD*)(addr +
135 i * rec_size), rec_size);
136 flush_dcache_page(page);
137 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
b6ad6c52 138 if (likely(page_uptodate && !PageError(page)))
1da177e4
LT
139 SetPageUptodate(page);
140 }
141 unlock_page(page);
142 return;
143still_busy:
144 spin_unlock_irqrestore(&page_uptodate_lock, flags);
145 return;
146}
147
148/**
149 * ntfs_read_block - fill a @page of an address space with data
150 * @page: page cache page to fill with data
151 *
152 * Fill the page @page of the address space belonging to the @page->host inode.
153 * We read each buffer asynchronously and when all buffers are read in, our io
154 * completion handler ntfs_end_buffer_read_async(), if required, automatically
155 * applies the mst fixups to the page before finally marking it uptodate and
156 * unlocking it.
157 *
158 * We only enforce allocated_size limit because i_size is checked for in
159 * generic_file_read().
160 *
161 * Return 0 on success and -errno on error.
162 *
163 * Contains an adapted version of fs/buffer.c::block_read_full_page().
164 */
165static int ntfs_read_block(struct page *page)
166{
167 VCN vcn;
168 LCN lcn;
169 ntfs_inode *ni;
170 ntfs_volume *vol;
171 runlist_element *rl;
172 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
173 sector_t iblock, lblock, zblock;
07a4e2da 174 unsigned long flags;
1da177e4
LT
175 unsigned int blocksize, vcn_ofs;
176 int i, nr;
177 unsigned char blocksize_bits;
178
179 ni = NTFS_I(page->mapping->host);
180 vol = ni->vol;
181
182 /* $MFT/$DATA must have its complete runlist in memory at all times. */
183 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
184
185 blocksize_bits = VFS_I(ni)->i_blkbits;
186 blocksize = 1 << blocksize_bits;
187
188 if (!page_has_buffers(page))
189 create_empty_buffers(page, blocksize, 0);
190 bh = head = page_buffers(page);
191 if (unlikely(!bh)) {
192 unlock_page(page);
193 return -ENOMEM;
194 }
195
196 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
07a4e2da 197 read_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
198 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
199 zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
07a4e2da 200 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
201
202 /* Loop through all the buffers in the page. */
203 rl = NULL;
204 nr = i = 0;
205 do {
206 u8 *kaddr;
207
208 if (unlikely(buffer_uptodate(bh)))
209 continue;
210 if (unlikely(buffer_mapped(bh))) {
211 arr[nr++] = bh;
212 continue;
213 }
214 bh->b_bdev = vol->sb->s_bdev;
215 /* Is the block within the allowed limits? */
216 if (iblock < lblock) {
217 BOOL is_retry = FALSE;
218
219 /* Convert iblock into corresponding vcn and offset. */
220 vcn = (VCN)iblock << blocksize_bits >>
221 vol->cluster_size_bits;
222 vcn_ofs = ((VCN)iblock << blocksize_bits) &
223 vol->cluster_size_mask;
224 if (!rl) {
225lock_retry_remap:
226 down_read(&ni->runlist.lock);
227 rl = ni->runlist.rl;
228 }
229 if (likely(rl != NULL)) {
230 /* Seek to element containing target vcn. */
231 while (rl->length && rl[1].vcn <= vcn)
232 rl++;
233 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
234 } else
235 lcn = LCN_RL_NOT_MAPPED;
236 /* Successful remap. */
237 if (lcn >= 0) {
238 /* Setup buffer head to correct block. */
239 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
240 + vcn_ofs) >> blocksize_bits;
241 set_buffer_mapped(bh);
242 /* Only read initialized data blocks. */
243 if (iblock < zblock) {
244 arr[nr++] = bh;
245 continue;
246 }
247 /* Fully non-initialized data block, zero it. */
248 goto handle_zblock;
249 }
250 /* It is a hole, need to zero it. */
251 if (lcn == LCN_HOLE)
252 goto handle_hole;
253 /* If first try and runlist unmapped, map and retry. */
254 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
255 int err;
256 is_retry = TRUE;
257 /*
258 * Attempt to map runlist, dropping lock for
259 * the duration.
260 */
261 up_read(&ni->runlist.lock);
262 err = ntfs_map_runlist(ni, vcn);
263 if (likely(!err))
264 goto lock_retry_remap;
265 rl = NULL;
266 lcn = err;
267 }
268 /* Hard error, zero out region. */
269 bh->b_blocknr = -1;
270 SetPageError(page);
271 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
272 "attribute type 0x%x, vcn 0x%llx, "
273 "offset 0x%x because its location on "
274 "disk could not be determined%s "
275 "(error code %lli).", ni->mft_no,
276 ni->type, (unsigned long long)vcn,
277 vcn_ofs, is_retry ? " even after "
278 "retrying" : "", (long long)lcn);
279 }
280 /*
281 * Either iblock was outside lblock limits or
282 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
283 * of the page and set the buffer uptodate.
284 */
285handle_hole:
286 bh->b_blocknr = -1UL;
287 clear_buffer_mapped(bh);
288handle_zblock:
289 kaddr = kmap_atomic(page, KM_USER0);
290 memset(kaddr + i * blocksize, 0, blocksize);
291 flush_dcache_page(page);
292 kunmap_atomic(kaddr, KM_USER0);
293 set_buffer_uptodate(bh);
294 } while (i++, iblock++, (bh = bh->b_this_page) != head);
295
296 /* Release the lock if we took it. */
297 if (rl)
298 up_read(&ni->runlist.lock);
299
300 /* Check we have at least one buffer ready for i/o. */
301 if (nr) {
302 struct buffer_head *tbh;
303
304 /* Lock the buffers. */
305 for (i = 0; i < nr; i++) {
306 tbh = arr[i];
307 lock_buffer(tbh);
308 tbh->b_end_io = ntfs_end_buffer_async_read;
309 set_buffer_async_read(tbh);
310 }
311 /* Finally, start i/o on the buffers. */
312 for (i = 0; i < nr; i++) {
313 tbh = arr[i];
314 if (likely(!buffer_uptodate(tbh)))
315 submit_bh(READ, tbh);
316 else
317 ntfs_end_buffer_async_read(tbh, 1);
318 }
319 return 0;
320 }
321 /* No i/o was scheduled on any of the buffers. */
322 if (likely(!PageError(page)))
323 SetPageUptodate(page);
324 else /* Signal synchronous i/o error. */
325 nr = -EIO;
326 unlock_page(page);
327 return nr;
328}
329
330/**
331 * ntfs_readpage - fill a @page of a @file with data from the device
332 * @file: open file to which the page @page belongs or NULL
333 * @page: page cache page to fill with data
334 *
335 * For non-resident attributes, ntfs_readpage() fills the @page of the open
336 * file @file by calling the ntfs version of the generic block_read_full_page()
337 * function, ntfs_read_block(), which in turn creates and reads in the buffers
338 * associated with the page asynchronously.
339 *
340 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
341 * data from the mft record (which at this stage is most likely in memory) and
342 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
343 * even if the mft record is not cached at this point in time, we need to wait
344 * for it to be read in before we can do the copy.
345 *
346 * Return 0 on success and -errno on error.
347 */
348static int ntfs_readpage(struct file *file, struct page *page)
349{
1da177e4
LT
350 ntfs_inode *ni, *base_ni;
351 u8 *kaddr;
352 ntfs_attr_search_ctx *ctx;
353 MFT_RECORD *mrec;
b6ad6c52 354 unsigned long flags;
1da177e4
LT
355 u32 attr_len;
356 int err = 0;
357
905685f6 358retry_readpage:
1da177e4
LT
359 BUG_ON(!PageLocked(page));
360 /*
361 * This can potentially happen because we clear PageUptodate() during
362 * ntfs_writepage() of MstProtected() attributes.
363 */
364 if (PageUptodate(page)) {
365 unlock_page(page);
366 return 0;
367 }
368 ni = NTFS_I(page->mapping->host);
369
370 /* NInoNonResident() == NInoIndexAllocPresent() */
371 if (NInoNonResident(ni)) {
372 /*
373 * Only unnamed $DATA attributes can be compressed or
374 * encrypted.
375 */
376 if (ni->type == AT_DATA && !ni->name_len) {
377 /* If file is encrypted, deny access, just like NT4. */
378 if (NInoEncrypted(ni)) {
379 err = -EACCES;
380 goto err_out;
381 }
382 /* Compressed data streams are handled in compress.c. */
383 if (NInoCompressed(ni))
384 return ntfs_read_compressed_block(page);
385 }
386 /* Normal data stream. */
387 return ntfs_read_block(page);
388 }
389 /*
390 * Attribute is resident, implying it is not compressed or encrypted.
391 * This also means the attribute is smaller than an mft record and
392 * hence smaller than a page, so can simply zero out any pages with
b6ad6c52 393 * index above 0.
1da177e4 394 */
b6ad6c52 395 if (unlikely(page->index > 0)) {
1da177e4
LT
396 kaddr = kmap_atomic(page, KM_USER0);
397 memset(kaddr, 0, PAGE_CACHE_SIZE);
398 flush_dcache_page(page);
399 kunmap_atomic(kaddr, KM_USER0);
400 goto done;
401 }
402 if (!NInoAttr(ni))
403 base_ni = ni;
404 else
405 base_ni = ni->ext.base_ntfs_ino;
406 /* Map, pin, and lock the mft record. */
407 mrec = map_mft_record(base_ni);
408 if (IS_ERR(mrec)) {
409 err = PTR_ERR(mrec);
410 goto err_out;
411 }
905685f6
AA
412 /*
413 * If a parallel write made the attribute non-resident, drop the mft
414 * record and retry the readpage.
415 */
416 if (unlikely(NInoNonResident(ni))) {
417 unmap_mft_record(base_ni);
418 goto retry_readpage;
419 }
1da177e4
LT
420 ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
421 if (unlikely(!ctx)) {
422 err = -ENOMEM;
423 goto unm_err_out;
424 }
425 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
426 CASE_SENSITIVE, 0, NULL, 0, ctx);
427 if (unlikely(err))
428 goto put_unm_err_out;
429 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
b6ad6c52
AA
430 read_lock_irqsave(&ni->size_lock, flags);
431 if (unlikely(attr_len > ni->initialized_size))
432 attr_len = ni->initialized_size;
433 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
434 kaddr = kmap_atomic(page, KM_USER0);
435 /* Copy the data to the page. */
436 memcpy(kaddr, (u8*)ctx->attr +
437 le16_to_cpu(ctx->attr->data.resident.value_offset),
438 attr_len);
439 /* Zero the remainder of the page. */
440 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
441 flush_dcache_page(page);
442 kunmap_atomic(kaddr, KM_USER0);
443put_unm_err_out:
444 ntfs_attr_put_search_ctx(ctx);
445unm_err_out:
446 unmap_mft_record(base_ni);
447done:
448 SetPageUptodate(page);
449err_out:
450 unlock_page(page);
451 return err;
452}
453
454#ifdef NTFS_RW
455
456/**
457 * ntfs_write_block - write a @page to the backing store
458 * @page: page cache page to write out
459 * @wbc: writeback control structure
460 *
461 * This function is for writing pages belonging to non-resident, non-mst
462 * protected attributes to their backing store.
463 *
464 * For a page with buffers, map and write the dirty buffers asynchronously
465 * under page writeback. For a page without buffers, create buffers for the
466 * page, then proceed as above.
467 *
468 * If a page doesn't have buffers the page dirty state is definitive. If a page
469 * does have buffers, the page dirty state is just a hint, and the buffer dirty
470 * state is definitive. (A hint which has rules: dirty buffers against a clean
471 * page is illegal. Other combinations are legal and need to be handled. In
472 * particular a dirty page containing clean buffers for example.)
473 *
474 * Return 0 on success and -errno on error.
475 *
476 * Based on ntfs_read_block() and __block_write_full_page().
477 */
478static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
479{
480 VCN vcn;
481 LCN lcn;
07a4e2da
AA
482 s64 initialized_size;
483 loff_t i_size;
1da177e4
LT
484 sector_t block, dblock, iblock;
485 struct inode *vi;
486 ntfs_inode *ni;
487 ntfs_volume *vol;
488 runlist_element *rl;
489 struct buffer_head *bh, *head;
07a4e2da 490 unsigned long flags;
1da177e4
LT
491 unsigned int blocksize, vcn_ofs;
492 int err;
493 BOOL need_end_writeback;
494 unsigned char blocksize_bits;
495
496 vi = page->mapping->host;
497 ni = NTFS_I(vi);
498 vol = ni->vol;
499
500 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
501 "0x%lx.", ni->mft_no, ni->type, page->index);
502
503 BUG_ON(!NInoNonResident(ni));
504 BUG_ON(NInoMstProtected(ni));
505
506 blocksize_bits = vi->i_blkbits;
507 blocksize = 1 << blocksize_bits;
508
509 if (!page_has_buffers(page)) {
510 BUG_ON(!PageUptodate(page));
511 create_empty_buffers(page, blocksize,
512 (1 << BH_Uptodate) | (1 << BH_Dirty));
513 }
514 bh = head = page_buffers(page);
515 if (unlikely(!bh)) {
516 ntfs_warning(vol->sb, "Error allocating page buffers. "
517 "Redirtying page so we try again later.");
518 /*
519 * Put the page back on mapping->dirty_pages, but leave its
520 * buffer's dirty state as-is.
521 */
522 redirty_page_for_writepage(wbc, page);
523 unlock_page(page);
524 return 0;
525 }
526
527 /* NOTE: Different naming scheme to ntfs_read_block()! */
528
529 /* The first block in the page. */
530 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
531
07a4e2da
AA
532 read_lock_irqsave(&ni->size_lock, flags);
533 i_size = i_size_read(vi);
534 initialized_size = ni->initialized_size;
535 read_unlock_irqrestore(&ni->size_lock, flags);
536
1da177e4 537 /* The first out of bounds block for the data size. */
07a4e2da 538 dblock = (i_size + blocksize - 1) >> blocksize_bits;
1da177e4
LT
539
540 /* The last (fully or partially) initialized block. */
07a4e2da 541 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
542
543 /*
544 * Be very careful. We have no exclusion from __set_page_dirty_buffers
545 * here, and the (potentially unmapped) buffers may become dirty at
546 * any time. If a buffer becomes dirty here after we've inspected it
547 * then we just miss that fact, and the page stays dirty.
548 *
549 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
550 * handle that here by just cleaning them.
551 */
552
553 /*
554 * Loop through all the buffers in the page, mapping all the dirty
555 * buffers to disk addresses and handling any aliases from the
556 * underlying block device's mapping.
557 */
558 rl = NULL;
559 err = 0;
560 do {
561 BOOL is_retry = FALSE;
562
563 if (unlikely(block >= dblock)) {
564 /*
565 * Mapped buffers outside i_size will occur, because
566 * this page can be outside i_size when there is a
567 * truncate in progress. The contents of such buffers
568 * were zeroed by ntfs_writepage().
569 *
570 * FIXME: What about the small race window where
571 * ntfs_writepage() has not done any clearing because
572 * the page was within i_size but before we get here,
573 * vmtruncate() modifies i_size?
574 */
575 clear_buffer_dirty(bh);
576 set_buffer_uptodate(bh);
577 continue;
578 }
579
580 /* Clean buffers are not written out, so no need to map them. */
581 if (!buffer_dirty(bh))
582 continue;
583
584 /* Make sure we have enough initialized size. */
585 if (unlikely((block >= iblock) &&
07a4e2da 586 (initialized_size < i_size))) {
1da177e4
LT
587 /*
588 * If this page is fully outside initialized size, zero
589 * out all pages between the current initialized size
590 * and the current page. Just use ntfs_readpage() to do
591 * the zeroing transparently.
592 */
593 if (block > iblock) {
594 // TODO:
595 // For each page do:
596 // - read_cache_page()
597 // Again for each page do:
598 // - wait_on_page_locked()
599 // - Check (PageUptodate(page) &&
600 // !PageError(page))
601 // Update initialized size in the attribute and
602 // in the inode.
603 // Again, for each page do:
604 // __set_page_dirty_buffers();
605 // page_cache_release()
606 // We don't need to wait on the writes.
607 // Update iblock.
608 }
609 /*
610 * The current page straddles initialized size. Zero
611 * all non-uptodate buffers and set them uptodate (and
612 * dirty?). Note, there aren't any non-uptodate buffers
613 * if the page is uptodate.
614 * FIXME: For an uptodate page, the buffers may need to
615 * be written out because they were not initialized on
616 * disk before.
617 */
618 if (!PageUptodate(page)) {
619 // TODO:
620 // Zero any non-uptodate buffers up to i_size.
621 // Set them uptodate and dirty.
622 }
623 // TODO:
624 // Update initialized size in the attribute and in the
625 // inode (up to i_size).
626 // Update iblock.
627 // FIXME: This is inefficient. Try to batch the two
628 // size changes to happen in one go.
629 ntfs_error(vol->sb, "Writing beyond initialized size "
630 "is not supported yet. Sorry.");
631 err = -EOPNOTSUPP;
632 break;
633 // Do NOT set_buffer_new() BUT DO clear buffer range
634 // outside write request range.
635 // set_buffer_uptodate() on complete buffers as well as
636 // set_buffer_dirty().
637 }
638
639 /* No need to map buffers that are already mapped. */
640 if (buffer_mapped(bh))
641 continue;
642
643 /* Unmapped, dirty buffer. Need to map it. */
644 bh->b_bdev = vol->sb->s_bdev;
645
646 /* Convert block into corresponding vcn and offset. */
647 vcn = (VCN)block << blocksize_bits;
648 vcn_ofs = vcn & vol->cluster_size_mask;
649 vcn >>= vol->cluster_size_bits;
650 if (!rl) {
651lock_retry_remap:
652 down_read(&ni->runlist.lock);
653 rl = ni->runlist.rl;
654 }
655 if (likely(rl != NULL)) {
656 /* Seek to element containing target vcn. */
657 while (rl->length && rl[1].vcn <= vcn)
658 rl++;
659 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
660 } else
661 lcn = LCN_RL_NOT_MAPPED;
662 /* Successful remap. */
663 if (lcn >= 0) {
664 /* Setup buffer head to point to correct block. */
665 bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
666 vcn_ofs) >> blocksize_bits;
667 set_buffer_mapped(bh);
668 continue;
669 }
670 /* It is a hole, need to instantiate it. */
671 if (lcn == LCN_HOLE) {
672 // TODO: Instantiate the hole.
673 // clear_buffer_new(bh);
674 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
675 ntfs_error(vol->sb, "Writing into sparse regions is "
676 "not supported yet. Sorry.");
677 err = -EOPNOTSUPP;
678 break;
679 }
680 /* If first try and runlist unmapped, map and retry. */
681 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
682 is_retry = TRUE;
683 /*
684 * Attempt to map runlist, dropping lock for
685 * the duration.
686 */
687 up_read(&ni->runlist.lock);
688 err = ntfs_map_runlist(ni, vcn);
689 if (likely(!err))
690 goto lock_retry_remap;
691 rl = NULL;
692 lcn = err;
693 }
694 /* Failed to map the buffer, even after retrying. */
695 bh->b_blocknr = -1;
696 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
697 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
698 "because its location on disk could not be "
699 "determined%s (error code %lli).", ni->mft_no,
700 ni->type, (unsigned long long)vcn,
701 vcn_ofs, is_retry ? " even after "
702 "retrying" : "", (long long)lcn);
703 if (!err)
704 err = -EIO;
705 break;
706 } while (block++, (bh = bh->b_this_page) != head);
707
708 /* Release the lock if we took it. */
709 if (rl)
710 up_read(&ni->runlist.lock);
711
712 /* For the error case, need to reset bh to the beginning. */
713 bh = head;
714
715 /* Just an optimization, so ->readpage() isn't called later. */
716 if (unlikely(!PageUptodate(page))) {
717 int uptodate = 1;
718 do {
719 if (!buffer_uptodate(bh)) {
720 uptodate = 0;
721 bh = head;
722 break;
723 }
724 } while ((bh = bh->b_this_page) != head);
725 if (uptodate)
726 SetPageUptodate(page);
727 }
728
729 /* Setup all mapped, dirty buffers for async write i/o. */
730 do {
731 get_bh(bh);
732 if (buffer_mapped(bh) && buffer_dirty(bh)) {
733 lock_buffer(bh);
734 if (test_clear_buffer_dirty(bh)) {
735 BUG_ON(!buffer_uptodate(bh));
736 mark_buffer_async_write(bh);
737 } else
738 unlock_buffer(bh);
739 } else if (unlikely(err)) {
740 /*
741 * For the error case. The buffer may have been set
742 * dirty during attachment to a dirty page.
743 */
744 if (err != -ENOMEM)
745 clear_buffer_dirty(bh);
746 }
747 } while ((bh = bh->b_this_page) != head);
748
749 if (unlikely(err)) {
750 // TODO: Remove the -EOPNOTSUPP check later on...
751 if (unlikely(err == -EOPNOTSUPP))
752 err = 0;
753 else if (err == -ENOMEM) {
754 ntfs_warning(vol->sb, "Error allocating memory. "
755 "Redirtying page so we try again "
756 "later.");
757 /*
758 * Put the page back on mapping->dirty_pages, but
759 * leave its buffer's dirty state as-is.
760 */
761 redirty_page_for_writepage(wbc, page);
762 err = 0;
763 } else
764 SetPageError(page);
765 }
766
767 BUG_ON(PageWriteback(page));
768 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
769 unlock_page(page);
770
771 /*
772 * Submit the prepared buffers for i/o. Note the page is unlocked,
773 * and the async write i/o completion handler can end_page_writeback()
774 * at any time after the *first* submit_bh(). So the buffers can then
775 * disappear...
776 */
777 need_end_writeback = TRUE;
778 do {
779 struct buffer_head *next = bh->b_this_page;
780 if (buffer_async_write(bh)) {
781 submit_bh(WRITE, bh);
782 need_end_writeback = FALSE;
783 }
784 put_bh(bh);
785 bh = next;
786 } while (bh != head);
787
788 /* If no i/o was started, need to end_page_writeback(). */
789 if (unlikely(need_end_writeback))
790 end_page_writeback(page);
791
792 ntfs_debug("Done.");
793 return err;
794}
795
796/**
797 * ntfs_write_mst_block - write a @page to the backing store
798 * @page: page cache page to write out
799 * @wbc: writeback control structure
800 *
801 * This function is for writing pages belonging to non-resident, mst protected
802 * attributes to their backing store. The only supported attributes are index
803 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
804 * supported for the index allocation case.
805 *
806 * The page must remain locked for the duration of the write because we apply
807 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
808 * page before undoing the fixups, any other user of the page will see the
809 * page contents as corrupt.
810 *
811 * We clear the page uptodate flag for the duration of the function to ensure
812 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
813 * are about to apply the mst fixups to.
814 *
815 * Return 0 on success and -errno on error.
816 *
817 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
818 * write_mft_record_nolock().
819 */
820static int ntfs_write_mst_block(struct page *page,
821 struct writeback_control *wbc)
822{
823 sector_t block, dblock, rec_block;
824 struct inode *vi = page->mapping->host;
825 ntfs_inode *ni = NTFS_I(vi);
826 ntfs_volume *vol = ni->vol;
827 u8 *kaddr;
828 unsigned char bh_size_bits = vi->i_blkbits;
829 unsigned int bh_size = 1 << bh_size_bits;
830 unsigned int rec_size = ni->itype.index.block_size;
831 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
832 struct buffer_head *bh, *head, *tbh, *rec_start_bh;
833 int max_bhs = PAGE_CACHE_SIZE / bh_size;
834 struct buffer_head *bhs[max_bhs];
835 runlist_element *rl;
836 int i, nr_locked_nis, nr_recs, nr_bhs, bhs_per_rec, err, err2;
837 unsigned rec_size_bits;
838 BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
839
840 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
841 "0x%lx.", vi->i_ino, ni->type, page->index);
842 BUG_ON(!NInoNonResident(ni));
843 BUG_ON(!NInoMstProtected(ni));
844 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
845 /*
846 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
847 * in its page cache were to be marked dirty. However this should
848 * never happen with the current driver and considering we do not
849 * handle this case here we do want to BUG(), at least for now.
850 */
851 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
852 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
853 BUG_ON(!max_bhs);
854
855 /* Were we called for sync purposes? */
856 sync = (wbc->sync_mode == WB_SYNC_ALL);
857
858 /* Make sure we have mapped buffers. */
859 BUG_ON(!page_has_buffers(page));
860 bh = head = page_buffers(page);
861 BUG_ON(!bh);
862
863 rec_size_bits = ni->itype.index.block_size_bits;
864 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
865 bhs_per_rec = rec_size >> bh_size_bits;
866 BUG_ON(!bhs_per_rec);
867
868 /* The first block in the page. */
869 rec_block = block = (sector_t)page->index <<
870 (PAGE_CACHE_SHIFT - bh_size_bits);
871
872 /* The first out of bounds block for the data size. */
07a4e2da 873 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
1da177e4
LT
874
875 rl = NULL;
876 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
877 page_is_dirty = rec_is_dirty = FALSE;
878 rec_start_bh = NULL;
879 do {
880 BOOL is_retry = FALSE;
881
882 if (likely(block < rec_block)) {
883 if (unlikely(block >= dblock)) {
884 clear_buffer_dirty(bh);
946929d8 885 set_buffer_uptodate(bh);
1da177e4
LT
886 continue;
887 }
888 /*
889 * This block is not the first one in the record. We
890 * ignore the buffer's dirty state because we could
891 * have raced with a parallel mark_ntfs_record_dirty().
892 */
893 if (!rec_is_dirty)
894 continue;
895 if (unlikely(err2)) {
896 if (err2 != -ENOMEM)
897 clear_buffer_dirty(bh);
898 continue;
899 }
900 } else /* if (block == rec_block) */ {
901 BUG_ON(block > rec_block);
902 /* This block is the first one in the record. */
903 rec_block += bhs_per_rec;
904 err2 = 0;
905 if (unlikely(block >= dblock)) {
906 clear_buffer_dirty(bh);
907 continue;
908 }
909 if (!buffer_dirty(bh)) {
910 /* Clean records are not written out. */
911 rec_is_dirty = FALSE;
912 continue;
913 }
914 rec_is_dirty = TRUE;
915 rec_start_bh = bh;
916 }
917 /* Need to map the buffer if it is not mapped already. */
918 if (unlikely(!buffer_mapped(bh))) {
919 VCN vcn;
920 LCN lcn;
921 unsigned int vcn_ofs;
922
923 /* Obtain the vcn and offset of the current block. */
924 vcn = (VCN)block << bh_size_bits;
925 vcn_ofs = vcn & vol->cluster_size_mask;
926 vcn >>= vol->cluster_size_bits;
927 if (!rl) {
928lock_retry_remap:
929 down_read(&ni->runlist.lock);
930 rl = ni->runlist.rl;
931 }
932 if (likely(rl != NULL)) {
933 /* Seek to element containing target vcn. */
934 while (rl->length && rl[1].vcn <= vcn)
935 rl++;
936 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
937 } else
938 lcn = LCN_RL_NOT_MAPPED;
939 /* Successful remap. */
940 if (likely(lcn >= 0)) {
941 /* Setup buffer head to correct block. */
942 bh->b_blocknr = ((lcn <<
943 vol->cluster_size_bits) +
944 vcn_ofs) >> bh_size_bits;
945 set_buffer_mapped(bh);
946 } else {
947 /*
948 * Remap failed. Retry to map the runlist once
949 * unless we are working on $MFT which always
950 * has the whole of its runlist in memory.
951 */
952 if (!is_mft && !is_retry &&
953 lcn == LCN_RL_NOT_MAPPED) {
954 is_retry = TRUE;
955 /*
956 * Attempt to map runlist, dropping
957 * lock for the duration.
958 */
959 up_read(&ni->runlist.lock);
960 err2 = ntfs_map_runlist(ni, vcn);
961 if (likely(!err2))
962 goto lock_retry_remap;
963 if (err2 == -ENOMEM)
964 page_is_dirty = TRUE;
965 lcn = err2;
966 } else
967 err2 = -EIO;
968 /* Hard error. Abort writing this record. */
969 if (!err || err == -ENOMEM)
970 err = err2;
971 bh->b_blocknr = -1;
972 ntfs_error(vol->sb, "Cannot write ntfs record "
973 "0x%llx (inode 0x%lx, "
974 "attribute type 0x%x) because "
975 "its location on disk could "
976 "not be determined (error "
8907547d
RD
977 "code %lli).",
978 (long long)block <<
1da177e4
LT
979 bh_size_bits >>
980 vol->mft_record_size_bits,
981 ni->mft_no, ni->type,
982 (long long)lcn);
983 /*
984 * If this is not the first buffer, remove the
985 * buffers in this record from the list of
986 * buffers to write and clear their dirty bit
987 * if not error -ENOMEM.
988 */
989 if (rec_start_bh != bh) {
990 while (bhs[--nr_bhs] != rec_start_bh)
991 ;
992 if (err2 != -ENOMEM) {
993 do {
994 clear_buffer_dirty(
995 rec_start_bh);
996 } while ((rec_start_bh =
997 rec_start_bh->
998 b_this_page) !=
999 bh);
1000 }
1001 }
1002 continue;
1003 }
1004 }
1005 BUG_ON(!buffer_uptodate(bh));
1006 BUG_ON(nr_bhs >= max_bhs);
1007 bhs[nr_bhs++] = bh;
1008 } while (block++, (bh = bh->b_this_page) != head);
1009 if (unlikely(rl))
1010 up_read(&ni->runlist.lock);
1011 /* If there were no dirty buffers, we are done. */
1012 if (!nr_bhs)
1013 goto done;
1014 /* Map the page so we can access its contents. */
1015 kaddr = kmap(page);
1016 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1017 BUG_ON(!PageUptodate(page));
1018 ClearPageUptodate(page);
1019 for (i = 0; i < nr_bhs; i++) {
1020 unsigned int ofs;
1021
1022 /* Skip buffers which are not at the beginning of records. */
1023 if (i % bhs_per_rec)
1024 continue;
1025 tbh = bhs[i];
1026 ofs = bh_offset(tbh);
1027 if (is_mft) {
1028 ntfs_inode *tni;
1029 unsigned long mft_no;
1030
1031 /* Get the mft record number. */
1032 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1033 >> rec_size_bits;
1034 /* Check whether to write this mft record. */
1035 tni = NULL;
1036 if (!ntfs_may_write_mft_record(vol, mft_no,
1037 (MFT_RECORD*)(kaddr + ofs), &tni)) {
1038 /*
1039 * The record should not be written. This
1040 * means we need to redirty the page before
1041 * returning.
1042 */
1043 page_is_dirty = TRUE;
1044 /*
1045 * Remove the buffers in this mft record from
1046 * the list of buffers to write.
1047 */
1048 do {
1049 bhs[i] = NULL;
1050 } while (++i % bhs_per_rec);
1051 continue;
1052 }
1053 /*
1054 * The record should be written. If a locked ntfs
1055 * inode was returned, add it to the array of locked
1056 * ntfs inodes.
1057 */
1058 if (tni)
1059 locked_nis[nr_locked_nis++] = tni;
1060 }
1061 /* Apply the mst protection fixups. */
1062 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1063 rec_size);
1064 if (unlikely(err2)) {
1065 if (!err || err == -ENOMEM)
1066 err = -EIO;
1067 ntfs_error(vol->sb, "Failed to apply mst fixups "
1068 "(inode 0x%lx, attribute type 0x%x, "
1069 "page index 0x%lx, page offset 0x%x)!"
1070 " Unmount and run chkdsk.", vi->i_ino,
1071 ni->type, page->index, ofs);
1072 /*
1073 * Mark all the buffers in this record clean as we do
1074 * not want to write corrupt data to disk.
1075 */
1076 do {
1077 clear_buffer_dirty(bhs[i]);
1078 bhs[i] = NULL;
1079 } while (++i % bhs_per_rec);
1080 continue;
1081 }
1082 nr_recs++;
1083 }
1084 /* If no records are to be written out, we are done. */
1085 if (!nr_recs)
1086 goto unm_done;
1087 flush_dcache_page(page);
1088 /* Lock buffers and start synchronous write i/o on them. */
1089 for (i = 0; i < nr_bhs; i++) {
1090 tbh = bhs[i];
1091 if (!tbh)
1092 continue;
1093 if (unlikely(test_set_buffer_locked(tbh)))
1094 BUG();
1095 /* The buffer dirty state is now irrelevant, just clean it. */
1096 clear_buffer_dirty(tbh);
1097 BUG_ON(!buffer_uptodate(tbh));
1098 BUG_ON(!buffer_mapped(tbh));
1099 get_bh(tbh);
1100 tbh->b_end_io = end_buffer_write_sync;
1101 submit_bh(WRITE, tbh);
1102 }
1103 /* Synchronize the mft mirror now if not @sync. */
1104 if (is_mft && !sync)
1105 goto do_mirror;
1106do_wait:
1107 /* Wait on i/o completion of buffers. */
1108 for (i = 0; i < nr_bhs; i++) {
1109 tbh = bhs[i];
1110 if (!tbh)
1111 continue;
1112 wait_on_buffer(tbh);
1113 if (unlikely(!buffer_uptodate(tbh))) {
1114 ntfs_error(vol->sb, "I/O error while writing ntfs "
1115 "record buffer (inode 0x%lx, "
1116 "attribute type 0x%x, page index "
1117 "0x%lx, page offset 0x%lx)! Unmount "
1118 "and run chkdsk.", vi->i_ino, ni->type,
1119 page->index, bh_offset(tbh));
1120 if (!err || err == -ENOMEM)
1121 err = -EIO;
1122 /*
1123 * Set the buffer uptodate so the page and buffer
1124 * states do not become out of sync.
1125 */
1126 set_buffer_uptodate(tbh);
1127 }
1128 }
1129 /* If @sync, now synchronize the mft mirror. */
1130 if (is_mft && sync) {
1131do_mirror:
1132 for (i = 0; i < nr_bhs; i++) {
1133 unsigned long mft_no;
1134 unsigned int ofs;
1135
1136 /*
1137 * Skip buffers which are not at the beginning of
1138 * records.
1139 */
1140 if (i % bhs_per_rec)
1141 continue;
1142 tbh = bhs[i];
1143 /* Skip removed buffers (and hence records). */
1144 if (!tbh)
1145 continue;
1146 ofs = bh_offset(tbh);
1147 /* Get the mft record number. */
1148 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1149 >> rec_size_bits;
1150 if (mft_no < vol->mftmirr_size)
1151 ntfs_sync_mft_mirror(vol, mft_no,
1152 (MFT_RECORD*)(kaddr + ofs),
1153 sync);
1154 }
1155 if (!sync)
1156 goto do_wait;
1157 }
1158 /* Remove the mst protection fixups again. */
1159 for (i = 0; i < nr_bhs; i++) {
1160 if (!(i % bhs_per_rec)) {
1161 tbh = bhs[i];
1162 if (!tbh)
1163 continue;
1164 post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1165 bh_offset(tbh)));
1166 }
1167 }
1168 flush_dcache_page(page);
1169unm_done:
1170 /* Unlock any locked inodes. */
1171 while (nr_locked_nis-- > 0) {
1172 ntfs_inode *tni, *base_tni;
1173
1174 tni = locked_nis[nr_locked_nis];
1175 /* Get the base inode. */
1176 down(&tni->extent_lock);
1177 if (tni->nr_extents >= 0)
1178 base_tni = tni;
1179 else {
1180 base_tni = tni->ext.base_ntfs_ino;
1181 BUG_ON(!base_tni);
1182 }
1183 up(&tni->extent_lock);
1184 ntfs_debug("Unlocking %s inode 0x%lx.",
1185 tni == base_tni ? "base" : "extent",
1186 tni->mft_no);
1187 up(&tni->mrec_lock);
1188 atomic_dec(&tni->count);
1189 iput(VFS_I(base_tni));
1190 }
1191 SetPageUptodate(page);
1192 kunmap(page);
1193done:
1194 if (unlikely(err && err != -ENOMEM)) {
1195 /*
1196 * Set page error if there is only one ntfs record in the page.
1197 * Otherwise we would loose per-record granularity.
1198 */
1199 if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1200 SetPageError(page);
1201 NVolSetErrors(vol);
1202 }
1203 if (page_is_dirty) {
1204 ntfs_debug("Page still contains one or more dirty ntfs "
1205 "records. Redirtying the page starting at "
1206 "record 0x%lx.", page->index <<
1207 (PAGE_CACHE_SHIFT - rec_size_bits));
1208 redirty_page_for_writepage(wbc, page);
1209 unlock_page(page);
1210 } else {
1211 /*
1212 * Keep the VM happy. This must be done otherwise the
1213 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1214 * the page is clean.
1215 */
1216 BUG_ON(PageWriteback(page));
1217 set_page_writeback(page);
1218 unlock_page(page);
1219 end_page_writeback(page);
1220 }
1221 if (likely(!err))
1222 ntfs_debug("Done.");
1223 return err;
1224}
1225
1226/**
1227 * ntfs_writepage - write a @page to the backing store
1228 * @page: page cache page to write out
1229 * @wbc: writeback control structure
1230 *
1231 * This is called from the VM when it wants to have a dirty ntfs page cache
1232 * page cleaned. The VM has already locked the page and marked it clean.
1233 *
1234 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1235 * the ntfs version of the generic block_write_full_page() function,
1236 * ntfs_write_block(), which in turn if necessary creates and writes the
1237 * buffers associated with the page asynchronously.
1238 *
1239 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1240 * the data to the mft record (which at this stage is most likely in memory).
1241 * The mft record is then marked dirty and written out asynchronously via the
1242 * vfs inode dirty code path for the inode the mft record belongs to or via the
1243 * vm page dirty code path for the page the mft record is in.
1244 *
1245 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1246 *
1247 * Return 0 on success and -errno on error.
1248 */
1249static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1250{
1251 loff_t i_size;
149f0c52
AA
1252 struct inode *vi = page->mapping->host;
1253 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1da177e4 1254 char *kaddr;
149f0c52
AA
1255 ntfs_attr_search_ctx *ctx = NULL;
1256 MFT_RECORD *m = NULL;
1da177e4
LT
1257 u32 attr_len;
1258 int err;
1259
905685f6 1260retry_writepage:
1da177e4 1261 BUG_ON(!PageLocked(page));
1da177e4 1262 i_size = i_size_read(vi);
1da177e4
LT
1263 /* Is the page fully outside i_size? (truncate in progress) */
1264 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1265 PAGE_CACHE_SHIFT)) {
1266 /*
1267 * The page may have dirty, unmapped buffers. Make them
1268 * freeable here, so the page does not leak.
1269 */
1270 block_invalidatepage(page, 0);
1271 unlock_page(page);
1272 ntfs_debug("Write outside i_size - truncated?");
1273 return 0;
1274 }
1da177e4
LT
1275 /* NInoNonResident() == NInoIndexAllocPresent() */
1276 if (NInoNonResident(ni)) {
1277 /*
1278 * Only unnamed $DATA attributes can be compressed, encrypted,
1279 * and/or sparse.
1280 */
1281 if (ni->type == AT_DATA && !ni->name_len) {
1282 /* If file is encrypted, deny access, just like NT4. */
1283 if (NInoEncrypted(ni)) {
1284 unlock_page(page);
1285 ntfs_debug("Denying write access to encrypted "
1286 "file.");
1287 return -EACCES;
1288 }
1289 /* Compressed data streams are handled in compress.c. */
1290 if (NInoCompressed(ni)) {
1291 // TODO: Implement and replace this check with
1292 // return ntfs_write_compressed_block(page);
1293 unlock_page(page);
1294 ntfs_error(vi->i_sb, "Writing to compressed "
1295 "files is not supported yet. "
1296 "Sorry.");
1297 return -EOPNOTSUPP;
1298 }
1299 // TODO: Implement and remove this check.
1300 if (NInoSparse(ni)) {
1301 unlock_page(page);
1302 ntfs_error(vi->i_sb, "Writing to sparse files "
1303 "is not supported yet. Sorry.");
1304 return -EOPNOTSUPP;
1305 }
1306 }
1307 /* We have to zero every time due to mmap-at-end-of-file. */
1308 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1309 /* The page straddles i_size. */
1310 unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1311 kaddr = kmap_atomic(page, KM_USER0);
1312 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1313 flush_dcache_page(page);
1314 kunmap_atomic(kaddr, KM_USER0);
1315 }
1316 /* Handle mst protected attributes. */
1317 if (NInoMstProtected(ni))
1318 return ntfs_write_mst_block(page, wbc);
1319 /* Normal data stream. */
1320 return ntfs_write_block(page, wbc);
1321 }
1322 /*
1323 * Attribute is resident, implying it is not compressed, encrypted,
1324 * sparse, or mst protected. This also means the attribute is smaller
1325 * than an mft record and hence smaller than a page, so can simply
1326 * return error on any pages with index above 0.
1327 */
1328 BUG_ON(page_has_buffers(page));
1329 BUG_ON(!PageUptodate(page));
1330 if (unlikely(page->index > 0)) {
1331 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
1332 "Aborting write.", page->index);
1333 BUG_ON(PageWriteback(page));
1334 set_page_writeback(page);
1335 unlock_page(page);
1336 end_page_writeback(page);
1337 return -EIO;
1338 }
1339 if (!NInoAttr(ni))
1340 base_ni = ni;
1341 else
1342 base_ni = ni->ext.base_ntfs_ino;
1343 /* Map, pin, and lock the mft record. */
1344 m = map_mft_record(base_ni);
1345 if (IS_ERR(m)) {
1346 err = PTR_ERR(m);
1347 m = NULL;
1348 ctx = NULL;
1349 goto err_out;
1350 }
905685f6
AA
1351 /*
1352 * If a parallel write made the attribute non-resident, drop the mft
1353 * record and retry the writepage.
1354 */
1355 if (unlikely(NInoNonResident(ni))) {
1356 unmap_mft_record(base_ni);
1357 goto retry_writepage;
1358 }
1da177e4
LT
1359 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1360 if (unlikely(!ctx)) {
1361 err = -ENOMEM;
1362 goto err_out;
1363 }
1364 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1365 CASE_SENSITIVE, 0, NULL, 0, ctx);
1366 if (unlikely(err))
1367 goto err_out;
1368 /*
1369 * Keep the VM happy. This must be done otherwise the radix-tree tag
1370 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1371 */
1372 BUG_ON(PageWriteback(page));
1373 set_page_writeback(page);
1374 unlock_page(page);
1375
1376 /*
1377 * Here, we don't need to zero the out of bounds area everytime because
1378 * the below memcpy() already takes care of the mmap-at-end-of-file
1379 * requirements. If the file is converted to a non-resident one, then
1380 * the code path use is switched to the non-resident one where the
1381 * zeroing happens on each ntfs_writepage() invocation.
1382 *
1383 * The above also applies nicely when i_size is decreased.
1384 *
1385 * When i_size is increased, the memory between the old and new i_size
1386 * _must_ be zeroed (or overwritten with new data). Otherwise we will
1387 * expose data to userspace/disk which should never have been exposed.
1388 *
1389 * FIXME: Ensure that i_size increases do the zeroing/overwriting and
1390 * if we cannot guarantee that, then enable the zeroing below. If the
1391 * zeroing below is enabled, we MUST move the unlock_page() from above
1392 * to after the kunmap_atomic(), i.e. just before the
1393 * end_page_writeback().
1394 * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
1395 * increases for resident attributes so those are ok.
1396 * TODO: ntfs_truncate(), others?
1397 */
1398
1399 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
07a4e2da 1400 i_size = i_size_read(vi);
1da177e4 1401 if (unlikely(attr_len > i_size)) {
1da177e4 1402 attr_len = i_size;
f40661be 1403 ctx->attr->data.resident.value_length = cpu_to_le32(attr_len);
1da177e4 1404 }
f40661be 1405 kaddr = kmap_atomic(page, KM_USER0);
1da177e4
LT
1406 /* Copy the data from the page to the mft record. */
1407 memcpy((u8*)ctx->attr +
1408 le16_to_cpu(ctx->attr->data.resident.value_offset),
1409 kaddr, attr_len);
1410 flush_dcache_mft_record_page(ctx->ntfs_ino);
1411 /* Zero out of bounds area in the page cache page. */
1412 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1413 flush_dcache_page(page);
1414 kunmap_atomic(kaddr, KM_USER0);
1415
1416 end_page_writeback(page);
1417
1418 /* Mark the mft record dirty, so it gets written back. */
1419 mark_mft_record_dirty(ctx->ntfs_ino);
1420 ntfs_attr_put_search_ctx(ctx);
1421 unmap_mft_record(base_ni);
1422 return 0;
1423err_out:
1424 if (err == -ENOMEM) {
1425 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1426 "page so we try again later.");
1427 /*
1428 * Put the page back on mapping->dirty_pages, but leave its
1429 * buffers' dirty state as-is.
1430 */
1431 redirty_page_for_writepage(wbc, page);
1432 err = 0;
1433 } else {
1434 ntfs_error(vi->i_sb, "Resident attribute write failed with "
149f0c52 1435 "error %i.", err);
1da177e4 1436 SetPageError(page);
149f0c52
AA
1437 NVolSetErrors(ni->vol);
1438 make_bad_inode(vi);
1da177e4
LT
1439 }
1440 unlock_page(page);
1441 if (ctx)
1442 ntfs_attr_put_search_ctx(ctx);
1443 if (m)
1444 unmap_mft_record(base_ni);
1445 return err;
1446}
1447
1448/**
1449 * ntfs_prepare_nonresident_write -
1450 *
1451 */
1452static int ntfs_prepare_nonresident_write(struct page *page,
1453 unsigned from, unsigned to)
1454{
1455 VCN vcn;
1456 LCN lcn;
07a4e2da
AA
1457 s64 initialized_size;
1458 loff_t i_size;
1da177e4
LT
1459 sector_t block, ablock, iblock;
1460 struct inode *vi;
1461 ntfs_inode *ni;
1462 ntfs_volume *vol;
1463 runlist_element *rl;
1464 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
07a4e2da 1465 unsigned long flags;
1da177e4
LT
1466 unsigned int vcn_ofs, block_start, block_end, blocksize;
1467 int err;
1468 BOOL is_retry;
1469 unsigned char blocksize_bits;
1470
1471 vi = page->mapping->host;
1472 ni = NTFS_I(vi);
1473 vol = ni->vol;
1474
1475 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1476 "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1477 page->index, from, to);
1478
1479 BUG_ON(!NInoNonResident(ni));
1480
1481 blocksize_bits = vi->i_blkbits;
1482 blocksize = 1 << blocksize_bits;
1483
1484 /*
1485 * create_empty_buffers() will create uptodate/dirty buffers if the
1486 * page is uptodate/dirty.
1487 */
1488 if (!page_has_buffers(page))
1489 create_empty_buffers(page, blocksize, 0);
1490 bh = head = page_buffers(page);
1491 if (unlikely(!bh))
1492 return -ENOMEM;
1493
1494 /* The first block in the page. */
1495 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1496
07a4e2da 1497 read_lock_irqsave(&ni->size_lock, flags);
1da177e4 1498 /*
b6ad6c52 1499 * The first out of bounds block for the allocated size. No need to
1da177e4
LT
1500 * round up as allocated_size is in multiples of cluster size and the
1501 * minimum cluster size is 512 bytes, which is equal to the smallest
1502 * blocksize.
1503 */
1504 ablock = ni->allocated_size >> blocksize_bits;
07a4e2da
AA
1505 i_size = i_size_read(vi);
1506 initialized_size = ni->initialized_size;
1507 read_unlock_irqrestore(&ni->size_lock, flags);
1508
1da177e4 1509 /* The last (fully or partially) initialized block. */
07a4e2da 1510 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
1511
1512 /* Loop through all the buffers in the page. */
1513 block_start = 0;
1514 rl = NULL;
1515 err = 0;
1516 do {
1517 block_end = block_start + blocksize;
1518 /*
1519 * If buffer @bh is outside the write, just mark it uptodate
1520 * if the page is uptodate and continue with the next buffer.
1521 */
1522 if (block_end <= from || block_start >= to) {
1523 if (PageUptodate(page)) {
1524 if (!buffer_uptodate(bh))
1525 set_buffer_uptodate(bh);
1526 }
1527 continue;
1528 }
1529 /*
1530 * @bh is at least partially being written to.
1531 * Make sure it is not marked as new.
1532 */
1533 //if (buffer_new(bh))
1534 // clear_buffer_new(bh);
1535
1536 if (block >= ablock) {
1537 // TODO: block is above allocated_size, need to
1538 // allocate it. Best done in one go to accommodate not
1539 // only block but all above blocks up to and including:
1540 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1541 // - 1) >> blobksize_bits. Obviously will need to round
1542 // up to next cluster boundary, too. This should be
1543 // done with a helper function, so it can be reused.
1544 ntfs_error(vol->sb, "Writing beyond allocated size "
1545 "is not supported yet. Sorry.");
1546 err = -EOPNOTSUPP;
1547 goto err_out;
1548 // Need to update ablock.
1549 // Need to set_buffer_new() on all block bhs that are
1550 // newly allocated.
1551 }
1552 /*
1553 * Now we have enough allocated size to fulfill the whole
1554 * request, i.e. block < ablock is true.
1555 */
1556 if (unlikely((block >= iblock) &&
07a4e2da 1557 (initialized_size < i_size))) {
1da177e4
LT
1558 /*
1559 * If this page is fully outside initialized size, zero
1560 * out all pages between the current initialized size
1561 * and the current page. Just use ntfs_readpage() to do
1562 * the zeroing transparently.
1563 */
1564 if (block > iblock) {
1565 // TODO:
1566 // For each page do:
1567 // - read_cache_page()
1568 // Again for each page do:
1569 // - wait_on_page_locked()
1570 // - Check (PageUptodate(page) &&
1571 // !PageError(page))
1572 // Update initialized size in the attribute and
1573 // in the inode.
1574 // Again, for each page do:
1575 // __set_page_dirty_buffers();
1576 // page_cache_release()
1577 // We don't need to wait on the writes.
1578 // Update iblock.
1579 }
1580 /*
1581 * The current page straddles initialized size. Zero
1582 * all non-uptodate buffers and set them uptodate (and
1583 * dirty?). Note, there aren't any non-uptodate buffers
1584 * if the page is uptodate.
1585 * FIXME: For an uptodate page, the buffers may need to
1586 * be written out because they were not initialized on
1587 * disk before.
1588 */
1589 if (!PageUptodate(page)) {
1590 // TODO:
1591 // Zero any non-uptodate buffers up to i_size.
1592 // Set them uptodate and dirty.
1593 }
1594 // TODO:
1595 // Update initialized size in the attribute and in the
1596 // inode (up to i_size).
1597 // Update iblock.
1598 // FIXME: This is inefficient. Try to batch the two
1599 // size changes to happen in one go.
1600 ntfs_error(vol->sb, "Writing beyond initialized size "
1601 "is not supported yet. Sorry.");
1602 err = -EOPNOTSUPP;
1603 goto err_out;
1604 // Do NOT set_buffer_new() BUT DO clear buffer range
1605 // outside write request range.
1606 // set_buffer_uptodate() on complete buffers as well as
1607 // set_buffer_dirty().
1608 }
1609
1610 /* Need to map unmapped buffers. */
1611 if (!buffer_mapped(bh)) {
1612 /* Unmapped buffer. Need to map it. */
1613 bh->b_bdev = vol->sb->s_bdev;
1614
1615 /* Convert block into corresponding vcn and offset. */
1616 vcn = (VCN)block << blocksize_bits >>
1617 vol->cluster_size_bits;
1618 vcn_ofs = ((VCN)block << blocksize_bits) &
1619 vol->cluster_size_mask;
1620
1621 is_retry = FALSE;
1622 if (!rl) {
1623lock_retry_remap:
1624 down_read(&ni->runlist.lock);
1625 rl = ni->runlist.rl;
1626 }
1627 if (likely(rl != NULL)) {
1628 /* Seek to element containing target vcn. */
1629 while (rl->length && rl[1].vcn <= vcn)
1630 rl++;
1631 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1632 } else
1633 lcn = LCN_RL_NOT_MAPPED;
1634 if (unlikely(lcn < 0)) {
1635 /*
1636 * We extended the attribute allocation above.
1637 * If we hit an ENOENT here it means that the
1638 * allocation was insufficient which is a bug.
1639 */
1640 BUG_ON(lcn == LCN_ENOENT);
1641
1642 /* It is a hole, need to instantiate it. */
1643 if (lcn == LCN_HOLE) {
1644 // TODO: Instantiate the hole.
1645 // clear_buffer_new(bh);
1646 // unmap_underlying_metadata(bh->b_bdev,
1647 // bh->b_blocknr);
1648 // For non-uptodate buffers, need to
1649 // zero out the region outside the
1650 // request in this bh or all bhs,
1651 // depending on what we implemented
1652 // above.
1653 // Need to flush_dcache_page().
1654 // Or could use set_buffer_new()
1655 // instead?
1656 ntfs_error(vol->sb, "Writing into "
1657 "sparse regions is "
1658 "not supported yet. "
1659 "Sorry.");
1660 err = -EOPNOTSUPP;
1661 goto err_out;
1662 } else if (!is_retry &&
1663 lcn == LCN_RL_NOT_MAPPED) {
1664 is_retry = TRUE;
1665 /*
1666 * Attempt to map runlist, dropping
1667 * lock for the duration.
1668 */
1669 up_read(&ni->runlist.lock);
1670 err = ntfs_map_runlist(ni, vcn);
1671 if (likely(!err))
1672 goto lock_retry_remap;
1673 rl = NULL;
1674 lcn = err;
1675 }
1676 /*
1677 * Failed to map the buffer, even after
1678 * retrying.
1679 */
1680 bh->b_blocknr = -1;
1681 ntfs_error(vol->sb, "Failed to write to inode "
1682 "0x%lx, attribute type 0x%x, "
1683 "vcn 0x%llx, offset 0x%x "
1684 "because its location on disk "
1685 "could not be determined%s "
1686 "(error code %lli).",
1687 ni->mft_no, ni->type,
1688 (unsigned long long)vcn,
1689 vcn_ofs, is_retry ? " even "
1690 "after retrying" : "",
1691 (long long)lcn);
1692 if (!err)
1693 err = -EIO;
1694 goto err_out;
1695 }
1696 /* We now have a successful remap, i.e. lcn >= 0. */
1697
1698 /* Setup buffer head to correct block. */
1699 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1700 + vcn_ofs) >> blocksize_bits;
1701 set_buffer_mapped(bh);
1702
1703 // FIXME: Something analogous to this is needed for
1704 // each newly allocated block, i.e. BH_New.
1705 // FIXME: Might need to take this out of the
1706 // if (!buffer_mapped(bh)) {}, depending on how we
1707 // implement things during the allocated_size and
1708 // initialized_size extension code above.
1709 if (buffer_new(bh)) {
1710 clear_buffer_new(bh);
1711 unmap_underlying_metadata(bh->b_bdev,
1712 bh->b_blocknr);
1713 if (PageUptodate(page)) {
1714 set_buffer_uptodate(bh);
1715 continue;
1716 }
1717 /*
1718 * Page is _not_ uptodate, zero surrounding
1719 * region. NOTE: This is how we decide if to
1720 * zero or not!
1721 */
1722 if (block_end > to || block_start < from) {
1723 void *kaddr;
1724
1725 kaddr = kmap_atomic(page, KM_USER0);
1726 if (block_end > to)
1727 memset(kaddr + to, 0,
1728 block_end - to);
1729 if (block_start < from)
1730 memset(kaddr + block_start, 0,
1731 from -
1732 block_start);
1733 flush_dcache_page(page);
1734 kunmap_atomic(kaddr, KM_USER0);
1735 }
1736 continue;
1737 }
1738 }
1739 /* @bh is mapped, set it uptodate if the page is uptodate. */
1740 if (PageUptodate(page)) {
1741 if (!buffer_uptodate(bh))
1742 set_buffer_uptodate(bh);
1743 continue;
1744 }
1745 /*
1746 * The page is not uptodate. The buffer is mapped. If it is not
1747 * uptodate, and it is only partially being written to, we need
1748 * to read the buffer in before the write, i.e. right now.
1749 */
1750 if (!buffer_uptodate(bh) &&
1751 (block_start < from || block_end > to)) {
1752 ll_rw_block(READ, 1, &bh);
1753 *wait_bh++ = bh;
1754 }
1755 } while (block++, block_start = block_end,
1756 (bh = bh->b_this_page) != head);
1757
1758 /* Release the lock if we took it. */
1759 if (rl) {
1760 up_read(&ni->runlist.lock);
1761 rl = NULL;
1762 }
1763
1764 /* If we issued read requests, let them complete. */
1765 while (wait_bh > wait) {
1766 wait_on_buffer(*--wait_bh);
1767 if (!buffer_uptodate(*wait_bh))
1768 return -EIO;
1769 }
1770
1771 ntfs_debug("Done.");
1772 return 0;
1773err_out:
1774 /*
1775 * Zero out any newly allocated blocks to avoid exposing stale data.
1776 * If BH_New is set, we know that the block was newly allocated in the
1777 * above loop.
1778 * FIXME: What about initialized_size increments? Have we done all the
1779 * required zeroing above? If not this error handling is broken, and
1780 * in particular the if (block_end <= from) check is completely bogus.
1781 */
1782 bh = head;
1783 block_start = 0;
1784 is_retry = FALSE;
1785 do {
1786 block_end = block_start + blocksize;
1787 if (block_end <= from)
1788 continue;
1789 if (block_start >= to)
1790 break;
1791 if (buffer_new(bh)) {
1792 void *kaddr;
1793
1794 clear_buffer_new(bh);
1795 kaddr = kmap_atomic(page, KM_USER0);
1796 memset(kaddr + block_start, 0, bh->b_size);
1797 kunmap_atomic(kaddr, KM_USER0);
1798 set_buffer_uptodate(bh);
1799 mark_buffer_dirty(bh);
1800 is_retry = TRUE;
1801 }
1802 } while (block_start = block_end, (bh = bh->b_this_page) != head);
1803 if (is_retry)
1804 flush_dcache_page(page);
1805 if (rl)
1806 up_read(&ni->runlist.lock);
1807 return err;
1808}
1809
1810/**
1811 * ntfs_prepare_write - prepare a page for receiving data
1812 *
1813 * This is called from generic_file_write() with i_sem held on the inode
1814 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1815 * data has not yet been copied into the @page.
1816 *
1817 * Need to extend the attribute/fill in holes if necessary, create blocks and
1818 * make partially overwritten blocks uptodate,
1819 *
1820 * i_size is not to be modified yet.
1821 *
1822 * Return 0 on success or -errno on error.
1823 *
1824 * Should be using block_prepare_write() [support for sparse files] or
1825 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1826 * ntfs specifics but can look at them for implementation guidance.
1827 *
1828 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1829 * the first byte in the page that will be written to and @to is the first byte
1830 * after the last byte that will be written to.
1831 */
1832static int ntfs_prepare_write(struct file *file, struct page *page,
1833 unsigned from, unsigned to)
1834{
1835 s64 new_size;
f40661be 1836 loff_t i_size;
1da177e4
LT
1837 struct inode *vi = page->mapping->host;
1838 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1839 ntfs_volume *vol = ni->vol;
1840 ntfs_attr_search_ctx *ctx = NULL;
1841 MFT_RECORD *m = NULL;
1842 ATTR_RECORD *a;
1843 u8 *kaddr;
1844 u32 attr_len;
1845 int err;
1846
1847 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1848 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1849 page->index, from, to);
1850 BUG_ON(!PageLocked(page));
1851 BUG_ON(from > PAGE_CACHE_SIZE);
1852 BUG_ON(to > PAGE_CACHE_SIZE);
1853 BUG_ON(from > to);
1854 BUG_ON(NInoMstProtected(ni));
1855 /*
1856 * If a previous ntfs_truncate() failed, repeat it and abort if it
1857 * fails again.
1858 */
1859 if (unlikely(NInoTruncateFailed(ni))) {
1860 down_write(&vi->i_alloc_sem);
1861 err = ntfs_truncate(vi);
1862 up_write(&vi->i_alloc_sem);
1863 if (err || NInoTruncateFailed(ni)) {
1864 if (!err)
1865 err = -EIO;
1866 goto err_out;
1867 }
1868 }
1869 /* If the attribute is not resident, deal with it elsewhere. */
1870 if (NInoNonResident(ni)) {
1871 /*
1872 * Only unnamed $DATA attributes can be compressed, encrypted,
1873 * and/or sparse.
1874 */
1875 if (ni->type == AT_DATA && !ni->name_len) {
1876 /* If file is encrypted, deny access, just like NT4. */
1877 if (NInoEncrypted(ni)) {
1878 ntfs_debug("Denying write access to encrypted "
1879 "file.");
1880 return -EACCES;
1881 }
1882 /* Compressed data streams are handled in compress.c. */
1883 if (NInoCompressed(ni)) {
1884 // TODO: Implement and replace this check with
1885 // return ntfs_write_compressed_block(page);
1886 ntfs_error(vi->i_sb, "Writing to compressed "
1887 "files is not supported yet. "
1888 "Sorry.");
1889 return -EOPNOTSUPP;
1890 }
1891 // TODO: Implement and remove this check.
1892 if (NInoSparse(ni)) {
1893 ntfs_error(vi->i_sb, "Writing to sparse files "
1894 "is not supported yet. Sorry.");
1895 return -EOPNOTSUPP;
1896 }
1897 }
1898 /* Normal data stream. */
1899 return ntfs_prepare_nonresident_write(page, from, to);
1900 }
1901 /*
1902 * Attribute is resident, implying it is not compressed, encrypted, or
1903 * sparse.
1904 */
1905 BUG_ON(page_has_buffers(page));
1906 new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1907 /* If we do not need to resize the attribute allocation we are done. */
07a4e2da 1908 if (new_size <= i_size_read(vi))
1da177e4 1909 goto done;
1da177e4
LT
1910 /* Map, pin, and lock the (base) mft record. */
1911 if (!NInoAttr(ni))
1912 base_ni = ni;
1913 else
1914 base_ni = ni->ext.base_ntfs_ino;
1915 m = map_mft_record(base_ni);
1916 if (IS_ERR(m)) {
1917 err = PTR_ERR(m);
1918 m = NULL;
1919 ctx = NULL;
1920 goto err_out;
1921 }
1922 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1923 if (unlikely(!ctx)) {
1924 err = -ENOMEM;
1925 goto err_out;
1926 }
1927 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1928 CASE_SENSITIVE, 0, NULL, 0, ctx);
1929 if (unlikely(err)) {
1930 if (err == -ENOENT)
1931 err = -EIO;
1932 goto err_out;
1933 }
1934 m = ctx->mrec;
1935 a = ctx->attr;
1936 /* The total length of the attribute value. */
1937 attr_len = le32_to_cpu(a->data.resident.value_length);
946929d8 1938 /* Fix an eventual previous failure of ntfs_commit_write(). */
f40661be
AA
1939 i_size = i_size_read(vi);
1940 if (unlikely(attr_len > i_size)) {
1941 attr_len = i_size;
946929d8 1942 a->data.resident.value_length = cpu_to_le32(attr_len);
946929d8 1943 }
946929d8
AA
1944 /* If we do not need to resize the attribute allocation we are done. */
1945 if (new_size <= attr_len)
1946 goto done_unm;
1da177e4
LT
1947 /* Check if new size is allowed in $AttrDef. */
1948 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
1949 if (unlikely(err)) {
1950 if (err == -ERANGE) {
1951 ntfs_error(vol->sb, "Write would cause the inode "
1952 "0x%lx to exceed the maximum size for "
1953 "its attribute type (0x%x). Aborting "
1954 "write.", vi->i_ino,
1955 le32_to_cpu(ni->type));
1956 } else {
1957 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
1958 "attribute type 0x%x. Aborting "
1959 "write.", vi->i_ino,
1960 le32_to_cpu(ni->type));
1961 err = -EIO;
1962 }
1963 goto err_out2;
1964 }
1965 /*
1966 * Extend the attribute record to be able to store the new attribute
1967 * size.
1968 */
1969 if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
1970 le16_to_cpu(a->data.resident.value_offset) +
1971 new_size)) {
1972 /* Not enough space in the mft record. */
1973 ntfs_error(vol->sb, "Not enough space in the mft record for "
1974 "the resized attribute value. This is not "
1975 "supported yet. Aborting write.");
1976 err = -EOPNOTSUPP;
1977 goto err_out2;
1978 }
1979 /*
1980 * We have enough space in the mft record to fit the write. This
1981 * implies the attribute is smaller than the mft record and hence the
1982 * attribute must be in a single page and hence page->index must be 0.
1983 */
1984 BUG_ON(page->index);
1985 /*
1986 * If the beginning of the write is past the old size, enlarge the
1987 * attribute value up to the beginning of the write and fill it with
1988 * zeroes.
1989 */
1990 if (from > attr_len) {
1991 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1992 attr_len, 0, from - attr_len);
1993 a->data.resident.value_length = cpu_to_le32(from);
1994 /* Zero the corresponding area in the page as well. */
1995 if (PageUptodate(page)) {
1996 kaddr = kmap_atomic(page, KM_USER0);
1997 memset(kaddr + attr_len, 0, from - attr_len);
1998 kunmap_atomic(kaddr, KM_USER0);
1999 flush_dcache_page(page);
2000 }
2001 }
2002 flush_dcache_mft_record_page(ctx->ntfs_ino);
2003 mark_mft_record_dirty(ctx->ntfs_ino);
946929d8 2004done_unm:
1da177e4
LT
2005 ntfs_attr_put_search_ctx(ctx);
2006 unmap_mft_record(base_ni);
2007 /*
2008 * Because resident attributes are handled by memcpy() to/from the
2009 * corresponding MFT record, and because this form of i/o is byte
2010 * aligned rather than block aligned, there is no need to bring the
2011 * page uptodate here as in the non-resident case where we need to
2012 * bring the buffers straddled by the write uptodate before
2013 * generic_file_write() does the copying from userspace.
2014 *
2015 * We thus defer the uptodate bringing of the page region outside the
2016 * region written to to ntfs_commit_write(), which makes the code
2017 * simpler and saves one atomic kmap which is good.
2018 */
2019done:
2020 ntfs_debug("Done.");
2021 return 0;
2022err_out:
2023 if (err == -ENOMEM)
2024 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2025 "prepare the write.");
2026 else {
2027 ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
2028 "with error %i.", err);
2029 NVolSetErrors(vol);
2030 make_bad_inode(vi);
2031 }
2032err_out2:
2033 if (ctx)
2034 ntfs_attr_put_search_ctx(ctx);
2035 if (m)
2036 unmap_mft_record(base_ni);
2037 return err;
2038}
2039
2040/**
2041 * ntfs_commit_nonresident_write -
2042 *
2043 */
2044static int ntfs_commit_nonresident_write(struct page *page,
2045 unsigned from, unsigned to)
2046{
2047 s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2048 struct inode *vi = page->mapping->host;
2049 struct buffer_head *bh, *head;
2050 unsigned int block_start, block_end, blocksize;
2051 BOOL partial;
2052
2053 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2054 "0x%lx, from = %u, to = %u.", vi->i_ino,
2055 NTFS_I(vi)->type, page->index, from, to);
2056 blocksize = 1 << vi->i_blkbits;
2057
2058 // FIXME: We need a whole slew of special cases in here for compressed
2059 // files for example...
2060 // For now, we know ntfs_prepare_write() would have failed so we can't
2061 // get here in any of the cases which we have to special case, so we
2062 // are just a ripped off, unrolled generic_commit_write().
2063
2064 bh = head = page_buffers(page);
2065 block_start = 0;
2066 partial = FALSE;
2067 do {
2068 block_end = block_start + blocksize;
2069 if (block_end <= from || block_start >= to) {
2070 if (!buffer_uptodate(bh))
2071 partial = TRUE;
2072 } else {
2073 set_buffer_uptodate(bh);
2074 mark_buffer_dirty(bh);
2075 }
2076 } while (block_start = block_end, (bh = bh->b_this_page) != head);
2077 /*
2078 * If this is a partial write which happened to make all buffers
2079 * uptodate then we can optimize away a bogus ->readpage() for the next
2080 * read(). Here we 'discover' whether the page went uptodate as a
2081 * result of this (potentially partial) write.
2082 */
2083 if (!partial)
2084 SetPageUptodate(page);
2085 /*
2086 * Not convinced about this at all. See disparity comment above. For
2087 * now we know ntfs_prepare_write() would have failed in the write
2088 * exceeds i_size case, so this will never trigger which is fine.
2089 */
07a4e2da 2090 if (pos > i_size_read(vi)) {
1da177e4
LT
2091 ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2092 "not supported yet. Sorry.");
2093 return -EOPNOTSUPP;
2094 // vi->i_size = pos;
2095 // mark_inode_dirty(vi);
2096 }
2097 ntfs_debug("Done.");
2098 return 0;
2099}
2100
2101/**
2102 * ntfs_commit_write - commit the received data
2103 *
2104 * This is called from generic_file_write() with i_sem held on the inode
2105 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2106 * data has already been copied into the @page. ntfs_prepare_write() has been
2107 * called before the data copied and it returned success so we can take the
2108 * results of various BUG checks and some error handling for granted.
2109 *
2110 * Need to mark modified blocks dirty so they get written out later when
2111 * ntfs_writepage() is invoked by the VM.
2112 *
2113 * Return 0 on success or -errno on error.
2114 *
2115 * Should be using generic_commit_write(). This marks buffers uptodate and
2116 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2117 * updates i_size if the end of io is beyond i_size. In that case, it also
2118 * marks the inode dirty.
2119 *
2120 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2121 * it for implementation guidance.
2122 *
2123 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2124 * need to do any page content modifications here at all, except in the write
2125 * to resident attribute case, where we need to do the uptodate bringing here
2126 * which we combine with the copying into the mft record which means we save
2127 * one atomic kmap.
2128 */
2129static int ntfs_commit_write(struct file *file, struct page *page,
2130 unsigned from, unsigned to)
2131{
2132 struct inode *vi = page->mapping->host;
2133 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2134 char *kaddr, *kattr;
2135 ntfs_attr_search_ctx *ctx;
2136 MFT_RECORD *m;
2137 ATTR_RECORD *a;
2138 u32 attr_len;
2139 int err;
2140
2141 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2142 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2143 page->index, from, to);
2144 /* If the attribute is not resident, deal with it elsewhere. */
2145 if (NInoNonResident(ni)) {
2146 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2147 if (ni->type == AT_DATA && !ni->name_len) {
2148 /* Encrypted files need separate handling. */
2149 if (NInoEncrypted(ni)) {
2150 // We never get here at present!
2151 BUG();
2152 }
2153 /* Compressed data streams are handled in compress.c. */
2154 if (NInoCompressed(ni)) {
2155 // TODO: Implement this!
2156 // return ntfs_write_compressed_block(page);
2157 // We never get here at present!
2158 BUG();
2159 }
2160 }
2161 /* Normal data stream. */
2162 return ntfs_commit_nonresident_write(page, from, to);
2163 }
2164 /*
2165 * Attribute is resident, implying it is not compressed, encrypted, or
2166 * sparse.
2167 */
2168 if (!NInoAttr(ni))
2169 base_ni = ni;
2170 else
2171 base_ni = ni->ext.base_ntfs_ino;
2172 /* Map, pin, and lock the mft record. */
2173 m = map_mft_record(base_ni);
2174 if (IS_ERR(m)) {
2175 err = PTR_ERR(m);
2176 m = NULL;
2177 ctx = NULL;
2178 goto err_out;
2179 }
2180 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2181 if (unlikely(!ctx)) {
2182 err = -ENOMEM;
2183 goto err_out;
2184 }
2185 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2186 CASE_SENSITIVE, 0, NULL, 0, ctx);
2187 if (unlikely(err)) {
2188 if (err == -ENOENT)
2189 err = -EIO;
2190 goto err_out;
2191 }
2192 a = ctx->attr;
2193 /* The total length of the attribute value. */
2194 attr_len = le32_to_cpu(a->data.resident.value_length);
2195 BUG_ON(from > attr_len);
2196 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2197 kaddr = kmap_atomic(page, KM_USER0);
2198 /* Copy the received data from the page to the mft record. */
2199 memcpy(kattr + from, kaddr + from, to - from);
2200 /* Update the attribute length if necessary. */
2201 if (to > attr_len) {
2202 attr_len = to;
2203 a->data.resident.value_length = cpu_to_le32(attr_len);
2204 }
2205 /*
2206 * If the page is not uptodate, bring the out of bounds area(s)
2207 * uptodate by copying data from the mft record to the page.
2208 */
2209 if (!PageUptodate(page)) {
2210 if (from > 0)
2211 memcpy(kaddr, kattr, from);
2212 if (to < attr_len)
2213 memcpy(kaddr + to, kattr + to, attr_len - to);
2214 /* Zero the region outside the end of the attribute value. */
2215 if (attr_len < PAGE_CACHE_SIZE)
2216 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2217 /*
2218 * The probability of not having done any of the above is
2219 * extremely small, so we just flush unconditionally.
2220 */
2221 flush_dcache_page(page);
2222 SetPageUptodate(page);
2223 }
2224 kunmap_atomic(kaddr, KM_USER0);
2225 /* Update i_size if necessary. */
07a4e2da
AA
2226 if (i_size_read(vi) < attr_len) {
2227 unsigned long flags;
2228
2229 write_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
2230 ni->allocated_size = ni->initialized_size = attr_len;
2231 i_size_write(vi, attr_len);
07a4e2da 2232 write_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
2233 }
2234 /* Mark the mft record dirty, so it gets written back. */
2235 flush_dcache_mft_record_page(ctx->ntfs_ino);
2236 mark_mft_record_dirty(ctx->ntfs_ino);
2237 ntfs_attr_put_search_ctx(ctx);
2238 unmap_mft_record(base_ni);
2239 ntfs_debug("Done.");
2240 return 0;
2241err_out:
2242 if (err == -ENOMEM) {
2243 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2244 "commit the write.");
2245 if (PageUptodate(page)) {
2246 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2247 "dirty so the write will be retried "
2248 "later on by the VM.");
2249 /*
2250 * Put the page on mapping->dirty_pages, but leave its
2251 * buffers' dirty state as-is.
2252 */
2253 __set_page_dirty_nobuffers(page);
2254 err = 0;
2255 } else
2256 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
2257 "data has been lost.");
2258 } else {
2259 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2260 "with error %i.", err);
2261 NVolSetErrors(ni->vol);
2262 make_bad_inode(vi);
2263 }
2264 if (ctx)
2265 ntfs_attr_put_search_ctx(ctx);
2266 if (m)
2267 unmap_mft_record(base_ni);
2268 return err;
2269}
2270
2271#endif /* NTFS_RW */
2272
2273/**
2274 * ntfs_aops - general address space operations for inodes and attributes
2275 */
2276struct address_space_operations ntfs_aops = {
2277 .readpage = ntfs_readpage, /* Fill page with data. */
2278 .sync_page = block_sync_page, /* Currently, just unplugs the
2279 disk request queue. */
2280#ifdef NTFS_RW
2281 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2282 .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
2283 ready to receive data. */
2284 .commit_write = ntfs_commit_write, /* Commit received data. */
2285#endif /* NTFS_RW */
2286};
2287
2288/**
2289 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2290 * and attributes
2291 */
2292struct address_space_operations ntfs_mst_aops = {
2293 .readpage = ntfs_readpage, /* Fill page with data. */
2294 .sync_page = block_sync_page, /* Currently, just unplugs the
2295 disk request queue. */
2296#ifdef NTFS_RW
2297 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2298 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
2299 without touching the buffers
2300 belonging to the page. */
2301#endif /* NTFS_RW */
2302};
2303
2304#ifdef NTFS_RW
2305
2306/**
2307 * mark_ntfs_record_dirty - mark an ntfs record dirty
2308 * @page: page containing the ntfs record to mark dirty
2309 * @ofs: byte offset within @page at which the ntfs record begins
2310 *
2311 * Set the buffers and the page in which the ntfs record is located dirty.
2312 *
2313 * The latter also marks the vfs inode the ntfs record belongs to dirty
2314 * (I_DIRTY_PAGES only).
2315 *
2316 * If the page does not have buffers, we create them and set them uptodate.
2317 * The page may not be locked which is why we need to handle the buffers under
2318 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2319 * need the lock since try_to_free_buffers() does not free dirty buffers.
2320 */
2321void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2322 struct address_space *mapping = page->mapping;
2323 ntfs_inode *ni = NTFS_I(mapping->host);
2324 struct buffer_head *bh, *head, *buffers_to_free = NULL;
2325 unsigned int end, bh_size, bh_ofs;
2326
2327 BUG_ON(!PageUptodate(page));
2328 end = ofs + ni->itype.index.block_size;
2329 bh_size = 1 << VFS_I(ni)->i_blkbits;
2330 spin_lock(&mapping->private_lock);
2331 if (unlikely(!page_has_buffers(page))) {
2332 spin_unlock(&mapping->private_lock);
2333 bh = head = alloc_page_buffers(page, bh_size, 1);
2334 spin_lock(&mapping->private_lock);
2335 if (likely(!page_has_buffers(page))) {
2336 struct buffer_head *tail;
2337
2338 do {
2339 set_buffer_uptodate(bh);
2340 tail = bh;
2341 bh = bh->b_this_page;
2342 } while (bh);
2343 tail->b_this_page = head;
2344 attach_page_buffers(page, head);
2345 } else
2346 buffers_to_free = bh;
2347 }
2348 bh = head = page_buffers(page);
2349 do {
2350 bh_ofs = bh_offset(bh);
2351 if (bh_ofs + bh_size <= ofs)
2352 continue;
2353 if (unlikely(bh_ofs >= end))
2354 break;
2355 set_buffer_dirty(bh);
2356 } while ((bh = bh->b_this_page) != head);
2357 spin_unlock(&mapping->private_lock);
2358 __set_page_dirty_nobuffers(page);
2359 if (unlikely(buffers_to_free)) {
2360 do {
2361 bh = buffers_to_free->b_this_page;
2362 free_buffer_head(buffers_to_free);
2363 buffers_to_free = bh;
2364 } while (buffers_to_free);
2365 }
2366}
2367
2368#endif /* NTFS_RW */