NTFS: Fix sign of various error return values to be negative in
[linux-2.6-block.git] / fs / ntfs / aops.c
CommitLineData
1da177e4
LT
1/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
4 *
b6ad6c52 5 * Copyright (c) 2001-2005 Anton Altaparmakov
1da177e4
LT
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30
31#include "aops.h"
32#include "attrib.h"
33#include "debug.h"
34#include "inode.h"
35#include "mft.h"
36#include "runlist.h"
37#include "types.h"
38#include "ntfs.h"
39
40/**
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
44 *
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
48 *
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54 * record size.
55 */
56static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57{
58 static DEFINE_SPINLOCK(page_uptodate_lock);
59 unsigned long flags;
60 struct buffer_head *tmp;
61 struct page *page;
62 ntfs_inode *ni;
63 int page_uptodate = 1;
64
65 page = bh->b_page;
66 ni = NTFS_I(page->mapping->host);
67
68 if (likely(uptodate)) {
07a4e2da 69 s64 file_ofs, initialized_size;
1da177e4
LT
70
71 set_buffer_uptodate(bh);
72
73 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
74 bh_offset(bh);
07a4e2da
AA
75 read_lock_irqsave(&ni->size_lock, flags);
76 initialized_size = ni->initialized_size;
77 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4 78 /* Check for the current buffer head overflowing. */
07a4e2da 79 if (file_ofs + bh->b_size > initialized_size) {
1da177e4
LT
80 char *addr;
81 int ofs = 0;
82
07a4e2da
AA
83 if (file_ofs < initialized_size)
84 ofs = initialized_size - file_ofs;
1da177e4
LT
85 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
86 memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
87 flush_dcache_page(page);
88 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
89 }
90 } else {
91 clear_buffer_uptodate(bh);
92 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
93 (unsigned long long)bh->b_blocknr);
94 SetPageError(page);
95 }
96 spin_lock_irqsave(&page_uptodate_lock, flags);
97 clear_buffer_async_read(bh);
98 unlock_buffer(bh);
99 tmp = bh;
100 do {
101 if (!buffer_uptodate(tmp))
102 page_uptodate = 0;
103 if (buffer_async_read(tmp)) {
104 if (likely(buffer_locked(tmp)))
105 goto still_busy;
106 /* Async buffers must be locked. */
107 BUG();
108 }
109 tmp = tmp->b_this_page;
110 } while (tmp != bh);
111 spin_unlock_irqrestore(&page_uptodate_lock, flags);
112 /*
113 * If none of the buffers had errors then we can set the page uptodate,
114 * but we first have to perform the post read mst fixups, if the
115 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
116 * Note we ignore fixup errors as those are detected when
117 * map_mft_record() is called which gives us per record granularity
118 * rather than per page granularity.
119 */
120 if (!NInoMstProtected(ni)) {
121 if (likely(page_uptodate && !PageError(page)))
122 SetPageUptodate(page);
123 } else {
124 char *addr;
125 unsigned int i, recs;
126 u32 rec_size;
127
128 rec_size = ni->itype.index.block_size;
129 recs = PAGE_CACHE_SIZE / rec_size;
130 /* Should have been verified before we got here... */
131 BUG_ON(!recs);
132 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
133 for (i = 0; i < recs; i++)
134 post_read_mst_fixup((NTFS_RECORD*)(addr +
135 i * rec_size), rec_size);
136 flush_dcache_page(page);
137 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
b6ad6c52 138 if (likely(page_uptodate && !PageError(page)))
1da177e4
LT
139 SetPageUptodate(page);
140 }
141 unlock_page(page);
142 return;
143still_busy:
144 spin_unlock_irqrestore(&page_uptodate_lock, flags);
145 return;
146}
147
148/**
149 * ntfs_read_block - fill a @page of an address space with data
150 * @page: page cache page to fill with data
151 *
152 * Fill the page @page of the address space belonging to the @page->host inode.
153 * We read each buffer asynchronously and when all buffers are read in, our io
154 * completion handler ntfs_end_buffer_read_async(), if required, automatically
155 * applies the mst fixups to the page before finally marking it uptodate and
156 * unlocking it.
157 *
158 * We only enforce allocated_size limit because i_size is checked for in
159 * generic_file_read().
160 *
161 * Return 0 on success and -errno on error.
162 *
163 * Contains an adapted version of fs/buffer.c::block_read_full_page().
164 */
165static int ntfs_read_block(struct page *page)
166{
167 VCN vcn;
168 LCN lcn;
169 ntfs_inode *ni;
170 ntfs_volume *vol;
171 runlist_element *rl;
172 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
173 sector_t iblock, lblock, zblock;
07a4e2da 174 unsigned long flags;
1da177e4
LT
175 unsigned int blocksize, vcn_ofs;
176 int i, nr;
177 unsigned char blocksize_bits;
178
179 ni = NTFS_I(page->mapping->host);
180 vol = ni->vol;
181
182 /* $MFT/$DATA must have its complete runlist in memory at all times. */
183 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
184
185 blocksize_bits = VFS_I(ni)->i_blkbits;
186 blocksize = 1 << blocksize_bits;
187
188 if (!page_has_buffers(page))
189 create_empty_buffers(page, blocksize, 0);
190 bh = head = page_buffers(page);
191 if (unlikely(!bh)) {
192 unlock_page(page);
193 return -ENOMEM;
194 }
195
196 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
07a4e2da 197 read_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
198 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
199 zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
07a4e2da 200 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
201
202 /* Loop through all the buffers in the page. */
203 rl = NULL;
204 nr = i = 0;
205 do {
206 u8 *kaddr;
207
208 if (unlikely(buffer_uptodate(bh)))
209 continue;
210 if (unlikely(buffer_mapped(bh))) {
211 arr[nr++] = bh;
212 continue;
213 }
214 bh->b_bdev = vol->sb->s_bdev;
215 /* Is the block within the allowed limits? */
216 if (iblock < lblock) {
217 BOOL is_retry = FALSE;
218
219 /* Convert iblock into corresponding vcn and offset. */
220 vcn = (VCN)iblock << blocksize_bits >>
221 vol->cluster_size_bits;
222 vcn_ofs = ((VCN)iblock << blocksize_bits) &
223 vol->cluster_size_mask;
224 if (!rl) {
225lock_retry_remap:
226 down_read(&ni->runlist.lock);
227 rl = ni->runlist.rl;
228 }
229 if (likely(rl != NULL)) {
230 /* Seek to element containing target vcn. */
231 while (rl->length && rl[1].vcn <= vcn)
232 rl++;
233 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
234 } else
235 lcn = LCN_RL_NOT_MAPPED;
236 /* Successful remap. */
237 if (lcn >= 0) {
238 /* Setup buffer head to correct block. */
239 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
240 + vcn_ofs) >> blocksize_bits;
241 set_buffer_mapped(bh);
242 /* Only read initialized data blocks. */
243 if (iblock < zblock) {
244 arr[nr++] = bh;
245 continue;
246 }
247 /* Fully non-initialized data block, zero it. */
248 goto handle_zblock;
249 }
250 /* It is a hole, need to zero it. */
251 if (lcn == LCN_HOLE)
252 goto handle_hole;
253 /* If first try and runlist unmapped, map and retry. */
254 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
255 int err;
256 is_retry = TRUE;
257 /*
258 * Attempt to map runlist, dropping lock for
259 * the duration.
260 */
261 up_read(&ni->runlist.lock);
262 err = ntfs_map_runlist(ni, vcn);
263 if (likely(!err))
264 goto lock_retry_remap;
265 rl = NULL;
266 lcn = err;
267 }
268 /* Hard error, zero out region. */
269 bh->b_blocknr = -1;
270 SetPageError(page);
271 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
272 "attribute type 0x%x, vcn 0x%llx, "
273 "offset 0x%x because its location on "
274 "disk could not be determined%s "
275 "(error code %lli).", ni->mft_no,
276 ni->type, (unsigned long long)vcn,
277 vcn_ofs, is_retry ? " even after "
278 "retrying" : "", (long long)lcn);
279 }
280 /*
281 * Either iblock was outside lblock limits or
282 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
283 * of the page and set the buffer uptodate.
284 */
285handle_hole:
286 bh->b_blocknr = -1UL;
287 clear_buffer_mapped(bh);
288handle_zblock:
289 kaddr = kmap_atomic(page, KM_USER0);
290 memset(kaddr + i * blocksize, 0, blocksize);
291 flush_dcache_page(page);
292 kunmap_atomic(kaddr, KM_USER0);
293 set_buffer_uptodate(bh);
294 } while (i++, iblock++, (bh = bh->b_this_page) != head);
295
296 /* Release the lock if we took it. */
297 if (rl)
298 up_read(&ni->runlist.lock);
299
300 /* Check we have at least one buffer ready for i/o. */
301 if (nr) {
302 struct buffer_head *tbh;
303
304 /* Lock the buffers. */
305 for (i = 0; i < nr; i++) {
306 tbh = arr[i];
307 lock_buffer(tbh);
308 tbh->b_end_io = ntfs_end_buffer_async_read;
309 set_buffer_async_read(tbh);
310 }
311 /* Finally, start i/o on the buffers. */
312 for (i = 0; i < nr; i++) {
313 tbh = arr[i];
314 if (likely(!buffer_uptodate(tbh)))
315 submit_bh(READ, tbh);
316 else
317 ntfs_end_buffer_async_read(tbh, 1);
318 }
319 return 0;
320 }
321 /* No i/o was scheduled on any of the buffers. */
322 if (likely(!PageError(page)))
323 SetPageUptodate(page);
324 else /* Signal synchronous i/o error. */
325 nr = -EIO;
326 unlock_page(page);
327 return nr;
328}
329
330/**
331 * ntfs_readpage - fill a @page of a @file with data from the device
332 * @file: open file to which the page @page belongs or NULL
333 * @page: page cache page to fill with data
334 *
335 * For non-resident attributes, ntfs_readpage() fills the @page of the open
336 * file @file by calling the ntfs version of the generic block_read_full_page()
337 * function, ntfs_read_block(), which in turn creates and reads in the buffers
338 * associated with the page asynchronously.
339 *
340 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
341 * data from the mft record (which at this stage is most likely in memory) and
342 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
343 * even if the mft record is not cached at this point in time, we need to wait
344 * for it to be read in before we can do the copy.
345 *
346 * Return 0 on success and -errno on error.
347 */
348static int ntfs_readpage(struct file *file, struct page *page)
349{
1da177e4
LT
350 ntfs_inode *ni, *base_ni;
351 u8 *kaddr;
352 ntfs_attr_search_ctx *ctx;
353 MFT_RECORD *mrec;
b6ad6c52 354 unsigned long flags;
1da177e4
LT
355 u32 attr_len;
356 int err = 0;
357
358 BUG_ON(!PageLocked(page));
359 /*
360 * This can potentially happen because we clear PageUptodate() during
361 * ntfs_writepage() of MstProtected() attributes.
362 */
363 if (PageUptodate(page)) {
364 unlock_page(page);
365 return 0;
366 }
367 ni = NTFS_I(page->mapping->host);
368
369 /* NInoNonResident() == NInoIndexAllocPresent() */
370 if (NInoNonResident(ni)) {
371 /*
372 * Only unnamed $DATA attributes can be compressed or
373 * encrypted.
374 */
375 if (ni->type == AT_DATA && !ni->name_len) {
376 /* If file is encrypted, deny access, just like NT4. */
377 if (NInoEncrypted(ni)) {
378 err = -EACCES;
379 goto err_out;
380 }
381 /* Compressed data streams are handled in compress.c. */
382 if (NInoCompressed(ni))
383 return ntfs_read_compressed_block(page);
384 }
385 /* Normal data stream. */
386 return ntfs_read_block(page);
387 }
388 /*
389 * Attribute is resident, implying it is not compressed or encrypted.
390 * This also means the attribute is smaller than an mft record and
391 * hence smaller than a page, so can simply zero out any pages with
b6ad6c52 392 * index above 0.
1da177e4 393 */
b6ad6c52 394 if (unlikely(page->index > 0)) {
1da177e4
LT
395 kaddr = kmap_atomic(page, KM_USER0);
396 memset(kaddr, 0, PAGE_CACHE_SIZE);
397 flush_dcache_page(page);
398 kunmap_atomic(kaddr, KM_USER0);
399 goto done;
400 }
401 if (!NInoAttr(ni))
402 base_ni = ni;
403 else
404 base_ni = ni->ext.base_ntfs_ino;
405 /* Map, pin, and lock the mft record. */
406 mrec = map_mft_record(base_ni);
407 if (IS_ERR(mrec)) {
408 err = PTR_ERR(mrec);
409 goto err_out;
410 }
411 ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
412 if (unlikely(!ctx)) {
413 err = -ENOMEM;
414 goto unm_err_out;
415 }
416 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
417 CASE_SENSITIVE, 0, NULL, 0, ctx);
418 if (unlikely(err))
419 goto put_unm_err_out;
420 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
b6ad6c52
AA
421 read_lock_irqsave(&ni->size_lock, flags);
422 if (unlikely(attr_len > ni->initialized_size))
423 attr_len = ni->initialized_size;
424 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
425 kaddr = kmap_atomic(page, KM_USER0);
426 /* Copy the data to the page. */
427 memcpy(kaddr, (u8*)ctx->attr +
428 le16_to_cpu(ctx->attr->data.resident.value_offset),
429 attr_len);
430 /* Zero the remainder of the page. */
431 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
432 flush_dcache_page(page);
433 kunmap_atomic(kaddr, KM_USER0);
434put_unm_err_out:
435 ntfs_attr_put_search_ctx(ctx);
436unm_err_out:
437 unmap_mft_record(base_ni);
438done:
439 SetPageUptodate(page);
440err_out:
441 unlock_page(page);
442 return err;
443}
444
445#ifdef NTFS_RW
446
447/**
448 * ntfs_write_block - write a @page to the backing store
449 * @page: page cache page to write out
450 * @wbc: writeback control structure
451 *
452 * This function is for writing pages belonging to non-resident, non-mst
453 * protected attributes to their backing store.
454 *
455 * For a page with buffers, map and write the dirty buffers asynchronously
456 * under page writeback. For a page without buffers, create buffers for the
457 * page, then proceed as above.
458 *
459 * If a page doesn't have buffers the page dirty state is definitive. If a page
460 * does have buffers, the page dirty state is just a hint, and the buffer dirty
461 * state is definitive. (A hint which has rules: dirty buffers against a clean
462 * page is illegal. Other combinations are legal and need to be handled. In
463 * particular a dirty page containing clean buffers for example.)
464 *
465 * Return 0 on success and -errno on error.
466 *
467 * Based on ntfs_read_block() and __block_write_full_page().
468 */
469static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
470{
471 VCN vcn;
472 LCN lcn;
07a4e2da
AA
473 s64 initialized_size;
474 loff_t i_size;
1da177e4
LT
475 sector_t block, dblock, iblock;
476 struct inode *vi;
477 ntfs_inode *ni;
478 ntfs_volume *vol;
479 runlist_element *rl;
480 struct buffer_head *bh, *head;
07a4e2da 481 unsigned long flags;
1da177e4
LT
482 unsigned int blocksize, vcn_ofs;
483 int err;
484 BOOL need_end_writeback;
485 unsigned char blocksize_bits;
486
487 vi = page->mapping->host;
488 ni = NTFS_I(vi);
489 vol = ni->vol;
490
491 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
492 "0x%lx.", ni->mft_no, ni->type, page->index);
493
494 BUG_ON(!NInoNonResident(ni));
495 BUG_ON(NInoMstProtected(ni));
496
497 blocksize_bits = vi->i_blkbits;
498 blocksize = 1 << blocksize_bits;
499
500 if (!page_has_buffers(page)) {
501 BUG_ON(!PageUptodate(page));
502 create_empty_buffers(page, blocksize,
503 (1 << BH_Uptodate) | (1 << BH_Dirty));
504 }
505 bh = head = page_buffers(page);
506 if (unlikely(!bh)) {
507 ntfs_warning(vol->sb, "Error allocating page buffers. "
508 "Redirtying page so we try again later.");
509 /*
510 * Put the page back on mapping->dirty_pages, but leave its
511 * buffer's dirty state as-is.
512 */
513 redirty_page_for_writepage(wbc, page);
514 unlock_page(page);
515 return 0;
516 }
517
518 /* NOTE: Different naming scheme to ntfs_read_block()! */
519
520 /* The first block in the page. */
521 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
522
07a4e2da
AA
523 read_lock_irqsave(&ni->size_lock, flags);
524 i_size = i_size_read(vi);
525 initialized_size = ni->initialized_size;
526 read_unlock_irqrestore(&ni->size_lock, flags);
527
1da177e4 528 /* The first out of bounds block for the data size. */
07a4e2da 529 dblock = (i_size + blocksize - 1) >> blocksize_bits;
1da177e4
LT
530
531 /* The last (fully or partially) initialized block. */
07a4e2da 532 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
533
534 /*
535 * Be very careful. We have no exclusion from __set_page_dirty_buffers
536 * here, and the (potentially unmapped) buffers may become dirty at
537 * any time. If a buffer becomes dirty here after we've inspected it
538 * then we just miss that fact, and the page stays dirty.
539 *
540 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
541 * handle that here by just cleaning them.
542 */
543
544 /*
545 * Loop through all the buffers in the page, mapping all the dirty
546 * buffers to disk addresses and handling any aliases from the
547 * underlying block device's mapping.
548 */
549 rl = NULL;
550 err = 0;
551 do {
552 BOOL is_retry = FALSE;
553
554 if (unlikely(block >= dblock)) {
555 /*
556 * Mapped buffers outside i_size will occur, because
557 * this page can be outside i_size when there is a
558 * truncate in progress. The contents of such buffers
559 * were zeroed by ntfs_writepage().
560 *
561 * FIXME: What about the small race window where
562 * ntfs_writepage() has not done any clearing because
563 * the page was within i_size but before we get here,
564 * vmtruncate() modifies i_size?
565 */
566 clear_buffer_dirty(bh);
567 set_buffer_uptodate(bh);
568 continue;
569 }
570
571 /* Clean buffers are not written out, so no need to map them. */
572 if (!buffer_dirty(bh))
573 continue;
574
575 /* Make sure we have enough initialized size. */
576 if (unlikely((block >= iblock) &&
07a4e2da 577 (initialized_size < i_size))) {
1da177e4
LT
578 /*
579 * If this page is fully outside initialized size, zero
580 * out all pages between the current initialized size
581 * and the current page. Just use ntfs_readpage() to do
582 * the zeroing transparently.
583 */
584 if (block > iblock) {
585 // TODO:
586 // For each page do:
587 // - read_cache_page()
588 // Again for each page do:
589 // - wait_on_page_locked()
590 // - Check (PageUptodate(page) &&
591 // !PageError(page))
592 // Update initialized size in the attribute and
593 // in the inode.
594 // Again, for each page do:
595 // __set_page_dirty_buffers();
596 // page_cache_release()
597 // We don't need to wait on the writes.
598 // Update iblock.
599 }
600 /*
601 * The current page straddles initialized size. Zero
602 * all non-uptodate buffers and set them uptodate (and
603 * dirty?). Note, there aren't any non-uptodate buffers
604 * if the page is uptodate.
605 * FIXME: For an uptodate page, the buffers may need to
606 * be written out because they were not initialized on
607 * disk before.
608 */
609 if (!PageUptodate(page)) {
610 // TODO:
611 // Zero any non-uptodate buffers up to i_size.
612 // Set them uptodate and dirty.
613 }
614 // TODO:
615 // Update initialized size in the attribute and in the
616 // inode (up to i_size).
617 // Update iblock.
618 // FIXME: This is inefficient. Try to batch the two
619 // size changes to happen in one go.
620 ntfs_error(vol->sb, "Writing beyond initialized size "
621 "is not supported yet. Sorry.");
622 err = -EOPNOTSUPP;
623 break;
624 // Do NOT set_buffer_new() BUT DO clear buffer range
625 // outside write request range.
626 // set_buffer_uptodate() on complete buffers as well as
627 // set_buffer_dirty().
628 }
629
630 /* No need to map buffers that are already mapped. */
631 if (buffer_mapped(bh))
632 continue;
633
634 /* Unmapped, dirty buffer. Need to map it. */
635 bh->b_bdev = vol->sb->s_bdev;
636
637 /* Convert block into corresponding vcn and offset. */
638 vcn = (VCN)block << blocksize_bits;
639 vcn_ofs = vcn & vol->cluster_size_mask;
640 vcn >>= vol->cluster_size_bits;
641 if (!rl) {
642lock_retry_remap:
643 down_read(&ni->runlist.lock);
644 rl = ni->runlist.rl;
645 }
646 if (likely(rl != NULL)) {
647 /* Seek to element containing target vcn. */
648 while (rl->length && rl[1].vcn <= vcn)
649 rl++;
650 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
651 } else
652 lcn = LCN_RL_NOT_MAPPED;
653 /* Successful remap. */
654 if (lcn >= 0) {
655 /* Setup buffer head to point to correct block. */
656 bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
657 vcn_ofs) >> blocksize_bits;
658 set_buffer_mapped(bh);
659 continue;
660 }
661 /* It is a hole, need to instantiate it. */
662 if (lcn == LCN_HOLE) {
663 // TODO: Instantiate the hole.
664 // clear_buffer_new(bh);
665 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
666 ntfs_error(vol->sb, "Writing into sparse regions is "
667 "not supported yet. Sorry.");
668 err = -EOPNOTSUPP;
669 break;
670 }
671 /* If first try and runlist unmapped, map and retry. */
672 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
673 is_retry = TRUE;
674 /*
675 * Attempt to map runlist, dropping lock for
676 * the duration.
677 */
678 up_read(&ni->runlist.lock);
679 err = ntfs_map_runlist(ni, vcn);
680 if (likely(!err))
681 goto lock_retry_remap;
682 rl = NULL;
683 lcn = err;
684 }
685 /* Failed to map the buffer, even after retrying. */
686 bh->b_blocknr = -1;
687 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
688 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
689 "because its location on disk could not be "
690 "determined%s (error code %lli).", ni->mft_no,
691 ni->type, (unsigned long long)vcn,
692 vcn_ofs, is_retry ? " even after "
693 "retrying" : "", (long long)lcn);
694 if (!err)
695 err = -EIO;
696 break;
697 } while (block++, (bh = bh->b_this_page) != head);
698
699 /* Release the lock if we took it. */
700 if (rl)
701 up_read(&ni->runlist.lock);
702
703 /* For the error case, need to reset bh to the beginning. */
704 bh = head;
705
706 /* Just an optimization, so ->readpage() isn't called later. */
707 if (unlikely(!PageUptodate(page))) {
708 int uptodate = 1;
709 do {
710 if (!buffer_uptodate(bh)) {
711 uptodate = 0;
712 bh = head;
713 break;
714 }
715 } while ((bh = bh->b_this_page) != head);
716 if (uptodate)
717 SetPageUptodate(page);
718 }
719
720 /* Setup all mapped, dirty buffers for async write i/o. */
721 do {
722 get_bh(bh);
723 if (buffer_mapped(bh) && buffer_dirty(bh)) {
724 lock_buffer(bh);
725 if (test_clear_buffer_dirty(bh)) {
726 BUG_ON(!buffer_uptodate(bh));
727 mark_buffer_async_write(bh);
728 } else
729 unlock_buffer(bh);
730 } else if (unlikely(err)) {
731 /*
732 * For the error case. The buffer may have been set
733 * dirty during attachment to a dirty page.
734 */
735 if (err != -ENOMEM)
736 clear_buffer_dirty(bh);
737 }
738 } while ((bh = bh->b_this_page) != head);
739
740 if (unlikely(err)) {
741 // TODO: Remove the -EOPNOTSUPP check later on...
742 if (unlikely(err == -EOPNOTSUPP))
743 err = 0;
744 else if (err == -ENOMEM) {
745 ntfs_warning(vol->sb, "Error allocating memory. "
746 "Redirtying page so we try again "
747 "later.");
748 /*
749 * Put the page back on mapping->dirty_pages, but
750 * leave its buffer's dirty state as-is.
751 */
752 redirty_page_for_writepage(wbc, page);
753 err = 0;
754 } else
755 SetPageError(page);
756 }
757
758 BUG_ON(PageWriteback(page));
759 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
760 unlock_page(page);
761
762 /*
763 * Submit the prepared buffers for i/o. Note the page is unlocked,
764 * and the async write i/o completion handler can end_page_writeback()
765 * at any time after the *first* submit_bh(). So the buffers can then
766 * disappear...
767 */
768 need_end_writeback = TRUE;
769 do {
770 struct buffer_head *next = bh->b_this_page;
771 if (buffer_async_write(bh)) {
772 submit_bh(WRITE, bh);
773 need_end_writeback = FALSE;
774 }
775 put_bh(bh);
776 bh = next;
777 } while (bh != head);
778
779 /* If no i/o was started, need to end_page_writeback(). */
780 if (unlikely(need_end_writeback))
781 end_page_writeback(page);
782
783 ntfs_debug("Done.");
784 return err;
785}
786
787/**
788 * ntfs_write_mst_block - write a @page to the backing store
789 * @page: page cache page to write out
790 * @wbc: writeback control structure
791 *
792 * This function is for writing pages belonging to non-resident, mst protected
793 * attributes to their backing store. The only supported attributes are index
794 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
795 * supported for the index allocation case.
796 *
797 * The page must remain locked for the duration of the write because we apply
798 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
799 * page before undoing the fixups, any other user of the page will see the
800 * page contents as corrupt.
801 *
802 * We clear the page uptodate flag for the duration of the function to ensure
803 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
804 * are about to apply the mst fixups to.
805 *
806 * Return 0 on success and -errno on error.
807 *
808 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
809 * write_mft_record_nolock().
810 */
811static int ntfs_write_mst_block(struct page *page,
812 struct writeback_control *wbc)
813{
814 sector_t block, dblock, rec_block;
815 struct inode *vi = page->mapping->host;
816 ntfs_inode *ni = NTFS_I(vi);
817 ntfs_volume *vol = ni->vol;
818 u8 *kaddr;
819 unsigned char bh_size_bits = vi->i_blkbits;
820 unsigned int bh_size = 1 << bh_size_bits;
821 unsigned int rec_size = ni->itype.index.block_size;
822 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
823 struct buffer_head *bh, *head, *tbh, *rec_start_bh;
824 int max_bhs = PAGE_CACHE_SIZE / bh_size;
825 struct buffer_head *bhs[max_bhs];
826 runlist_element *rl;
827 int i, nr_locked_nis, nr_recs, nr_bhs, bhs_per_rec, err, err2;
828 unsigned rec_size_bits;
829 BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
830
831 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
832 "0x%lx.", vi->i_ino, ni->type, page->index);
833 BUG_ON(!NInoNonResident(ni));
834 BUG_ON(!NInoMstProtected(ni));
835 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
836 /*
837 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
838 * in its page cache were to be marked dirty. However this should
839 * never happen with the current driver and considering we do not
840 * handle this case here we do want to BUG(), at least for now.
841 */
842 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
843 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
844 BUG_ON(!max_bhs);
845
846 /* Were we called for sync purposes? */
847 sync = (wbc->sync_mode == WB_SYNC_ALL);
848
849 /* Make sure we have mapped buffers. */
850 BUG_ON(!page_has_buffers(page));
851 bh = head = page_buffers(page);
852 BUG_ON(!bh);
853
854 rec_size_bits = ni->itype.index.block_size_bits;
855 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
856 bhs_per_rec = rec_size >> bh_size_bits;
857 BUG_ON(!bhs_per_rec);
858
859 /* The first block in the page. */
860 rec_block = block = (sector_t)page->index <<
861 (PAGE_CACHE_SHIFT - bh_size_bits);
862
863 /* The first out of bounds block for the data size. */
07a4e2da 864 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
1da177e4
LT
865
866 rl = NULL;
867 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
868 page_is_dirty = rec_is_dirty = FALSE;
869 rec_start_bh = NULL;
870 do {
871 BOOL is_retry = FALSE;
872
873 if (likely(block < rec_block)) {
874 if (unlikely(block >= dblock)) {
875 clear_buffer_dirty(bh);
946929d8 876 set_buffer_uptodate(bh);
1da177e4
LT
877 continue;
878 }
879 /*
880 * This block is not the first one in the record. We
881 * ignore the buffer's dirty state because we could
882 * have raced with a parallel mark_ntfs_record_dirty().
883 */
884 if (!rec_is_dirty)
885 continue;
886 if (unlikely(err2)) {
887 if (err2 != -ENOMEM)
888 clear_buffer_dirty(bh);
889 continue;
890 }
891 } else /* if (block == rec_block) */ {
892 BUG_ON(block > rec_block);
893 /* This block is the first one in the record. */
894 rec_block += bhs_per_rec;
895 err2 = 0;
896 if (unlikely(block >= dblock)) {
897 clear_buffer_dirty(bh);
898 continue;
899 }
900 if (!buffer_dirty(bh)) {
901 /* Clean records are not written out. */
902 rec_is_dirty = FALSE;
903 continue;
904 }
905 rec_is_dirty = TRUE;
906 rec_start_bh = bh;
907 }
908 /* Need to map the buffer if it is not mapped already. */
909 if (unlikely(!buffer_mapped(bh))) {
910 VCN vcn;
911 LCN lcn;
912 unsigned int vcn_ofs;
913
914 /* Obtain the vcn and offset of the current block. */
915 vcn = (VCN)block << bh_size_bits;
916 vcn_ofs = vcn & vol->cluster_size_mask;
917 vcn >>= vol->cluster_size_bits;
918 if (!rl) {
919lock_retry_remap:
920 down_read(&ni->runlist.lock);
921 rl = ni->runlist.rl;
922 }
923 if (likely(rl != NULL)) {
924 /* Seek to element containing target vcn. */
925 while (rl->length && rl[1].vcn <= vcn)
926 rl++;
927 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
928 } else
929 lcn = LCN_RL_NOT_MAPPED;
930 /* Successful remap. */
931 if (likely(lcn >= 0)) {
932 /* Setup buffer head to correct block. */
933 bh->b_blocknr = ((lcn <<
934 vol->cluster_size_bits) +
935 vcn_ofs) >> bh_size_bits;
936 set_buffer_mapped(bh);
937 } else {
938 /*
939 * Remap failed. Retry to map the runlist once
940 * unless we are working on $MFT which always
941 * has the whole of its runlist in memory.
942 */
943 if (!is_mft && !is_retry &&
944 lcn == LCN_RL_NOT_MAPPED) {
945 is_retry = TRUE;
946 /*
947 * Attempt to map runlist, dropping
948 * lock for the duration.
949 */
950 up_read(&ni->runlist.lock);
951 err2 = ntfs_map_runlist(ni, vcn);
952 if (likely(!err2))
953 goto lock_retry_remap;
954 if (err2 == -ENOMEM)
955 page_is_dirty = TRUE;
956 lcn = err2;
957 } else
958 err2 = -EIO;
959 /* Hard error. Abort writing this record. */
960 if (!err || err == -ENOMEM)
961 err = err2;
962 bh->b_blocknr = -1;
963 ntfs_error(vol->sb, "Cannot write ntfs record "
964 "0x%llx (inode 0x%lx, "
965 "attribute type 0x%x) because "
966 "its location on disk could "
967 "not be determined (error "
8907547d
RD
968 "code %lli).",
969 (long long)block <<
1da177e4
LT
970 bh_size_bits >>
971 vol->mft_record_size_bits,
972 ni->mft_no, ni->type,
973 (long long)lcn);
974 /*
975 * If this is not the first buffer, remove the
976 * buffers in this record from the list of
977 * buffers to write and clear their dirty bit
978 * if not error -ENOMEM.
979 */
980 if (rec_start_bh != bh) {
981 while (bhs[--nr_bhs] != rec_start_bh)
982 ;
983 if (err2 != -ENOMEM) {
984 do {
985 clear_buffer_dirty(
986 rec_start_bh);
987 } while ((rec_start_bh =
988 rec_start_bh->
989 b_this_page) !=
990 bh);
991 }
992 }
993 continue;
994 }
995 }
996 BUG_ON(!buffer_uptodate(bh));
997 BUG_ON(nr_bhs >= max_bhs);
998 bhs[nr_bhs++] = bh;
999 } while (block++, (bh = bh->b_this_page) != head);
1000 if (unlikely(rl))
1001 up_read(&ni->runlist.lock);
1002 /* If there were no dirty buffers, we are done. */
1003 if (!nr_bhs)
1004 goto done;
1005 /* Map the page so we can access its contents. */
1006 kaddr = kmap(page);
1007 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1008 BUG_ON(!PageUptodate(page));
1009 ClearPageUptodate(page);
1010 for (i = 0; i < nr_bhs; i++) {
1011 unsigned int ofs;
1012
1013 /* Skip buffers which are not at the beginning of records. */
1014 if (i % bhs_per_rec)
1015 continue;
1016 tbh = bhs[i];
1017 ofs = bh_offset(tbh);
1018 if (is_mft) {
1019 ntfs_inode *tni;
1020 unsigned long mft_no;
1021
1022 /* Get the mft record number. */
1023 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1024 >> rec_size_bits;
1025 /* Check whether to write this mft record. */
1026 tni = NULL;
1027 if (!ntfs_may_write_mft_record(vol, mft_no,
1028 (MFT_RECORD*)(kaddr + ofs), &tni)) {
1029 /*
1030 * The record should not be written. This
1031 * means we need to redirty the page before
1032 * returning.
1033 */
1034 page_is_dirty = TRUE;
1035 /*
1036 * Remove the buffers in this mft record from
1037 * the list of buffers to write.
1038 */
1039 do {
1040 bhs[i] = NULL;
1041 } while (++i % bhs_per_rec);
1042 continue;
1043 }
1044 /*
1045 * The record should be written. If a locked ntfs
1046 * inode was returned, add it to the array of locked
1047 * ntfs inodes.
1048 */
1049 if (tni)
1050 locked_nis[nr_locked_nis++] = tni;
1051 }
1052 /* Apply the mst protection fixups. */
1053 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1054 rec_size);
1055 if (unlikely(err2)) {
1056 if (!err || err == -ENOMEM)
1057 err = -EIO;
1058 ntfs_error(vol->sb, "Failed to apply mst fixups "
1059 "(inode 0x%lx, attribute type 0x%x, "
1060 "page index 0x%lx, page offset 0x%x)!"
1061 " Unmount and run chkdsk.", vi->i_ino,
1062 ni->type, page->index, ofs);
1063 /*
1064 * Mark all the buffers in this record clean as we do
1065 * not want to write corrupt data to disk.
1066 */
1067 do {
1068 clear_buffer_dirty(bhs[i]);
1069 bhs[i] = NULL;
1070 } while (++i % bhs_per_rec);
1071 continue;
1072 }
1073 nr_recs++;
1074 }
1075 /* If no records are to be written out, we are done. */
1076 if (!nr_recs)
1077 goto unm_done;
1078 flush_dcache_page(page);
1079 /* Lock buffers and start synchronous write i/o on them. */
1080 for (i = 0; i < nr_bhs; i++) {
1081 tbh = bhs[i];
1082 if (!tbh)
1083 continue;
1084 if (unlikely(test_set_buffer_locked(tbh)))
1085 BUG();
1086 /* The buffer dirty state is now irrelevant, just clean it. */
1087 clear_buffer_dirty(tbh);
1088 BUG_ON(!buffer_uptodate(tbh));
1089 BUG_ON(!buffer_mapped(tbh));
1090 get_bh(tbh);
1091 tbh->b_end_io = end_buffer_write_sync;
1092 submit_bh(WRITE, tbh);
1093 }
1094 /* Synchronize the mft mirror now if not @sync. */
1095 if (is_mft && !sync)
1096 goto do_mirror;
1097do_wait:
1098 /* Wait on i/o completion of buffers. */
1099 for (i = 0; i < nr_bhs; i++) {
1100 tbh = bhs[i];
1101 if (!tbh)
1102 continue;
1103 wait_on_buffer(tbh);
1104 if (unlikely(!buffer_uptodate(tbh))) {
1105 ntfs_error(vol->sb, "I/O error while writing ntfs "
1106 "record buffer (inode 0x%lx, "
1107 "attribute type 0x%x, page index "
1108 "0x%lx, page offset 0x%lx)! Unmount "
1109 "and run chkdsk.", vi->i_ino, ni->type,
1110 page->index, bh_offset(tbh));
1111 if (!err || err == -ENOMEM)
1112 err = -EIO;
1113 /*
1114 * Set the buffer uptodate so the page and buffer
1115 * states do not become out of sync.
1116 */
1117 set_buffer_uptodate(tbh);
1118 }
1119 }
1120 /* If @sync, now synchronize the mft mirror. */
1121 if (is_mft && sync) {
1122do_mirror:
1123 for (i = 0; i < nr_bhs; i++) {
1124 unsigned long mft_no;
1125 unsigned int ofs;
1126
1127 /*
1128 * Skip buffers which are not at the beginning of
1129 * records.
1130 */
1131 if (i % bhs_per_rec)
1132 continue;
1133 tbh = bhs[i];
1134 /* Skip removed buffers (and hence records). */
1135 if (!tbh)
1136 continue;
1137 ofs = bh_offset(tbh);
1138 /* Get the mft record number. */
1139 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1140 >> rec_size_bits;
1141 if (mft_no < vol->mftmirr_size)
1142 ntfs_sync_mft_mirror(vol, mft_no,
1143 (MFT_RECORD*)(kaddr + ofs),
1144 sync);
1145 }
1146 if (!sync)
1147 goto do_wait;
1148 }
1149 /* Remove the mst protection fixups again. */
1150 for (i = 0; i < nr_bhs; i++) {
1151 if (!(i % bhs_per_rec)) {
1152 tbh = bhs[i];
1153 if (!tbh)
1154 continue;
1155 post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1156 bh_offset(tbh)));
1157 }
1158 }
1159 flush_dcache_page(page);
1160unm_done:
1161 /* Unlock any locked inodes. */
1162 while (nr_locked_nis-- > 0) {
1163 ntfs_inode *tni, *base_tni;
1164
1165 tni = locked_nis[nr_locked_nis];
1166 /* Get the base inode. */
1167 down(&tni->extent_lock);
1168 if (tni->nr_extents >= 0)
1169 base_tni = tni;
1170 else {
1171 base_tni = tni->ext.base_ntfs_ino;
1172 BUG_ON(!base_tni);
1173 }
1174 up(&tni->extent_lock);
1175 ntfs_debug("Unlocking %s inode 0x%lx.",
1176 tni == base_tni ? "base" : "extent",
1177 tni->mft_no);
1178 up(&tni->mrec_lock);
1179 atomic_dec(&tni->count);
1180 iput(VFS_I(base_tni));
1181 }
1182 SetPageUptodate(page);
1183 kunmap(page);
1184done:
1185 if (unlikely(err && err != -ENOMEM)) {
1186 /*
1187 * Set page error if there is only one ntfs record in the page.
1188 * Otherwise we would loose per-record granularity.
1189 */
1190 if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1191 SetPageError(page);
1192 NVolSetErrors(vol);
1193 }
1194 if (page_is_dirty) {
1195 ntfs_debug("Page still contains one or more dirty ntfs "
1196 "records. Redirtying the page starting at "
1197 "record 0x%lx.", page->index <<
1198 (PAGE_CACHE_SHIFT - rec_size_bits));
1199 redirty_page_for_writepage(wbc, page);
1200 unlock_page(page);
1201 } else {
1202 /*
1203 * Keep the VM happy. This must be done otherwise the
1204 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1205 * the page is clean.
1206 */
1207 BUG_ON(PageWriteback(page));
1208 set_page_writeback(page);
1209 unlock_page(page);
1210 end_page_writeback(page);
1211 }
1212 if (likely(!err))
1213 ntfs_debug("Done.");
1214 return err;
1215}
1216
1217/**
1218 * ntfs_writepage - write a @page to the backing store
1219 * @page: page cache page to write out
1220 * @wbc: writeback control structure
1221 *
1222 * This is called from the VM when it wants to have a dirty ntfs page cache
1223 * page cleaned. The VM has already locked the page and marked it clean.
1224 *
1225 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1226 * the ntfs version of the generic block_write_full_page() function,
1227 * ntfs_write_block(), which in turn if necessary creates and writes the
1228 * buffers associated with the page asynchronously.
1229 *
1230 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1231 * the data to the mft record (which at this stage is most likely in memory).
1232 * The mft record is then marked dirty and written out asynchronously via the
1233 * vfs inode dirty code path for the inode the mft record belongs to or via the
1234 * vm page dirty code path for the page the mft record is in.
1235 *
1236 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1237 *
1238 * Return 0 on success and -errno on error.
1239 */
1240static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1241{
1242 loff_t i_size;
149f0c52
AA
1243 struct inode *vi = page->mapping->host;
1244 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1da177e4 1245 char *kaddr;
149f0c52
AA
1246 ntfs_attr_search_ctx *ctx = NULL;
1247 MFT_RECORD *m = NULL;
1da177e4
LT
1248 u32 attr_len;
1249 int err;
1250
1251 BUG_ON(!PageLocked(page));
1da177e4 1252 i_size = i_size_read(vi);
1da177e4
LT
1253 /* Is the page fully outside i_size? (truncate in progress) */
1254 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1255 PAGE_CACHE_SHIFT)) {
1256 /*
1257 * The page may have dirty, unmapped buffers. Make them
1258 * freeable here, so the page does not leak.
1259 */
1260 block_invalidatepage(page, 0);
1261 unlock_page(page);
1262 ntfs_debug("Write outside i_size - truncated?");
1263 return 0;
1264 }
1da177e4
LT
1265 /* NInoNonResident() == NInoIndexAllocPresent() */
1266 if (NInoNonResident(ni)) {
1267 /*
1268 * Only unnamed $DATA attributes can be compressed, encrypted,
1269 * and/or sparse.
1270 */
1271 if (ni->type == AT_DATA && !ni->name_len) {
1272 /* If file is encrypted, deny access, just like NT4. */
1273 if (NInoEncrypted(ni)) {
1274 unlock_page(page);
1275 ntfs_debug("Denying write access to encrypted "
1276 "file.");
1277 return -EACCES;
1278 }
1279 /* Compressed data streams are handled in compress.c. */
1280 if (NInoCompressed(ni)) {
1281 // TODO: Implement and replace this check with
1282 // return ntfs_write_compressed_block(page);
1283 unlock_page(page);
1284 ntfs_error(vi->i_sb, "Writing to compressed "
1285 "files is not supported yet. "
1286 "Sorry.");
1287 return -EOPNOTSUPP;
1288 }
1289 // TODO: Implement and remove this check.
1290 if (NInoSparse(ni)) {
1291 unlock_page(page);
1292 ntfs_error(vi->i_sb, "Writing to sparse files "
1293 "is not supported yet. Sorry.");
1294 return -EOPNOTSUPP;
1295 }
1296 }
1297 /* We have to zero every time due to mmap-at-end-of-file. */
1298 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1299 /* The page straddles i_size. */
1300 unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1301 kaddr = kmap_atomic(page, KM_USER0);
1302 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1303 flush_dcache_page(page);
1304 kunmap_atomic(kaddr, KM_USER0);
1305 }
1306 /* Handle mst protected attributes. */
1307 if (NInoMstProtected(ni))
1308 return ntfs_write_mst_block(page, wbc);
1309 /* Normal data stream. */
1310 return ntfs_write_block(page, wbc);
1311 }
1312 /*
1313 * Attribute is resident, implying it is not compressed, encrypted,
1314 * sparse, or mst protected. This also means the attribute is smaller
1315 * than an mft record and hence smaller than a page, so can simply
1316 * return error on any pages with index above 0.
1317 */
1318 BUG_ON(page_has_buffers(page));
1319 BUG_ON(!PageUptodate(page));
1320 if (unlikely(page->index > 0)) {
1321 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
1322 "Aborting write.", page->index);
1323 BUG_ON(PageWriteback(page));
1324 set_page_writeback(page);
1325 unlock_page(page);
1326 end_page_writeback(page);
1327 return -EIO;
1328 }
1329 if (!NInoAttr(ni))
1330 base_ni = ni;
1331 else
1332 base_ni = ni->ext.base_ntfs_ino;
1333 /* Map, pin, and lock the mft record. */
1334 m = map_mft_record(base_ni);
1335 if (IS_ERR(m)) {
1336 err = PTR_ERR(m);
1337 m = NULL;
1338 ctx = NULL;
1339 goto err_out;
1340 }
1341 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1342 if (unlikely(!ctx)) {
1343 err = -ENOMEM;
1344 goto err_out;
1345 }
1346 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1347 CASE_SENSITIVE, 0, NULL, 0, ctx);
1348 if (unlikely(err))
1349 goto err_out;
1350 /*
1351 * Keep the VM happy. This must be done otherwise the radix-tree tag
1352 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1353 */
1354 BUG_ON(PageWriteback(page));
1355 set_page_writeback(page);
1356 unlock_page(page);
1357
1358 /*
1359 * Here, we don't need to zero the out of bounds area everytime because
1360 * the below memcpy() already takes care of the mmap-at-end-of-file
1361 * requirements. If the file is converted to a non-resident one, then
1362 * the code path use is switched to the non-resident one where the
1363 * zeroing happens on each ntfs_writepage() invocation.
1364 *
1365 * The above also applies nicely when i_size is decreased.
1366 *
1367 * When i_size is increased, the memory between the old and new i_size
1368 * _must_ be zeroed (or overwritten with new data). Otherwise we will
1369 * expose data to userspace/disk which should never have been exposed.
1370 *
1371 * FIXME: Ensure that i_size increases do the zeroing/overwriting and
1372 * if we cannot guarantee that, then enable the zeroing below. If the
1373 * zeroing below is enabled, we MUST move the unlock_page() from above
1374 * to after the kunmap_atomic(), i.e. just before the
1375 * end_page_writeback().
1376 * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
1377 * increases for resident attributes so those are ok.
1378 * TODO: ntfs_truncate(), others?
1379 */
1380
1381 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
07a4e2da 1382 i_size = i_size_read(vi);
1da177e4 1383 if (unlikely(attr_len > i_size)) {
1da177e4 1384 attr_len = i_size;
f40661be 1385 ctx->attr->data.resident.value_length = cpu_to_le32(attr_len);
1da177e4 1386 }
f40661be 1387 kaddr = kmap_atomic(page, KM_USER0);
1da177e4
LT
1388 /* Copy the data from the page to the mft record. */
1389 memcpy((u8*)ctx->attr +
1390 le16_to_cpu(ctx->attr->data.resident.value_offset),
1391 kaddr, attr_len);
1392 flush_dcache_mft_record_page(ctx->ntfs_ino);
1393 /* Zero out of bounds area in the page cache page. */
1394 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1395 flush_dcache_page(page);
1396 kunmap_atomic(kaddr, KM_USER0);
1397
1398 end_page_writeback(page);
1399
1400 /* Mark the mft record dirty, so it gets written back. */
1401 mark_mft_record_dirty(ctx->ntfs_ino);
1402 ntfs_attr_put_search_ctx(ctx);
1403 unmap_mft_record(base_ni);
1404 return 0;
1405err_out:
1406 if (err == -ENOMEM) {
1407 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1408 "page so we try again later.");
1409 /*
1410 * Put the page back on mapping->dirty_pages, but leave its
1411 * buffers' dirty state as-is.
1412 */
1413 redirty_page_for_writepage(wbc, page);
1414 err = 0;
1415 } else {
1416 ntfs_error(vi->i_sb, "Resident attribute write failed with "
149f0c52 1417 "error %i.", err);
1da177e4 1418 SetPageError(page);
149f0c52
AA
1419 NVolSetErrors(ni->vol);
1420 make_bad_inode(vi);
1da177e4
LT
1421 }
1422 unlock_page(page);
1423 if (ctx)
1424 ntfs_attr_put_search_ctx(ctx);
1425 if (m)
1426 unmap_mft_record(base_ni);
1427 return err;
1428}
1429
1430/**
1431 * ntfs_prepare_nonresident_write -
1432 *
1433 */
1434static int ntfs_prepare_nonresident_write(struct page *page,
1435 unsigned from, unsigned to)
1436{
1437 VCN vcn;
1438 LCN lcn;
07a4e2da
AA
1439 s64 initialized_size;
1440 loff_t i_size;
1da177e4
LT
1441 sector_t block, ablock, iblock;
1442 struct inode *vi;
1443 ntfs_inode *ni;
1444 ntfs_volume *vol;
1445 runlist_element *rl;
1446 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
07a4e2da 1447 unsigned long flags;
1da177e4
LT
1448 unsigned int vcn_ofs, block_start, block_end, blocksize;
1449 int err;
1450 BOOL is_retry;
1451 unsigned char blocksize_bits;
1452
1453 vi = page->mapping->host;
1454 ni = NTFS_I(vi);
1455 vol = ni->vol;
1456
1457 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1458 "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1459 page->index, from, to);
1460
1461 BUG_ON(!NInoNonResident(ni));
1462
1463 blocksize_bits = vi->i_blkbits;
1464 blocksize = 1 << blocksize_bits;
1465
1466 /*
1467 * create_empty_buffers() will create uptodate/dirty buffers if the
1468 * page is uptodate/dirty.
1469 */
1470 if (!page_has_buffers(page))
1471 create_empty_buffers(page, blocksize, 0);
1472 bh = head = page_buffers(page);
1473 if (unlikely(!bh))
1474 return -ENOMEM;
1475
1476 /* The first block in the page. */
1477 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1478
07a4e2da 1479 read_lock_irqsave(&ni->size_lock, flags);
1da177e4 1480 /*
b6ad6c52 1481 * The first out of bounds block for the allocated size. No need to
1da177e4
LT
1482 * round up as allocated_size is in multiples of cluster size and the
1483 * minimum cluster size is 512 bytes, which is equal to the smallest
1484 * blocksize.
1485 */
1486 ablock = ni->allocated_size >> blocksize_bits;
07a4e2da
AA
1487 i_size = i_size_read(vi);
1488 initialized_size = ni->initialized_size;
1489 read_unlock_irqrestore(&ni->size_lock, flags);
1490
1da177e4 1491 /* The last (fully or partially) initialized block. */
07a4e2da 1492 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
1493
1494 /* Loop through all the buffers in the page. */
1495 block_start = 0;
1496 rl = NULL;
1497 err = 0;
1498 do {
1499 block_end = block_start + blocksize;
1500 /*
1501 * If buffer @bh is outside the write, just mark it uptodate
1502 * if the page is uptodate and continue with the next buffer.
1503 */
1504 if (block_end <= from || block_start >= to) {
1505 if (PageUptodate(page)) {
1506 if (!buffer_uptodate(bh))
1507 set_buffer_uptodate(bh);
1508 }
1509 continue;
1510 }
1511 /*
1512 * @bh is at least partially being written to.
1513 * Make sure it is not marked as new.
1514 */
1515 //if (buffer_new(bh))
1516 // clear_buffer_new(bh);
1517
1518 if (block >= ablock) {
1519 // TODO: block is above allocated_size, need to
1520 // allocate it. Best done in one go to accommodate not
1521 // only block but all above blocks up to and including:
1522 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1523 // - 1) >> blobksize_bits. Obviously will need to round
1524 // up to next cluster boundary, too. This should be
1525 // done with a helper function, so it can be reused.
1526 ntfs_error(vol->sb, "Writing beyond allocated size "
1527 "is not supported yet. Sorry.");
1528 err = -EOPNOTSUPP;
1529 goto err_out;
1530 // Need to update ablock.
1531 // Need to set_buffer_new() on all block bhs that are
1532 // newly allocated.
1533 }
1534 /*
1535 * Now we have enough allocated size to fulfill the whole
1536 * request, i.e. block < ablock is true.
1537 */
1538 if (unlikely((block >= iblock) &&
07a4e2da 1539 (initialized_size < i_size))) {
1da177e4
LT
1540 /*
1541 * If this page is fully outside initialized size, zero
1542 * out all pages between the current initialized size
1543 * and the current page. Just use ntfs_readpage() to do
1544 * the zeroing transparently.
1545 */
1546 if (block > iblock) {
1547 // TODO:
1548 // For each page do:
1549 // - read_cache_page()
1550 // Again for each page do:
1551 // - wait_on_page_locked()
1552 // - Check (PageUptodate(page) &&
1553 // !PageError(page))
1554 // Update initialized size in the attribute and
1555 // in the inode.
1556 // Again, for each page do:
1557 // __set_page_dirty_buffers();
1558 // page_cache_release()
1559 // We don't need to wait on the writes.
1560 // Update iblock.
1561 }
1562 /*
1563 * The current page straddles initialized size. Zero
1564 * all non-uptodate buffers and set them uptodate (and
1565 * dirty?). Note, there aren't any non-uptodate buffers
1566 * if the page is uptodate.
1567 * FIXME: For an uptodate page, the buffers may need to
1568 * be written out because they were not initialized on
1569 * disk before.
1570 */
1571 if (!PageUptodate(page)) {
1572 // TODO:
1573 // Zero any non-uptodate buffers up to i_size.
1574 // Set them uptodate and dirty.
1575 }
1576 // TODO:
1577 // Update initialized size in the attribute and in the
1578 // inode (up to i_size).
1579 // Update iblock.
1580 // FIXME: This is inefficient. Try to batch the two
1581 // size changes to happen in one go.
1582 ntfs_error(vol->sb, "Writing beyond initialized size "
1583 "is not supported yet. Sorry.");
1584 err = -EOPNOTSUPP;
1585 goto err_out;
1586 // Do NOT set_buffer_new() BUT DO clear buffer range
1587 // outside write request range.
1588 // set_buffer_uptodate() on complete buffers as well as
1589 // set_buffer_dirty().
1590 }
1591
1592 /* Need to map unmapped buffers. */
1593 if (!buffer_mapped(bh)) {
1594 /* Unmapped buffer. Need to map it. */
1595 bh->b_bdev = vol->sb->s_bdev;
1596
1597 /* Convert block into corresponding vcn and offset. */
1598 vcn = (VCN)block << blocksize_bits >>
1599 vol->cluster_size_bits;
1600 vcn_ofs = ((VCN)block << blocksize_bits) &
1601 vol->cluster_size_mask;
1602
1603 is_retry = FALSE;
1604 if (!rl) {
1605lock_retry_remap:
1606 down_read(&ni->runlist.lock);
1607 rl = ni->runlist.rl;
1608 }
1609 if (likely(rl != NULL)) {
1610 /* Seek to element containing target vcn. */
1611 while (rl->length && rl[1].vcn <= vcn)
1612 rl++;
1613 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1614 } else
1615 lcn = LCN_RL_NOT_MAPPED;
1616 if (unlikely(lcn < 0)) {
1617 /*
1618 * We extended the attribute allocation above.
1619 * If we hit an ENOENT here it means that the
1620 * allocation was insufficient which is a bug.
1621 */
1622 BUG_ON(lcn == LCN_ENOENT);
1623
1624 /* It is a hole, need to instantiate it. */
1625 if (lcn == LCN_HOLE) {
1626 // TODO: Instantiate the hole.
1627 // clear_buffer_new(bh);
1628 // unmap_underlying_metadata(bh->b_bdev,
1629 // bh->b_blocknr);
1630 // For non-uptodate buffers, need to
1631 // zero out the region outside the
1632 // request in this bh or all bhs,
1633 // depending on what we implemented
1634 // above.
1635 // Need to flush_dcache_page().
1636 // Or could use set_buffer_new()
1637 // instead?
1638 ntfs_error(vol->sb, "Writing into "
1639 "sparse regions is "
1640 "not supported yet. "
1641 "Sorry.");
1642 err = -EOPNOTSUPP;
1643 goto err_out;
1644 } else if (!is_retry &&
1645 lcn == LCN_RL_NOT_MAPPED) {
1646 is_retry = TRUE;
1647 /*
1648 * Attempt to map runlist, dropping
1649 * lock for the duration.
1650 */
1651 up_read(&ni->runlist.lock);
1652 err = ntfs_map_runlist(ni, vcn);
1653 if (likely(!err))
1654 goto lock_retry_remap;
1655 rl = NULL;
1656 lcn = err;
1657 }
1658 /*
1659 * Failed to map the buffer, even after
1660 * retrying.
1661 */
1662 bh->b_blocknr = -1;
1663 ntfs_error(vol->sb, "Failed to write to inode "
1664 "0x%lx, attribute type 0x%x, "
1665 "vcn 0x%llx, offset 0x%x "
1666 "because its location on disk "
1667 "could not be determined%s "
1668 "(error code %lli).",
1669 ni->mft_no, ni->type,
1670 (unsigned long long)vcn,
1671 vcn_ofs, is_retry ? " even "
1672 "after retrying" : "",
1673 (long long)lcn);
1674 if (!err)
1675 err = -EIO;
1676 goto err_out;
1677 }
1678 /* We now have a successful remap, i.e. lcn >= 0. */
1679
1680 /* Setup buffer head to correct block. */
1681 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1682 + vcn_ofs) >> blocksize_bits;
1683 set_buffer_mapped(bh);
1684
1685 // FIXME: Something analogous to this is needed for
1686 // each newly allocated block, i.e. BH_New.
1687 // FIXME: Might need to take this out of the
1688 // if (!buffer_mapped(bh)) {}, depending on how we
1689 // implement things during the allocated_size and
1690 // initialized_size extension code above.
1691 if (buffer_new(bh)) {
1692 clear_buffer_new(bh);
1693 unmap_underlying_metadata(bh->b_bdev,
1694 bh->b_blocknr);
1695 if (PageUptodate(page)) {
1696 set_buffer_uptodate(bh);
1697 continue;
1698 }
1699 /*
1700 * Page is _not_ uptodate, zero surrounding
1701 * region. NOTE: This is how we decide if to
1702 * zero or not!
1703 */
1704 if (block_end > to || block_start < from) {
1705 void *kaddr;
1706
1707 kaddr = kmap_atomic(page, KM_USER0);
1708 if (block_end > to)
1709 memset(kaddr + to, 0,
1710 block_end - to);
1711 if (block_start < from)
1712 memset(kaddr + block_start, 0,
1713 from -
1714 block_start);
1715 flush_dcache_page(page);
1716 kunmap_atomic(kaddr, KM_USER0);
1717 }
1718 continue;
1719 }
1720 }
1721 /* @bh is mapped, set it uptodate if the page is uptodate. */
1722 if (PageUptodate(page)) {
1723 if (!buffer_uptodate(bh))
1724 set_buffer_uptodate(bh);
1725 continue;
1726 }
1727 /*
1728 * The page is not uptodate. The buffer is mapped. If it is not
1729 * uptodate, and it is only partially being written to, we need
1730 * to read the buffer in before the write, i.e. right now.
1731 */
1732 if (!buffer_uptodate(bh) &&
1733 (block_start < from || block_end > to)) {
1734 ll_rw_block(READ, 1, &bh);
1735 *wait_bh++ = bh;
1736 }
1737 } while (block++, block_start = block_end,
1738 (bh = bh->b_this_page) != head);
1739
1740 /* Release the lock if we took it. */
1741 if (rl) {
1742 up_read(&ni->runlist.lock);
1743 rl = NULL;
1744 }
1745
1746 /* If we issued read requests, let them complete. */
1747 while (wait_bh > wait) {
1748 wait_on_buffer(*--wait_bh);
1749 if (!buffer_uptodate(*wait_bh))
1750 return -EIO;
1751 }
1752
1753 ntfs_debug("Done.");
1754 return 0;
1755err_out:
1756 /*
1757 * Zero out any newly allocated blocks to avoid exposing stale data.
1758 * If BH_New is set, we know that the block was newly allocated in the
1759 * above loop.
1760 * FIXME: What about initialized_size increments? Have we done all the
1761 * required zeroing above? If not this error handling is broken, and
1762 * in particular the if (block_end <= from) check is completely bogus.
1763 */
1764 bh = head;
1765 block_start = 0;
1766 is_retry = FALSE;
1767 do {
1768 block_end = block_start + blocksize;
1769 if (block_end <= from)
1770 continue;
1771 if (block_start >= to)
1772 break;
1773 if (buffer_new(bh)) {
1774 void *kaddr;
1775
1776 clear_buffer_new(bh);
1777 kaddr = kmap_atomic(page, KM_USER0);
1778 memset(kaddr + block_start, 0, bh->b_size);
1779 kunmap_atomic(kaddr, KM_USER0);
1780 set_buffer_uptodate(bh);
1781 mark_buffer_dirty(bh);
1782 is_retry = TRUE;
1783 }
1784 } while (block_start = block_end, (bh = bh->b_this_page) != head);
1785 if (is_retry)
1786 flush_dcache_page(page);
1787 if (rl)
1788 up_read(&ni->runlist.lock);
1789 return err;
1790}
1791
1792/**
1793 * ntfs_prepare_write - prepare a page for receiving data
1794 *
1795 * This is called from generic_file_write() with i_sem held on the inode
1796 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1797 * data has not yet been copied into the @page.
1798 *
1799 * Need to extend the attribute/fill in holes if necessary, create blocks and
1800 * make partially overwritten blocks uptodate,
1801 *
1802 * i_size is not to be modified yet.
1803 *
1804 * Return 0 on success or -errno on error.
1805 *
1806 * Should be using block_prepare_write() [support for sparse files] or
1807 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1808 * ntfs specifics but can look at them for implementation guidance.
1809 *
1810 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1811 * the first byte in the page that will be written to and @to is the first byte
1812 * after the last byte that will be written to.
1813 */
1814static int ntfs_prepare_write(struct file *file, struct page *page,
1815 unsigned from, unsigned to)
1816{
1817 s64 new_size;
f40661be 1818 loff_t i_size;
1da177e4
LT
1819 struct inode *vi = page->mapping->host;
1820 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1821 ntfs_volume *vol = ni->vol;
1822 ntfs_attr_search_ctx *ctx = NULL;
1823 MFT_RECORD *m = NULL;
1824 ATTR_RECORD *a;
1825 u8 *kaddr;
1826 u32 attr_len;
1827 int err;
1828
1829 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1830 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1831 page->index, from, to);
1832 BUG_ON(!PageLocked(page));
1833 BUG_ON(from > PAGE_CACHE_SIZE);
1834 BUG_ON(to > PAGE_CACHE_SIZE);
1835 BUG_ON(from > to);
1836 BUG_ON(NInoMstProtected(ni));
1837 /*
1838 * If a previous ntfs_truncate() failed, repeat it and abort if it
1839 * fails again.
1840 */
1841 if (unlikely(NInoTruncateFailed(ni))) {
1842 down_write(&vi->i_alloc_sem);
1843 err = ntfs_truncate(vi);
1844 up_write(&vi->i_alloc_sem);
1845 if (err || NInoTruncateFailed(ni)) {
1846 if (!err)
1847 err = -EIO;
1848 goto err_out;
1849 }
1850 }
1851 /* If the attribute is not resident, deal with it elsewhere. */
1852 if (NInoNonResident(ni)) {
1853 /*
1854 * Only unnamed $DATA attributes can be compressed, encrypted,
1855 * and/or sparse.
1856 */
1857 if (ni->type == AT_DATA && !ni->name_len) {
1858 /* If file is encrypted, deny access, just like NT4. */
1859 if (NInoEncrypted(ni)) {
1860 ntfs_debug("Denying write access to encrypted "
1861 "file.");
1862 return -EACCES;
1863 }
1864 /* Compressed data streams are handled in compress.c. */
1865 if (NInoCompressed(ni)) {
1866 // TODO: Implement and replace this check with
1867 // return ntfs_write_compressed_block(page);
1868 ntfs_error(vi->i_sb, "Writing to compressed "
1869 "files is not supported yet. "
1870 "Sorry.");
1871 return -EOPNOTSUPP;
1872 }
1873 // TODO: Implement and remove this check.
1874 if (NInoSparse(ni)) {
1875 ntfs_error(vi->i_sb, "Writing to sparse files "
1876 "is not supported yet. Sorry.");
1877 return -EOPNOTSUPP;
1878 }
1879 }
1880 /* Normal data stream. */
1881 return ntfs_prepare_nonresident_write(page, from, to);
1882 }
1883 /*
1884 * Attribute is resident, implying it is not compressed, encrypted, or
1885 * sparse.
1886 */
1887 BUG_ON(page_has_buffers(page));
1888 new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1889 /* If we do not need to resize the attribute allocation we are done. */
07a4e2da 1890 if (new_size <= i_size_read(vi))
1da177e4 1891 goto done;
1da177e4
LT
1892 /* Map, pin, and lock the (base) mft record. */
1893 if (!NInoAttr(ni))
1894 base_ni = ni;
1895 else
1896 base_ni = ni->ext.base_ntfs_ino;
1897 m = map_mft_record(base_ni);
1898 if (IS_ERR(m)) {
1899 err = PTR_ERR(m);
1900 m = NULL;
1901 ctx = NULL;
1902 goto err_out;
1903 }
1904 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1905 if (unlikely(!ctx)) {
1906 err = -ENOMEM;
1907 goto err_out;
1908 }
1909 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1910 CASE_SENSITIVE, 0, NULL, 0, ctx);
1911 if (unlikely(err)) {
1912 if (err == -ENOENT)
1913 err = -EIO;
1914 goto err_out;
1915 }
1916 m = ctx->mrec;
1917 a = ctx->attr;
1918 /* The total length of the attribute value. */
1919 attr_len = le32_to_cpu(a->data.resident.value_length);
946929d8 1920 /* Fix an eventual previous failure of ntfs_commit_write(). */
f40661be
AA
1921 i_size = i_size_read(vi);
1922 if (unlikely(attr_len > i_size)) {
1923 attr_len = i_size;
946929d8 1924 a->data.resident.value_length = cpu_to_le32(attr_len);
946929d8 1925 }
946929d8
AA
1926 /* If we do not need to resize the attribute allocation we are done. */
1927 if (new_size <= attr_len)
1928 goto done_unm;
1da177e4
LT
1929 /* Check if new size is allowed in $AttrDef. */
1930 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
1931 if (unlikely(err)) {
1932 if (err == -ERANGE) {
1933 ntfs_error(vol->sb, "Write would cause the inode "
1934 "0x%lx to exceed the maximum size for "
1935 "its attribute type (0x%x). Aborting "
1936 "write.", vi->i_ino,
1937 le32_to_cpu(ni->type));
1938 } else {
1939 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
1940 "attribute type 0x%x. Aborting "
1941 "write.", vi->i_ino,
1942 le32_to_cpu(ni->type));
1943 err = -EIO;
1944 }
1945 goto err_out2;
1946 }
1947 /*
1948 * Extend the attribute record to be able to store the new attribute
1949 * size.
1950 */
1951 if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
1952 le16_to_cpu(a->data.resident.value_offset) +
1953 new_size)) {
1954 /* Not enough space in the mft record. */
1955 ntfs_error(vol->sb, "Not enough space in the mft record for "
1956 "the resized attribute value. This is not "
1957 "supported yet. Aborting write.");
1958 err = -EOPNOTSUPP;
1959 goto err_out2;
1960 }
1961 /*
1962 * We have enough space in the mft record to fit the write. This
1963 * implies the attribute is smaller than the mft record and hence the
1964 * attribute must be in a single page and hence page->index must be 0.
1965 */
1966 BUG_ON(page->index);
1967 /*
1968 * If the beginning of the write is past the old size, enlarge the
1969 * attribute value up to the beginning of the write and fill it with
1970 * zeroes.
1971 */
1972 if (from > attr_len) {
1973 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1974 attr_len, 0, from - attr_len);
1975 a->data.resident.value_length = cpu_to_le32(from);
1976 /* Zero the corresponding area in the page as well. */
1977 if (PageUptodate(page)) {
1978 kaddr = kmap_atomic(page, KM_USER0);
1979 memset(kaddr + attr_len, 0, from - attr_len);
1980 kunmap_atomic(kaddr, KM_USER0);
1981 flush_dcache_page(page);
1982 }
1983 }
1984 flush_dcache_mft_record_page(ctx->ntfs_ino);
1985 mark_mft_record_dirty(ctx->ntfs_ino);
946929d8 1986done_unm:
1da177e4
LT
1987 ntfs_attr_put_search_ctx(ctx);
1988 unmap_mft_record(base_ni);
1989 /*
1990 * Because resident attributes are handled by memcpy() to/from the
1991 * corresponding MFT record, and because this form of i/o is byte
1992 * aligned rather than block aligned, there is no need to bring the
1993 * page uptodate here as in the non-resident case where we need to
1994 * bring the buffers straddled by the write uptodate before
1995 * generic_file_write() does the copying from userspace.
1996 *
1997 * We thus defer the uptodate bringing of the page region outside the
1998 * region written to to ntfs_commit_write(), which makes the code
1999 * simpler and saves one atomic kmap which is good.
2000 */
2001done:
2002 ntfs_debug("Done.");
2003 return 0;
2004err_out:
2005 if (err == -ENOMEM)
2006 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2007 "prepare the write.");
2008 else {
2009 ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
2010 "with error %i.", err);
2011 NVolSetErrors(vol);
2012 make_bad_inode(vi);
2013 }
2014err_out2:
2015 if (ctx)
2016 ntfs_attr_put_search_ctx(ctx);
2017 if (m)
2018 unmap_mft_record(base_ni);
2019 return err;
2020}
2021
2022/**
2023 * ntfs_commit_nonresident_write -
2024 *
2025 */
2026static int ntfs_commit_nonresident_write(struct page *page,
2027 unsigned from, unsigned to)
2028{
2029 s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2030 struct inode *vi = page->mapping->host;
2031 struct buffer_head *bh, *head;
2032 unsigned int block_start, block_end, blocksize;
2033 BOOL partial;
2034
2035 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2036 "0x%lx, from = %u, to = %u.", vi->i_ino,
2037 NTFS_I(vi)->type, page->index, from, to);
2038 blocksize = 1 << vi->i_blkbits;
2039
2040 // FIXME: We need a whole slew of special cases in here for compressed
2041 // files for example...
2042 // For now, we know ntfs_prepare_write() would have failed so we can't
2043 // get here in any of the cases which we have to special case, so we
2044 // are just a ripped off, unrolled generic_commit_write().
2045
2046 bh = head = page_buffers(page);
2047 block_start = 0;
2048 partial = FALSE;
2049 do {
2050 block_end = block_start + blocksize;
2051 if (block_end <= from || block_start >= to) {
2052 if (!buffer_uptodate(bh))
2053 partial = TRUE;
2054 } else {
2055 set_buffer_uptodate(bh);
2056 mark_buffer_dirty(bh);
2057 }
2058 } while (block_start = block_end, (bh = bh->b_this_page) != head);
2059 /*
2060 * If this is a partial write which happened to make all buffers
2061 * uptodate then we can optimize away a bogus ->readpage() for the next
2062 * read(). Here we 'discover' whether the page went uptodate as a
2063 * result of this (potentially partial) write.
2064 */
2065 if (!partial)
2066 SetPageUptodate(page);
2067 /*
2068 * Not convinced about this at all. See disparity comment above. For
2069 * now we know ntfs_prepare_write() would have failed in the write
2070 * exceeds i_size case, so this will never trigger which is fine.
2071 */
07a4e2da 2072 if (pos > i_size_read(vi)) {
1da177e4
LT
2073 ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2074 "not supported yet. Sorry.");
2075 return -EOPNOTSUPP;
2076 // vi->i_size = pos;
2077 // mark_inode_dirty(vi);
2078 }
2079 ntfs_debug("Done.");
2080 return 0;
2081}
2082
2083/**
2084 * ntfs_commit_write - commit the received data
2085 *
2086 * This is called from generic_file_write() with i_sem held on the inode
2087 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2088 * data has already been copied into the @page. ntfs_prepare_write() has been
2089 * called before the data copied and it returned success so we can take the
2090 * results of various BUG checks and some error handling for granted.
2091 *
2092 * Need to mark modified blocks dirty so they get written out later when
2093 * ntfs_writepage() is invoked by the VM.
2094 *
2095 * Return 0 on success or -errno on error.
2096 *
2097 * Should be using generic_commit_write(). This marks buffers uptodate and
2098 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2099 * updates i_size if the end of io is beyond i_size. In that case, it also
2100 * marks the inode dirty.
2101 *
2102 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2103 * it for implementation guidance.
2104 *
2105 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2106 * need to do any page content modifications here at all, except in the write
2107 * to resident attribute case, where we need to do the uptodate bringing here
2108 * which we combine with the copying into the mft record which means we save
2109 * one atomic kmap.
2110 */
2111static int ntfs_commit_write(struct file *file, struct page *page,
2112 unsigned from, unsigned to)
2113{
2114 struct inode *vi = page->mapping->host;
2115 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2116 char *kaddr, *kattr;
2117 ntfs_attr_search_ctx *ctx;
2118 MFT_RECORD *m;
2119 ATTR_RECORD *a;
2120 u32 attr_len;
2121 int err;
2122
2123 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2124 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2125 page->index, from, to);
2126 /* If the attribute is not resident, deal with it elsewhere. */
2127 if (NInoNonResident(ni)) {
2128 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2129 if (ni->type == AT_DATA && !ni->name_len) {
2130 /* Encrypted files need separate handling. */
2131 if (NInoEncrypted(ni)) {
2132 // We never get here at present!
2133 BUG();
2134 }
2135 /* Compressed data streams are handled in compress.c. */
2136 if (NInoCompressed(ni)) {
2137 // TODO: Implement this!
2138 // return ntfs_write_compressed_block(page);
2139 // We never get here at present!
2140 BUG();
2141 }
2142 }
2143 /* Normal data stream. */
2144 return ntfs_commit_nonresident_write(page, from, to);
2145 }
2146 /*
2147 * Attribute is resident, implying it is not compressed, encrypted, or
2148 * sparse.
2149 */
2150 if (!NInoAttr(ni))
2151 base_ni = ni;
2152 else
2153 base_ni = ni->ext.base_ntfs_ino;
2154 /* Map, pin, and lock the mft record. */
2155 m = map_mft_record(base_ni);
2156 if (IS_ERR(m)) {
2157 err = PTR_ERR(m);
2158 m = NULL;
2159 ctx = NULL;
2160 goto err_out;
2161 }
2162 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2163 if (unlikely(!ctx)) {
2164 err = -ENOMEM;
2165 goto err_out;
2166 }
2167 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2168 CASE_SENSITIVE, 0, NULL, 0, ctx);
2169 if (unlikely(err)) {
2170 if (err == -ENOENT)
2171 err = -EIO;
2172 goto err_out;
2173 }
2174 a = ctx->attr;
2175 /* The total length of the attribute value. */
2176 attr_len = le32_to_cpu(a->data.resident.value_length);
2177 BUG_ON(from > attr_len);
2178 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2179 kaddr = kmap_atomic(page, KM_USER0);
2180 /* Copy the received data from the page to the mft record. */
2181 memcpy(kattr + from, kaddr + from, to - from);
2182 /* Update the attribute length if necessary. */
2183 if (to > attr_len) {
2184 attr_len = to;
2185 a->data.resident.value_length = cpu_to_le32(attr_len);
2186 }
2187 /*
2188 * If the page is not uptodate, bring the out of bounds area(s)
2189 * uptodate by copying data from the mft record to the page.
2190 */
2191 if (!PageUptodate(page)) {
2192 if (from > 0)
2193 memcpy(kaddr, kattr, from);
2194 if (to < attr_len)
2195 memcpy(kaddr + to, kattr + to, attr_len - to);
2196 /* Zero the region outside the end of the attribute value. */
2197 if (attr_len < PAGE_CACHE_SIZE)
2198 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2199 /*
2200 * The probability of not having done any of the above is
2201 * extremely small, so we just flush unconditionally.
2202 */
2203 flush_dcache_page(page);
2204 SetPageUptodate(page);
2205 }
2206 kunmap_atomic(kaddr, KM_USER0);
2207 /* Update i_size if necessary. */
07a4e2da
AA
2208 if (i_size_read(vi) < attr_len) {
2209 unsigned long flags;
2210
2211 write_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
2212 ni->allocated_size = ni->initialized_size = attr_len;
2213 i_size_write(vi, attr_len);
07a4e2da 2214 write_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
2215 }
2216 /* Mark the mft record dirty, so it gets written back. */
2217 flush_dcache_mft_record_page(ctx->ntfs_ino);
2218 mark_mft_record_dirty(ctx->ntfs_ino);
2219 ntfs_attr_put_search_ctx(ctx);
2220 unmap_mft_record(base_ni);
2221 ntfs_debug("Done.");
2222 return 0;
2223err_out:
2224 if (err == -ENOMEM) {
2225 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2226 "commit the write.");
2227 if (PageUptodate(page)) {
2228 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2229 "dirty so the write will be retried "
2230 "later on by the VM.");
2231 /*
2232 * Put the page on mapping->dirty_pages, but leave its
2233 * buffers' dirty state as-is.
2234 */
2235 __set_page_dirty_nobuffers(page);
2236 err = 0;
2237 } else
2238 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
2239 "data has been lost.");
2240 } else {
2241 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2242 "with error %i.", err);
2243 NVolSetErrors(ni->vol);
2244 make_bad_inode(vi);
2245 }
2246 if (ctx)
2247 ntfs_attr_put_search_ctx(ctx);
2248 if (m)
2249 unmap_mft_record(base_ni);
2250 return err;
2251}
2252
2253#endif /* NTFS_RW */
2254
2255/**
2256 * ntfs_aops - general address space operations for inodes and attributes
2257 */
2258struct address_space_operations ntfs_aops = {
2259 .readpage = ntfs_readpage, /* Fill page with data. */
2260 .sync_page = block_sync_page, /* Currently, just unplugs the
2261 disk request queue. */
2262#ifdef NTFS_RW
2263 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2264 .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
2265 ready to receive data. */
2266 .commit_write = ntfs_commit_write, /* Commit received data. */
2267#endif /* NTFS_RW */
2268};
2269
2270/**
2271 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2272 * and attributes
2273 */
2274struct address_space_operations ntfs_mst_aops = {
2275 .readpage = ntfs_readpage, /* Fill page with data. */
2276 .sync_page = block_sync_page, /* Currently, just unplugs the
2277 disk request queue. */
2278#ifdef NTFS_RW
2279 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2280 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
2281 without touching the buffers
2282 belonging to the page. */
2283#endif /* NTFS_RW */
2284};
2285
2286#ifdef NTFS_RW
2287
2288/**
2289 * mark_ntfs_record_dirty - mark an ntfs record dirty
2290 * @page: page containing the ntfs record to mark dirty
2291 * @ofs: byte offset within @page at which the ntfs record begins
2292 *
2293 * Set the buffers and the page in which the ntfs record is located dirty.
2294 *
2295 * The latter also marks the vfs inode the ntfs record belongs to dirty
2296 * (I_DIRTY_PAGES only).
2297 *
2298 * If the page does not have buffers, we create them and set them uptodate.
2299 * The page may not be locked which is why we need to handle the buffers under
2300 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2301 * need the lock since try_to_free_buffers() does not free dirty buffers.
2302 */
2303void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2304 struct address_space *mapping = page->mapping;
2305 ntfs_inode *ni = NTFS_I(mapping->host);
2306 struct buffer_head *bh, *head, *buffers_to_free = NULL;
2307 unsigned int end, bh_size, bh_ofs;
2308
2309 BUG_ON(!PageUptodate(page));
2310 end = ofs + ni->itype.index.block_size;
2311 bh_size = 1 << VFS_I(ni)->i_blkbits;
2312 spin_lock(&mapping->private_lock);
2313 if (unlikely(!page_has_buffers(page))) {
2314 spin_unlock(&mapping->private_lock);
2315 bh = head = alloc_page_buffers(page, bh_size, 1);
2316 spin_lock(&mapping->private_lock);
2317 if (likely(!page_has_buffers(page))) {
2318 struct buffer_head *tail;
2319
2320 do {
2321 set_buffer_uptodate(bh);
2322 tail = bh;
2323 bh = bh->b_this_page;
2324 } while (bh);
2325 tail->b_this_page = head;
2326 attach_page_buffers(page, head);
2327 } else
2328 buffers_to_free = bh;
2329 }
2330 bh = head = page_buffers(page);
2331 do {
2332 bh_ofs = bh_offset(bh);
2333 if (bh_ofs + bh_size <= ofs)
2334 continue;
2335 if (unlikely(bh_ofs >= end))
2336 break;
2337 set_buffer_dirty(bh);
2338 } while ((bh = bh->b_this_page) != head);
2339 spin_unlock(&mapping->private_lock);
2340 __set_page_dirty_nobuffers(page);
2341 if (unlikely(buffers_to_free)) {
2342 do {
2343 bh = buffers_to_free->b_this_page;
2344 free_buffer_head(buffers_to_free);
2345 buffers_to_free = bh;
2346 } while (buffers_to_free);
2347 }
2348}
2349
2350#endif /* NTFS_RW */