fs/direct-io.c: adjust suspicious bit operation
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
1da177e4
LT
15#include <linux/namei.h>
16#include <linux/security.h>
73cd49ec 17#include <linux/idr.h>
d10577a8
AV
18#include <linux/acct.h> /* acct_auto_close_mnt */
19#include <linux/ramfs.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
07b20889 23#include "pnode.h"
948730b0 24#include "internal.h"
1da177e4 25
13f14b4d
ED
26#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27#define HASH_SIZE (1UL << HASH_SHIFT)
28
5addc5dd 29static int event;
73cd49ec 30static DEFINE_IDA(mnt_id_ida);
719f5d7f 31static DEFINE_IDA(mnt_group_ida);
99b7db7b 32static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
33static int mnt_id_start = 0;
34static int mnt_group_start = 1;
1da177e4 35
fa3536cc 36static struct list_head *mount_hashtable __read_mostly;
e18b890b 37static struct kmem_cache *mnt_cache __read_mostly;
390c6843 38static struct rw_semaphore namespace_sem;
1da177e4 39
f87fd4c2 40/* /sys/fs */
00d26666
GKH
41struct kobject *fs_kobj;
42EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 43
99b7db7b
NP
44/*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52DEFINE_BRLOCK(vfsmount_lock);
53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
99b7db7b
NP
64/*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
b105e270 68static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 74 spin_lock(&mnt_id_lock);
15169fe7 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 76 if (!res)
15169fe7 77 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 78 spin_unlock(&mnt_id_lock);
73cd49ec
MS
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
b105e270 85static void mnt_free_id(struct mount *mnt)
73cd49ec 86{
15169fe7 87 int id = mnt->mnt_id;
99b7db7b 88 spin_lock(&mnt_id_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
99b7db7b 92 spin_unlock(&mnt_id_lock);
73cd49ec
MS
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
4b8b21f4 100static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
15169fe7 109 &mnt->mnt_group_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
4b8b21f4 119void mnt_release_group_id(struct mount *mnt)
719f5d7f 120{
15169fe7 121 int id = mnt->mnt_group_id;
f21f6220
AV
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
15169fe7 125 mnt->mnt_group_id = 0;
719f5d7f
MS
126}
127
b3e19d92
NP
128/*
129 * vfsmount lock must be held for read
130 */
83adc753 131static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
132{
133#ifdef CONFIG_SMP
68e8a9fe 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
135#else
136 preempt_disable();
68e8a9fe 137 mnt->mnt_count += n;
b3e19d92
NP
138 preempt_enable();
139#endif
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for write
144 */
83adc753 145unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
f03c6599 148 unsigned int count = 0;
b3e19d92
NP
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
68e8a9fe 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
153 }
154
155 return count;
156#else
68e8a9fe 157 return mnt->mnt_count;
b3e19d92
NP
158#endif
159}
160
b105e270 161static struct mount *alloc_vfsmnt(const char *name)
1da177e4 162{
c63181e6
AV
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
73cd49ec
MS
165 int err;
166
c63181e6 167 err = mnt_alloc_id(mnt);
88b38782
LZ
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
c63181e6
AV
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
88b38782 174 goto out_free_id;
73cd49ec
MS
175 }
176
b3e19d92 177#ifdef CONFIG_SMP
c63181e6
AV
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
b3e19d92
NP
180 goto out_free_devname;
181
c63181e6 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 183#else
c63181e6
AV
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
b3e19d92
NP
186#endif
187
c63181e6
AV
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
196#ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 198#endif
1da177e4 199 }
c63181e6 200 return mnt;
88b38782 201
d3ef3d73 202#ifdef CONFIG_SMP
203out_free_devname:
c63181e6 204 kfree(mnt->mnt_devname);
d3ef3d73 205#endif
88b38782 206out_free_id:
c63181e6 207 mnt_free_id(mnt);
88b38782 208out_free_cache:
c63181e6 209 kmem_cache_free(mnt_cache, mnt);
88b38782 210 return NULL;
1da177e4
LT
211}
212
3d733633
DH
213/*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221/*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232int __mnt_is_readonly(struct vfsmount *mnt)
233{
2e4b7fcd
DH
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
3d733633
DH
239}
240EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
83adc753 242static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 243{
244#ifdef CONFIG_SMP
68e8a9fe 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 246#else
68e8a9fe 247 mnt->mnt_writers++;
d3ef3d73 248#endif
249}
3d733633 250
83adc753 251static inline void mnt_dec_writers(struct mount *mnt)
3d733633 252{
d3ef3d73 253#ifdef CONFIG_SMP
68e8a9fe 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 255#else
68e8a9fe 256 mnt->mnt_writers--;
d3ef3d73 257#endif
3d733633 258}
3d733633 259
83adc753 260static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 261{
d3ef3d73 262#ifdef CONFIG_SMP
263 unsigned int count = 0;
3d733633 264 int cpu;
3d733633
DH
265
266 for_each_possible_cpu(cpu) {
68e8a9fe 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 268 }
3d733633 269
d3ef3d73 270 return count;
271#else
272 return mnt->mnt_writers;
273#endif
3d733633
DH
274}
275
4ed5e82f
MS
276static int mnt_is_readonly(struct vfsmount *mnt)
277{
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283}
284
8366025e
DH
285/*
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
291 * a filesystem.
292 */
293/**
294 * mnt_want_write - get write access to a mount
83adc753 295 * @m: the mount on which to take a write
8366025e
DH
296 *
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
302 */
83adc753 303int mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
83adc753 316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
3d733633 329 return ret;
8366025e
DH
330}
331EXPORT_SYMBOL_GPL(mnt_want_write);
332
96029c4e 333/**
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
336 *
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
341 *
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
344 */
345int mnt_clone_write(struct vfsmount *mnt)
346{
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
349 return -EROFS;
350 preempt_disable();
83adc753 351 mnt_inc_writers(real_mount(mnt));
96029c4e 352 preempt_enable();
353 return 0;
354}
355EXPORT_SYMBOL_GPL(mnt_clone_write);
356
357/**
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
360 *
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
363 */
364int mnt_want_write_file(struct file *file)
365{
2d8dd38a
OH
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 368 return mnt_want_write(file->f_path.mnt);
369 else
370 return mnt_clone_write(file->f_path.mnt);
371}
372EXPORT_SYMBOL_GPL(mnt_want_write_file);
373
8366025e
DH
374/**
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
377 *
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
381 */
382void mnt_drop_write(struct vfsmount *mnt)
383{
d3ef3d73 384 preempt_disable();
83adc753 385 mnt_dec_writers(real_mount(mnt));
d3ef3d73 386 preempt_enable();
8366025e
DH
387}
388EXPORT_SYMBOL_GPL(mnt_drop_write);
389
2a79f17e
AV
390void mnt_drop_write_file(struct file *file)
391{
392 mnt_drop_write(file->f_path.mnt);
393}
394EXPORT_SYMBOL(mnt_drop_write_file);
395
83adc753 396static int mnt_make_readonly(struct mount *mnt)
8366025e 397{
3d733633
DH
398 int ret = 0;
399
962830df 400 br_write_lock(&vfsmount_lock);
83adc753 401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 402 /*
d3ef3d73 403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
3d733633 405 */
d3ef3d73 406 smp_mb();
407
3d733633 408 /*
d3ef3d73 409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
413 *
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
3d733633 423 */
c6653a83 424 if (mnt_get_writers(mnt) > 0)
d3ef3d73 425 ret = -EBUSY;
426 else
83adc753 427 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 428 /*
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
431 */
432 smp_wmb();
83adc753 433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 434 br_write_unlock(&vfsmount_lock);
3d733633 435 return ret;
8366025e 436}
8366025e 437
83adc753 438static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 439{
962830df 440 br_write_lock(&vfsmount_lock);
83adc753 441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 442 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
443}
444
4ed5e82f
MS
445int sb_prepare_remount_readonly(struct super_block *sb)
446{
447 struct mount *mnt;
448 int err = 0;
449
8e8b8796
MS
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
452 return -EBUSY;
453
962830df 454 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 smp_mb();
459 if (mnt_get_writers(mnt) > 0) {
460 err = -EBUSY;
461 break;
462 }
463 }
464 }
8e8b8796
MS
465 if (!err && atomic_long_read(&sb->s_remove_count))
466 err = -EBUSY;
467
4ed5e82f
MS
468 if (!err) {
469 sb->s_readonly_remount = 1;
470 smp_wmb();
471 }
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 }
962830df 476 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
477
478 return err;
479}
480
b105e270 481static void free_vfsmnt(struct mount *mnt)
1da177e4 482{
52ba1621 483 kfree(mnt->mnt_devname);
73cd49ec 484 mnt_free_id(mnt);
d3ef3d73 485#ifdef CONFIG_SMP
68e8a9fe 486 free_percpu(mnt->mnt_pcp);
d3ef3d73 487#endif
b105e270 488 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
489}
490
491/*
a05964f3
RP
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 494 * vfsmount_lock must be held for read or write.
1da177e4 495 */
c7105365 496struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 497 int dir)
1da177e4 498{
b58fed8b
RP
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
c7105365 501 struct mount *p, *found = NULL;
1da177e4 502
1da177e4 503 for (;;) {
a05964f3 504 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
505 p = NULL;
506 if (tmp == head)
507 break;
1b8e5564 508 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 510 found = p;
1da177e4
LT
511 break;
512 }
513 }
1da177e4
LT
514 return found;
515}
516
a05964f3
RP
517/*
518 * lookup_mnt increments the ref count before returning
519 * the vfsmount struct.
520 */
1c755af4 521struct vfsmount *lookup_mnt(struct path *path)
a05964f3 522{
c7105365 523 struct mount *child_mnt;
99b7db7b 524
962830df 525 br_read_lock(&vfsmount_lock);
c7105365
AV
526 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
527 if (child_mnt) {
528 mnt_add_count(child_mnt, 1);
962830df 529 br_read_unlock(&vfsmount_lock);
c7105365
AV
530 return &child_mnt->mnt;
531 } else {
962830df 532 br_read_unlock(&vfsmount_lock);
c7105365
AV
533 return NULL;
534 }
a05964f3
RP
535}
536
143c8c91 537static inline int check_mnt(struct mount *mnt)
1da177e4 538{
6b3286ed 539 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
540}
541
99b7db7b
NP
542/*
543 * vfsmount lock must be held for write
544 */
6b3286ed 545static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
546{
547 if (ns) {
548 ns->event = ++event;
549 wake_up_interruptible(&ns->poll);
550 }
551}
552
99b7db7b
NP
553/*
554 * vfsmount lock must be held for write
555 */
6b3286ed 556static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
557{
558 if (ns && ns->event != event) {
559 ns->event = event;
560 wake_up_interruptible(&ns->poll);
561 }
562}
563
5f57cbcc
NP
564/*
565 * Clear dentry's mounted state if it has no remaining mounts.
566 * vfsmount_lock must be held for write.
567 */
aa0a4cf0 568static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
569{
570 unsigned u;
571
572 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 573 struct mount *p;
5f57cbcc 574
1b8e5564 575 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 576 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
577 return;
578 }
579 }
580 spin_lock(&dentry->d_lock);
581 dentry->d_flags &= ~DCACHE_MOUNTED;
582 spin_unlock(&dentry->d_lock);
583}
584
99b7db7b
NP
585/*
586 * vfsmount lock must be held for write
587 */
419148da
AV
588static void detach_mnt(struct mount *mnt, struct path *old_path)
589{
a73324da 590 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
591 old_path->mnt = &mnt->mnt_parent->mnt;
592 mnt->mnt_parent = mnt;
a73324da 593 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 594 list_del_init(&mnt->mnt_child);
1b8e5564 595 list_del_init(&mnt->mnt_hash);
aa0a4cf0 596 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
597}
598
99b7db7b
NP
599/*
600 * vfsmount lock must be held for write
601 */
14cf1fa8 602void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 603 struct mount *child_mnt)
b90fa9ae 604{
3a2393d7 605 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 606 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 607 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
608 spin_lock(&dentry->d_lock);
609 dentry->d_flags |= DCACHE_MOUNTED;
610 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
611}
612
99b7db7b
NP
613/*
614 * vfsmount lock must be held for write
615 */
419148da 616static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 617{
14cf1fa8 618 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 619 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 620 hash(path->mnt, path->dentry));
6b41d536 621 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
622}
623
83adc753 624static inline void __mnt_make_longterm(struct mount *mnt)
7e3d0eb0
AV
625{
626#ifdef CONFIG_SMP
68e8a9fe 627 atomic_inc(&mnt->mnt_longterm);
7e3d0eb0
AV
628#endif
629}
630
631/* needs vfsmount lock for write */
83adc753 632static inline void __mnt_make_shortterm(struct mount *mnt)
7e3d0eb0
AV
633{
634#ifdef CONFIG_SMP
68e8a9fe 635 atomic_dec(&mnt->mnt_longterm);
7e3d0eb0
AV
636#endif
637}
638
b90fa9ae 639/*
99b7db7b 640 * vfsmount lock must be held for write
b90fa9ae 641 */
4b2619a5 642static void commit_tree(struct mount *mnt)
b90fa9ae 643{
0714a533 644 struct mount *parent = mnt->mnt_parent;
83adc753 645 struct mount *m;
b90fa9ae 646 LIST_HEAD(head);
143c8c91 647 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 648
0714a533 649 BUG_ON(parent == mnt);
b90fa9ae 650
1a4eeaf2
AV
651 list_add_tail(&head, &mnt->mnt_list);
652 list_for_each_entry(m, &head, mnt_list) {
143c8c91 653 m->mnt_ns = n;
7e3d0eb0 654 __mnt_make_longterm(m);
f03c6599
AV
655 }
656
b90fa9ae
RP
657 list_splice(&head, n->list.prev);
658
1b8e5564 659 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 660 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 661 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 662 touch_mnt_namespace(n);
1da177e4
LT
663}
664
909b0a88 665static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 666{
6b41d536
AV
667 struct list_head *next = p->mnt_mounts.next;
668 if (next == &p->mnt_mounts) {
1da177e4 669 while (1) {
909b0a88 670 if (p == root)
1da177e4 671 return NULL;
6b41d536
AV
672 next = p->mnt_child.next;
673 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 674 break;
0714a533 675 p = p->mnt_parent;
1da177e4
LT
676 }
677 }
6b41d536 678 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
679}
680
315fc83e 681static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 682{
6b41d536
AV
683 struct list_head *prev = p->mnt_mounts.prev;
684 while (prev != &p->mnt_mounts) {
685 p = list_entry(prev, struct mount, mnt_child);
686 prev = p->mnt_mounts.prev;
9676f0c6
RP
687 }
688 return p;
689}
690
9d412a43
AV
691struct vfsmount *
692vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
693{
b105e270 694 struct mount *mnt;
9d412a43
AV
695 struct dentry *root;
696
697 if (!type)
698 return ERR_PTR(-ENODEV);
699
700 mnt = alloc_vfsmnt(name);
701 if (!mnt)
702 return ERR_PTR(-ENOMEM);
703
704 if (flags & MS_KERNMOUNT)
b105e270 705 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
706
707 root = mount_fs(type, flags, name, data);
708 if (IS_ERR(root)) {
709 free_vfsmnt(mnt);
710 return ERR_CAST(root);
711 }
712
b105e270
AV
713 mnt->mnt.mnt_root = root;
714 mnt->mnt.mnt_sb = root->d_sb;
a73324da 715 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 716 mnt->mnt_parent = mnt;
962830df 717 br_write_lock(&vfsmount_lock);
39f7c4db 718 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 719 br_write_unlock(&vfsmount_lock);
b105e270 720 return &mnt->mnt;
9d412a43
AV
721}
722EXPORT_SYMBOL_GPL(vfs_kern_mount);
723
87129cc0 724static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 725 int flag)
1da177e4 726{
87129cc0 727 struct super_block *sb = old->mnt.mnt_sb;
52ba1621 728 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
1da177e4
LT
729
730 if (mnt) {
719f5d7f 731 if (flag & (CL_SLAVE | CL_PRIVATE))
15169fe7 732 mnt->mnt_group_id = 0; /* not a peer of original */
719f5d7f 733 else
15169fe7 734 mnt->mnt_group_id = old->mnt_group_id;
719f5d7f 735
15169fe7 736 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
b105e270 737 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
738 if (err)
739 goto out_free;
740 }
741
87129cc0 742 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 743 atomic_inc(&sb->s_active);
b105e270
AV
744 mnt->mnt.mnt_sb = sb;
745 mnt->mnt.mnt_root = dget(root);
a73324da 746 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 747 mnt->mnt_parent = mnt;
962830df 748 br_write_lock(&vfsmount_lock);
39f7c4db 749 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
962830df 750 br_write_unlock(&vfsmount_lock);
b90fa9ae 751
5afe0022 752 if (flag & CL_SLAVE) {
6776db3d 753 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
32301920 754 mnt->mnt_master = old;
fc7be130 755 CLEAR_MNT_SHARED(mnt);
8aec0809 756 } else if (!(flag & CL_PRIVATE)) {
fc7be130 757 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
6776db3d 758 list_add(&mnt->mnt_share, &old->mnt_share);
d10e8def 759 if (IS_MNT_SLAVE(old))
6776db3d 760 list_add(&mnt->mnt_slave, &old->mnt_slave);
d10e8def 761 mnt->mnt_master = old->mnt_master;
5afe0022 762 }
b90fa9ae 763 if (flag & CL_MAKE_SHARED)
0f0afb1d 764 set_mnt_shared(mnt);
1da177e4
LT
765
766 /* stick the duplicate mount on the same expiry list
767 * as the original if that was on one */
36341f64 768 if (flag & CL_EXPIRE) {
6776db3d
AV
769 if (!list_empty(&old->mnt_expire))
770 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 771 }
1da177e4 772 }
cb338d06 773 return mnt;
719f5d7f
MS
774
775 out_free:
776 free_vfsmnt(mnt);
777 return NULL;
1da177e4
LT
778}
779
83adc753 780static inline void mntfree(struct mount *mnt)
1da177e4 781{
83adc753
AV
782 struct vfsmount *m = &mnt->mnt;
783 struct super_block *sb = m->mnt_sb;
b3e19d92 784
3d733633
DH
785 /*
786 * This probably indicates that somebody messed
787 * up a mnt_want/drop_write() pair. If this
788 * happens, the filesystem was probably unable
789 * to make r/w->r/o transitions.
790 */
d3ef3d73 791 /*
b3e19d92
NP
792 * The locking used to deal with mnt_count decrement provides barriers,
793 * so mnt_get_writers() below is safe.
d3ef3d73 794 */
c6653a83 795 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
796 fsnotify_vfsmount_delete(m);
797 dput(m->mnt_root);
798 free_vfsmnt(mnt);
1da177e4
LT
799 deactivate_super(sb);
800}
801
900148dc 802static void mntput_no_expire(struct mount *mnt)
b3e19d92 803{
b3e19d92 804put_again:
f03c6599 805#ifdef CONFIG_SMP
962830df 806 br_read_lock(&vfsmount_lock);
68e8a9fe 807 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 808 mnt_add_count(mnt, -1);
962830df 809 br_read_unlock(&vfsmount_lock);
f03c6599 810 return;
b3e19d92 811 }
962830df 812 br_read_unlock(&vfsmount_lock);
b3e19d92 813
962830df 814 br_write_lock(&vfsmount_lock);
aa9c0e07 815 mnt_add_count(mnt, -1);
b3e19d92 816 if (mnt_get_count(mnt)) {
962830df 817 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
818 return;
819 }
b3e19d92 820#else
aa9c0e07 821 mnt_add_count(mnt, -1);
b3e19d92 822 if (likely(mnt_get_count(mnt)))
99b7db7b 823 return;
962830df 824 br_write_lock(&vfsmount_lock);
f03c6599 825#endif
863d684f
AV
826 if (unlikely(mnt->mnt_pinned)) {
827 mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 mnt->mnt_pinned = 0;
962830df 829 br_write_unlock(&vfsmount_lock);
900148dc 830 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 831 goto put_again;
7b7b1ace 832 }
962830df 833
39f7c4db 834 list_del(&mnt->mnt_instance);
962830df 835 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
836 mntfree(mnt);
837}
b3e19d92
NP
838
839void mntput(struct vfsmount *mnt)
840{
841 if (mnt) {
863d684f 842 struct mount *m = real_mount(mnt);
b3e19d92 843 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
844 if (unlikely(m->mnt_expiry_mark))
845 m->mnt_expiry_mark = 0;
846 mntput_no_expire(m);
b3e19d92
NP
847 }
848}
849EXPORT_SYMBOL(mntput);
850
851struct vfsmount *mntget(struct vfsmount *mnt)
852{
853 if (mnt)
83adc753 854 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
855 return mnt;
856}
857EXPORT_SYMBOL(mntget);
858
7b7b1ace
AV
859void mnt_pin(struct vfsmount *mnt)
860{
962830df 861 br_write_lock(&vfsmount_lock);
863d684f 862 real_mount(mnt)->mnt_pinned++;
962830df 863 br_write_unlock(&vfsmount_lock);
7b7b1ace 864}
7b7b1ace
AV
865EXPORT_SYMBOL(mnt_pin);
866
863d684f 867void mnt_unpin(struct vfsmount *m)
7b7b1ace 868{
863d684f 869 struct mount *mnt = real_mount(m);
962830df 870 br_write_lock(&vfsmount_lock);
7b7b1ace 871 if (mnt->mnt_pinned) {
863d684f 872 mnt_add_count(mnt, 1);
7b7b1ace
AV
873 mnt->mnt_pinned--;
874 }
962830df 875 br_write_unlock(&vfsmount_lock);
7b7b1ace 876}
7b7b1ace 877EXPORT_SYMBOL(mnt_unpin);
1da177e4 878
b3b304a2
MS
879static inline void mangle(struct seq_file *m, const char *s)
880{
881 seq_escape(m, s, " \t\n\\");
882}
883
884/*
885 * Simple .show_options callback for filesystems which don't want to
886 * implement more complex mount option showing.
887 *
888 * See also save_mount_options().
889 */
34c80b1d 890int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 891{
2a32cebd
AV
892 const char *options;
893
894 rcu_read_lock();
34c80b1d 895 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
896
897 if (options != NULL && options[0]) {
898 seq_putc(m, ',');
899 mangle(m, options);
900 }
2a32cebd 901 rcu_read_unlock();
b3b304a2
MS
902
903 return 0;
904}
905EXPORT_SYMBOL(generic_show_options);
906
907/*
908 * If filesystem uses generic_show_options(), this function should be
909 * called from the fill_super() callback.
910 *
911 * The .remount_fs callback usually needs to be handled in a special
912 * way, to make sure, that previous options are not overwritten if the
913 * remount fails.
914 *
915 * Also note, that if the filesystem's .remount_fs function doesn't
916 * reset all options to their default value, but changes only newly
917 * given options, then the displayed options will not reflect reality
918 * any more.
919 */
920void save_mount_options(struct super_block *sb, char *options)
921{
2a32cebd
AV
922 BUG_ON(sb->s_options);
923 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
924}
925EXPORT_SYMBOL(save_mount_options);
926
2a32cebd
AV
927void replace_mount_options(struct super_block *sb, char *options)
928{
929 char *old = sb->s_options;
930 rcu_assign_pointer(sb->s_options, options);
931 if (old) {
932 synchronize_rcu();
933 kfree(old);
934 }
935}
936EXPORT_SYMBOL(replace_mount_options);
937
a1a2c409 938#ifdef CONFIG_PROC_FS
0226f492 939/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
940static void *m_start(struct seq_file *m, loff_t *pos)
941{
0226f492 942 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1da177e4 943
390c6843 944 down_read(&namespace_sem);
a1a2c409 945 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
946}
947
948static void *m_next(struct seq_file *m, void *v, loff_t *pos)
949{
0226f492 950 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
b0765fb8 951
a1a2c409 952 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
953}
954
955static void m_stop(struct seq_file *m, void *v)
956{
390c6843 957 up_read(&namespace_sem);
1da177e4
LT
958}
959
0226f492 960static int m_show(struct seq_file *m, void *v)
2d4d4864 961{
0226f492 962 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1a4eeaf2 963 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 964 return p->show(m, &r->mnt);
1da177e4
LT
965}
966
a1a2c409 967const struct seq_operations mounts_op = {
1da177e4
LT
968 .start = m_start,
969 .next = m_next,
970 .stop = m_stop,
0226f492 971 .show = m_show,
b4629fe2 972};
a1a2c409 973#endif /* CONFIG_PROC_FS */
b4629fe2 974
1da177e4
LT
975/**
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
978 *
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
981 * busy.
982 */
909b0a88 983int may_umount_tree(struct vfsmount *m)
1da177e4 984{
909b0a88 985 struct mount *mnt = real_mount(m);
36341f64
RP
986 int actual_refs = 0;
987 int minimum_refs = 0;
315fc83e 988 struct mount *p;
909b0a88 989 BUG_ON(!m);
1da177e4 990
b3e19d92 991 /* write lock needed for mnt_get_count */
962830df 992 br_write_lock(&vfsmount_lock);
909b0a88 993 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 994 actual_refs += mnt_get_count(p);
1da177e4 995 minimum_refs += 2;
1da177e4 996 }
962830df 997 br_write_unlock(&vfsmount_lock);
1da177e4
LT
998
999 if (actual_refs > minimum_refs)
e3474a8e 1000 return 0;
1da177e4 1001
e3474a8e 1002 return 1;
1da177e4
LT
1003}
1004
1005EXPORT_SYMBOL(may_umount_tree);
1006
1007/**
1008 * may_umount - check if a mount point is busy
1009 * @mnt: root of mount
1010 *
1011 * This is called to check if a mount point has any
1012 * open files, pwds, chroots or sub mounts. If the
1013 * mount has sub mounts this will return busy
1014 * regardless of whether the sub mounts are busy.
1015 *
1016 * Doesn't take quota and stuff into account. IOW, in some cases it will
1017 * give false negatives. The main reason why it's here is that we need
1018 * a non-destructive way to look for easily umountable filesystems.
1019 */
1020int may_umount(struct vfsmount *mnt)
1021{
e3474a8e 1022 int ret = 1;
8ad08d8a 1023 down_read(&namespace_sem);
962830df 1024 br_write_lock(&vfsmount_lock);
1ab59738 1025 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1026 ret = 0;
962830df 1027 br_write_unlock(&vfsmount_lock);
8ad08d8a 1028 up_read(&namespace_sem);
a05964f3 1029 return ret;
1da177e4
LT
1030}
1031
1032EXPORT_SYMBOL(may_umount);
1033
b90fa9ae 1034void release_mounts(struct list_head *head)
70fbcdf4 1035{
d5e50f74 1036 struct mount *mnt;
bf066c7d 1037 while (!list_empty(head)) {
1b8e5564
AV
1038 mnt = list_first_entry(head, struct mount, mnt_hash);
1039 list_del_init(&mnt->mnt_hash);
676da58d 1040 if (mnt_has_parent(mnt)) {
70fbcdf4 1041 struct dentry *dentry;
863d684f 1042 struct mount *m;
99b7db7b 1043
962830df 1044 br_write_lock(&vfsmount_lock);
a73324da 1045 dentry = mnt->mnt_mountpoint;
863d684f 1046 m = mnt->mnt_parent;
a73324da 1047 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1048 mnt->mnt_parent = mnt;
7c4b93d8 1049 m->mnt_ghosts--;
962830df 1050 br_write_unlock(&vfsmount_lock);
70fbcdf4 1051 dput(dentry);
863d684f 1052 mntput(&m->mnt);
70fbcdf4 1053 }
d5e50f74 1054 mntput(&mnt->mnt);
70fbcdf4
RP
1055 }
1056}
1057
99b7db7b
NP
1058/*
1059 * vfsmount lock must be held for write
1060 * namespace_sem must be held for write
1061 */
761d5c38 1062void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1063{
7b8a53fd 1064 LIST_HEAD(tmp_list);
315fc83e 1065 struct mount *p;
1da177e4 1066
909b0a88 1067 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1068 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1069
a05964f3 1070 if (propagate)
7b8a53fd 1071 propagate_umount(&tmp_list);
a05964f3 1072
1b8e5564 1073 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1074 list_del_init(&p->mnt_expire);
1a4eeaf2 1075 list_del_init(&p->mnt_list);
143c8c91 1076 __touch_mnt_namespace(p->mnt_ns);
63d37a84
AV
1077 if (p->mnt_ns)
1078 __mnt_make_shortterm(p);
143c8c91 1079 p->mnt_ns = NULL;
6b41d536 1080 list_del_init(&p->mnt_child);
676da58d 1081 if (mnt_has_parent(p)) {
863d684f 1082 p->mnt_parent->mnt_ghosts++;
a73324da 1083 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1084 }
0f0afb1d 1085 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1086 }
7b8a53fd 1087 list_splice(&tmp_list, kill);
1da177e4
LT
1088}
1089
692afc31 1090static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1091
1ab59738 1092static int do_umount(struct mount *mnt, int flags)
1da177e4 1093{
1ab59738 1094 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1095 int retval;
70fbcdf4 1096 LIST_HEAD(umount_list);
1da177e4 1097
1ab59738 1098 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1099 if (retval)
1100 return retval;
1101
1102 /*
1103 * Allow userspace to request a mountpoint be expired rather than
1104 * unmounting unconditionally. Unmount only happens if:
1105 * (1) the mark is already set (the mark is cleared by mntput())
1106 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1107 */
1108 if (flags & MNT_EXPIRE) {
1ab59738 1109 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1110 flags & (MNT_FORCE | MNT_DETACH))
1111 return -EINVAL;
1112
b3e19d92
NP
1113 /*
1114 * probably don't strictly need the lock here if we examined
1115 * all race cases, but it's a slowpath.
1116 */
962830df 1117 br_write_lock(&vfsmount_lock);
83adc753 1118 if (mnt_get_count(mnt) != 2) {
962830df 1119 br_write_unlock(&vfsmount_lock);
1da177e4 1120 return -EBUSY;
b3e19d92 1121 }
962830df 1122 br_write_unlock(&vfsmount_lock);
1da177e4 1123
863d684f 1124 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1125 return -EAGAIN;
1126 }
1127
1128 /*
1129 * If we may have to abort operations to get out of this
1130 * mount, and they will themselves hold resources we must
1131 * allow the fs to do things. In the Unix tradition of
1132 * 'Gee thats tricky lets do it in userspace' the umount_begin
1133 * might fail to complete on the first run through as other tasks
1134 * must return, and the like. Thats for the mount program to worry
1135 * about for the moment.
1136 */
1137
42faad99 1138 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1139 sb->s_op->umount_begin(sb);
42faad99 1140 }
1da177e4
LT
1141
1142 /*
1143 * No sense to grab the lock for this test, but test itself looks
1144 * somewhat bogus. Suggestions for better replacement?
1145 * Ho-hum... In principle, we might treat that as umount + switch
1146 * to rootfs. GC would eventually take care of the old vfsmount.
1147 * Actually it makes sense, especially if rootfs would contain a
1148 * /reboot - static binary that would close all descriptors and
1149 * call reboot(9). Then init(8) could umount root and exec /reboot.
1150 */
1ab59738 1151 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1152 /*
1153 * Special case for "unmounting" root ...
1154 * we just try to remount it readonly.
1155 */
1156 down_write(&sb->s_umount);
4aa98cf7 1157 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1158 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1159 up_write(&sb->s_umount);
1160 return retval;
1161 }
1162
390c6843 1163 down_write(&namespace_sem);
962830df 1164 br_write_lock(&vfsmount_lock);
5addc5dd 1165 event++;
1da177e4 1166
c35038be 1167 if (!(flags & MNT_DETACH))
1ab59738 1168 shrink_submounts(mnt, &umount_list);
c35038be 1169
1da177e4 1170 retval = -EBUSY;
a05964f3 1171 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1172 if (!list_empty(&mnt->mnt_list))
1ab59738 1173 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1174 retval = 0;
1175 }
962830df 1176 br_write_unlock(&vfsmount_lock);
390c6843 1177 up_write(&namespace_sem);
70fbcdf4 1178 release_mounts(&umount_list);
1da177e4
LT
1179 return retval;
1180}
1181
1182/*
1183 * Now umount can handle mount points as well as block devices.
1184 * This is important for filesystems which use unnamed block devices.
1185 *
1186 * We now support a flag for forced unmount like the other 'big iron'
1187 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1188 */
1189
bdc480e3 1190SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1191{
2d8f3038 1192 struct path path;
900148dc 1193 struct mount *mnt;
1da177e4 1194 int retval;
db1f05bb 1195 int lookup_flags = 0;
1da177e4 1196
db1f05bb
MS
1197 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1198 return -EINVAL;
1199
1200 if (!(flags & UMOUNT_NOFOLLOW))
1201 lookup_flags |= LOOKUP_FOLLOW;
1202
1203 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1204 if (retval)
1205 goto out;
900148dc 1206 mnt = real_mount(path.mnt);
1da177e4 1207 retval = -EINVAL;
2d8f3038 1208 if (path.dentry != path.mnt->mnt_root)
1da177e4 1209 goto dput_and_out;
143c8c91 1210 if (!check_mnt(mnt))
1da177e4
LT
1211 goto dput_and_out;
1212
1213 retval = -EPERM;
1214 if (!capable(CAP_SYS_ADMIN))
1215 goto dput_and_out;
1216
900148dc 1217 retval = do_umount(mnt, flags);
1da177e4 1218dput_and_out:
429731b1 1219 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1220 dput(path.dentry);
900148dc 1221 mntput_no_expire(mnt);
1da177e4
LT
1222out:
1223 return retval;
1224}
1225
1226#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1227
1228/*
b58fed8b 1229 * The 2.0 compatible umount. No flags.
1da177e4 1230 */
bdc480e3 1231SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1232{
b58fed8b 1233 return sys_umount(name, 0);
1da177e4
LT
1234}
1235
1236#endif
1237
2d92ab3c 1238static int mount_is_safe(struct path *path)
1da177e4
LT
1239{
1240 if (capable(CAP_SYS_ADMIN))
1241 return 0;
1242 return -EPERM;
1243#ifdef notyet
2d92ab3c 1244 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1245 return -EPERM;
2d92ab3c 1246 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1247 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1248 return -EPERM;
1249 }
2d92ab3c 1250 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1251 return -EPERM;
1252 return 0;
1253#endif
1254}
1255
87129cc0 1256struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1257 int flag)
1da177e4 1258{
a73324da 1259 struct mount *res, *p, *q, *r;
1a390689 1260 struct path path;
1da177e4 1261
fc7be130 1262 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
9676f0c6
RP
1263 return NULL;
1264
36341f64 1265 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1266 if (!q)
1267 goto Enomem;
a73324da 1268 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1269
1270 p = mnt;
6b41d536 1271 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1272 struct mount *s;
7ec02ef1 1273 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1274 continue;
1275
909b0a88 1276 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1277 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1278 s = skip_mnt_tree(s);
1279 continue;
1280 }
0714a533
AV
1281 while (p != s->mnt_parent) {
1282 p = p->mnt_parent;
1283 q = q->mnt_parent;
1da177e4 1284 }
87129cc0 1285 p = s;
cb338d06 1286 path.mnt = &q->mnt;
a73324da 1287 path.dentry = p->mnt_mountpoint;
87129cc0 1288 q = clone_mnt(p, p->mnt.mnt_root, flag);
1da177e4
LT
1289 if (!q)
1290 goto Enomem;
962830df 1291 br_write_lock(&vfsmount_lock);
1a4eeaf2 1292 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1293 attach_mnt(q, &path);
962830df 1294 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1295 }
1296 }
1297 return res;
b58fed8b 1298Enomem:
1da177e4 1299 if (res) {
70fbcdf4 1300 LIST_HEAD(umount_list);
962830df 1301 br_write_lock(&vfsmount_lock);
761d5c38 1302 umount_tree(res, 0, &umount_list);
962830df 1303 br_write_unlock(&vfsmount_lock);
70fbcdf4 1304 release_mounts(&umount_list);
1da177e4
LT
1305 }
1306 return NULL;
1307}
1308
589ff870 1309struct vfsmount *collect_mounts(struct path *path)
8aec0809 1310{
cb338d06 1311 struct mount *tree;
1a60a280 1312 down_write(&namespace_sem);
87129cc0
AV
1313 tree = copy_tree(real_mount(path->mnt), path->dentry,
1314 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1315 up_write(&namespace_sem);
cb338d06 1316 return tree ? &tree->mnt : NULL;
8aec0809
AV
1317}
1318
1319void drop_collected_mounts(struct vfsmount *mnt)
1320{
1321 LIST_HEAD(umount_list);
1a60a280 1322 down_write(&namespace_sem);
962830df 1323 br_write_lock(&vfsmount_lock);
761d5c38 1324 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1325 br_write_unlock(&vfsmount_lock);
1a60a280 1326 up_write(&namespace_sem);
8aec0809
AV
1327 release_mounts(&umount_list);
1328}
1329
1f707137
AV
1330int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1331 struct vfsmount *root)
1332{
1a4eeaf2 1333 struct mount *mnt;
1f707137
AV
1334 int res = f(root, arg);
1335 if (res)
1336 return res;
1a4eeaf2
AV
1337 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1338 res = f(&mnt->mnt, arg);
1f707137
AV
1339 if (res)
1340 return res;
1341 }
1342 return 0;
1343}
1344
4b8b21f4 1345static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1346{
315fc83e 1347 struct mount *p;
719f5d7f 1348
909b0a88 1349 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1350 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1351 mnt_release_group_id(p);
719f5d7f
MS
1352 }
1353}
1354
4b8b21f4 1355static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1356{
315fc83e 1357 struct mount *p;
719f5d7f 1358
909b0a88 1359 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1360 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1361 int err = mnt_alloc_group_id(p);
719f5d7f 1362 if (err) {
4b8b21f4 1363 cleanup_group_ids(mnt, p);
719f5d7f
MS
1364 return err;
1365 }
1366 }
1367 }
1368
1369 return 0;
1370}
1371
b90fa9ae
RP
1372/*
1373 * @source_mnt : mount tree to be attached
21444403
RP
1374 * @nd : place the mount tree @source_mnt is attached
1375 * @parent_nd : if non-null, detach the source_mnt from its parent and
1376 * store the parent mount and mountpoint dentry.
1377 * (done when source_mnt is moved)
b90fa9ae
RP
1378 *
1379 * NOTE: in the table below explains the semantics when a source mount
1380 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1381 * ---------------------------------------------------------------------------
1382 * | BIND MOUNT OPERATION |
1383 * |**************************************************************************
1384 * | source-->| shared | private | slave | unbindable |
1385 * | dest | | | | |
1386 * | | | | | | |
1387 * | v | | | | |
1388 * |**************************************************************************
1389 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1390 * | | | | | |
1391 * |non-shared| shared (+) | private | slave (*) | invalid |
1392 * ***************************************************************************
b90fa9ae
RP
1393 * A bind operation clones the source mount and mounts the clone on the
1394 * destination mount.
1395 *
1396 * (++) the cloned mount is propagated to all the mounts in the propagation
1397 * tree of the destination mount and the cloned mount is added to
1398 * the peer group of the source mount.
1399 * (+) the cloned mount is created under the destination mount and is marked
1400 * as shared. The cloned mount is added to the peer group of the source
1401 * mount.
5afe0022
RP
1402 * (+++) the mount is propagated to all the mounts in the propagation tree
1403 * of the destination mount and the cloned mount is made slave
1404 * of the same master as that of the source mount. The cloned mount
1405 * is marked as 'shared and slave'.
1406 * (*) the cloned mount is made a slave of the same master as that of the
1407 * source mount.
1408 *
9676f0c6
RP
1409 * ---------------------------------------------------------------------------
1410 * | MOVE MOUNT OPERATION |
1411 * |**************************************************************************
1412 * | source-->| shared | private | slave | unbindable |
1413 * | dest | | | | |
1414 * | | | | | | |
1415 * | v | | | | |
1416 * |**************************************************************************
1417 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1418 * | | | | | |
1419 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1420 * ***************************************************************************
5afe0022
RP
1421 *
1422 * (+) the mount is moved to the destination. And is then propagated to
1423 * all the mounts in the propagation tree of the destination mount.
21444403 1424 * (+*) the mount is moved to the destination.
5afe0022
RP
1425 * (+++) the mount is moved to the destination and is then propagated to
1426 * all the mounts belonging to the destination mount's propagation tree.
1427 * the mount is marked as 'shared and slave'.
1428 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1429 *
1430 * if the source mount is a tree, the operations explained above is
1431 * applied to each mount in the tree.
1432 * Must be called without spinlocks held, since this function can sleep
1433 * in allocations.
1434 */
0fb54e50 1435static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1436 struct path *path, struct path *parent_path)
b90fa9ae
RP
1437{
1438 LIST_HEAD(tree_list);
a8d56d8e 1439 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1440 struct dentry *dest_dentry = path->dentry;
315fc83e 1441 struct mount *child, *p;
719f5d7f 1442 int err;
b90fa9ae 1443
fc7be130 1444 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1445 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1446 if (err)
1447 goto out;
1448 }
a8d56d8e 1449 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1450 if (err)
1451 goto out_cleanup_ids;
b90fa9ae 1452
962830df 1453 br_write_lock(&vfsmount_lock);
df1a1ad2 1454
fc7be130 1455 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1456 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1457 set_mnt_shared(p);
b90fa9ae 1458 }
1a390689 1459 if (parent_path) {
0fb54e50
AV
1460 detach_mnt(source_mnt, parent_path);
1461 attach_mnt(source_mnt, path);
143c8c91 1462 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1463 } else {
14cf1fa8 1464 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1465 commit_tree(source_mnt);
21444403 1466 }
b90fa9ae 1467
1b8e5564
AV
1468 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1469 list_del_init(&child->mnt_hash);
4b2619a5 1470 commit_tree(child);
b90fa9ae 1471 }
962830df 1472 br_write_unlock(&vfsmount_lock);
99b7db7b 1473
b90fa9ae 1474 return 0;
719f5d7f
MS
1475
1476 out_cleanup_ids:
fc7be130 1477 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1478 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1479 out:
1480 return err;
b90fa9ae
RP
1481}
1482
b12cea91
AV
1483static int lock_mount(struct path *path)
1484{
1485 struct vfsmount *mnt;
1486retry:
1487 mutex_lock(&path->dentry->d_inode->i_mutex);
1488 if (unlikely(cant_mount(path->dentry))) {
1489 mutex_unlock(&path->dentry->d_inode->i_mutex);
1490 return -ENOENT;
1491 }
1492 down_write(&namespace_sem);
1493 mnt = lookup_mnt(path);
1494 if (likely(!mnt))
1495 return 0;
1496 up_write(&namespace_sem);
1497 mutex_unlock(&path->dentry->d_inode->i_mutex);
1498 path_put(path);
1499 path->mnt = mnt;
1500 path->dentry = dget(mnt->mnt_root);
1501 goto retry;
1502}
1503
1504static void unlock_mount(struct path *path)
1505{
1506 up_write(&namespace_sem);
1507 mutex_unlock(&path->dentry->d_inode->i_mutex);
1508}
1509
95bc5f25 1510static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1511{
95bc5f25 1512 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1513 return -EINVAL;
1514
8c3ee42e 1515 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1516 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1517 return -ENOTDIR;
1518
b12cea91
AV
1519 if (d_unlinked(path->dentry))
1520 return -ENOENT;
1da177e4 1521
95bc5f25 1522 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1523}
1524
7a2e8a8f
VA
1525/*
1526 * Sanity check the flags to change_mnt_propagation.
1527 */
1528
1529static int flags_to_propagation_type(int flags)
1530{
7c6e984d 1531 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1532
1533 /* Fail if any non-propagation flags are set */
1534 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1535 return 0;
1536 /* Only one propagation flag should be set */
1537 if (!is_power_of_2(type))
1538 return 0;
1539 return type;
1540}
1541
07b20889
RP
1542/*
1543 * recursively change the type of the mountpoint.
1544 */
0a0d8a46 1545static int do_change_type(struct path *path, int flag)
07b20889 1546{
315fc83e 1547 struct mount *m;
4b8b21f4 1548 struct mount *mnt = real_mount(path->mnt);
07b20889 1549 int recurse = flag & MS_REC;
7a2e8a8f 1550 int type;
719f5d7f 1551 int err = 0;
07b20889 1552
ee6f9582
MS
1553 if (!capable(CAP_SYS_ADMIN))
1554 return -EPERM;
1555
2d92ab3c 1556 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1557 return -EINVAL;
1558
7a2e8a8f
VA
1559 type = flags_to_propagation_type(flag);
1560 if (!type)
1561 return -EINVAL;
1562
07b20889 1563 down_write(&namespace_sem);
719f5d7f
MS
1564 if (type == MS_SHARED) {
1565 err = invent_group_ids(mnt, recurse);
1566 if (err)
1567 goto out_unlock;
1568 }
1569
962830df 1570 br_write_lock(&vfsmount_lock);
909b0a88 1571 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1572 change_mnt_propagation(m, type);
962830df 1573 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1574
1575 out_unlock:
07b20889 1576 up_write(&namespace_sem);
719f5d7f 1577 return err;
07b20889
RP
1578}
1579
1da177e4
LT
1580/*
1581 * do loopback mount.
1582 */
0a0d8a46 1583static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1584 int recurse)
1da177e4 1585{
b12cea91 1586 LIST_HEAD(umount_list);
2d92ab3c 1587 struct path old_path;
87129cc0 1588 struct mount *mnt = NULL, *old;
2d92ab3c 1589 int err = mount_is_safe(path);
1da177e4
LT
1590 if (err)
1591 return err;
1592 if (!old_name || !*old_name)
1593 return -EINVAL;
815d405c 1594 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1595 if (err)
1596 return err;
1597
b12cea91
AV
1598 err = lock_mount(path);
1599 if (err)
1600 goto out;
1601
87129cc0
AV
1602 old = real_mount(old_path.mnt);
1603
1da177e4 1604 err = -EINVAL;
fc7be130 1605 if (IS_MNT_UNBINDABLE(old))
b12cea91 1606 goto out2;
9676f0c6 1607
143c8c91 1608 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1609 goto out2;
1da177e4 1610
ccd48bc7
AV
1611 err = -ENOMEM;
1612 if (recurse)
87129cc0 1613 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1614 else
87129cc0 1615 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7
AV
1616
1617 if (!mnt)
b12cea91 1618 goto out2;
ccd48bc7 1619
95bc5f25 1620 err = graft_tree(mnt, path);
ccd48bc7 1621 if (err) {
962830df 1622 br_write_lock(&vfsmount_lock);
761d5c38 1623 umount_tree(mnt, 0, &umount_list);
962830df 1624 br_write_unlock(&vfsmount_lock);
5b83d2c5 1625 }
b12cea91
AV
1626out2:
1627 unlock_mount(path);
1628 release_mounts(&umount_list);
ccd48bc7 1629out:
2d92ab3c 1630 path_put(&old_path);
1da177e4
LT
1631 return err;
1632}
1633
2e4b7fcd
DH
1634static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1635{
1636 int error = 0;
1637 int readonly_request = 0;
1638
1639 if (ms_flags & MS_RDONLY)
1640 readonly_request = 1;
1641 if (readonly_request == __mnt_is_readonly(mnt))
1642 return 0;
1643
1644 if (readonly_request)
83adc753 1645 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1646 else
83adc753 1647 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1648 return error;
1649}
1650
1da177e4
LT
1651/*
1652 * change filesystem flags. dir should be a physical root of filesystem.
1653 * If you've mounted a non-root directory somewhere and want to do remount
1654 * on it - tough luck.
1655 */
0a0d8a46 1656static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1657 void *data)
1658{
1659 int err;
2d92ab3c 1660 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1661 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1662
1663 if (!capable(CAP_SYS_ADMIN))
1664 return -EPERM;
1665
143c8c91 1666 if (!check_mnt(mnt))
1da177e4
LT
1667 return -EINVAL;
1668
2d92ab3c 1669 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1670 return -EINVAL;
1671
ff36fe2c
EP
1672 err = security_sb_remount(sb, data);
1673 if (err)
1674 return err;
1675
1da177e4 1676 down_write(&sb->s_umount);
2e4b7fcd 1677 if (flags & MS_BIND)
2d92ab3c 1678 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1679 else
2e4b7fcd 1680 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1681 if (!err) {
962830df 1682 br_write_lock(&vfsmount_lock);
143c8c91
AV
1683 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1684 mnt->mnt.mnt_flags = mnt_flags;
962830df 1685 br_write_unlock(&vfsmount_lock);
7b43a79f 1686 }
1da177e4 1687 up_write(&sb->s_umount);
0e55a7cc 1688 if (!err) {
962830df 1689 br_write_lock(&vfsmount_lock);
143c8c91 1690 touch_mnt_namespace(mnt->mnt_ns);
962830df 1691 br_write_unlock(&vfsmount_lock);
0e55a7cc 1692 }
1da177e4
LT
1693 return err;
1694}
1695
cbbe362c 1696static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1697{
315fc83e 1698 struct mount *p;
909b0a88 1699 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1700 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1701 return 1;
1702 }
1703 return 0;
1704}
1705
0a0d8a46 1706static int do_move_mount(struct path *path, char *old_name)
1da177e4 1707{
2d92ab3c 1708 struct path old_path, parent_path;
676da58d 1709 struct mount *p;
0fb54e50 1710 struct mount *old;
1da177e4
LT
1711 int err = 0;
1712 if (!capable(CAP_SYS_ADMIN))
1713 return -EPERM;
1714 if (!old_name || !*old_name)
1715 return -EINVAL;
2d92ab3c 1716 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1717 if (err)
1718 return err;
1719
b12cea91 1720 err = lock_mount(path);
cc53ce53
DH
1721 if (err < 0)
1722 goto out;
1723
143c8c91 1724 old = real_mount(old_path.mnt);
fc7be130 1725 p = real_mount(path->mnt);
143c8c91 1726
1da177e4 1727 err = -EINVAL;
fc7be130 1728 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1729 goto out1;
1730
f3da392e 1731 if (d_unlinked(path->dentry))
21444403 1732 goto out1;
1da177e4
LT
1733
1734 err = -EINVAL;
2d92ab3c 1735 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1736 goto out1;
1da177e4 1737
676da58d 1738 if (!mnt_has_parent(old))
21444403 1739 goto out1;
1da177e4 1740
2d92ab3c
AV
1741 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1742 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1743 goto out1;
1744 /*
1745 * Don't move a mount residing in a shared parent.
1746 */
fc7be130 1747 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1748 goto out1;
9676f0c6
RP
1749 /*
1750 * Don't move a mount tree containing unbindable mounts to a destination
1751 * mount which is shared.
1752 */
fc7be130 1753 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1754 goto out1;
1da177e4 1755 err = -ELOOP;
fc7be130 1756 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1757 if (p == old)
21444403 1758 goto out1;
1da177e4 1759
0fb54e50 1760 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1761 if (err)
21444403 1762 goto out1;
1da177e4
LT
1763
1764 /* if the mount is moved, it should no longer be expire
1765 * automatically */
6776db3d 1766 list_del_init(&old->mnt_expire);
1da177e4 1767out1:
b12cea91 1768 unlock_mount(path);
1da177e4 1769out:
1da177e4 1770 if (!err)
1a390689 1771 path_put(&parent_path);
2d92ab3c 1772 path_put(&old_path);
1da177e4
LT
1773 return err;
1774}
1775
9d412a43
AV
1776static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1777{
1778 int err;
1779 const char *subtype = strchr(fstype, '.');
1780 if (subtype) {
1781 subtype++;
1782 err = -EINVAL;
1783 if (!subtype[0])
1784 goto err;
1785 } else
1786 subtype = "";
1787
1788 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1789 err = -ENOMEM;
1790 if (!mnt->mnt_sb->s_subtype)
1791 goto err;
1792 return mnt;
1793
1794 err:
1795 mntput(mnt);
1796 return ERR_PTR(err);
1797}
1798
79e801a9 1799static struct vfsmount *
9d412a43
AV
1800do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1801{
1802 struct file_system_type *type = get_fs_type(fstype);
1803 struct vfsmount *mnt;
1804 if (!type)
1805 return ERR_PTR(-ENODEV);
1806 mnt = vfs_kern_mount(type, flags, name, data);
1807 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1808 !mnt->mnt_sb->s_subtype)
1809 mnt = fs_set_subtype(mnt, fstype);
1810 put_filesystem(type);
1811 return mnt;
1812}
9d412a43
AV
1813
1814/*
1815 * add a mount into a namespace's mount tree
1816 */
95bc5f25 1817static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1818{
1819 int err;
1820
1821 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1822
b12cea91
AV
1823 err = lock_mount(path);
1824 if (err)
1825 return err;
9d412a43
AV
1826
1827 err = -EINVAL;
143c8c91 1828 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1829 goto unlock;
1830
1831 /* Refuse the same filesystem on the same mount point */
1832 err = -EBUSY;
95bc5f25 1833 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1834 path->mnt->mnt_root == path->dentry)
1835 goto unlock;
1836
1837 err = -EINVAL;
95bc5f25 1838 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1839 goto unlock;
1840
95bc5f25 1841 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1842 err = graft_tree(newmnt, path);
1843
1844unlock:
b12cea91 1845 unlock_mount(path);
9d412a43
AV
1846 return err;
1847}
b1e75df4 1848
1da177e4
LT
1849/*
1850 * create a new mount for userspace and request it to be added into the
1851 * namespace's tree
1852 */
0a0d8a46 1853static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1854 int mnt_flags, char *name, void *data)
1855{
1856 struct vfsmount *mnt;
15f9a3f3 1857 int err;
1da177e4 1858
eca6f534 1859 if (!type)
1da177e4
LT
1860 return -EINVAL;
1861
1862 /* we need capabilities... */
1863 if (!capable(CAP_SYS_ADMIN))
1864 return -EPERM;
1865
1866 mnt = do_kern_mount(type, flags, name, data);
1867 if (IS_ERR(mnt))
1868 return PTR_ERR(mnt);
1869
95bc5f25 1870 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1871 if (err)
1872 mntput(mnt);
1873 return err;
1da177e4
LT
1874}
1875
19a167af
AV
1876int finish_automount(struct vfsmount *m, struct path *path)
1877{
6776db3d 1878 struct mount *mnt = real_mount(m);
19a167af
AV
1879 int err;
1880 /* The new mount record should have at least 2 refs to prevent it being
1881 * expired before we get a chance to add it
1882 */
6776db3d 1883 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1884
1885 if (m->mnt_sb == path->mnt->mnt_sb &&
1886 m->mnt_root == path->dentry) {
b1e75df4
AV
1887 err = -ELOOP;
1888 goto fail;
19a167af
AV
1889 }
1890
95bc5f25 1891 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1892 if (!err)
1893 return 0;
1894fail:
1895 /* remove m from any expiration list it may be on */
6776db3d 1896 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 1897 down_write(&namespace_sem);
962830df 1898 br_write_lock(&vfsmount_lock);
6776db3d 1899 list_del_init(&mnt->mnt_expire);
962830df 1900 br_write_unlock(&vfsmount_lock);
b1e75df4 1901 up_write(&namespace_sem);
19a167af 1902 }
b1e75df4
AV
1903 mntput(m);
1904 mntput(m);
19a167af
AV
1905 return err;
1906}
1907
ea5b778a
DH
1908/**
1909 * mnt_set_expiry - Put a mount on an expiration list
1910 * @mnt: The mount to list.
1911 * @expiry_list: The list to add the mount to.
1912 */
1913void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1914{
1915 down_write(&namespace_sem);
962830df 1916 br_write_lock(&vfsmount_lock);
ea5b778a 1917
6776db3d 1918 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 1919
962830df 1920 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
1921 up_write(&namespace_sem);
1922}
1923EXPORT_SYMBOL(mnt_set_expiry);
1924
1da177e4
LT
1925/*
1926 * process a list of expirable mountpoints with the intent of discarding any
1927 * mountpoints that aren't in use and haven't been touched since last we came
1928 * here
1929 */
1930void mark_mounts_for_expiry(struct list_head *mounts)
1931{
761d5c38 1932 struct mount *mnt, *next;
1da177e4 1933 LIST_HEAD(graveyard);
bcc5c7d2 1934 LIST_HEAD(umounts);
1da177e4
LT
1935
1936 if (list_empty(mounts))
1937 return;
1938
bcc5c7d2 1939 down_write(&namespace_sem);
962830df 1940 br_write_lock(&vfsmount_lock);
1da177e4
LT
1941
1942 /* extract from the expiration list every vfsmount that matches the
1943 * following criteria:
1944 * - only referenced by its parent vfsmount
1945 * - still marked for expiry (marked on the last call here; marks are
1946 * cleared by mntput())
1947 */
6776db3d 1948 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 1949 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 1950 propagate_mount_busy(mnt, 1))
1da177e4 1951 continue;
6776db3d 1952 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1953 }
bcc5c7d2 1954 while (!list_empty(&graveyard)) {
6776db3d 1955 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 1956 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
1957 umount_tree(mnt, 1, &umounts);
1958 }
962830df 1959 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
1960 up_write(&namespace_sem);
1961
1962 release_mounts(&umounts);
5528f911
TM
1963}
1964
1965EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1966
1967/*
1968 * Ripoff of 'select_parent()'
1969 *
1970 * search the list of submounts for a given mountpoint, and move any
1971 * shrinkable submounts to the 'graveyard' list.
1972 */
692afc31 1973static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 1974{
692afc31 1975 struct mount *this_parent = parent;
5528f911
TM
1976 struct list_head *next;
1977 int found = 0;
1978
1979repeat:
6b41d536 1980 next = this_parent->mnt_mounts.next;
5528f911 1981resume:
6b41d536 1982 while (next != &this_parent->mnt_mounts) {
5528f911 1983 struct list_head *tmp = next;
6b41d536 1984 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
1985
1986 next = tmp->next;
692afc31 1987 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 1988 continue;
5528f911
TM
1989 /*
1990 * Descend a level if the d_mounts list is non-empty.
1991 */
6b41d536 1992 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
1993 this_parent = mnt;
1994 goto repeat;
1995 }
1da177e4 1996
1ab59738 1997 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 1998 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
1999 found++;
2000 }
1da177e4 2001 }
5528f911
TM
2002 /*
2003 * All done at this level ... ascend and resume the search
2004 */
2005 if (this_parent != parent) {
6b41d536 2006 next = this_parent->mnt_child.next;
0714a533 2007 this_parent = this_parent->mnt_parent;
5528f911
TM
2008 goto resume;
2009 }
2010 return found;
2011}
2012
2013/*
2014 * process a list of expirable mountpoints with the intent of discarding any
2015 * submounts of a specific parent mountpoint
99b7db7b
NP
2016 *
2017 * vfsmount_lock must be held for write
5528f911 2018 */
692afc31 2019static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2020{
2021 LIST_HEAD(graveyard);
761d5c38 2022 struct mount *m;
5528f911 2023
5528f911 2024 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2025 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2026 while (!list_empty(&graveyard)) {
761d5c38 2027 m = list_first_entry(&graveyard, struct mount,
6776db3d 2028 mnt_expire);
143c8c91 2029 touch_mnt_namespace(m->mnt_ns);
afef80b3 2030 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2031 }
2032 }
1da177e4
LT
2033}
2034
1da177e4
LT
2035/*
2036 * Some copy_from_user() implementations do not return the exact number of
2037 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2038 * Note that this function differs from copy_from_user() in that it will oops
2039 * on bad values of `to', rather than returning a short copy.
2040 */
b58fed8b
RP
2041static long exact_copy_from_user(void *to, const void __user * from,
2042 unsigned long n)
1da177e4
LT
2043{
2044 char *t = to;
2045 const char __user *f = from;
2046 char c;
2047
2048 if (!access_ok(VERIFY_READ, from, n))
2049 return n;
2050
2051 while (n) {
2052 if (__get_user(c, f)) {
2053 memset(t, 0, n);
2054 break;
2055 }
2056 *t++ = c;
2057 f++;
2058 n--;
2059 }
2060 return n;
2061}
2062
b58fed8b 2063int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2064{
2065 int i;
2066 unsigned long page;
2067 unsigned long size;
b58fed8b 2068
1da177e4
LT
2069 *where = 0;
2070 if (!data)
2071 return 0;
2072
2073 if (!(page = __get_free_page(GFP_KERNEL)))
2074 return -ENOMEM;
2075
2076 /* We only care that *some* data at the address the user
2077 * gave us is valid. Just in case, we'll zero
2078 * the remainder of the page.
2079 */
2080 /* copy_from_user cannot cross TASK_SIZE ! */
2081 size = TASK_SIZE - (unsigned long)data;
2082 if (size > PAGE_SIZE)
2083 size = PAGE_SIZE;
2084
2085 i = size - exact_copy_from_user((void *)page, data, size);
2086 if (!i) {
b58fed8b 2087 free_page(page);
1da177e4
LT
2088 return -EFAULT;
2089 }
2090 if (i != PAGE_SIZE)
2091 memset((char *)page + i, 0, PAGE_SIZE - i);
2092 *where = page;
2093 return 0;
2094}
2095
eca6f534
VN
2096int copy_mount_string(const void __user *data, char **where)
2097{
2098 char *tmp;
2099
2100 if (!data) {
2101 *where = NULL;
2102 return 0;
2103 }
2104
2105 tmp = strndup_user(data, PAGE_SIZE);
2106 if (IS_ERR(tmp))
2107 return PTR_ERR(tmp);
2108
2109 *where = tmp;
2110 return 0;
2111}
2112
1da177e4
LT
2113/*
2114 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2115 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2116 *
2117 * data is a (void *) that can point to any structure up to
2118 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2119 * information (or be NULL).
2120 *
2121 * Pre-0.97 versions of mount() didn't have a flags word.
2122 * When the flags word was introduced its top half was required
2123 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2124 * Therefore, if this magic number is present, it carries no information
2125 * and must be discarded.
2126 */
b58fed8b 2127long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2128 unsigned long flags, void *data_page)
2129{
2d92ab3c 2130 struct path path;
1da177e4
LT
2131 int retval = 0;
2132 int mnt_flags = 0;
2133
2134 /* Discard magic */
2135 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2136 flags &= ~MS_MGC_MSK;
2137
2138 /* Basic sanity checks */
2139
2140 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2141 return -EINVAL;
1da177e4
LT
2142
2143 if (data_page)
2144 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2145
a27ab9f2
TH
2146 /* ... and get the mountpoint */
2147 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2148 if (retval)
2149 return retval;
2150
2151 retval = security_sb_mount(dev_name, &path,
2152 type_page, flags, data_page);
2153 if (retval)
2154 goto dput_out;
2155
613cbe3d
AK
2156 /* Default to relatime unless overriden */
2157 if (!(flags & MS_NOATIME))
2158 mnt_flags |= MNT_RELATIME;
0a1c01c9 2159
1da177e4
LT
2160 /* Separate the per-mountpoint flags */
2161 if (flags & MS_NOSUID)
2162 mnt_flags |= MNT_NOSUID;
2163 if (flags & MS_NODEV)
2164 mnt_flags |= MNT_NODEV;
2165 if (flags & MS_NOEXEC)
2166 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2167 if (flags & MS_NOATIME)
2168 mnt_flags |= MNT_NOATIME;
2169 if (flags & MS_NODIRATIME)
2170 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2171 if (flags & MS_STRICTATIME)
2172 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2173 if (flags & MS_RDONLY)
2174 mnt_flags |= MNT_READONLY;
fc33a7bb 2175
7a4dec53 2176 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2177 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2178 MS_STRICTATIME);
1da177e4 2179
1da177e4 2180 if (flags & MS_REMOUNT)
2d92ab3c 2181 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2182 data_page);
2183 else if (flags & MS_BIND)
2d92ab3c 2184 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2185 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2186 retval = do_change_type(&path, flags);
1da177e4 2187 else if (flags & MS_MOVE)
2d92ab3c 2188 retval = do_move_mount(&path, dev_name);
1da177e4 2189 else
2d92ab3c 2190 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2191 dev_name, data_page);
2192dput_out:
2d92ab3c 2193 path_put(&path);
1da177e4
LT
2194 return retval;
2195}
2196
cf8d2c11
TM
2197static struct mnt_namespace *alloc_mnt_ns(void)
2198{
2199 struct mnt_namespace *new_ns;
2200
2201 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2202 if (!new_ns)
2203 return ERR_PTR(-ENOMEM);
2204 atomic_set(&new_ns->count, 1);
2205 new_ns->root = NULL;
2206 INIT_LIST_HEAD(&new_ns->list);
2207 init_waitqueue_head(&new_ns->poll);
2208 new_ns->event = 0;
2209 return new_ns;
2210}
2211
f03c6599
AV
2212void mnt_make_longterm(struct vfsmount *mnt)
2213{
83adc753 2214 __mnt_make_longterm(real_mount(mnt));
f03c6599
AV
2215}
2216
83adc753 2217void mnt_make_shortterm(struct vfsmount *m)
f03c6599 2218{
7e3d0eb0 2219#ifdef CONFIG_SMP
83adc753 2220 struct mount *mnt = real_mount(m);
68e8a9fe 2221 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
f03c6599 2222 return;
962830df 2223 br_write_lock(&vfsmount_lock);
68e8a9fe 2224 atomic_dec(&mnt->mnt_longterm);
962830df 2225 br_write_unlock(&vfsmount_lock);
7e3d0eb0 2226#endif
f03c6599
AV
2227}
2228
741a2951
JD
2229/*
2230 * Allocate a new namespace structure and populate it with contents
2231 * copied from the namespace of the passed in task structure.
2232 */
e3222c4e 2233static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2234 struct fs_struct *fs)
1da177e4 2235{
6b3286ed 2236 struct mnt_namespace *new_ns;
7f2da1e7 2237 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2238 struct mount *p, *q;
be08d6d2 2239 struct mount *old = mnt_ns->root;
cb338d06 2240 struct mount *new;
1da177e4 2241
cf8d2c11
TM
2242 new_ns = alloc_mnt_ns();
2243 if (IS_ERR(new_ns))
2244 return new_ns;
1da177e4 2245
390c6843 2246 down_write(&namespace_sem);
1da177e4 2247 /* First pass: copy the tree topology */
909b0a88 2248 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
cb338d06 2249 if (!new) {
390c6843 2250 up_write(&namespace_sem);
1da177e4 2251 kfree(new_ns);
5cc4a034 2252 return ERR_PTR(-ENOMEM);
1da177e4 2253 }
be08d6d2 2254 new_ns->root = new;
962830df 2255 br_write_lock(&vfsmount_lock);
1a4eeaf2 2256 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2257 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2258
2259 /*
2260 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2261 * as belonging to new namespace. We have already acquired a private
2262 * fs_struct, so tsk->fs->lock is not needed.
2263 */
909b0a88 2264 p = old;
cb338d06 2265 q = new;
1da177e4 2266 while (p) {
143c8c91 2267 q->mnt_ns = new_ns;
83adc753 2268 __mnt_make_longterm(q);
1da177e4 2269 if (fs) {
315fc83e
AV
2270 if (&p->mnt == fs->root.mnt) {
2271 fs->root.mnt = mntget(&q->mnt);
83adc753 2272 __mnt_make_longterm(q);
315fc83e
AV
2273 mnt_make_shortterm(&p->mnt);
2274 rootmnt = &p->mnt;
1da177e4 2275 }
315fc83e
AV
2276 if (&p->mnt == fs->pwd.mnt) {
2277 fs->pwd.mnt = mntget(&q->mnt);
83adc753 2278 __mnt_make_longterm(q);
315fc83e
AV
2279 mnt_make_shortterm(&p->mnt);
2280 pwdmnt = &p->mnt;
1da177e4 2281 }
1da177e4 2282 }
909b0a88
AV
2283 p = next_mnt(p, old);
2284 q = next_mnt(q, new);
1da177e4 2285 }
390c6843 2286 up_write(&namespace_sem);
1da177e4 2287
1da177e4 2288 if (rootmnt)
f03c6599 2289 mntput(rootmnt);
1da177e4 2290 if (pwdmnt)
f03c6599 2291 mntput(pwdmnt);
1da177e4 2292
741a2951
JD
2293 return new_ns;
2294}
2295
213dd266 2296struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2297 struct fs_struct *new_fs)
741a2951 2298{
6b3286ed 2299 struct mnt_namespace *new_ns;
741a2951 2300
e3222c4e 2301 BUG_ON(!ns);
6b3286ed 2302 get_mnt_ns(ns);
741a2951
JD
2303
2304 if (!(flags & CLONE_NEWNS))
e3222c4e 2305 return ns;
741a2951 2306
e3222c4e 2307 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2308
6b3286ed 2309 put_mnt_ns(ns);
e3222c4e 2310 return new_ns;
1da177e4
LT
2311}
2312
cf8d2c11
TM
2313/**
2314 * create_mnt_ns - creates a private namespace and adds a root filesystem
2315 * @mnt: pointer to the new root filesystem mountpoint
2316 */
1a4eeaf2 2317static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2318{
1a4eeaf2 2319 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2320 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2321 struct mount *mnt = real_mount(m);
2322 mnt->mnt_ns = new_ns;
2323 __mnt_make_longterm(mnt);
be08d6d2 2324 new_ns->root = mnt;
1a4eeaf2 2325 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2326 } else {
1a4eeaf2 2327 mntput(m);
cf8d2c11
TM
2328 }
2329 return new_ns;
2330}
cf8d2c11 2331
ea441d11
AV
2332struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2333{
2334 struct mnt_namespace *ns;
d31da0f0 2335 struct super_block *s;
ea441d11
AV
2336 struct path path;
2337 int err;
2338
2339 ns = create_mnt_ns(mnt);
2340 if (IS_ERR(ns))
2341 return ERR_CAST(ns);
2342
2343 err = vfs_path_lookup(mnt->mnt_root, mnt,
2344 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2345
2346 put_mnt_ns(ns);
2347
2348 if (err)
2349 return ERR_PTR(err);
2350
2351 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2352 s = path.mnt->mnt_sb;
2353 atomic_inc(&s->s_active);
ea441d11
AV
2354 mntput(path.mnt);
2355 /* lock the sucker */
d31da0f0 2356 down_write(&s->s_umount);
ea441d11
AV
2357 /* ... and return the root of (sub)tree on it */
2358 return path.dentry;
2359}
2360EXPORT_SYMBOL(mount_subtree);
2361
bdc480e3
HC
2362SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2363 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2364{
eca6f534
VN
2365 int ret;
2366 char *kernel_type;
2367 char *kernel_dir;
2368 char *kernel_dev;
1da177e4 2369 unsigned long data_page;
1da177e4 2370
eca6f534
VN
2371 ret = copy_mount_string(type, &kernel_type);
2372 if (ret < 0)
2373 goto out_type;
1da177e4 2374
eca6f534
VN
2375 kernel_dir = getname(dir_name);
2376 if (IS_ERR(kernel_dir)) {
2377 ret = PTR_ERR(kernel_dir);
2378 goto out_dir;
2379 }
1da177e4 2380
eca6f534
VN
2381 ret = copy_mount_string(dev_name, &kernel_dev);
2382 if (ret < 0)
2383 goto out_dev;
1da177e4 2384
eca6f534
VN
2385 ret = copy_mount_options(data, &data_page);
2386 if (ret < 0)
2387 goto out_data;
1da177e4 2388
eca6f534
VN
2389 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2390 (void *) data_page);
1da177e4 2391
eca6f534
VN
2392 free_page(data_page);
2393out_data:
2394 kfree(kernel_dev);
2395out_dev:
2396 putname(kernel_dir);
2397out_dir:
2398 kfree(kernel_type);
2399out_type:
2400 return ret;
1da177e4
LT
2401}
2402
afac7cba
AV
2403/*
2404 * Return true if path is reachable from root
2405 *
2406 * namespace_sem or vfsmount_lock is held
2407 */
643822b4 2408bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2409 const struct path *root)
2410{
643822b4 2411 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2412 dentry = mnt->mnt_mountpoint;
0714a533 2413 mnt = mnt->mnt_parent;
afac7cba 2414 }
643822b4 2415 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2416}
2417
2418int path_is_under(struct path *path1, struct path *path2)
2419{
2420 int res;
962830df 2421 br_read_lock(&vfsmount_lock);
643822b4 2422 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2423 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2424 return res;
2425}
2426EXPORT_SYMBOL(path_is_under);
2427
1da177e4
LT
2428/*
2429 * pivot_root Semantics:
2430 * Moves the root file system of the current process to the directory put_old,
2431 * makes new_root as the new root file system of the current process, and sets
2432 * root/cwd of all processes which had them on the current root to new_root.
2433 *
2434 * Restrictions:
2435 * The new_root and put_old must be directories, and must not be on the
2436 * same file system as the current process root. The put_old must be
2437 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2438 * pointed to by put_old must yield the same directory as new_root. No other
2439 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2440 *
4a0d11fa
NB
2441 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2442 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2443 * in this situation.
2444 *
1da177e4
LT
2445 * Notes:
2446 * - we don't move root/cwd if they are not at the root (reason: if something
2447 * cared enough to change them, it's probably wrong to force them elsewhere)
2448 * - it's okay to pick a root that isn't the root of a file system, e.g.
2449 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2450 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2451 * first.
2452 */
3480b257
HC
2453SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2454 const char __user *, put_old)
1da177e4 2455{
2d8f3038 2456 struct path new, old, parent_path, root_parent, root;
419148da 2457 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2458 int error;
2459
2460 if (!capable(CAP_SYS_ADMIN))
2461 return -EPERM;
2462
2d8f3038 2463 error = user_path_dir(new_root, &new);
1da177e4
LT
2464 if (error)
2465 goto out0;
1da177e4 2466
2d8f3038 2467 error = user_path_dir(put_old, &old);
1da177e4
LT
2468 if (error)
2469 goto out1;
2470
2d8f3038 2471 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2472 if (error)
2473 goto out2;
1da177e4 2474
f7ad3c6b 2475 get_fs_root(current->fs, &root);
b12cea91
AV
2476 error = lock_mount(&old);
2477 if (error)
2478 goto out3;
2479
1da177e4 2480 error = -EINVAL;
419148da
AV
2481 new_mnt = real_mount(new.mnt);
2482 root_mnt = real_mount(root.mnt);
fc7be130
AV
2483 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2484 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2485 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2486 goto out4;
143c8c91 2487 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2488 goto out4;
1da177e4 2489 error = -ENOENT;
f3da392e 2490 if (d_unlinked(new.dentry))
b12cea91 2491 goto out4;
f3da392e 2492 if (d_unlinked(old.dentry))
b12cea91 2493 goto out4;
1da177e4 2494 error = -EBUSY;
2d8f3038
AV
2495 if (new.mnt == root.mnt ||
2496 old.mnt == root.mnt)
b12cea91 2497 goto out4; /* loop, on the same file system */
1da177e4 2498 error = -EINVAL;
8c3ee42e 2499 if (root.mnt->mnt_root != root.dentry)
b12cea91 2500 goto out4; /* not a mountpoint */
676da58d 2501 if (!mnt_has_parent(root_mnt))
b12cea91 2502 goto out4; /* not attached */
2d8f3038 2503 if (new.mnt->mnt_root != new.dentry)
b12cea91 2504 goto out4; /* not a mountpoint */
676da58d 2505 if (!mnt_has_parent(new_mnt))
b12cea91 2506 goto out4; /* not attached */
4ac91378 2507 /* make sure we can reach put_old from new_root */
643822b4 2508 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2509 goto out4;
962830df 2510 br_write_lock(&vfsmount_lock);
419148da
AV
2511 detach_mnt(new_mnt, &parent_path);
2512 detach_mnt(root_mnt, &root_parent);
4ac91378 2513 /* mount old root on put_old */
419148da 2514 attach_mnt(root_mnt, &old);
4ac91378 2515 /* mount new_root on / */
419148da 2516 attach_mnt(new_mnt, &root_parent);
6b3286ed 2517 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2518 br_write_unlock(&vfsmount_lock);
2d8f3038 2519 chroot_fs_refs(&root, &new);
1da177e4 2520 error = 0;
b12cea91
AV
2521out4:
2522 unlock_mount(&old);
2523 if (!error) {
2524 path_put(&root_parent);
2525 path_put(&parent_path);
2526 }
2527out3:
8c3ee42e 2528 path_put(&root);
b12cea91 2529out2:
2d8f3038 2530 path_put(&old);
1da177e4 2531out1:
2d8f3038 2532 path_put(&new);
1da177e4 2533out0:
1da177e4 2534 return error;
1da177e4
LT
2535}
2536
2537static void __init init_mount_tree(void)
2538{
2539 struct vfsmount *mnt;
6b3286ed 2540 struct mnt_namespace *ns;
ac748a09 2541 struct path root;
1da177e4
LT
2542
2543 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2544 if (IS_ERR(mnt))
2545 panic("Can't create rootfs");
b3e19d92 2546
3b22edc5
TM
2547 ns = create_mnt_ns(mnt);
2548 if (IS_ERR(ns))
1da177e4 2549 panic("Can't allocate initial namespace");
6b3286ed
KK
2550
2551 init_task.nsproxy->mnt_ns = ns;
2552 get_mnt_ns(ns);
2553
be08d6d2
AV
2554 root.mnt = mnt;
2555 root.dentry = mnt->mnt_root;
ac748a09
JB
2556
2557 set_fs_pwd(current->fs, &root);
2558 set_fs_root(current->fs, &root);
1da177e4
LT
2559}
2560
74bf17cf 2561void __init mnt_init(void)
1da177e4 2562{
13f14b4d 2563 unsigned u;
15a67dd8 2564 int err;
1da177e4 2565
390c6843
RP
2566 init_rwsem(&namespace_sem);
2567
7d6fec45 2568 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2569 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2570
b58fed8b 2571 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2572
2573 if (!mount_hashtable)
2574 panic("Failed to allocate mount hash table\n");
2575
80cdc6da 2576 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2577
2578 for (u = 0; u < HASH_SIZE; u++)
2579 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2580
962830df 2581 br_lock_init(&vfsmount_lock);
99b7db7b 2582
15a67dd8
RD
2583 err = sysfs_init();
2584 if (err)
2585 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2586 __func__, err);
00d26666
GKH
2587 fs_kobj = kobject_create_and_add("fs", NULL);
2588 if (!fs_kobj)
8e24eea7 2589 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2590 init_rootfs();
2591 init_mount_tree();
2592}
2593
616511d0 2594void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2595{
70fbcdf4 2596 LIST_HEAD(umount_list);
616511d0 2597
d498b25a 2598 if (!atomic_dec_and_test(&ns->count))
616511d0 2599 return;
390c6843 2600 down_write(&namespace_sem);
962830df 2601 br_write_lock(&vfsmount_lock);
be08d6d2 2602 umount_tree(ns->root, 0, &umount_list);
962830df 2603 br_write_unlock(&vfsmount_lock);
390c6843 2604 up_write(&namespace_sem);
70fbcdf4 2605 release_mounts(&umount_list);
6b3286ed 2606 kfree(ns);
1da177e4 2607}
9d412a43
AV
2608
2609struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2610{
423e0ab0
TC
2611 struct vfsmount *mnt;
2612 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2613 if (!IS_ERR(mnt)) {
2614 /*
2615 * it is a longterm mount, don't release mnt until
2616 * we unmount before file sys is unregistered
2617 */
2618 mnt_make_longterm(mnt);
2619 }
2620 return mnt;
9d412a43
AV
2621}
2622EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2623
2624void kern_unmount(struct vfsmount *mnt)
2625{
2626 /* release long term mount so mount point can be released */
2627 if (!IS_ERR_OR_NULL(mnt)) {
2628 mnt_make_shortterm(mnt);
2629 mntput(mnt);
2630 }
2631}
2632EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2633
2634bool our_mnt(struct vfsmount *mnt)
2635{
143c8c91 2636 return check_mnt(real_mount(mnt));
02125a82 2637}