Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8 19#include <linux/acct.h> /* acct_auto_close_mnt */
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
228#ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 230#endif
1da177e4 231 }
c63181e6 232 return mnt;
88b38782 233
d3ef3d73 234#ifdef CONFIG_SMP
235out_free_devname:
c63181e6 236 kfree(mnt->mnt_devname);
d3ef3d73 237#endif
88b38782 238out_free_id:
c63181e6 239 mnt_free_id(mnt);
88b38782 240out_free_cache:
c63181e6 241 kmem_cache_free(mnt_cache, mnt);
88b38782 242 return NULL;
1da177e4
LT
243}
244
3d733633
DH
245/*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253/*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264int __mnt_is_readonly(struct vfsmount *mnt)
265{
2e4b7fcd
DH
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
3d733633
DH
271}
272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
83adc753 274static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 275{
276#ifdef CONFIG_SMP
68e8a9fe 277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 278#else
68e8a9fe 279 mnt->mnt_writers++;
d3ef3d73 280#endif
281}
3d733633 282
83adc753 283static inline void mnt_dec_writers(struct mount *mnt)
3d733633 284{
d3ef3d73 285#ifdef CONFIG_SMP
68e8a9fe 286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 287#else
68e8a9fe 288 mnt->mnt_writers--;
d3ef3d73 289#endif
3d733633 290}
3d733633 291
83adc753 292static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 293{
d3ef3d73 294#ifdef CONFIG_SMP
295 unsigned int count = 0;
3d733633 296 int cpu;
3d733633
DH
297
298 for_each_possible_cpu(cpu) {
68e8a9fe 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 300 }
3d733633 301
d3ef3d73 302 return count;
303#else
304 return mnt->mnt_writers;
305#endif
3d733633
DH
306}
307
4ed5e82f
MS
308static int mnt_is_readonly(struct vfsmount *mnt)
309{
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315}
316
8366025e 317/*
eb04c282
JK
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
8366025e
DH
322 */
323/**
eb04c282 324 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 325 * @m: the mount on which to take a write
8366025e 326 *
eb04c282
JK
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
8366025e 332 */
eb04c282 333int __mnt_want_write(struct vfsmount *m)
8366025e 334{
83adc753 335 struct mount *mnt = real_mount(m);
3d733633 336 int ret = 0;
3d733633 337
d3ef3d73 338 preempt_disable();
c6653a83 339 mnt_inc_writers(mnt);
d3ef3d73 340 /*
c6653a83 341 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
1e75529e 346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
4ed5e82f 354 if (mnt_is_readonly(m)) {
c6653a83 355 mnt_dec_writers(mnt);
3d733633 356 ret = -EROFS;
3d733633 357 }
d3ef3d73 358 preempt_enable();
eb04c282
JK
359
360 return ret;
361}
362
363/**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372int mnt_want_write(struct vfsmount *m)
373{
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
3d733633 380 return ret;
8366025e
DH
381}
382EXPORT_SYMBOL_GPL(mnt_want_write);
383
96029c4e 384/**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396int mnt_clone_write(struct vfsmount *mnt)
397{
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
83adc753 402 mnt_inc_writers(real_mount(mnt));
96029c4e 403 preempt_enable();
404 return 0;
405}
406EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408/**
eb04c282 409 * __mnt_want_write_file - get write access to a file's mount
96029c4e 410 * @file: the file who's mount on which to take a write
411 *
eb04c282 412 * This is like __mnt_want_write, but it takes a file and can
96029c4e 413 * do some optimisations if the file is open for write already
414 */
eb04c282 415int __mnt_want_write_file(struct file *file)
96029c4e 416{
83f936c7 417 if (!(file->f_mode & FMODE_WRITER))
eb04c282 418 return __mnt_want_write(file->f_path.mnt);
96029c4e 419 else
420 return mnt_clone_write(file->f_path.mnt);
421}
eb04c282
JK
422
423/**
424 * mnt_want_write_file - get write access to a file's mount
425 * @file: the file who's mount on which to take a write
426 *
427 * This is like mnt_want_write, but it takes a file and can
428 * do some optimisations if the file is open for write already
429 */
430int mnt_want_write_file(struct file *file)
431{
432 int ret;
433
434 sb_start_write(file->f_path.mnt->mnt_sb);
435 ret = __mnt_want_write_file(file);
436 if (ret)
437 sb_end_write(file->f_path.mnt->mnt_sb);
438 return ret;
439}
96029c4e 440EXPORT_SYMBOL_GPL(mnt_want_write_file);
441
8366025e 442/**
eb04c282 443 * __mnt_drop_write - give up write access to a mount
8366025e
DH
444 * @mnt: the mount on which to give up write access
445 *
446 * Tells the low-level filesystem that we are done
447 * performing writes to it. Must be matched with
eb04c282 448 * __mnt_want_write() call above.
8366025e 449 */
eb04c282 450void __mnt_drop_write(struct vfsmount *mnt)
8366025e 451{
d3ef3d73 452 preempt_disable();
83adc753 453 mnt_dec_writers(real_mount(mnt));
d3ef3d73 454 preempt_enable();
8366025e 455}
eb04c282
JK
456
457/**
458 * mnt_drop_write - give up write access to a mount
459 * @mnt: the mount on which to give up write access
460 *
461 * Tells the low-level filesystem that we are done performing writes to it and
462 * also allows filesystem to be frozen again. Must be matched with
463 * mnt_want_write() call above.
464 */
465void mnt_drop_write(struct vfsmount *mnt)
466{
467 __mnt_drop_write(mnt);
468 sb_end_write(mnt->mnt_sb);
469}
8366025e
DH
470EXPORT_SYMBOL_GPL(mnt_drop_write);
471
eb04c282
JK
472void __mnt_drop_write_file(struct file *file)
473{
474 __mnt_drop_write(file->f_path.mnt);
475}
476
2a79f17e
AV
477void mnt_drop_write_file(struct file *file)
478{
479 mnt_drop_write(file->f_path.mnt);
480}
481EXPORT_SYMBOL(mnt_drop_write_file);
482
83adc753 483static int mnt_make_readonly(struct mount *mnt)
8366025e 484{
3d733633
DH
485 int ret = 0;
486
719ea2fb 487 lock_mount_hash();
83adc753 488 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 489 /*
d3ef3d73 490 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
491 * should be visible before we do.
3d733633 492 */
d3ef3d73 493 smp_mb();
494
3d733633 495 /*
d3ef3d73 496 * With writers on hold, if this value is zero, then there are
497 * definitely no active writers (although held writers may subsequently
498 * increment the count, they'll have to wait, and decrement it after
499 * seeing MNT_READONLY).
500 *
501 * It is OK to have counter incremented on one CPU and decremented on
502 * another: the sum will add up correctly. The danger would be when we
503 * sum up each counter, if we read a counter before it is incremented,
504 * but then read another CPU's count which it has been subsequently
505 * decremented from -- we would see more decrements than we should.
506 * MNT_WRITE_HOLD protects against this scenario, because
507 * mnt_want_write first increments count, then smp_mb, then spins on
508 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
509 * we're counting up here.
3d733633 510 */
c6653a83 511 if (mnt_get_writers(mnt) > 0)
d3ef3d73 512 ret = -EBUSY;
513 else
83adc753 514 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 515 /*
516 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
517 * that become unheld will see MNT_READONLY.
518 */
519 smp_wmb();
83adc753 520 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 521 unlock_mount_hash();
3d733633 522 return ret;
8366025e 523}
8366025e 524
83adc753 525static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 526{
719ea2fb 527 lock_mount_hash();
83adc753 528 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 529 unlock_mount_hash();
2e4b7fcd
DH
530}
531
4ed5e82f
MS
532int sb_prepare_remount_readonly(struct super_block *sb)
533{
534 struct mount *mnt;
535 int err = 0;
536
8e8b8796
MS
537 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
538 if (atomic_long_read(&sb->s_remove_count))
539 return -EBUSY;
540
719ea2fb 541 lock_mount_hash();
4ed5e82f
MS
542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
544 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
545 smp_mb();
546 if (mnt_get_writers(mnt) > 0) {
547 err = -EBUSY;
548 break;
549 }
550 }
551 }
8e8b8796
MS
552 if (!err && atomic_long_read(&sb->s_remove_count))
553 err = -EBUSY;
554
4ed5e82f
MS
555 if (!err) {
556 sb->s_readonly_remount = 1;
557 smp_wmb();
558 }
559 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
560 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
561 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
562 }
719ea2fb 563 unlock_mount_hash();
4ed5e82f
MS
564
565 return err;
566}
567
b105e270 568static void free_vfsmnt(struct mount *mnt)
1da177e4 569{
52ba1621 570 kfree(mnt->mnt_devname);
d3ef3d73 571#ifdef CONFIG_SMP
68e8a9fe 572 free_percpu(mnt->mnt_pcp);
d3ef3d73 573#endif
b105e270 574 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
575}
576
8ffcb32e
DH
577static void delayed_free_vfsmnt(struct rcu_head *head)
578{
579 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
580}
581
48a066e7
AV
582/* call under rcu_read_lock */
583bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
584{
585 struct mount *mnt;
586 if (read_seqretry(&mount_lock, seq))
587 return false;
588 if (bastard == NULL)
589 return true;
590 mnt = real_mount(bastard);
591 mnt_add_count(mnt, 1);
592 if (likely(!read_seqretry(&mount_lock, seq)))
593 return true;
594 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
595 mnt_add_count(mnt, -1);
596 return false;
597 }
598 rcu_read_unlock();
599 mntput(bastard);
600 rcu_read_lock();
601 return false;
602}
603
1da177e4 604/*
474279dc 605 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 606 * call under rcu_read_lock()
1da177e4 607 */
474279dc 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 609{
38129a13 610 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
611 struct mount *p;
612
38129a13 613 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
619/*
620 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 621 * mount_lock must be held.
474279dc
AV
622 */
623struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
624{
38129a13
AV
625 struct mount *p, *res;
626 res = p = __lookup_mnt(mnt, dentry);
627 if (!p)
628 goto out;
629 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
630 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
631 break;
632 res = p;
633 }
38129a13 634out:
1d6a32ac 635 return res;
1da177e4
LT
636}
637
a05964f3 638/*
f015f126
DH
639 * lookup_mnt - Return the first child mount mounted at path
640 *
641 * "First" means first mounted chronologically. If you create the
642 * following mounts:
643 *
644 * mount /dev/sda1 /mnt
645 * mount /dev/sda2 /mnt
646 * mount /dev/sda3 /mnt
647 *
648 * Then lookup_mnt() on the base /mnt dentry in the root mount will
649 * return successively the root dentry and vfsmount of /dev/sda1, then
650 * /dev/sda2, then /dev/sda3, then NULL.
651 *
652 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 653 */
1c755af4 654struct vfsmount *lookup_mnt(struct path *path)
a05964f3 655{
c7105365 656 struct mount *child_mnt;
48a066e7
AV
657 struct vfsmount *m;
658 unsigned seq;
99b7db7b 659
48a066e7
AV
660 rcu_read_lock();
661 do {
662 seq = read_seqbegin(&mount_lock);
663 child_mnt = __lookup_mnt(path->mnt, path->dentry);
664 m = child_mnt ? &child_mnt->mnt : NULL;
665 } while (!legitimize_mnt(m, seq));
666 rcu_read_unlock();
667 return m;
a05964f3
RP
668}
669
84d17192
AV
670static struct mountpoint *new_mountpoint(struct dentry *dentry)
671{
0818bf27 672 struct hlist_head *chain = mp_hash(dentry);
84d17192 673 struct mountpoint *mp;
eed81007 674 int ret;
84d17192 675
0818bf27 676 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
677 if (mp->m_dentry == dentry) {
678 /* might be worth a WARN_ON() */
679 if (d_unlinked(dentry))
680 return ERR_PTR(-ENOENT);
681 mp->m_count++;
682 return mp;
683 }
684 }
685
686 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
687 if (!mp)
688 return ERR_PTR(-ENOMEM);
689
eed81007
MS
690 ret = d_set_mounted(dentry);
691 if (ret) {
84d17192 692 kfree(mp);
eed81007 693 return ERR_PTR(ret);
84d17192 694 }
eed81007 695
84d17192
AV
696 mp->m_dentry = dentry;
697 mp->m_count = 1;
0818bf27 698 hlist_add_head(&mp->m_hash, chain);
84d17192
AV
699 return mp;
700}
701
702static void put_mountpoint(struct mountpoint *mp)
703{
704 if (!--mp->m_count) {
705 struct dentry *dentry = mp->m_dentry;
706 spin_lock(&dentry->d_lock);
707 dentry->d_flags &= ~DCACHE_MOUNTED;
708 spin_unlock(&dentry->d_lock);
0818bf27 709 hlist_del(&mp->m_hash);
84d17192
AV
710 kfree(mp);
711 }
712}
713
143c8c91 714static inline int check_mnt(struct mount *mnt)
1da177e4 715{
6b3286ed 716 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
717}
718
99b7db7b
NP
719/*
720 * vfsmount lock must be held for write
721 */
6b3286ed 722static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
723{
724 if (ns) {
725 ns->event = ++event;
726 wake_up_interruptible(&ns->poll);
727 }
728}
729
99b7db7b
NP
730/*
731 * vfsmount lock must be held for write
732 */
6b3286ed 733static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
734{
735 if (ns && ns->event != event) {
736 ns->event = event;
737 wake_up_interruptible(&ns->poll);
738 }
739}
740
99b7db7b
NP
741/*
742 * vfsmount lock must be held for write
743 */
419148da
AV
744static void detach_mnt(struct mount *mnt, struct path *old_path)
745{
a73324da 746 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
747 old_path->mnt = &mnt->mnt_parent->mnt;
748 mnt->mnt_parent = mnt;
a73324da 749 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 750 list_del_init(&mnt->mnt_child);
38129a13 751 hlist_del_init_rcu(&mnt->mnt_hash);
84d17192
AV
752 put_mountpoint(mnt->mnt_mp);
753 mnt->mnt_mp = NULL;
1da177e4
LT
754}
755
99b7db7b
NP
756/*
757 * vfsmount lock must be held for write
758 */
84d17192
AV
759void mnt_set_mountpoint(struct mount *mnt,
760 struct mountpoint *mp,
44d964d6 761 struct mount *child_mnt)
b90fa9ae 762{
84d17192 763 mp->m_count++;
3a2393d7 764 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 765 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 766 child_mnt->mnt_parent = mnt;
84d17192 767 child_mnt->mnt_mp = mp;
b90fa9ae
RP
768}
769
99b7db7b
NP
770/*
771 * vfsmount lock must be held for write
772 */
84d17192
AV
773static void attach_mnt(struct mount *mnt,
774 struct mount *parent,
775 struct mountpoint *mp)
1da177e4 776{
84d17192 777 mnt_set_mountpoint(parent, mp, mnt);
38129a13 778 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 779 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
780}
781
782/*
99b7db7b 783 * vfsmount lock must be held for write
b90fa9ae 784 */
1d6a32ac 785static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 786{
0714a533 787 struct mount *parent = mnt->mnt_parent;
83adc753 788 struct mount *m;
b90fa9ae 789 LIST_HEAD(head);
143c8c91 790 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 791
0714a533 792 BUG_ON(parent == mnt);
b90fa9ae 793
1a4eeaf2 794 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 795 list_for_each_entry(m, &head, mnt_list)
143c8c91 796 m->mnt_ns = n;
f03c6599 797
b90fa9ae
RP
798 list_splice(&head, n->list.prev);
799
1d6a32ac 800 if (shadows)
1d023284 801 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
1d6a32ac 802 else
38129a13 803 hlist_add_head_rcu(&mnt->mnt_hash,
0818bf27 804 m_hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 805 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 806 touch_mnt_namespace(n);
1da177e4
LT
807}
808
909b0a88 809static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 810{
6b41d536
AV
811 struct list_head *next = p->mnt_mounts.next;
812 if (next == &p->mnt_mounts) {
1da177e4 813 while (1) {
909b0a88 814 if (p == root)
1da177e4 815 return NULL;
6b41d536
AV
816 next = p->mnt_child.next;
817 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 818 break;
0714a533 819 p = p->mnt_parent;
1da177e4
LT
820 }
821 }
6b41d536 822 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
823}
824
315fc83e 825static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 826{
6b41d536
AV
827 struct list_head *prev = p->mnt_mounts.prev;
828 while (prev != &p->mnt_mounts) {
829 p = list_entry(prev, struct mount, mnt_child);
830 prev = p->mnt_mounts.prev;
9676f0c6
RP
831 }
832 return p;
833}
834
9d412a43
AV
835struct vfsmount *
836vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
837{
b105e270 838 struct mount *mnt;
9d412a43
AV
839 struct dentry *root;
840
841 if (!type)
842 return ERR_PTR(-ENODEV);
843
844 mnt = alloc_vfsmnt(name);
845 if (!mnt)
846 return ERR_PTR(-ENOMEM);
847
848 if (flags & MS_KERNMOUNT)
b105e270 849 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
850
851 root = mount_fs(type, flags, name, data);
852 if (IS_ERR(root)) {
8ffcb32e 853 mnt_free_id(mnt);
9d412a43
AV
854 free_vfsmnt(mnt);
855 return ERR_CAST(root);
856 }
857
b105e270
AV
858 mnt->mnt.mnt_root = root;
859 mnt->mnt.mnt_sb = root->d_sb;
a73324da 860 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 861 mnt->mnt_parent = mnt;
719ea2fb 862 lock_mount_hash();
39f7c4db 863 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 864 unlock_mount_hash();
b105e270 865 return &mnt->mnt;
9d412a43
AV
866}
867EXPORT_SYMBOL_GPL(vfs_kern_mount);
868
87129cc0 869static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 870 int flag)
1da177e4 871{
87129cc0 872 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
873 struct mount *mnt;
874 int err;
1da177e4 875
be34d1a3
DH
876 mnt = alloc_vfsmnt(old->mnt_devname);
877 if (!mnt)
878 return ERR_PTR(-ENOMEM);
719f5d7f 879
7a472ef4 880 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
881 mnt->mnt_group_id = 0; /* not a peer of original */
882 else
883 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 884
be34d1a3
DH
885 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
886 err = mnt_alloc_group_id(mnt);
887 if (err)
888 goto out_free;
1da177e4 889 }
be34d1a3 890
f2ebb3a9 891 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 892 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
893 if (flag & CL_UNPRIVILEGED) {
894 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
895
896 if (mnt->mnt.mnt_flags & MNT_READONLY)
897 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
898
899 if (mnt->mnt.mnt_flags & MNT_NODEV)
900 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
901
902 if (mnt->mnt.mnt_flags & MNT_NOSUID)
903 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
904
905 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
906 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
907 }
132c94e3 908
5ff9d8a6
EB
909 /* Don't allow unprivileged users to reveal what is under a mount */
910 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
911 mnt->mnt.mnt_flags |= MNT_LOCKED;
912
be34d1a3
DH
913 atomic_inc(&sb->s_active);
914 mnt->mnt.mnt_sb = sb;
915 mnt->mnt.mnt_root = dget(root);
916 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
917 mnt->mnt_parent = mnt;
719ea2fb 918 lock_mount_hash();
be34d1a3 919 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 920 unlock_mount_hash();
be34d1a3 921
7a472ef4
EB
922 if ((flag & CL_SLAVE) ||
923 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
924 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
925 mnt->mnt_master = old;
926 CLEAR_MNT_SHARED(mnt);
927 } else if (!(flag & CL_PRIVATE)) {
928 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
929 list_add(&mnt->mnt_share, &old->mnt_share);
930 if (IS_MNT_SLAVE(old))
931 list_add(&mnt->mnt_slave, &old->mnt_slave);
932 mnt->mnt_master = old->mnt_master;
933 }
934 if (flag & CL_MAKE_SHARED)
935 set_mnt_shared(mnt);
936
937 /* stick the duplicate mount on the same expiry list
938 * as the original if that was on one */
939 if (flag & CL_EXPIRE) {
940 if (!list_empty(&old->mnt_expire))
941 list_add(&mnt->mnt_expire, &old->mnt_expire);
942 }
943
cb338d06 944 return mnt;
719f5d7f
MS
945
946 out_free:
8ffcb32e 947 mnt_free_id(mnt);
719f5d7f 948 free_vfsmnt(mnt);
be34d1a3 949 return ERR_PTR(err);
1da177e4
LT
950}
951
900148dc 952static void mntput_no_expire(struct mount *mnt)
b3e19d92 953{
b3e19d92 954put_again:
48a066e7
AV
955 rcu_read_lock();
956 mnt_add_count(mnt, -1);
957 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
958 rcu_read_unlock();
f03c6599 959 return;
b3e19d92 960 }
719ea2fb 961 lock_mount_hash();
b3e19d92 962 if (mnt_get_count(mnt)) {
48a066e7 963 rcu_read_unlock();
719ea2fb 964 unlock_mount_hash();
99b7db7b
NP
965 return;
966 }
863d684f
AV
967 if (unlikely(mnt->mnt_pinned)) {
968 mnt_add_count(mnt, mnt->mnt_pinned + 1);
969 mnt->mnt_pinned = 0;
48a066e7 970 rcu_read_unlock();
719ea2fb 971 unlock_mount_hash();
900148dc 972 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 973 goto put_again;
7b7b1ace 974 }
48a066e7
AV
975 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
976 rcu_read_unlock();
977 unlock_mount_hash();
978 return;
979 }
980 mnt->mnt.mnt_flags |= MNT_DOOMED;
981 rcu_read_unlock();
962830df 982
39f7c4db 983 list_del(&mnt->mnt_instance);
719ea2fb 984 unlock_mount_hash();
649a795a
AV
985
986 /*
987 * This probably indicates that somebody messed
988 * up a mnt_want/drop_write() pair. If this
989 * happens, the filesystem was probably unable
990 * to make r/w->r/o transitions.
991 */
992 /*
993 * The locking used to deal with mnt_count decrement provides barriers,
994 * so mnt_get_writers() below is safe.
995 */
996 WARN_ON(mnt_get_writers(mnt));
997 fsnotify_vfsmount_delete(&mnt->mnt);
998 dput(mnt->mnt.mnt_root);
999 deactivate_super(mnt->mnt.mnt_sb);
48a066e7 1000 mnt_free_id(mnt);
8ffcb32e 1001 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
b3e19d92 1002}
b3e19d92
NP
1003
1004void mntput(struct vfsmount *mnt)
1005{
1006 if (mnt) {
863d684f 1007 struct mount *m = real_mount(mnt);
b3e19d92 1008 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1009 if (unlikely(m->mnt_expiry_mark))
1010 m->mnt_expiry_mark = 0;
1011 mntput_no_expire(m);
b3e19d92
NP
1012 }
1013}
1014EXPORT_SYMBOL(mntput);
1015
1016struct vfsmount *mntget(struct vfsmount *mnt)
1017{
1018 if (mnt)
83adc753 1019 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1020 return mnt;
1021}
1022EXPORT_SYMBOL(mntget);
1023
7b7b1ace
AV
1024void mnt_pin(struct vfsmount *mnt)
1025{
719ea2fb 1026 lock_mount_hash();
863d684f 1027 real_mount(mnt)->mnt_pinned++;
719ea2fb 1028 unlock_mount_hash();
7b7b1ace 1029}
7b7b1ace
AV
1030EXPORT_SYMBOL(mnt_pin);
1031
863d684f 1032void mnt_unpin(struct vfsmount *m)
7b7b1ace 1033{
863d684f 1034 struct mount *mnt = real_mount(m);
719ea2fb 1035 lock_mount_hash();
7b7b1ace 1036 if (mnt->mnt_pinned) {
863d684f 1037 mnt_add_count(mnt, 1);
7b7b1ace
AV
1038 mnt->mnt_pinned--;
1039 }
719ea2fb 1040 unlock_mount_hash();
7b7b1ace 1041}
7b7b1ace 1042EXPORT_SYMBOL(mnt_unpin);
1da177e4 1043
b3b304a2
MS
1044static inline void mangle(struct seq_file *m, const char *s)
1045{
1046 seq_escape(m, s, " \t\n\\");
1047}
1048
1049/*
1050 * Simple .show_options callback for filesystems which don't want to
1051 * implement more complex mount option showing.
1052 *
1053 * See also save_mount_options().
1054 */
34c80b1d 1055int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1056{
2a32cebd
AV
1057 const char *options;
1058
1059 rcu_read_lock();
34c80b1d 1060 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1061
1062 if (options != NULL && options[0]) {
1063 seq_putc(m, ',');
1064 mangle(m, options);
1065 }
2a32cebd 1066 rcu_read_unlock();
b3b304a2
MS
1067
1068 return 0;
1069}
1070EXPORT_SYMBOL(generic_show_options);
1071
1072/*
1073 * If filesystem uses generic_show_options(), this function should be
1074 * called from the fill_super() callback.
1075 *
1076 * The .remount_fs callback usually needs to be handled in a special
1077 * way, to make sure, that previous options are not overwritten if the
1078 * remount fails.
1079 *
1080 * Also note, that if the filesystem's .remount_fs function doesn't
1081 * reset all options to their default value, but changes only newly
1082 * given options, then the displayed options will not reflect reality
1083 * any more.
1084 */
1085void save_mount_options(struct super_block *sb, char *options)
1086{
2a32cebd
AV
1087 BUG_ON(sb->s_options);
1088 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1089}
1090EXPORT_SYMBOL(save_mount_options);
1091
2a32cebd
AV
1092void replace_mount_options(struct super_block *sb, char *options)
1093{
1094 char *old = sb->s_options;
1095 rcu_assign_pointer(sb->s_options, options);
1096 if (old) {
1097 synchronize_rcu();
1098 kfree(old);
1099 }
1100}
1101EXPORT_SYMBOL(replace_mount_options);
1102
a1a2c409 1103#ifdef CONFIG_PROC_FS
0226f492 1104/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1105static void *m_start(struct seq_file *m, loff_t *pos)
1106{
6ce6e24e 1107 struct proc_mounts *p = proc_mounts(m);
1da177e4 1108
390c6843 1109 down_read(&namespace_sem);
c7999c36
AV
1110 if (p->cached_event == p->ns->event) {
1111 void *v = p->cached_mount;
1112 if (*pos == p->cached_index)
1113 return v;
1114 if (*pos == p->cached_index + 1) {
1115 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1116 return p->cached_mount = v;
1117 }
1118 }
1119
1120 p->cached_event = p->ns->event;
1121 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1122 p->cached_index = *pos;
1123 return p->cached_mount;
1da177e4
LT
1124}
1125
1126static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1127{
6ce6e24e 1128 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1129
c7999c36
AV
1130 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1131 p->cached_index = *pos;
1132 return p->cached_mount;
1da177e4
LT
1133}
1134
1135static void m_stop(struct seq_file *m, void *v)
1136{
390c6843 1137 up_read(&namespace_sem);
1da177e4
LT
1138}
1139
0226f492 1140static int m_show(struct seq_file *m, void *v)
2d4d4864 1141{
6ce6e24e 1142 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1143 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1144 return p->show(m, &r->mnt);
1da177e4
LT
1145}
1146
a1a2c409 1147const struct seq_operations mounts_op = {
1da177e4
LT
1148 .start = m_start,
1149 .next = m_next,
1150 .stop = m_stop,
0226f492 1151 .show = m_show,
b4629fe2 1152};
a1a2c409 1153#endif /* CONFIG_PROC_FS */
b4629fe2 1154
1da177e4
LT
1155/**
1156 * may_umount_tree - check if a mount tree is busy
1157 * @mnt: root of mount tree
1158 *
1159 * This is called to check if a tree of mounts has any
1160 * open files, pwds, chroots or sub mounts that are
1161 * busy.
1162 */
909b0a88 1163int may_umount_tree(struct vfsmount *m)
1da177e4 1164{
909b0a88 1165 struct mount *mnt = real_mount(m);
36341f64
RP
1166 int actual_refs = 0;
1167 int minimum_refs = 0;
315fc83e 1168 struct mount *p;
909b0a88 1169 BUG_ON(!m);
1da177e4 1170
b3e19d92 1171 /* write lock needed for mnt_get_count */
719ea2fb 1172 lock_mount_hash();
909b0a88 1173 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1174 actual_refs += mnt_get_count(p);
1da177e4 1175 minimum_refs += 2;
1da177e4 1176 }
719ea2fb 1177 unlock_mount_hash();
1da177e4
LT
1178
1179 if (actual_refs > minimum_refs)
e3474a8e 1180 return 0;
1da177e4 1181
e3474a8e 1182 return 1;
1da177e4
LT
1183}
1184
1185EXPORT_SYMBOL(may_umount_tree);
1186
1187/**
1188 * may_umount - check if a mount point is busy
1189 * @mnt: root of mount
1190 *
1191 * This is called to check if a mount point has any
1192 * open files, pwds, chroots or sub mounts. If the
1193 * mount has sub mounts this will return busy
1194 * regardless of whether the sub mounts are busy.
1195 *
1196 * Doesn't take quota and stuff into account. IOW, in some cases it will
1197 * give false negatives. The main reason why it's here is that we need
1198 * a non-destructive way to look for easily umountable filesystems.
1199 */
1200int may_umount(struct vfsmount *mnt)
1201{
e3474a8e 1202 int ret = 1;
8ad08d8a 1203 down_read(&namespace_sem);
719ea2fb 1204 lock_mount_hash();
1ab59738 1205 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1206 ret = 0;
719ea2fb 1207 unlock_mount_hash();
8ad08d8a 1208 up_read(&namespace_sem);
a05964f3 1209 return ret;
1da177e4
LT
1210}
1211
1212EXPORT_SYMBOL(may_umount);
1213
38129a13 1214static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1215
97216be0 1216static void namespace_unlock(void)
70fbcdf4 1217{
d5e50f74 1218 struct mount *mnt;
38129a13 1219 struct hlist_head head = unmounted;
97216be0 1220
38129a13 1221 if (likely(hlist_empty(&head))) {
97216be0
AV
1222 up_write(&namespace_sem);
1223 return;
1224 }
1225
38129a13
AV
1226 head.first->pprev = &head.first;
1227 INIT_HLIST_HEAD(&unmounted);
1228
97216be0
AV
1229 up_write(&namespace_sem);
1230
48a066e7
AV
1231 synchronize_rcu();
1232
38129a13
AV
1233 while (!hlist_empty(&head)) {
1234 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1235 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1236 if (mnt->mnt_ex_mountpoint.mnt)
1237 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1238 mntput(&mnt->mnt);
70fbcdf4
RP
1239 }
1240}
1241
97216be0 1242static inline void namespace_lock(void)
e3197d83 1243{
97216be0 1244 down_write(&namespace_sem);
e3197d83
AV
1245}
1246
99b7db7b 1247/*
48a066e7 1248 * mount_lock must be held
99b7db7b 1249 * namespace_sem must be held for write
48a066e7
AV
1250 * how = 0 => just this tree, don't propagate
1251 * how = 1 => propagate; we know that nobody else has reference to any victims
1252 * how = 2 => lazy umount
99b7db7b 1253 */
48a066e7 1254void umount_tree(struct mount *mnt, int how)
1da177e4 1255{
38129a13 1256 HLIST_HEAD(tmp_list);
315fc83e 1257 struct mount *p;
38129a13 1258 struct mount *last = NULL;
1da177e4 1259
38129a13
AV
1260 for (p = mnt; p; p = next_mnt(p, mnt)) {
1261 hlist_del_init_rcu(&p->mnt_hash);
1262 hlist_add_head(&p->mnt_hash, &tmp_list);
1263 }
1da177e4 1264
48a066e7 1265 if (how)
7b8a53fd 1266 propagate_umount(&tmp_list);
a05964f3 1267
38129a13 1268 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1269 list_del_init(&p->mnt_expire);
1a4eeaf2 1270 list_del_init(&p->mnt_list);
143c8c91
AV
1271 __touch_mnt_namespace(p->mnt_ns);
1272 p->mnt_ns = NULL;
48a066e7
AV
1273 if (how < 2)
1274 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
6b41d536 1275 list_del_init(&p->mnt_child);
676da58d 1276 if (mnt_has_parent(p)) {
84d17192 1277 put_mountpoint(p->mnt_mp);
aba809cf
AV
1278 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1279 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1280 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1281 p->mnt_mountpoint = p->mnt.mnt_root;
1282 p->mnt_parent = p;
84d17192 1283 p->mnt_mp = NULL;
7c4b93d8 1284 }
0f0afb1d 1285 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1286 last = p;
1287 }
1288 if (last) {
1289 last->mnt_hash.next = unmounted.first;
1290 unmounted.first = tmp_list.first;
1291 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1292 }
1293}
1294
b54b9be7 1295static void shrink_submounts(struct mount *mnt);
c35038be 1296
1ab59738 1297static int do_umount(struct mount *mnt, int flags)
1da177e4 1298{
1ab59738 1299 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1300 int retval;
1301
1ab59738 1302 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1303 if (retval)
1304 return retval;
1305
1306 /*
1307 * Allow userspace to request a mountpoint be expired rather than
1308 * unmounting unconditionally. Unmount only happens if:
1309 * (1) the mark is already set (the mark is cleared by mntput())
1310 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1311 */
1312 if (flags & MNT_EXPIRE) {
1ab59738 1313 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1314 flags & (MNT_FORCE | MNT_DETACH))
1315 return -EINVAL;
1316
b3e19d92
NP
1317 /*
1318 * probably don't strictly need the lock here if we examined
1319 * all race cases, but it's a slowpath.
1320 */
719ea2fb 1321 lock_mount_hash();
83adc753 1322 if (mnt_get_count(mnt) != 2) {
719ea2fb 1323 unlock_mount_hash();
1da177e4 1324 return -EBUSY;
b3e19d92 1325 }
719ea2fb 1326 unlock_mount_hash();
1da177e4 1327
863d684f 1328 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1329 return -EAGAIN;
1330 }
1331
1332 /*
1333 * If we may have to abort operations to get out of this
1334 * mount, and they will themselves hold resources we must
1335 * allow the fs to do things. In the Unix tradition of
1336 * 'Gee thats tricky lets do it in userspace' the umount_begin
1337 * might fail to complete on the first run through as other tasks
1338 * must return, and the like. Thats for the mount program to worry
1339 * about for the moment.
1340 */
1341
42faad99 1342 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1343 sb->s_op->umount_begin(sb);
42faad99 1344 }
1da177e4
LT
1345
1346 /*
1347 * No sense to grab the lock for this test, but test itself looks
1348 * somewhat bogus. Suggestions for better replacement?
1349 * Ho-hum... In principle, we might treat that as umount + switch
1350 * to rootfs. GC would eventually take care of the old vfsmount.
1351 * Actually it makes sense, especially if rootfs would contain a
1352 * /reboot - static binary that would close all descriptors and
1353 * call reboot(9). Then init(8) could umount root and exec /reboot.
1354 */
1ab59738 1355 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1356 /*
1357 * Special case for "unmounting" root ...
1358 * we just try to remount it readonly.
1359 */
1360 down_write(&sb->s_umount);
4aa98cf7 1361 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1362 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1363 up_write(&sb->s_umount);
1364 return retval;
1365 }
1366
97216be0 1367 namespace_lock();
719ea2fb 1368 lock_mount_hash();
5addc5dd 1369 event++;
1da177e4 1370
48a066e7 1371 if (flags & MNT_DETACH) {
1a4eeaf2 1372 if (!list_empty(&mnt->mnt_list))
48a066e7 1373 umount_tree(mnt, 2);
1da177e4 1374 retval = 0;
48a066e7
AV
1375 } else {
1376 shrink_submounts(mnt);
1377 retval = -EBUSY;
1378 if (!propagate_mount_busy(mnt, 2)) {
1379 if (!list_empty(&mnt->mnt_list))
1380 umount_tree(mnt, 1);
1381 retval = 0;
1382 }
1da177e4 1383 }
719ea2fb 1384 unlock_mount_hash();
e3197d83 1385 namespace_unlock();
1da177e4
LT
1386 return retval;
1387}
1388
9b40bc90
AV
1389/*
1390 * Is the caller allowed to modify his namespace?
1391 */
1392static inline bool may_mount(void)
1393{
1394 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1395}
1396
1da177e4
LT
1397/*
1398 * Now umount can handle mount points as well as block devices.
1399 * This is important for filesystems which use unnamed block devices.
1400 *
1401 * We now support a flag for forced unmount like the other 'big iron'
1402 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1403 */
1404
bdc480e3 1405SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1406{
2d8f3038 1407 struct path path;
900148dc 1408 struct mount *mnt;
1da177e4 1409 int retval;
db1f05bb 1410 int lookup_flags = 0;
1da177e4 1411
db1f05bb
MS
1412 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1413 return -EINVAL;
1414
9b40bc90
AV
1415 if (!may_mount())
1416 return -EPERM;
1417
db1f05bb
MS
1418 if (!(flags & UMOUNT_NOFOLLOW))
1419 lookup_flags |= LOOKUP_FOLLOW;
1420
197df04c 1421 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1422 if (retval)
1423 goto out;
900148dc 1424 mnt = real_mount(path.mnt);
1da177e4 1425 retval = -EINVAL;
2d8f3038 1426 if (path.dentry != path.mnt->mnt_root)
1da177e4 1427 goto dput_and_out;
143c8c91 1428 if (!check_mnt(mnt))
1da177e4 1429 goto dput_and_out;
5ff9d8a6
EB
1430 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1431 goto dput_and_out;
1da177e4 1432
900148dc 1433 retval = do_umount(mnt, flags);
1da177e4 1434dput_and_out:
429731b1 1435 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1436 dput(path.dentry);
900148dc 1437 mntput_no_expire(mnt);
1da177e4
LT
1438out:
1439 return retval;
1440}
1441
1442#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1443
1444/*
b58fed8b 1445 * The 2.0 compatible umount. No flags.
1da177e4 1446 */
bdc480e3 1447SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1448{
b58fed8b 1449 return sys_umount(name, 0);
1da177e4
LT
1450}
1451
1452#endif
1453
4ce5d2b1 1454static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1455{
4ce5d2b1
EB
1456 /* Is this a proxy for a mount namespace? */
1457 struct inode *inode = dentry->d_inode;
0bb80f24 1458 struct proc_ns *ei;
8823c079
EB
1459
1460 if (!proc_ns_inode(inode))
1461 return false;
1462
0bb80f24 1463 ei = get_proc_ns(inode);
8823c079
EB
1464 if (ei->ns_ops != &mntns_operations)
1465 return false;
1466
4ce5d2b1
EB
1467 return true;
1468}
1469
1470static bool mnt_ns_loop(struct dentry *dentry)
1471{
1472 /* Could bind mounting the mount namespace inode cause a
1473 * mount namespace loop?
1474 */
1475 struct mnt_namespace *mnt_ns;
1476 if (!is_mnt_ns_file(dentry))
1477 return false;
1478
1479 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1480 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1481}
1482
87129cc0 1483struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1484 int flag)
1da177e4 1485{
84d17192 1486 struct mount *res, *p, *q, *r, *parent;
1da177e4 1487
4ce5d2b1
EB
1488 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1489 return ERR_PTR(-EINVAL);
1490
1491 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1492 return ERR_PTR(-EINVAL);
9676f0c6 1493
36341f64 1494 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1495 if (IS_ERR(q))
1496 return q;
1497
5ff9d8a6 1498 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1499 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1500
1501 p = mnt;
6b41d536 1502 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1503 struct mount *s;
7ec02ef1 1504 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1505 continue;
1506
909b0a88 1507 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1508 if (!(flag & CL_COPY_UNBINDABLE) &&
1509 IS_MNT_UNBINDABLE(s)) {
1510 s = skip_mnt_tree(s);
1511 continue;
1512 }
1513 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1514 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1515 s = skip_mnt_tree(s);
1516 continue;
1517 }
0714a533
AV
1518 while (p != s->mnt_parent) {
1519 p = p->mnt_parent;
1520 q = q->mnt_parent;
1da177e4 1521 }
87129cc0 1522 p = s;
84d17192 1523 parent = q;
87129cc0 1524 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1525 if (IS_ERR(q))
1526 goto out;
719ea2fb 1527 lock_mount_hash();
1a4eeaf2 1528 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1529 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1530 unlock_mount_hash();
1da177e4
LT
1531 }
1532 }
1533 return res;
be34d1a3 1534out:
1da177e4 1535 if (res) {
719ea2fb 1536 lock_mount_hash();
328e6d90 1537 umount_tree(res, 0);
719ea2fb 1538 unlock_mount_hash();
1da177e4 1539 }
be34d1a3 1540 return q;
1da177e4
LT
1541}
1542
be34d1a3
DH
1543/* Caller should check returned pointer for errors */
1544
589ff870 1545struct vfsmount *collect_mounts(struct path *path)
8aec0809 1546{
cb338d06 1547 struct mount *tree;
97216be0 1548 namespace_lock();
87129cc0
AV
1549 tree = copy_tree(real_mount(path->mnt), path->dentry,
1550 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1551 namespace_unlock();
be34d1a3 1552 if (IS_ERR(tree))
52e220d3 1553 return ERR_CAST(tree);
be34d1a3 1554 return &tree->mnt;
8aec0809
AV
1555}
1556
1557void drop_collected_mounts(struct vfsmount *mnt)
1558{
97216be0 1559 namespace_lock();
719ea2fb 1560 lock_mount_hash();
328e6d90 1561 umount_tree(real_mount(mnt), 0);
719ea2fb 1562 unlock_mount_hash();
3ab6abee 1563 namespace_unlock();
8aec0809
AV
1564}
1565
1f707137
AV
1566int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1567 struct vfsmount *root)
1568{
1a4eeaf2 1569 struct mount *mnt;
1f707137
AV
1570 int res = f(root, arg);
1571 if (res)
1572 return res;
1a4eeaf2
AV
1573 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1574 res = f(&mnt->mnt, arg);
1f707137
AV
1575 if (res)
1576 return res;
1577 }
1578 return 0;
1579}
1580
4b8b21f4 1581static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1582{
315fc83e 1583 struct mount *p;
719f5d7f 1584
909b0a88 1585 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1586 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1587 mnt_release_group_id(p);
719f5d7f
MS
1588 }
1589}
1590
4b8b21f4 1591static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1592{
315fc83e 1593 struct mount *p;
719f5d7f 1594
909b0a88 1595 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1596 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1597 int err = mnt_alloc_group_id(p);
719f5d7f 1598 if (err) {
4b8b21f4 1599 cleanup_group_ids(mnt, p);
719f5d7f
MS
1600 return err;
1601 }
1602 }
1603 }
1604
1605 return 0;
1606}
1607
b90fa9ae
RP
1608/*
1609 * @source_mnt : mount tree to be attached
21444403
RP
1610 * @nd : place the mount tree @source_mnt is attached
1611 * @parent_nd : if non-null, detach the source_mnt from its parent and
1612 * store the parent mount and mountpoint dentry.
1613 * (done when source_mnt is moved)
b90fa9ae
RP
1614 *
1615 * NOTE: in the table below explains the semantics when a source mount
1616 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1617 * ---------------------------------------------------------------------------
1618 * | BIND MOUNT OPERATION |
1619 * |**************************************************************************
1620 * | source-->| shared | private | slave | unbindable |
1621 * | dest | | | | |
1622 * | | | | | | |
1623 * | v | | | | |
1624 * |**************************************************************************
1625 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1626 * | | | | | |
1627 * |non-shared| shared (+) | private | slave (*) | invalid |
1628 * ***************************************************************************
b90fa9ae
RP
1629 * A bind operation clones the source mount and mounts the clone on the
1630 * destination mount.
1631 *
1632 * (++) the cloned mount is propagated to all the mounts in the propagation
1633 * tree of the destination mount and the cloned mount is added to
1634 * the peer group of the source mount.
1635 * (+) the cloned mount is created under the destination mount and is marked
1636 * as shared. The cloned mount is added to the peer group of the source
1637 * mount.
5afe0022
RP
1638 * (+++) the mount is propagated to all the mounts in the propagation tree
1639 * of the destination mount and the cloned mount is made slave
1640 * of the same master as that of the source mount. The cloned mount
1641 * is marked as 'shared and slave'.
1642 * (*) the cloned mount is made a slave of the same master as that of the
1643 * source mount.
1644 *
9676f0c6
RP
1645 * ---------------------------------------------------------------------------
1646 * | MOVE MOUNT OPERATION |
1647 * |**************************************************************************
1648 * | source-->| shared | private | slave | unbindable |
1649 * | dest | | | | |
1650 * | | | | | | |
1651 * | v | | | | |
1652 * |**************************************************************************
1653 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1654 * | | | | | |
1655 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1656 * ***************************************************************************
5afe0022
RP
1657 *
1658 * (+) the mount is moved to the destination. And is then propagated to
1659 * all the mounts in the propagation tree of the destination mount.
21444403 1660 * (+*) the mount is moved to the destination.
5afe0022
RP
1661 * (+++) the mount is moved to the destination and is then propagated to
1662 * all the mounts belonging to the destination mount's propagation tree.
1663 * the mount is marked as 'shared and slave'.
1664 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1665 *
1666 * if the source mount is a tree, the operations explained above is
1667 * applied to each mount in the tree.
1668 * Must be called without spinlocks held, since this function can sleep
1669 * in allocations.
1670 */
0fb54e50 1671static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1672 struct mount *dest_mnt,
1673 struct mountpoint *dest_mp,
1674 struct path *parent_path)
b90fa9ae 1675{
38129a13 1676 HLIST_HEAD(tree_list);
315fc83e 1677 struct mount *child, *p;
38129a13 1678 struct hlist_node *n;
719f5d7f 1679 int err;
b90fa9ae 1680
fc7be130 1681 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1682 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1683 if (err)
1684 goto out;
0b1b901b 1685 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1686 lock_mount_hash();
0b1b901b
AV
1687 if (err)
1688 goto out_cleanup_ids;
909b0a88 1689 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1690 set_mnt_shared(p);
0b1b901b
AV
1691 } else {
1692 lock_mount_hash();
b90fa9ae 1693 }
1a390689 1694 if (parent_path) {
0fb54e50 1695 detach_mnt(source_mnt, parent_path);
84d17192 1696 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1697 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1698 } else {
84d17192 1699 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1700 commit_tree(source_mnt, NULL);
21444403 1701 }
b90fa9ae 1702
38129a13 1703 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1704 struct mount *q;
38129a13 1705 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1706 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1707 child->mnt_mountpoint);
1708 commit_tree(child, q);
b90fa9ae 1709 }
719ea2fb 1710 unlock_mount_hash();
99b7db7b 1711
b90fa9ae 1712 return 0;
719f5d7f
MS
1713
1714 out_cleanup_ids:
f2ebb3a9
AV
1715 while (!hlist_empty(&tree_list)) {
1716 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1717 umount_tree(child, 0);
1718 }
1719 unlock_mount_hash();
0b1b901b 1720 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1721 out:
1722 return err;
b90fa9ae
RP
1723}
1724
84d17192 1725static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1726{
1727 struct vfsmount *mnt;
84d17192 1728 struct dentry *dentry = path->dentry;
b12cea91 1729retry:
84d17192
AV
1730 mutex_lock(&dentry->d_inode->i_mutex);
1731 if (unlikely(cant_mount(dentry))) {
1732 mutex_unlock(&dentry->d_inode->i_mutex);
1733 return ERR_PTR(-ENOENT);
b12cea91 1734 }
97216be0 1735 namespace_lock();
b12cea91 1736 mnt = lookup_mnt(path);
84d17192
AV
1737 if (likely(!mnt)) {
1738 struct mountpoint *mp = new_mountpoint(dentry);
1739 if (IS_ERR(mp)) {
97216be0 1740 namespace_unlock();
84d17192
AV
1741 mutex_unlock(&dentry->d_inode->i_mutex);
1742 return mp;
1743 }
1744 return mp;
1745 }
97216be0 1746 namespace_unlock();
b12cea91
AV
1747 mutex_unlock(&path->dentry->d_inode->i_mutex);
1748 path_put(path);
1749 path->mnt = mnt;
84d17192 1750 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1751 goto retry;
1752}
1753
84d17192 1754static void unlock_mount(struct mountpoint *where)
b12cea91 1755{
84d17192
AV
1756 struct dentry *dentry = where->m_dentry;
1757 put_mountpoint(where);
328e6d90 1758 namespace_unlock();
84d17192 1759 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1760}
1761
84d17192 1762static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1763{
95bc5f25 1764 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1765 return -EINVAL;
1766
84d17192 1767 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1768 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1769 return -ENOTDIR;
1770
84d17192 1771 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1772}
1773
7a2e8a8f
VA
1774/*
1775 * Sanity check the flags to change_mnt_propagation.
1776 */
1777
1778static int flags_to_propagation_type(int flags)
1779{
7c6e984d 1780 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1781
1782 /* Fail if any non-propagation flags are set */
1783 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1784 return 0;
1785 /* Only one propagation flag should be set */
1786 if (!is_power_of_2(type))
1787 return 0;
1788 return type;
1789}
1790
07b20889
RP
1791/*
1792 * recursively change the type of the mountpoint.
1793 */
0a0d8a46 1794static int do_change_type(struct path *path, int flag)
07b20889 1795{
315fc83e 1796 struct mount *m;
4b8b21f4 1797 struct mount *mnt = real_mount(path->mnt);
07b20889 1798 int recurse = flag & MS_REC;
7a2e8a8f 1799 int type;
719f5d7f 1800 int err = 0;
07b20889 1801
2d92ab3c 1802 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1803 return -EINVAL;
1804
7a2e8a8f
VA
1805 type = flags_to_propagation_type(flag);
1806 if (!type)
1807 return -EINVAL;
1808
97216be0 1809 namespace_lock();
719f5d7f
MS
1810 if (type == MS_SHARED) {
1811 err = invent_group_ids(mnt, recurse);
1812 if (err)
1813 goto out_unlock;
1814 }
1815
719ea2fb 1816 lock_mount_hash();
909b0a88 1817 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1818 change_mnt_propagation(m, type);
719ea2fb 1819 unlock_mount_hash();
719f5d7f
MS
1820
1821 out_unlock:
97216be0 1822 namespace_unlock();
719f5d7f 1823 return err;
07b20889
RP
1824}
1825
5ff9d8a6
EB
1826static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1827{
1828 struct mount *child;
1829 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1830 if (!is_subdir(child->mnt_mountpoint, dentry))
1831 continue;
1832
1833 if (child->mnt.mnt_flags & MNT_LOCKED)
1834 return true;
1835 }
1836 return false;
1837}
1838
1da177e4
LT
1839/*
1840 * do loopback mount.
1841 */
808d4e3c 1842static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1843 int recurse)
1da177e4 1844{
2d92ab3c 1845 struct path old_path;
84d17192
AV
1846 struct mount *mnt = NULL, *old, *parent;
1847 struct mountpoint *mp;
57eccb83 1848 int err;
1da177e4
LT
1849 if (!old_name || !*old_name)
1850 return -EINVAL;
815d405c 1851 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1852 if (err)
1853 return err;
1854
8823c079 1855 err = -EINVAL;
4ce5d2b1 1856 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1857 goto out;
1858
84d17192
AV
1859 mp = lock_mount(path);
1860 err = PTR_ERR(mp);
1861 if (IS_ERR(mp))
b12cea91
AV
1862 goto out;
1863
87129cc0 1864 old = real_mount(old_path.mnt);
84d17192 1865 parent = real_mount(path->mnt);
87129cc0 1866
1da177e4 1867 err = -EINVAL;
fc7be130 1868 if (IS_MNT_UNBINDABLE(old))
b12cea91 1869 goto out2;
9676f0c6 1870
84d17192 1871 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1872 goto out2;
1da177e4 1873
5ff9d8a6
EB
1874 if (!recurse && has_locked_children(old, old_path.dentry))
1875 goto out2;
1876
ccd48bc7 1877 if (recurse)
4ce5d2b1 1878 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1879 else
87129cc0 1880 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1881
be34d1a3
DH
1882 if (IS_ERR(mnt)) {
1883 err = PTR_ERR(mnt);
e9c5d8a5 1884 goto out2;
be34d1a3 1885 }
ccd48bc7 1886
5ff9d8a6
EB
1887 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1888
84d17192 1889 err = graft_tree(mnt, parent, mp);
ccd48bc7 1890 if (err) {
719ea2fb 1891 lock_mount_hash();
328e6d90 1892 umount_tree(mnt, 0);
719ea2fb 1893 unlock_mount_hash();
5b83d2c5 1894 }
b12cea91 1895out2:
84d17192 1896 unlock_mount(mp);
ccd48bc7 1897out:
2d92ab3c 1898 path_put(&old_path);
1da177e4
LT
1899 return err;
1900}
1901
2e4b7fcd
DH
1902static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1903{
1904 int error = 0;
1905 int readonly_request = 0;
1906
1907 if (ms_flags & MS_RDONLY)
1908 readonly_request = 1;
1909 if (readonly_request == __mnt_is_readonly(mnt))
1910 return 0;
1911
1912 if (readonly_request)
83adc753 1913 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1914 else
83adc753 1915 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1916 return error;
1917}
1918
1da177e4
LT
1919/*
1920 * change filesystem flags. dir should be a physical root of filesystem.
1921 * If you've mounted a non-root directory somewhere and want to do remount
1922 * on it - tough luck.
1923 */
0a0d8a46 1924static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1925 void *data)
1926{
1927 int err;
2d92ab3c 1928 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1929 struct mount *mnt = real_mount(path->mnt);
1da177e4 1930
143c8c91 1931 if (!check_mnt(mnt))
1da177e4
LT
1932 return -EINVAL;
1933
2d92ab3c 1934 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1935 return -EINVAL;
1936
07b64558
EB
1937 /* Don't allow changing of locked mnt flags.
1938 *
1939 * No locks need to be held here while testing the various
1940 * MNT_LOCK flags because those flags can never be cleared
1941 * once they are set.
1942 */
1943 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1944 !(mnt_flags & MNT_READONLY)) {
1945 return -EPERM;
1946 }
9566d674
EB
1947 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1948 !(mnt_flags & MNT_NODEV)) {
1949 return -EPERM;
1950 }
1951 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1952 !(mnt_flags & MNT_NOSUID)) {
1953 return -EPERM;
1954 }
1955 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1956 !(mnt_flags & MNT_NOEXEC)) {
1957 return -EPERM;
1958 }
1959 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1960 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1961 return -EPERM;
1962 }
1963
ff36fe2c
EP
1964 err = security_sb_remount(sb, data);
1965 if (err)
1966 return err;
1967
1da177e4 1968 down_write(&sb->s_umount);
2e4b7fcd 1969 if (flags & MS_BIND)
2d92ab3c 1970 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1971 else if (!capable(CAP_SYS_ADMIN))
1972 err = -EPERM;
4aa98cf7 1973 else
2e4b7fcd 1974 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1975 if (!err) {
719ea2fb 1976 lock_mount_hash();
a6138db8 1977 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 1978 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 1979 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 1980 unlock_mount_hash();
0e55a7cc 1981 }
6339dab8 1982 up_write(&sb->s_umount);
1da177e4
LT
1983 return err;
1984}
1985
cbbe362c 1986static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1987{
315fc83e 1988 struct mount *p;
909b0a88 1989 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1990 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1991 return 1;
1992 }
1993 return 0;
1994}
1995
808d4e3c 1996static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1997{
2d92ab3c 1998 struct path old_path, parent_path;
676da58d 1999 struct mount *p;
0fb54e50 2000 struct mount *old;
84d17192 2001 struct mountpoint *mp;
57eccb83 2002 int err;
1da177e4
LT
2003 if (!old_name || !*old_name)
2004 return -EINVAL;
2d92ab3c 2005 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2006 if (err)
2007 return err;
2008
84d17192
AV
2009 mp = lock_mount(path);
2010 err = PTR_ERR(mp);
2011 if (IS_ERR(mp))
cc53ce53
DH
2012 goto out;
2013
143c8c91 2014 old = real_mount(old_path.mnt);
fc7be130 2015 p = real_mount(path->mnt);
143c8c91 2016
1da177e4 2017 err = -EINVAL;
fc7be130 2018 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2019 goto out1;
2020
5ff9d8a6
EB
2021 if (old->mnt.mnt_flags & MNT_LOCKED)
2022 goto out1;
2023
1da177e4 2024 err = -EINVAL;
2d92ab3c 2025 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2026 goto out1;
1da177e4 2027
676da58d 2028 if (!mnt_has_parent(old))
21444403 2029 goto out1;
1da177e4 2030
2d92ab3c
AV
2031 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2032 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
2033 goto out1;
2034 /*
2035 * Don't move a mount residing in a shared parent.
2036 */
fc7be130 2037 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2038 goto out1;
9676f0c6
RP
2039 /*
2040 * Don't move a mount tree containing unbindable mounts to a destination
2041 * mount which is shared.
2042 */
fc7be130 2043 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2044 goto out1;
1da177e4 2045 err = -ELOOP;
fc7be130 2046 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2047 if (p == old)
21444403 2048 goto out1;
1da177e4 2049
84d17192 2050 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2051 if (err)
21444403 2052 goto out1;
1da177e4
LT
2053
2054 /* if the mount is moved, it should no longer be expire
2055 * automatically */
6776db3d 2056 list_del_init(&old->mnt_expire);
1da177e4 2057out1:
84d17192 2058 unlock_mount(mp);
1da177e4 2059out:
1da177e4 2060 if (!err)
1a390689 2061 path_put(&parent_path);
2d92ab3c 2062 path_put(&old_path);
1da177e4
LT
2063 return err;
2064}
2065
9d412a43
AV
2066static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2067{
2068 int err;
2069 const char *subtype = strchr(fstype, '.');
2070 if (subtype) {
2071 subtype++;
2072 err = -EINVAL;
2073 if (!subtype[0])
2074 goto err;
2075 } else
2076 subtype = "";
2077
2078 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2079 err = -ENOMEM;
2080 if (!mnt->mnt_sb->s_subtype)
2081 goto err;
2082 return mnt;
2083
2084 err:
2085 mntput(mnt);
2086 return ERR_PTR(err);
2087}
2088
9d412a43
AV
2089/*
2090 * add a mount into a namespace's mount tree
2091 */
95bc5f25 2092static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2093{
84d17192
AV
2094 struct mountpoint *mp;
2095 struct mount *parent;
9d412a43
AV
2096 int err;
2097
f2ebb3a9 2098 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2099
84d17192
AV
2100 mp = lock_mount(path);
2101 if (IS_ERR(mp))
2102 return PTR_ERR(mp);
9d412a43 2103
84d17192 2104 parent = real_mount(path->mnt);
9d412a43 2105 err = -EINVAL;
84d17192 2106 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2107 /* that's acceptable only for automounts done in private ns */
2108 if (!(mnt_flags & MNT_SHRINKABLE))
2109 goto unlock;
2110 /* ... and for those we'd better have mountpoint still alive */
84d17192 2111 if (!parent->mnt_ns)
156cacb1
AV
2112 goto unlock;
2113 }
9d412a43
AV
2114
2115 /* Refuse the same filesystem on the same mount point */
2116 err = -EBUSY;
95bc5f25 2117 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2118 path->mnt->mnt_root == path->dentry)
2119 goto unlock;
2120
2121 err = -EINVAL;
95bc5f25 2122 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2123 goto unlock;
2124
95bc5f25 2125 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2126 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2127
2128unlock:
84d17192 2129 unlock_mount(mp);
9d412a43
AV
2130 return err;
2131}
b1e75df4 2132
1da177e4
LT
2133/*
2134 * create a new mount for userspace and request it to be added into the
2135 * namespace's tree
2136 */
0c55cfc4 2137static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2138 int mnt_flags, const char *name, void *data)
1da177e4 2139{
0c55cfc4 2140 struct file_system_type *type;
9b40bc90 2141 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2142 struct vfsmount *mnt;
15f9a3f3 2143 int err;
1da177e4 2144
0c55cfc4 2145 if (!fstype)
1da177e4
LT
2146 return -EINVAL;
2147
0c55cfc4
EB
2148 type = get_fs_type(fstype);
2149 if (!type)
2150 return -ENODEV;
2151
2152 if (user_ns != &init_user_ns) {
2153 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2154 put_filesystem(type);
2155 return -EPERM;
2156 }
2157 /* Only in special cases allow devices from mounts
2158 * created outside the initial user namespace.
2159 */
2160 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2161 flags |= MS_NODEV;
9566d674 2162 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2163 }
2164 }
2165
2166 mnt = vfs_kern_mount(type, flags, name, data);
2167 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2168 !mnt->mnt_sb->s_subtype)
2169 mnt = fs_set_subtype(mnt, fstype);
2170
2171 put_filesystem(type);
1da177e4
LT
2172 if (IS_ERR(mnt))
2173 return PTR_ERR(mnt);
2174
95bc5f25 2175 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2176 if (err)
2177 mntput(mnt);
2178 return err;
1da177e4
LT
2179}
2180
19a167af
AV
2181int finish_automount(struct vfsmount *m, struct path *path)
2182{
6776db3d 2183 struct mount *mnt = real_mount(m);
19a167af
AV
2184 int err;
2185 /* The new mount record should have at least 2 refs to prevent it being
2186 * expired before we get a chance to add it
2187 */
6776db3d 2188 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2189
2190 if (m->mnt_sb == path->mnt->mnt_sb &&
2191 m->mnt_root == path->dentry) {
b1e75df4
AV
2192 err = -ELOOP;
2193 goto fail;
19a167af
AV
2194 }
2195
95bc5f25 2196 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2197 if (!err)
2198 return 0;
2199fail:
2200 /* remove m from any expiration list it may be on */
6776db3d 2201 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2202 namespace_lock();
6776db3d 2203 list_del_init(&mnt->mnt_expire);
97216be0 2204 namespace_unlock();
19a167af 2205 }
b1e75df4
AV
2206 mntput(m);
2207 mntput(m);
19a167af
AV
2208 return err;
2209}
2210
ea5b778a
DH
2211/**
2212 * mnt_set_expiry - Put a mount on an expiration list
2213 * @mnt: The mount to list.
2214 * @expiry_list: The list to add the mount to.
2215 */
2216void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2217{
97216be0 2218 namespace_lock();
ea5b778a 2219
6776db3d 2220 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2221
97216be0 2222 namespace_unlock();
ea5b778a
DH
2223}
2224EXPORT_SYMBOL(mnt_set_expiry);
2225
1da177e4
LT
2226/*
2227 * process a list of expirable mountpoints with the intent of discarding any
2228 * mountpoints that aren't in use and haven't been touched since last we came
2229 * here
2230 */
2231void mark_mounts_for_expiry(struct list_head *mounts)
2232{
761d5c38 2233 struct mount *mnt, *next;
1da177e4
LT
2234 LIST_HEAD(graveyard);
2235
2236 if (list_empty(mounts))
2237 return;
2238
97216be0 2239 namespace_lock();
719ea2fb 2240 lock_mount_hash();
1da177e4
LT
2241
2242 /* extract from the expiration list every vfsmount that matches the
2243 * following criteria:
2244 * - only referenced by its parent vfsmount
2245 * - still marked for expiry (marked on the last call here; marks are
2246 * cleared by mntput())
2247 */
6776db3d 2248 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2249 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2250 propagate_mount_busy(mnt, 1))
1da177e4 2251 continue;
6776db3d 2252 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2253 }
bcc5c7d2 2254 while (!list_empty(&graveyard)) {
6776db3d 2255 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2256 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2257 umount_tree(mnt, 1);
bcc5c7d2 2258 }
719ea2fb 2259 unlock_mount_hash();
3ab6abee 2260 namespace_unlock();
5528f911
TM
2261}
2262
2263EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2264
2265/*
2266 * Ripoff of 'select_parent()'
2267 *
2268 * search the list of submounts for a given mountpoint, and move any
2269 * shrinkable submounts to the 'graveyard' list.
2270 */
692afc31 2271static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2272{
692afc31 2273 struct mount *this_parent = parent;
5528f911
TM
2274 struct list_head *next;
2275 int found = 0;
2276
2277repeat:
6b41d536 2278 next = this_parent->mnt_mounts.next;
5528f911 2279resume:
6b41d536 2280 while (next != &this_parent->mnt_mounts) {
5528f911 2281 struct list_head *tmp = next;
6b41d536 2282 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2283
2284 next = tmp->next;
692afc31 2285 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2286 continue;
5528f911
TM
2287 /*
2288 * Descend a level if the d_mounts list is non-empty.
2289 */
6b41d536 2290 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2291 this_parent = mnt;
2292 goto repeat;
2293 }
1da177e4 2294
1ab59738 2295 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2296 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2297 found++;
2298 }
1da177e4 2299 }
5528f911
TM
2300 /*
2301 * All done at this level ... ascend and resume the search
2302 */
2303 if (this_parent != parent) {
6b41d536 2304 next = this_parent->mnt_child.next;
0714a533 2305 this_parent = this_parent->mnt_parent;
5528f911
TM
2306 goto resume;
2307 }
2308 return found;
2309}
2310
2311/*
2312 * process a list of expirable mountpoints with the intent of discarding any
2313 * submounts of a specific parent mountpoint
99b7db7b 2314 *
48a066e7 2315 * mount_lock must be held for write
5528f911 2316 */
b54b9be7 2317static void shrink_submounts(struct mount *mnt)
5528f911
TM
2318{
2319 LIST_HEAD(graveyard);
761d5c38 2320 struct mount *m;
5528f911 2321
5528f911 2322 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2323 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2324 while (!list_empty(&graveyard)) {
761d5c38 2325 m = list_first_entry(&graveyard, struct mount,
6776db3d 2326 mnt_expire);
143c8c91 2327 touch_mnt_namespace(m->mnt_ns);
328e6d90 2328 umount_tree(m, 1);
bcc5c7d2
AV
2329 }
2330 }
1da177e4
LT
2331}
2332
1da177e4
LT
2333/*
2334 * Some copy_from_user() implementations do not return the exact number of
2335 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2336 * Note that this function differs from copy_from_user() in that it will oops
2337 * on bad values of `to', rather than returning a short copy.
2338 */
b58fed8b
RP
2339static long exact_copy_from_user(void *to, const void __user * from,
2340 unsigned long n)
1da177e4
LT
2341{
2342 char *t = to;
2343 const char __user *f = from;
2344 char c;
2345
2346 if (!access_ok(VERIFY_READ, from, n))
2347 return n;
2348
2349 while (n) {
2350 if (__get_user(c, f)) {
2351 memset(t, 0, n);
2352 break;
2353 }
2354 *t++ = c;
2355 f++;
2356 n--;
2357 }
2358 return n;
2359}
2360
b58fed8b 2361int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2362{
2363 int i;
2364 unsigned long page;
2365 unsigned long size;
b58fed8b 2366
1da177e4
LT
2367 *where = 0;
2368 if (!data)
2369 return 0;
2370
2371 if (!(page = __get_free_page(GFP_KERNEL)))
2372 return -ENOMEM;
2373
2374 /* We only care that *some* data at the address the user
2375 * gave us is valid. Just in case, we'll zero
2376 * the remainder of the page.
2377 */
2378 /* copy_from_user cannot cross TASK_SIZE ! */
2379 size = TASK_SIZE - (unsigned long)data;
2380 if (size > PAGE_SIZE)
2381 size = PAGE_SIZE;
2382
2383 i = size - exact_copy_from_user((void *)page, data, size);
2384 if (!i) {
b58fed8b 2385 free_page(page);
1da177e4
LT
2386 return -EFAULT;
2387 }
2388 if (i != PAGE_SIZE)
2389 memset((char *)page + i, 0, PAGE_SIZE - i);
2390 *where = page;
2391 return 0;
2392}
2393
eca6f534
VN
2394int copy_mount_string(const void __user *data, char **where)
2395{
2396 char *tmp;
2397
2398 if (!data) {
2399 *where = NULL;
2400 return 0;
2401 }
2402
2403 tmp = strndup_user(data, PAGE_SIZE);
2404 if (IS_ERR(tmp))
2405 return PTR_ERR(tmp);
2406
2407 *where = tmp;
2408 return 0;
2409}
2410
1da177e4
LT
2411/*
2412 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2413 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2414 *
2415 * data is a (void *) that can point to any structure up to
2416 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2417 * information (or be NULL).
2418 *
2419 * Pre-0.97 versions of mount() didn't have a flags word.
2420 * When the flags word was introduced its top half was required
2421 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2422 * Therefore, if this magic number is present, it carries no information
2423 * and must be discarded.
2424 */
808d4e3c
AV
2425long do_mount(const char *dev_name, const char *dir_name,
2426 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2427{
2d92ab3c 2428 struct path path;
1da177e4
LT
2429 int retval = 0;
2430 int mnt_flags = 0;
2431
2432 /* Discard magic */
2433 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2434 flags &= ~MS_MGC_MSK;
2435
2436 /* Basic sanity checks */
2437
2438 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2439 return -EINVAL;
1da177e4
LT
2440
2441 if (data_page)
2442 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2443
a27ab9f2
TH
2444 /* ... and get the mountpoint */
2445 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2446 if (retval)
2447 return retval;
2448
2449 retval = security_sb_mount(dev_name, &path,
2450 type_page, flags, data_page);
0d5cadb8
AV
2451 if (!retval && !may_mount())
2452 retval = -EPERM;
a27ab9f2
TH
2453 if (retval)
2454 goto dput_out;
2455
613cbe3d
AK
2456 /* Default to relatime unless overriden */
2457 if (!(flags & MS_NOATIME))
2458 mnt_flags |= MNT_RELATIME;
0a1c01c9 2459
1da177e4
LT
2460 /* Separate the per-mountpoint flags */
2461 if (flags & MS_NOSUID)
2462 mnt_flags |= MNT_NOSUID;
2463 if (flags & MS_NODEV)
2464 mnt_flags |= MNT_NODEV;
2465 if (flags & MS_NOEXEC)
2466 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2467 if (flags & MS_NOATIME)
2468 mnt_flags |= MNT_NOATIME;
2469 if (flags & MS_NODIRATIME)
2470 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2471 if (flags & MS_STRICTATIME)
2472 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2473 if (flags & MS_RDONLY)
2474 mnt_flags |= MNT_READONLY;
fc33a7bb 2475
ffbc6f0e
EB
2476 /* The default atime for remount is preservation */
2477 if ((flags & MS_REMOUNT) &&
2478 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2479 MS_STRICTATIME)) == 0)) {
2480 mnt_flags &= ~MNT_ATIME_MASK;
2481 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2482 }
2483
7a4dec53 2484 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2485 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2486 MS_STRICTATIME);
1da177e4 2487
1da177e4 2488 if (flags & MS_REMOUNT)
2d92ab3c 2489 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2490 data_page);
2491 else if (flags & MS_BIND)
2d92ab3c 2492 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2493 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2494 retval = do_change_type(&path, flags);
1da177e4 2495 else if (flags & MS_MOVE)
2d92ab3c 2496 retval = do_move_mount(&path, dev_name);
1da177e4 2497 else
2d92ab3c 2498 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2499 dev_name, data_page);
2500dput_out:
2d92ab3c 2501 path_put(&path);
1da177e4
LT
2502 return retval;
2503}
2504
771b1371
EB
2505static void free_mnt_ns(struct mnt_namespace *ns)
2506{
98f842e6 2507 proc_free_inum(ns->proc_inum);
771b1371
EB
2508 put_user_ns(ns->user_ns);
2509 kfree(ns);
2510}
2511
8823c079
EB
2512/*
2513 * Assign a sequence number so we can detect when we attempt to bind
2514 * mount a reference to an older mount namespace into the current
2515 * mount namespace, preventing reference counting loops. A 64bit
2516 * number incrementing at 10Ghz will take 12,427 years to wrap which
2517 * is effectively never, so we can ignore the possibility.
2518 */
2519static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2520
771b1371 2521static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2522{
2523 struct mnt_namespace *new_ns;
98f842e6 2524 int ret;
cf8d2c11
TM
2525
2526 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2527 if (!new_ns)
2528 return ERR_PTR(-ENOMEM);
98f842e6
EB
2529 ret = proc_alloc_inum(&new_ns->proc_inum);
2530 if (ret) {
2531 kfree(new_ns);
2532 return ERR_PTR(ret);
2533 }
8823c079 2534 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2535 atomic_set(&new_ns->count, 1);
2536 new_ns->root = NULL;
2537 INIT_LIST_HEAD(&new_ns->list);
2538 init_waitqueue_head(&new_ns->poll);
2539 new_ns->event = 0;
771b1371 2540 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2541 return new_ns;
2542}
2543
9559f689
AV
2544struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2545 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2546{
6b3286ed 2547 struct mnt_namespace *new_ns;
7f2da1e7 2548 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2549 struct mount *p, *q;
9559f689 2550 struct mount *old;
cb338d06 2551 struct mount *new;
7a472ef4 2552 int copy_flags;
1da177e4 2553
9559f689
AV
2554 BUG_ON(!ns);
2555
2556 if (likely(!(flags & CLONE_NEWNS))) {
2557 get_mnt_ns(ns);
2558 return ns;
2559 }
2560
2561 old = ns->root;
2562
771b1371 2563 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2564 if (IS_ERR(new_ns))
2565 return new_ns;
1da177e4 2566
97216be0 2567 namespace_lock();
1da177e4 2568 /* First pass: copy the tree topology */
4ce5d2b1 2569 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2570 if (user_ns != ns->user_ns)
132c94e3 2571 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2572 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2573 if (IS_ERR(new)) {
328e6d90 2574 namespace_unlock();
771b1371 2575 free_mnt_ns(new_ns);
be34d1a3 2576 return ERR_CAST(new);
1da177e4 2577 }
be08d6d2 2578 new_ns->root = new;
1a4eeaf2 2579 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2580
2581 /*
2582 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2583 * as belonging to new namespace. We have already acquired a private
2584 * fs_struct, so tsk->fs->lock is not needed.
2585 */
909b0a88 2586 p = old;
cb338d06 2587 q = new;
1da177e4 2588 while (p) {
143c8c91 2589 q->mnt_ns = new_ns;
9559f689
AV
2590 if (new_fs) {
2591 if (&p->mnt == new_fs->root.mnt) {
2592 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2593 rootmnt = &p->mnt;
1da177e4 2594 }
9559f689
AV
2595 if (&p->mnt == new_fs->pwd.mnt) {
2596 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2597 pwdmnt = &p->mnt;
1da177e4 2598 }
1da177e4 2599 }
909b0a88
AV
2600 p = next_mnt(p, old);
2601 q = next_mnt(q, new);
4ce5d2b1
EB
2602 if (!q)
2603 break;
2604 while (p->mnt.mnt_root != q->mnt.mnt_root)
2605 p = next_mnt(p, old);
1da177e4 2606 }
328e6d90 2607 namespace_unlock();
1da177e4 2608
1da177e4 2609 if (rootmnt)
f03c6599 2610 mntput(rootmnt);
1da177e4 2611 if (pwdmnt)
f03c6599 2612 mntput(pwdmnt);
1da177e4 2613
741a2951 2614 return new_ns;
1da177e4
LT
2615}
2616
cf8d2c11
TM
2617/**
2618 * create_mnt_ns - creates a private namespace and adds a root filesystem
2619 * @mnt: pointer to the new root filesystem mountpoint
2620 */
1a4eeaf2 2621static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2622{
771b1371 2623 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2624 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2625 struct mount *mnt = real_mount(m);
2626 mnt->mnt_ns = new_ns;
be08d6d2 2627 new_ns->root = mnt;
b1983cd8 2628 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2629 } else {
1a4eeaf2 2630 mntput(m);
cf8d2c11
TM
2631 }
2632 return new_ns;
2633}
cf8d2c11 2634
ea441d11
AV
2635struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2636{
2637 struct mnt_namespace *ns;
d31da0f0 2638 struct super_block *s;
ea441d11
AV
2639 struct path path;
2640 int err;
2641
2642 ns = create_mnt_ns(mnt);
2643 if (IS_ERR(ns))
2644 return ERR_CAST(ns);
2645
2646 err = vfs_path_lookup(mnt->mnt_root, mnt,
2647 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2648
2649 put_mnt_ns(ns);
2650
2651 if (err)
2652 return ERR_PTR(err);
2653
2654 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2655 s = path.mnt->mnt_sb;
2656 atomic_inc(&s->s_active);
ea441d11
AV
2657 mntput(path.mnt);
2658 /* lock the sucker */
d31da0f0 2659 down_write(&s->s_umount);
ea441d11
AV
2660 /* ... and return the root of (sub)tree on it */
2661 return path.dentry;
2662}
2663EXPORT_SYMBOL(mount_subtree);
2664
bdc480e3
HC
2665SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2666 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2667{
eca6f534
VN
2668 int ret;
2669 char *kernel_type;
91a27b2a 2670 struct filename *kernel_dir;
eca6f534 2671 char *kernel_dev;
1da177e4 2672 unsigned long data_page;
1da177e4 2673
eca6f534
VN
2674 ret = copy_mount_string(type, &kernel_type);
2675 if (ret < 0)
2676 goto out_type;
1da177e4 2677
eca6f534
VN
2678 kernel_dir = getname(dir_name);
2679 if (IS_ERR(kernel_dir)) {
2680 ret = PTR_ERR(kernel_dir);
2681 goto out_dir;
2682 }
1da177e4 2683
eca6f534
VN
2684 ret = copy_mount_string(dev_name, &kernel_dev);
2685 if (ret < 0)
2686 goto out_dev;
1da177e4 2687
eca6f534
VN
2688 ret = copy_mount_options(data, &data_page);
2689 if (ret < 0)
2690 goto out_data;
1da177e4 2691
91a27b2a 2692 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2693 (void *) data_page);
1da177e4 2694
eca6f534
VN
2695 free_page(data_page);
2696out_data:
2697 kfree(kernel_dev);
2698out_dev:
2699 putname(kernel_dir);
2700out_dir:
2701 kfree(kernel_type);
2702out_type:
2703 return ret;
1da177e4
LT
2704}
2705
afac7cba
AV
2706/*
2707 * Return true if path is reachable from root
2708 *
48a066e7 2709 * namespace_sem or mount_lock is held
afac7cba 2710 */
643822b4 2711bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2712 const struct path *root)
2713{
643822b4 2714 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2715 dentry = mnt->mnt_mountpoint;
0714a533 2716 mnt = mnt->mnt_parent;
afac7cba 2717 }
643822b4 2718 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2719}
2720
2721int path_is_under(struct path *path1, struct path *path2)
2722{
2723 int res;
48a066e7 2724 read_seqlock_excl(&mount_lock);
643822b4 2725 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2726 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2727 return res;
2728}
2729EXPORT_SYMBOL(path_is_under);
2730
1da177e4
LT
2731/*
2732 * pivot_root Semantics:
2733 * Moves the root file system of the current process to the directory put_old,
2734 * makes new_root as the new root file system of the current process, and sets
2735 * root/cwd of all processes which had them on the current root to new_root.
2736 *
2737 * Restrictions:
2738 * The new_root and put_old must be directories, and must not be on the
2739 * same file system as the current process root. The put_old must be
2740 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2741 * pointed to by put_old must yield the same directory as new_root. No other
2742 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2743 *
4a0d11fa
NB
2744 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2745 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2746 * in this situation.
2747 *
1da177e4
LT
2748 * Notes:
2749 * - we don't move root/cwd if they are not at the root (reason: if something
2750 * cared enough to change them, it's probably wrong to force them elsewhere)
2751 * - it's okay to pick a root that isn't the root of a file system, e.g.
2752 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2753 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2754 * first.
2755 */
3480b257
HC
2756SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2757 const char __user *, put_old)
1da177e4 2758{
2d8f3038 2759 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2760 struct mount *new_mnt, *root_mnt, *old_mnt;
2761 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2762 int error;
2763
9b40bc90 2764 if (!may_mount())
1da177e4
LT
2765 return -EPERM;
2766
2d8f3038 2767 error = user_path_dir(new_root, &new);
1da177e4
LT
2768 if (error)
2769 goto out0;
1da177e4 2770
2d8f3038 2771 error = user_path_dir(put_old, &old);
1da177e4
LT
2772 if (error)
2773 goto out1;
2774
2d8f3038 2775 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2776 if (error)
2777 goto out2;
1da177e4 2778
f7ad3c6b 2779 get_fs_root(current->fs, &root);
84d17192
AV
2780 old_mp = lock_mount(&old);
2781 error = PTR_ERR(old_mp);
2782 if (IS_ERR(old_mp))
b12cea91
AV
2783 goto out3;
2784
1da177e4 2785 error = -EINVAL;
419148da
AV
2786 new_mnt = real_mount(new.mnt);
2787 root_mnt = real_mount(root.mnt);
84d17192
AV
2788 old_mnt = real_mount(old.mnt);
2789 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2790 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2791 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2792 goto out4;
143c8c91 2793 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2794 goto out4;
5ff9d8a6
EB
2795 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2796 goto out4;
1da177e4 2797 error = -ENOENT;
f3da392e 2798 if (d_unlinked(new.dentry))
b12cea91 2799 goto out4;
1da177e4 2800 error = -EBUSY;
84d17192 2801 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2802 goto out4; /* loop, on the same file system */
1da177e4 2803 error = -EINVAL;
8c3ee42e 2804 if (root.mnt->mnt_root != root.dentry)
b12cea91 2805 goto out4; /* not a mountpoint */
676da58d 2806 if (!mnt_has_parent(root_mnt))
b12cea91 2807 goto out4; /* not attached */
84d17192 2808 root_mp = root_mnt->mnt_mp;
2d8f3038 2809 if (new.mnt->mnt_root != new.dentry)
b12cea91 2810 goto out4; /* not a mountpoint */
676da58d 2811 if (!mnt_has_parent(new_mnt))
b12cea91 2812 goto out4; /* not attached */
4ac91378 2813 /* make sure we can reach put_old from new_root */
84d17192 2814 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2815 goto out4;
84d17192 2816 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2817 lock_mount_hash();
419148da
AV
2818 detach_mnt(new_mnt, &parent_path);
2819 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2820 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2821 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2822 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2823 }
4ac91378 2824 /* mount old root on put_old */
84d17192 2825 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2826 /* mount new_root on / */
84d17192 2827 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2828 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2829 unlock_mount_hash();
2d8f3038 2830 chroot_fs_refs(&root, &new);
84d17192 2831 put_mountpoint(root_mp);
1da177e4 2832 error = 0;
b12cea91 2833out4:
84d17192 2834 unlock_mount(old_mp);
b12cea91
AV
2835 if (!error) {
2836 path_put(&root_parent);
2837 path_put(&parent_path);
2838 }
2839out3:
8c3ee42e 2840 path_put(&root);
b12cea91 2841out2:
2d8f3038 2842 path_put(&old);
1da177e4 2843out1:
2d8f3038 2844 path_put(&new);
1da177e4 2845out0:
1da177e4 2846 return error;
1da177e4
LT
2847}
2848
2849static void __init init_mount_tree(void)
2850{
2851 struct vfsmount *mnt;
6b3286ed 2852 struct mnt_namespace *ns;
ac748a09 2853 struct path root;
0c55cfc4 2854 struct file_system_type *type;
1da177e4 2855
0c55cfc4
EB
2856 type = get_fs_type("rootfs");
2857 if (!type)
2858 panic("Can't find rootfs type");
2859 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2860 put_filesystem(type);
1da177e4
LT
2861 if (IS_ERR(mnt))
2862 panic("Can't create rootfs");
b3e19d92 2863
3b22edc5
TM
2864 ns = create_mnt_ns(mnt);
2865 if (IS_ERR(ns))
1da177e4 2866 panic("Can't allocate initial namespace");
6b3286ed
KK
2867
2868 init_task.nsproxy->mnt_ns = ns;
2869 get_mnt_ns(ns);
2870
be08d6d2
AV
2871 root.mnt = mnt;
2872 root.dentry = mnt->mnt_root;
ac748a09
JB
2873
2874 set_fs_pwd(current->fs, &root);
2875 set_fs_root(current->fs, &root);
1da177e4
LT
2876}
2877
74bf17cf 2878void __init mnt_init(void)
1da177e4 2879{
13f14b4d 2880 unsigned u;
15a67dd8 2881 int err;
1da177e4 2882
7d6fec45 2883 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2884 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2885
0818bf27 2886 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 2887 sizeof(struct hlist_head),
0818bf27
AV
2888 mhash_entries, 19,
2889 0,
2890 &m_hash_shift, &m_hash_mask, 0, 0);
2891 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2892 sizeof(struct hlist_head),
2893 mphash_entries, 19,
2894 0,
2895 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 2896
84d17192 2897 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2898 panic("Failed to allocate mount hash table\n");
2899
0818bf27 2900 for (u = 0; u <= m_hash_mask; u++)
38129a13 2901 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
2902 for (u = 0; u <= mp_hash_mask; u++)
2903 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2904
4b93dc9b
TH
2905 kernfs_init();
2906
15a67dd8
RD
2907 err = sysfs_init();
2908 if (err)
2909 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2910 __func__, err);
00d26666
GKH
2911 fs_kobj = kobject_create_and_add("fs", NULL);
2912 if (!fs_kobj)
8e24eea7 2913 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2914 init_rootfs();
2915 init_mount_tree();
2916}
2917
616511d0 2918void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2919{
d498b25a 2920 if (!atomic_dec_and_test(&ns->count))
616511d0 2921 return;
7b00ed6f 2922 drop_collected_mounts(&ns->root->mnt);
771b1371 2923 free_mnt_ns(ns);
1da177e4 2924}
9d412a43
AV
2925
2926struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2927{
423e0ab0
TC
2928 struct vfsmount *mnt;
2929 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2930 if (!IS_ERR(mnt)) {
2931 /*
2932 * it is a longterm mount, don't release mnt until
2933 * we unmount before file sys is unregistered
2934 */
f7a99c5b 2935 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2936 }
2937 return mnt;
9d412a43
AV
2938}
2939EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2940
2941void kern_unmount(struct vfsmount *mnt)
2942{
2943 /* release long term mount so mount point can be released */
2944 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 2945 real_mount(mnt)->mnt_ns = NULL;
48a066e7 2946 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
2947 mntput(mnt);
2948 }
2949}
2950EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2951
2952bool our_mnt(struct vfsmount *mnt)
2953{
143c8c91 2954 return check_mnt(real_mount(mnt));
02125a82 2955}
8823c079 2956
3151527e
EB
2957bool current_chrooted(void)
2958{
2959 /* Does the current process have a non-standard root */
2960 struct path ns_root;
2961 struct path fs_root;
2962 bool chrooted;
2963
2964 /* Find the namespace root */
2965 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2966 ns_root.dentry = ns_root.mnt->mnt_root;
2967 path_get(&ns_root);
2968 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2969 ;
2970
2971 get_fs_root(current->fs, &fs_root);
2972
2973 chrooted = !path_equal(&fs_root, &ns_root);
2974
2975 path_put(&fs_root);
2976 path_put(&ns_root);
2977
2978 return chrooted;
2979}
2980
e51db735 2981bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2982{
2983 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2984 struct mount *mnt;
e51db735 2985 bool visible = false;
87a8ebd6 2986
e51db735
EB
2987 if (unlikely(!ns))
2988 return false;
2989
44bb4385 2990 down_read(&namespace_sem);
87a8ebd6 2991 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2992 struct mount *child;
2993 if (mnt->mnt.mnt_sb->s_type != type)
2994 continue;
2995
2996 /* This mount is not fully visible if there are any child mounts
2997 * that cover anything except for empty directories.
2998 */
2999 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3000 struct inode *inode = child->mnt_mountpoint->d_inode;
3001 if (!S_ISDIR(inode->i_mode))
3002 goto next;
41301ae7 3003 if (inode->i_nlink > 2)
e51db735 3004 goto next;
87a8ebd6 3005 }
e51db735
EB
3006 visible = true;
3007 goto found;
3008 next: ;
87a8ebd6 3009 }
e51db735 3010found:
44bb4385 3011 up_read(&namespace_sem);
e51db735 3012 return visible;
87a8ebd6
EB
3013}
3014
8823c079
EB
3015static void *mntns_get(struct task_struct *task)
3016{
3017 struct mnt_namespace *ns = NULL;
3018 struct nsproxy *nsproxy;
3019
728dba3a
EB
3020 task_lock(task);
3021 nsproxy = task->nsproxy;
8823c079
EB
3022 if (nsproxy) {
3023 ns = nsproxy->mnt_ns;
3024 get_mnt_ns(ns);
3025 }
728dba3a 3026 task_unlock(task);
8823c079
EB
3027
3028 return ns;
3029}
3030
3031static void mntns_put(void *ns)
3032{
3033 put_mnt_ns(ns);
3034}
3035
3036static int mntns_install(struct nsproxy *nsproxy, void *ns)
3037{
3038 struct fs_struct *fs = current->fs;
3039 struct mnt_namespace *mnt_ns = ns;
3040 struct path root;
3041
0c55cfc4 3042 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3043 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3044 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3045 return -EPERM;
8823c079
EB
3046
3047 if (fs->users != 1)
3048 return -EINVAL;
3049
3050 get_mnt_ns(mnt_ns);
3051 put_mnt_ns(nsproxy->mnt_ns);
3052 nsproxy->mnt_ns = mnt_ns;
3053
3054 /* Find the root */
3055 root.mnt = &mnt_ns->root->mnt;
3056 root.dentry = mnt_ns->root->mnt.mnt_root;
3057 path_get(&root);
3058 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3059 ;
3060
3061 /* Update the pwd and root */
3062 set_fs_pwd(fs, &root);
3063 set_fs_root(fs, &root);
3064
3065 path_put(&root);
3066 return 0;
3067}
3068
98f842e6
EB
3069static unsigned int mntns_inum(void *ns)
3070{
3071 struct mnt_namespace *mnt_ns = ns;
3072 return mnt_ns->proc_inum;
3073}
3074
8823c079
EB
3075const struct proc_ns_operations mntns_operations = {
3076 .name = "mnt",
3077 .type = CLONE_NEWNS,
3078 .get = mntns_get,
3079 .put = mntns_put,
3080 .install = mntns_install,
98f842e6 3081 .inum = mntns_inum,
8823c079 3082};