proc: Fix the namespace inode permission checks.
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
8823c079 24#include <linux/proc_fs.h>
07b20889 25#include "pnode.h"
948730b0 26#include "internal.h"
1da177e4 27
13f14b4d
ED
28#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29#define HASH_SIZE (1UL << HASH_SHIFT)
30
5addc5dd 31static int event;
73cd49ec 32static DEFINE_IDA(mnt_id_ida);
719f5d7f 33static DEFINE_IDA(mnt_group_ida);
99b7db7b 34static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
35static int mnt_id_start = 0;
36static int mnt_group_start = 1;
1da177e4 37
fa3536cc 38static struct list_head *mount_hashtable __read_mostly;
e18b890b 39static struct kmem_cache *mnt_cache __read_mostly;
390c6843 40static struct rw_semaphore namespace_sem;
1da177e4 41
f87fd4c2 42/* /sys/fs */
00d26666
GKH
43struct kobject *fs_kobj;
44EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 45
99b7db7b
NP
46/*
47 * vfsmount lock may be taken for read to prevent changes to the
48 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * up the tree.
50 *
51 * It should be taken for write in all cases where the vfsmount
52 * tree or hash is modified or when a vfsmount structure is modified.
53 */
54DEFINE_BRLOCK(vfsmount_lock);
55
1da177e4
LT
56static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57{
b58fed8b
RP
58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
60 tmp = tmp + (tmp >> HASH_SHIFT);
61 return tmp & (HASH_SIZE - 1);
1da177e4
LT
62}
63
3d733633
DH
64#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65
99b7db7b
NP
66/*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
b105e270 70static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
71{
72 int res;
73
74retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 76 spin_lock(&mnt_id_lock);
15169fe7 77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 78 if (!res)
15169fe7 79 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 80 spin_unlock(&mnt_id_lock);
73cd49ec
MS
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85}
86
b105e270 87static void mnt_free_id(struct mount *mnt)
73cd49ec 88{
15169fe7 89 int id = mnt->mnt_id;
99b7db7b 90 spin_lock(&mnt_id_lock);
f21f6220
AV
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
99b7db7b 94 spin_unlock(&mnt_id_lock);
73cd49ec
MS
95}
96
719f5d7f
MS
97/*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
4b8b21f4 102static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 103{
f21f6220
AV
104 int res;
105
719f5d7f
MS
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
f21f6220
AV
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
15169fe7 111 &mnt->mnt_group_id);
f21f6220 112 if (!res)
15169fe7 113 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
114
115 return res;
719f5d7f
MS
116}
117
118/*
119 * Release a peer group ID
120 */
4b8b21f4 121void mnt_release_group_id(struct mount *mnt)
719f5d7f 122{
15169fe7 123 int id = mnt->mnt_group_id;
f21f6220
AV
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
15169fe7 127 mnt->mnt_group_id = 0;
719f5d7f
MS
128}
129
b3e19d92
NP
130/*
131 * vfsmount lock must be held for read
132 */
83adc753 133static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
134{
135#ifdef CONFIG_SMP
68e8a9fe 136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
137#else
138 preempt_disable();
68e8a9fe 139 mnt->mnt_count += n;
b3e19d92
NP
140 preempt_enable();
141#endif
142}
143
b3e19d92
NP
144/*
145 * vfsmount lock must be held for write
146 */
83adc753 147unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
148{
149#ifdef CONFIG_SMP
f03c6599 150 unsigned int count = 0;
b3e19d92
NP
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
68e8a9fe 154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
155 }
156
157 return count;
158#else
68e8a9fe 159 return mnt->mnt_count;
b3e19d92
NP
160#endif
161}
162
b105e270 163static struct mount *alloc_vfsmnt(const char *name)
1da177e4 164{
c63181e6
AV
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
73cd49ec
MS
167 int err;
168
c63181e6 169 err = mnt_alloc_id(mnt);
88b38782
LZ
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
c63181e6
AV
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
88b38782 176 goto out_free_id;
73cd49ec
MS
177 }
178
b3e19d92 179#ifdef CONFIG_SMP
c63181e6
AV
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
b3e19d92
NP
182 goto out_free_devname;
183
c63181e6 184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 185#else
c63181e6
AV
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
b3e19d92
NP
188#endif
189
c63181e6
AV
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
198#ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 200#endif
1da177e4 201 }
c63181e6 202 return mnt;
88b38782 203
d3ef3d73 204#ifdef CONFIG_SMP
205out_free_devname:
c63181e6 206 kfree(mnt->mnt_devname);
d3ef3d73 207#endif
88b38782 208out_free_id:
c63181e6 209 mnt_free_id(mnt);
88b38782 210out_free_cache:
c63181e6 211 kmem_cache_free(mnt_cache, mnt);
88b38782 212 return NULL;
1da177e4
LT
213}
214
3d733633
DH
215/*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223/*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
234int __mnt_is_readonly(struct vfsmount *mnt)
235{
2e4b7fcd
DH
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
3d733633
DH
241}
242EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
83adc753 244static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 245{
246#ifdef CONFIG_SMP
68e8a9fe 247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 248#else
68e8a9fe 249 mnt->mnt_writers++;
d3ef3d73 250#endif
251}
3d733633 252
83adc753 253static inline void mnt_dec_writers(struct mount *mnt)
3d733633 254{
d3ef3d73 255#ifdef CONFIG_SMP
68e8a9fe 256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 257#else
68e8a9fe 258 mnt->mnt_writers--;
d3ef3d73 259#endif
3d733633 260}
3d733633 261
83adc753 262static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 263{
d3ef3d73 264#ifdef CONFIG_SMP
265 unsigned int count = 0;
3d733633 266 int cpu;
3d733633
DH
267
268 for_each_possible_cpu(cpu) {
68e8a9fe 269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 270 }
3d733633 271
d3ef3d73 272 return count;
273#else
274 return mnt->mnt_writers;
275#endif
3d733633
DH
276}
277
4ed5e82f
MS
278static int mnt_is_readonly(struct vfsmount *mnt)
279{
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285}
286
8366025e 287/*
eb04c282
JK
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
8366025e
DH
292 */
293/**
eb04c282 294 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 295 * @m: the mount on which to take a write
8366025e 296 *
eb04c282
JK
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
8366025e 302 */
eb04c282 303int __mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
83adc753 316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
eb04c282
JK
329
330 return ret;
331}
332
333/**
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
341 */
342int mnt_want_write(struct vfsmount *m)
343{
344 int ret;
345
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
3d733633 350 return ret;
8366025e
DH
351}
352EXPORT_SYMBOL_GPL(mnt_want_write);
353
96029c4e 354/**
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
357 *
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
362 *
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
365 */
366int mnt_clone_write(struct vfsmount *mnt)
367{
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
83adc753 372 mnt_inc_writers(real_mount(mnt));
96029c4e 373 preempt_enable();
374 return 0;
375}
376EXPORT_SYMBOL_GPL(mnt_clone_write);
377
378/**
eb04c282 379 * __mnt_want_write_file - get write access to a file's mount
96029c4e 380 * @file: the file who's mount on which to take a write
381 *
eb04c282 382 * This is like __mnt_want_write, but it takes a file and can
96029c4e 383 * do some optimisations if the file is open for write already
384 */
eb04c282 385int __mnt_want_write_file(struct file *file)
96029c4e 386{
2d8dd38a 387 struct inode *inode = file->f_dentry->d_inode;
eb04c282 388
2d8dd38a 389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 390 return __mnt_want_write(file->f_path.mnt);
96029c4e 391 else
392 return mnt_clone_write(file->f_path.mnt);
393}
eb04c282
JK
394
395/**
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
398 *
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
401 */
402int mnt_want_write_file(struct file *file)
403{
404 int ret;
405
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
411}
96029c4e 412EXPORT_SYMBOL_GPL(mnt_want_write_file);
413
8366025e 414/**
eb04c282 415 * __mnt_drop_write - give up write access to a mount
8366025e
DH
416 * @mnt: the mount on which to give up write access
417 *
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
eb04c282 420 * __mnt_want_write() call above.
8366025e 421 */
eb04c282 422void __mnt_drop_write(struct vfsmount *mnt)
8366025e 423{
d3ef3d73 424 preempt_disable();
83adc753 425 mnt_dec_writers(real_mount(mnt));
d3ef3d73 426 preempt_enable();
8366025e 427}
eb04c282
JK
428
429/**
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
436 */
437void mnt_drop_write(struct vfsmount *mnt)
438{
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
441}
8366025e
DH
442EXPORT_SYMBOL_GPL(mnt_drop_write);
443
eb04c282
JK
444void __mnt_drop_write_file(struct file *file)
445{
446 __mnt_drop_write(file->f_path.mnt);
447}
448
2a79f17e
AV
449void mnt_drop_write_file(struct file *file)
450{
451 mnt_drop_write(file->f_path.mnt);
452}
453EXPORT_SYMBOL(mnt_drop_write_file);
454
83adc753 455static int mnt_make_readonly(struct mount *mnt)
8366025e 456{
3d733633
DH
457 int ret = 0;
458
962830df 459 br_write_lock(&vfsmount_lock);
83adc753 460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 461 /*
d3ef3d73 462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
3d733633 464 */
d3ef3d73 465 smp_mb();
466
3d733633 467 /*
d3ef3d73 468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
472 *
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
3d733633 482 */
c6653a83 483 if (mnt_get_writers(mnt) > 0)
d3ef3d73 484 ret = -EBUSY;
485 else
83adc753 486 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 487 /*
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
490 */
491 smp_wmb();
83adc753 492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 493 br_write_unlock(&vfsmount_lock);
3d733633 494 return ret;
8366025e 495}
8366025e 496
83adc753 497static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 498{
962830df 499 br_write_lock(&vfsmount_lock);
83adc753 500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 501 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
502}
503
4ed5e82f
MS
504int sb_prepare_remount_readonly(struct super_block *sb)
505{
506 struct mount *mnt;
507 int err = 0;
508
8e8b8796
MS
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
512
962830df 513 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
521 }
522 }
523 }
8e8b8796
MS
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
526
4ed5e82f
MS
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
530 }
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 }
962830df 535 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
536
537 return err;
538}
539
b105e270 540static void free_vfsmnt(struct mount *mnt)
1da177e4 541{
52ba1621 542 kfree(mnt->mnt_devname);
73cd49ec 543 mnt_free_id(mnt);
d3ef3d73 544#ifdef CONFIG_SMP
68e8a9fe 545 free_percpu(mnt->mnt_pcp);
d3ef3d73 546#endif
b105e270 547 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
548}
549
550/*
a05964f3
RP
551 * find the first or last mount at @dentry on vfsmount @mnt depending on
552 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 553 * vfsmount_lock must be held for read or write.
1da177e4 554 */
c7105365 555struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 556 int dir)
1da177e4 557{
b58fed8b
RP
558 struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 struct list_head *tmp = head;
c7105365 560 struct mount *p, *found = NULL;
1da177e4 561
1da177e4 562 for (;;) {
a05964f3 563 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
564 p = NULL;
565 if (tmp == head)
566 break;
1b8e5564 567 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 569 found = p;
1da177e4
LT
570 break;
571 }
572 }
1da177e4
LT
573 return found;
574}
575
a05964f3 576/*
f015f126
DH
577 * lookup_mnt - Return the first child mount mounted at path
578 *
579 * "First" means first mounted chronologically. If you create the
580 * following mounts:
581 *
582 * mount /dev/sda1 /mnt
583 * mount /dev/sda2 /mnt
584 * mount /dev/sda3 /mnt
585 *
586 * Then lookup_mnt() on the base /mnt dentry in the root mount will
587 * return successively the root dentry and vfsmount of /dev/sda1, then
588 * /dev/sda2, then /dev/sda3, then NULL.
589 *
590 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 591 */
1c755af4 592struct vfsmount *lookup_mnt(struct path *path)
a05964f3 593{
c7105365 594 struct mount *child_mnt;
99b7db7b 595
962830df 596 br_read_lock(&vfsmount_lock);
c7105365
AV
597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 if (child_mnt) {
599 mnt_add_count(child_mnt, 1);
962830df 600 br_read_unlock(&vfsmount_lock);
c7105365
AV
601 return &child_mnt->mnt;
602 } else {
962830df 603 br_read_unlock(&vfsmount_lock);
c7105365
AV
604 return NULL;
605 }
a05964f3
RP
606}
607
143c8c91 608static inline int check_mnt(struct mount *mnt)
1da177e4 609{
6b3286ed 610 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
611}
612
99b7db7b
NP
613/*
614 * vfsmount lock must be held for write
615 */
6b3286ed 616static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
617{
618 if (ns) {
619 ns->event = ++event;
620 wake_up_interruptible(&ns->poll);
621 }
622}
623
99b7db7b
NP
624/*
625 * vfsmount lock must be held for write
626 */
6b3286ed 627static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
628{
629 if (ns && ns->event != event) {
630 ns->event = event;
631 wake_up_interruptible(&ns->poll);
632 }
633}
634
5f57cbcc
NP
635/*
636 * Clear dentry's mounted state if it has no remaining mounts.
637 * vfsmount_lock must be held for write.
638 */
aa0a4cf0 639static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
640{
641 unsigned u;
642
643 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 644 struct mount *p;
5f57cbcc 645
1b8e5564 646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 647 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
648 return;
649 }
650 }
651 spin_lock(&dentry->d_lock);
652 dentry->d_flags &= ~DCACHE_MOUNTED;
653 spin_unlock(&dentry->d_lock);
654}
655
99b7db7b
NP
656/*
657 * vfsmount lock must be held for write
658 */
419148da
AV
659static void detach_mnt(struct mount *mnt, struct path *old_path)
660{
a73324da 661 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
662 old_path->mnt = &mnt->mnt_parent->mnt;
663 mnt->mnt_parent = mnt;
a73324da 664 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 665 list_del_init(&mnt->mnt_child);
1b8e5564 666 list_del_init(&mnt->mnt_hash);
aa0a4cf0 667 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
668}
669
99b7db7b
NP
670/*
671 * vfsmount lock must be held for write
672 */
14cf1fa8 673void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 674 struct mount *child_mnt)
b90fa9ae 675{
3a2393d7 676 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 677 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 678 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
679 spin_lock(&dentry->d_lock);
680 dentry->d_flags |= DCACHE_MOUNTED;
681 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
682}
683
99b7db7b
NP
684/*
685 * vfsmount lock must be held for write
686 */
419148da 687static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 688{
14cf1fa8 689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 690 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 691 hash(path->mnt, path->dentry));
6b41d536 692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
693}
694
695/*
99b7db7b 696 * vfsmount lock must be held for write
b90fa9ae 697 */
4b2619a5 698static void commit_tree(struct mount *mnt)
b90fa9ae 699{
0714a533 700 struct mount *parent = mnt->mnt_parent;
83adc753 701 struct mount *m;
b90fa9ae 702 LIST_HEAD(head);
143c8c91 703 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 704
0714a533 705 BUG_ON(parent == mnt);
b90fa9ae 706
1a4eeaf2 707 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 708 list_for_each_entry(m, &head, mnt_list)
143c8c91 709 m->mnt_ns = n;
f03c6599 710
b90fa9ae
RP
711 list_splice(&head, n->list.prev);
712
1b8e5564 713 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 714 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 716 touch_mnt_namespace(n);
1da177e4
LT
717}
718
909b0a88 719static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 720{
6b41d536
AV
721 struct list_head *next = p->mnt_mounts.next;
722 if (next == &p->mnt_mounts) {
1da177e4 723 while (1) {
909b0a88 724 if (p == root)
1da177e4 725 return NULL;
6b41d536
AV
726 next = p->mnt_child.next;
727 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 728 break;
0714a533 729 p = p->mnt_parent;
1da177e4
LT
730 }
731 }
6b41d536 732 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
733}
734
315fc83e 735static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 736{
6b41d536
AV
737 struct list_head *prev = p->mnt_mounts.prev;
738 while (prev != &p->mnt_mounts) {
739 p = list_entry(prev, struct mount, mnt_child);
740 prev = p->mnt_mounts.prev;
9676f0c6
RP
741 }
742 return p;
743}
744
9d412a43
AV
745struct vfsmount *
746vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
747{
b105e270 748 struct mount *mnt;
9d412a43
AV
749 struct dentry *root;
750
751 if (!type)
752 return ERR_PTR(-ENODEV);
753
754 mnt = alloc_vfsmnt(name);
755 if (!mnt)
756 return ERR_PTR(-ENOMEM);
757
758 if (flags & MS_KERNMOUNT)
b105e270 759 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
760
761 root = mount_fs(type, flags, name, data);
762 if (IS_ERR(root)) {
763 free_vfsmnt(mnt);
764 return ERR_CAST(root);
765 }
766
b105e270
AV
767 mnt->mnt.mnt_root = root;
768 mnt->mnt.mnt_sb = root->d_sb;
a73324da 769 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 770 mnt->mnt_parent = mnt;
962830df 771 br_write_lock(&vfsmount_lock);
39f7c4db 772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 773 br_write_unlock(&vfsmount_lock);
b105e270 774 return &mnt->mnt;
9d412a43
AV
775}
776EXPORT_SYMBOL_GPL(vfs_kern_mount);
777
87129cc0 778static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 779 int flag)
1da177e4 780{
87129cc0 781 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
782 struct mount *mnt;
783 int err;
1da177e4 784
be34d1a3
DH
785 mnt = alloc_vfsmnt(old->mnt_devname);
786 if (!mnt)
787 return ERR_PTR(-ENOMEM);
719f5d7f 788
7a472ef4 789 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
790 mnt->mnt_group_id = 0; /* not a peer of original */
791 else
792 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 793
be34d1a3
DH
794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 err = mnt_alloc_group_id(mnt);
796 if (err)
797 goto out_free;
1da177e4 798 }
be34d1a3
DH
799
800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 atomic_inc(&sb->s_active);
802 mnt->mnt.mnt_sb = sb;
803 mnt->mnt.mnt_root = dget(root);
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 mnt->mnt_parent = mnt;
806 br_write_lock(&vfsmount_lock);
807 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
808 br_write_unlock(&vfsmount_lock);
809
7a472ef4
EB
810 if ((flag & CL_SLAVE) ||
811 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
812 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
813 mnt->mnt_master = old;
814 CLEAR_MNT_SHARED(mnt);
815 } else if (!(flag & CL_PRIVATE)) {
816 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
817 list_add(&mnt->mnt_share, &old->mnt_share);
818 if (IS_MNT_SLAVE(old))
819 list_add(&mnt->mnt_slave, &old->mnt_slave);
820 mnt->mnt_master = old->mnt_master;
821 }
822 if (flag & CL_MAKE_SHARED)
823 set_mnt_shared(mnt);
824
825 /* stick the duplicate mount on the same expiry list
826 * as the original if that was on one */
827 if (flag & CL_EXPIRE) {
828 if (!list_empty(&old->mnt_expire))
829 list_add(&mnt->mnt_expire, &old->mnt_expire);
830 }
831
cb338d06 832 return mnt;
719f5d7f
MS
833
834 out_free:
835 free_vfsmnt(mnt);
be34d1a3 836 return ERR_PTR(err);
1da177e4
LT
837}
838
83adc753 839static inline void mntfree(struct mount *mnt)
1da177e4 840{
83adc753
AV
841 struct vfsmount *m = &mnt->mnt;
842 struct super_block *sb = m->mnt_sb;
b3e19d92 843
3d733633
DH
844 /*
845 * This probably indicates that somebody messed
846 * up a mnt_want/drop_write() pair. If this
847 * happens, the filesystem was probably unable
848 * to make r/w->r/o transitions.
849 */
d3ef3d73 850 /*
b3e19d92
NP
851 * The locking used to deal with mnt_count decrement provides barriers,
852 * so mnt_get_writers() below is safe.
d3ef3d73 853 */
c6653a83 854 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
855 fsnotify_vfsmount_delete(m);
856 dput(m->mnt_root);
857 free_vfsmnt(mnt);
1da177e4
LT
858 deactivate_super(sb);
859}
860
900148dc 861static void mntput_no_expire(struct mount *mnt)
b3e19d92 862{
b3e19d92 863put_again:
f03c6599 864#ifdef CONFIG_SMP
962830df 865 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
866 if (likely(mnt->mnt_ns)) {
867 /* shouldn't be the last one */
aa9c0e07 868 mnt_add_count(mnt, -1);
962830df 869 br_read_unlock(&vfsmount_lock);
f03c6599 870 return;
b3e19d92 871 }
962830df 872 br_read_unlock(&vfsmount_lock);
b3e19d92 873
962830df 874 br_write_lock(&vfsmount_lock);
aa9c0e07 875 mnt_add_count(mnt, -1);
b3e19d92 876 if (mnt_get_count(mnt)) {
962830df 877 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
878 return;
879 }
b3e19d92 880#else
aa9c0e07 881 mnt_add_count(mnt, -1);
b3e19d92 882 if (likely(mnt_get_count(mnt)))
99b7db7b 883 return;
962830df 884 br_write_lock(&vfsmount_lock);
f03c6599 885#endif
863d684f
AV
886 if (unlikely(mnt->mnt_pinned)) {
887 mnt_add_count(mnt, mnt->mnt_pinned + 1);
888 mnt->mnt_pinned = 0;
962830df 889 br_write_unlock(&vfsmount_lock);
900148dc 890 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 891 goto put_again;
7b7b1ace 892 }
962830df 893
39f7c4db 894 list_del(&mnt->mnt_instance);
962830df 895 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
896 mntfree(mnt);
897}
b3e19d92
NP
898
899void mntput(struct vfsmount *mnt)
900{
901 if (mnt) {
863d684f 902 struct mount *m = real_mount(mnt);
b3e19d92 903 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
904 if (unlikely(m->mnt_expiry_mark))
905 m->mnt_expiry_mark = 0;
906 mntput_no_expire(m);
b3e19d92
NP
907 }
908}
909EXPORT_SYMBOL(mntput);
910
911struct vfsmount *mntget(struct vfsmount *mnt)
912{
913 if (mnt)
83adc753 914 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
915 return mnt;
916}
917EXPORT_SYMBOL(mntget);
918
7b7b1ace
AV
919void mnt_pin(struct vfsmount *mnt)
920{
962830df 921 br_write_lock(&vfsmount_lock);
863d684f 922 real_mount(mnt)->mnt_pinned++;
962830df 923 br_write_unlock(&vfsmount_lock);
7b7b1ace 924}
7b7b1ace
AV
925EXPORT_SYMBOL(mnt_pin);
926
863d684f 927void mnt_unpin(struct vfsmount *m)
7b7b1ace 928{
863d684f 929 struct mount *mnt = real_mount(m);
962830df 930 br_write_lock(&vfsmount_lock);
7b7b1ace 931 if (mnt->mnt_pinned) {
863d684f 932 mnt_add_count(mnt, 1);
7b7b1ace
AV
933 mnt->mnt_pinned--;
934 }
962830df 935 br_write_unlock(&vfsmount_lock);
7b7b1ace 936}
7b7b1ace 937EXPORT_SYMBOL(mnt_unpin);
1da177e4 938
b3b304a2
MS
939static inline void mangle(struct seq_file *m, const char *s)
940{
941 seq_escape(m, s, " \t\n\\");
942}
943
944/*
945 * Simple .show_options callback for filesystems which don't want to
946 * implement more complex mount option showing.
947 *
948 * See also save_mount_options().
949 */
34c80b1d 950int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 951{
2a32cebd
AV
952 const char *options;
953
954 rcu_read_lock();
34c80b1d 955 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
956
957 if (options != NULL && options[0]) {
958 seq_putc(m, ',');
959 mangle(m, options);
960 }
2a32cebd 961 rcu_read_unlock();
b3b304a2
MS
962
963 return 0;
964}
965EXPORT_SYMBOL(generic_show_options);
966
967/*
968 * If filesystem uses generic_show_options(), this function should be
969 * called from the fill_super() callback.
970 *
971 * The .remount_fs callback usually needs to be handled in a special
972 * way, to make sure, that previous options are not overwritten if the
973 * remount fails.
974 *
975 * Also note, that if the filesystem's .remount_fs function doesn't
976 * reset all options to their default value, but changes only newly
977 * given options, then the displayed options will not reflect reality
978 * any more.
979 */
980void save_mount_options(struct super_block *sb, char *options)
981{
2a32cebd
AV
982 BUG_ON(sb->s_options);
983 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
984}
985EXPORT_SYMBOL(save_mount_options);
986
2a32cebd
AV
987void replace_mount_options(struct super_block *sb, char *options)
988{
989 char *old = sb->s_options;
990 rcu_assign_pointer(sb->s_options, options);
991 if (old) {
992 synchronize_rcu();
993 kfree(old);
994 }
995}
996EXPORT_SYMBOL(replace_mount_options);
997
a1a2c409 998#ifdef CONFIG_PROC_FS
0226f492 999/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1000static void *m_start(struct seq_file *m, loff_t *pos)
1001{
6ce6e24e 1002 struct proc_mounts *p = proc_mounts(m);
1da177e4 1003
390c6843 1004 down_read(&namespace_sem);
a1a2c409 1005 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1006}
1007
1008static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1009{
6ce6e24e 1010 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1011
a1a2c409 1012 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1013}
1014
1015static void m_stop(struct seq_file *m, void *v)
1016{
390c6843 1017 up_read(&namespace_sem);
1da177e4
LT
1018}
1019
0226f492 1020static int m_show(struct seq_file *m, void *v)
2d4d4864 1021{
6ce6e24e 1022 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1023 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1024 return p->show(m, &r->mnt);
1da177e4
LT
1025}
1026
a1a2c409 1027const struct seq_operations mounts_op = {
1da177e4
LT
1028 .start = m_start,
1029 .next = m_next,
1030 .stop = m_stop,
0226f492 1031 .show = m_show,
b4629fe2 1032};
a1a2c409 1033#endif /* CONFIG_PROC_FS */
b4629fe2 1034
1da177e4
LT
1035/**
1036 * may_umount_tree - check if a mount tree is busy
1037 * @mnt: root of mount tree
1038 *
1039 * This is called to check if a tree of mounts has any
1040 * open files, pwds, chroots or sub mounts that are
1041 * busy.
1042 */
909b0a88 1043int may_umount_tree(struct vfsmount *m)
1da177e4 1044{
909b0a88 1045 struct mount *mnt = real_mount(m);
36341f64
RP
1046 int actual_refs = 0;
1047 int minimum_refs = 0;
315fc83e 1048 struct mount *p;
909b0a88 1049 BUG_ON(!m);
1da177e4 1050
b3e19d92 1051 /* write lock needed for mnt_get_count */
962830df 1052 br_write_lock(&vfsmount_lock);
909b0a88 1053 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1054 actual_refs += mnt_get_count(p);
1da177e4 1055 minimum_refs += 2;
1da177e4 1056 }
962830df 1057 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1058
1059 if (actual_refs > minimum_refs)
e3474a8e 1060 return 0;
1da177e4 1061
e3474a8e 1062 return 1;
1da177e4
LT
1063}
1064
1065EXPORT_SYMBOL(may_umount_tree);
1066
1067/**
1068 * may_umount - check if a mount point is busy
1069 * @mnt: root of mount
1070 *
1071 * This is called to check if a mount point has any
1072 * open files, pwds, chroots or sub mounts. If the
1073 * mount has sub mounts this will return busy
1074 * regardless of whether the sub mounts are busy.
1075 *
1076 * Doesn't take quota and stuff into account. IOW, in some cases it will
1077 * give false negatives. The main reason why it's here is that we need
1078 * a non-destructive way to look for easily umountable filesystems.
1079 */
1080int may_umount(struct vfsmount *mnt)
1081{
e3474a8e 1082 int ret = 1;
8ad08d8a 1083 down_read(&namespace_sem);
962830df 1084 br_write_lock(&vfsmount_lock);
1ab59738 1085 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1086 ret = 0;
962830df 1087 br_write_unlock(&vfsmount_lock);
8ad08d8a 1088 up_read(&namespace_sem);
a05964f3 1089 return ret;
1da177e4
LT
1090}
1091
1092EXPORT_SYMBOL(may_umount);
1093
b90fa9ae 1094void release_mounts(struct list_head *head)
70fbcdf4 1095{
d5e50f74 1096 struct mount *mnt;
bf066c7d 1097 while (!list_empty(head)) {
1b8e5564
AV
1098 mnt = list_first_entry(head, struct mount, mnt_hash);
1099 list_del_init(&mnt->mnt_hash);
676da58d 1100 if (mnt_has_parent(mnt)) {
70fbcdf4 1101 struct dentry *dentry;
863d684f 1102 struct mount *m;
99b7db7b 1103
962830df 1104 br_write_lock(&vfsmount_lock);
a73324da 1105 dentry = mnt->mnt_mountpoint;
863d684f 1106 m = mnt->mnt_parent;
a73324da 1107 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1108 mnt->mnt_parent = mnt;
7c4b93d8 1109 m->mnt_ghosts--;
962830df 1110 br_write_unlock(&vfsmount_lock);
70fbcdf4 1111 dput(dentry);
863d684f 1112 mntput(&m->mnt);
70fbcdf4 1113 }
d5e50f74 1114 mntput(&mnt->mnt);
70fbcdf4
RP
1115 }
1116}
1117
99b7db7b
NP
1118/*
1119 * vfsmount lock must be held for write
1120 * namespace_sem must be held for write
1121 */
761d5c38 1122void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1123{
7b8a53fd 1124 LIST_HEAD(tmp_list);
315fc83e 1125 struct mount *p;
1da177e4 1126
909b0a88 1127 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1128 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1129
a05964f3 1130 if (propagate)
7b8a53fd 1131 propagate_umount(&tmp_list);
a05964f3 1132
1b8e5564 1133 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1134 list_del_init(&p->mnt_expire);
1a4eeaf2 1135 list_del_init(&p->mnt_list);
143c8c91
AV
1136 __touch_mnt_namespace(p->mnt_ns);
1137 p->mnt_ns = NULL;
6b41d536 1138 list_del_init(&p->mnt_child);
676da58d 1139 if (mnt_has_parent(p)) {
863d684f 1140 p->mnt_parent->mnt_ghosts++;
a73324da 1141 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1142 }
0f0afb1d 1143 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1144 }
7b8a53fd 1145 list_splice(&tmp_list, kill);
1da177e4
LT
1146}
1147
692afc31 1148static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1149
1ab59738 1150static int do_umount(struct mount *mnt, int flags)
1da177e4 1151{
1ab59738 1152 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1153 int retval;
70fbcdf4 1154 LIST_HEAD(umount_list);
1da177e4 1155
1ab59738 1156 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1157 if (retval)
1158 return retval;
1159
1160 /*
1161 * Allow userspace to request a mountpoint be expired rather than
1162 * unmounting unconditionally. Unmount only happens if:
1163 * (1) the mark is already set (the mark is cleared by mntput())
1164 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1165 */
1166 if (flags & MNT_EXPIRE) {
1ab59738 1167 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1168 flags & (MNT_FORCE | MNT_DETACH))
1169 return -EINVAL;
1170
b3e19d92
NP
1171 /*
1172 * probably don't strictly need the lock here if we examined
1173 * all race cases, but it's a slowpath.
1174 */
962830df 1175 br_write_lock(&vfsmount_lock);
83adc753 1176 if (mnt_get_count(mnt) != 2) {
962830df 1177 br_write_unlock(&vfsmount_lock);
1da177e4 1178 return -EBUSY;
b3e19d92 1179 }
962830df 1180 br_write_unlock(&vfsmount_lock);
1da177e4 1181
863d684f 1182 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1183 return -EAGAIN;
1184 }
1185
1186 /*
1187 * If we may have to abort operations to get out of this
1188 * mount, and they will themselves hold resources we must
1189 * allow the fs to do things. In the Unix tradition of
1190 * 'Gee thats tricky lets do it in userspace' the umount_begin
1191 * might fail to complete on the first run through as other tasks
1192 * must return, and the like. Thats for the mount program to worry
1193 * about for the moment.
1194 */
1195
42faad99 1196 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1197 sb->s_op->umount_begin(sb);
42faad99 1198 }
1da177e4
LT
1199
1200 /*
1201 * No sense to grab the lock for this test, but test itself looks
1202 * somewhat bogus. Suggestions for better replacement?
1203 * Ho-hum... In principle, we might treat that as umount + switch
1204 * to rootfs. GC would eventually take care of the old vfsmount.
1205 * Actually it makes sense, especially if rootfs would contain a
1206 * /reboot - static binary that would close all descriptors and
1207 * call reboot(9). Then init(8) could umount root and exec /reboot.
1208 */
1ab59738 1209 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1210 /*
1211 * Special case for "unmounting" root ...
1212 * we just try to remount it readonly.
1213 */
1214 down_write(&sb->s_umount);
4aa98cf7 1215 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1216 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1217 up_write(&sb->s_umount);
1218 return retval;
1219 }
1220
390c6843 1221 down_write(&namespace_sem);
962830df 1222 br_write_lock(&vfsmount_lock);
5addc5dd 1223 event++;
1da177e4 1224
c35038be 1225 if (!(flags & MNT_DETACH))
1ab59738 1226 shrink_submounts(mnt, &umount_list);
c35038be 1227
1da177e4 1228 retval = -EBUSY;
a05964f3 1229 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1230 if (!list_empty(&mnt->mnt_list))
1ab59738 1231 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1232 retval = 0;
1233 }
962830df 1234 br_write_unlock(&vfsmount_lock);
390c6843 1235 up_write(&namespace_sem);
70fbcdf4 1236 release_mounts(&umount_list);
1da177e4
LT
1237 return retval;
1238}
1239
1240/*
1241 * Now umount can handle mount points as well as block devices.
1242 * This is important for filesystems which use unnamed block devices.
1243 *
1244 * We now support a flag for forced unmount like the other 'big iron'
1245 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1246 */
1247
bdc480e3 1248SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1249{
2d8f3038 1250 struct path path;
900148dc 1251 struct mount *mnt;
1da177e4 1252 int retval;
db1f05bb 1253 int lookup_flags = 0;
1da177e4 1254
db1f05bb
MS
1255 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1256 return -EINVAL;
1257
1258 if (!(flags & UMOUNT_NOFOLLOW))
1259 lookup_flags |= LOOKUP_FOLLOW;
1260
1261 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1262 if (retval)
1263 goto out;
900148dc 1264 mnt = real_mount(path.mnt);
1da177e4 1265 retval = -EINVAL;
2d8f3038 1266 if (path.dentry != path.mnt->mnt_root)
1da177e4 1267 goto dput_and_out;
143c8c91 1268 if (!check_mnt(mnt))
1da177e4
LT
1269 goto dput_and_out;
1270
1271 retval = -EPERM;
0c55cfc4 1272 if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1273 goto dput_and_out;
1274
900148dc 1275 retval = do_umount(mnt, flags);
1da177e4 1276dput_and_out:
429731b1 1277 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1278 dput(path.dentry);
900148dc 1279 mntput_no_expire(mnt);
1da177e4
LT
1280out:
1281 return retval;
1282}
1283
1284#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1285
1286/*
b58fed8b 1287 * The 2.0 compatible umount. No flags.
1da177e4 1288 */
bdc480e3 1289SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1290{
b58fed8b 1291 return sys_umount(name, 0);
1da177e4
LT
1292}
1293
1294#endif
1295
2d92ab3c 1296static int mount_is_safe(struct path *path)
1da177e4 1297{
0c55cfc4 1298 if (ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1299 return 0;
1300 return -EPERM;
1301#ifdef notyet
2d92ab3c 1302 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1303 return -EPERM;
2d92ab3c 1304 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1305 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1306 return -EPERM;
1307 }
2d92ab3c 1308 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1309 return -EPERM;
1310 return 0;
1311#endif
1312}
1313
8823c079
EB
1314static bool mnt_ns_loop(struct path *path)
1315{
1316 /* Could bind mounting the mount namespace inode cause a
1317 * mount namespace loop?
1318 */
1319 struct inode *inode = path->dentry->d_inode;
1320 struct proc_inode *ei;
1321 struct mnt_namespace *mnt_ns;
1322
1323 if (!proc_ns_inode(inode))
1324 return false;
1325
1326 ei = PROC_I(inode);
1327 if (ei->ns_ops != &mntns_operations)
1328 return false;
1329
1330 mnt_ns = ei->ns;
1331 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1332}
1333
87129cc0 1334struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1335 int flag)
1da177e4 1336{
a73324da 1337 struct mount *res, *p, *q, *r;
1a390689 1338 struct path path;
1da177e4 1339
fc7be130 1340 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1341 return ERR_PTR(-EINVAL);
9676f0c6 1342
36341f64 1343 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1344 if (IS_ERR(q))
1345 return q;
1346
a73324da 1347 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1348
1349 p = mnt;
6b41d536 1350 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1351 struct mount *s;
7ec02ef1 1352 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1353 continue;
1354
909b0a88 1355 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1356 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1357 s = skip_mnt_tree(s);
1358 continue;
1359 }
0714a533
AV
1360 while (p != s->mnt_parent) {
1361 p = p->mnt_parent;
1362 q = q->mnt_parent;
1da177e4 1363 }
87129cc0 1364 p = s;
cb338d06 1365 path.mnt = &q->mnt;
a73324da 1366 path.dentry = p->mnt_mountpoint;
87129cc0 1367 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1368 if (IS_ERR(q))
1369 goto out;
962830df 1370 br_write_lock(&vfsmount_lock);
1a4eeaf2 1371 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1372 attach_mnt(q, &path);
962830df 1373 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1374 }
1375 }
1376 return res;
be34d1a3 1377out:
1da177e4 1378 if (res) {
70fbcdf4 1379 LIST_HEAD(umount_list);
962830df 1380 br_write_lock(&vfsmount_lock);
761d5c38 1381 umount_tree(res, 0, &umount_list);
962830df 1382 br_write_unlock(&vfsmount_lock);
70fbcdf4 1383 release_mounts(&umount_list);
1da177e4 1384 }
be34d1a3 1385 return q;
1da177e4
LT
1386}
1387
be34d1a3
DH
1388/* Caller should check returned pointer for errors */
1389
589ff870 1390struct vfsmount *collect_mounts(struct path *path)
8aec0809 1391{
cb338d06 1392 struct mount *tree;
1a60a280 1393 down_write(&namespace_sem);
87129cc0
AV
1394 tree = copy_tree(real_mount(path->mnt), path->dentry,
1395 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1396 up_write(&namespace_sem);
be34d1a3
DH
1397 if (IS_ERR(tree))
1398 return NULL;
1399 return &tree->mnt;
8aec0809
AV
1400}
1401
1402void drop_collected_mounts(struct vfsmount *mnt)
1403{
1404 LIST_HEAD(umount_list);
1a60a280 1405 down_write(&namespace_sem);
962830df 1406 br_write_lock(&vfsmount_lock);
761d5c38 1407 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1408 br_write_unlock(&vfsmount_lock);
1a60a280 1409 up_write(&namespace_sem);
8aec0809
AV
1410 release_mounts(&umount_list);
1411}
1412
1f707137
AV
1413int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1414 struct vfsmount *root)
1415{
1a4eeaf2 1416 struct mount *mnt;
1f707137
AV
1417 int res = f(root, arg);
1418 if (res)
1419 return res;
1a4eeaf2
AV
1420 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1421 res = f(&mnt->mnt, arg);
1f707137
AV
1422 if (res)
1423 return res;
1424 }
1425 return 0;
1426}
1427
4b8b21f4 1428static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1429{
315fc83e 1430 struct mount *p;
719f5d7f 1431
909b0a88 1432 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1433 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1434 mnt_release_group_id(p);
719f5d7f
MS
1435 }
1436}
1437
4b8b21f4 1438static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1439{
315fc83e 1440 struct mount *p;
719f5d7f 1441
909b0a88 1442 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1443 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1444 int err = mnt_alloc_group_id(p);
719f5d7f 1445 if (err) {
4b8b21f4 1446 cleanup_group_ids(mnt, p);
719f5d7f
MS
1447 return err;
1448 }
1449 }
1450 }
1451
1452 return 0;
1453}
1454
b90fa9ae
RP
1455/*
1456 * @source_mnt : mount tree to be attached
21444403
RP
1457 * @nd : place the mount tree @source_mnt is attached
1458 * @parent_nd : if non-null, detach the source_mnt from its parent and
1459 * store the parent mount and mountpoint dentry.
1460 * (done when source_mnt is moved)
b90fa9ae
RP
1461 *
1462 * NOTE: in the table below explains the semantics when a source mount
1463 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1464 * ---------------------------------------------------------------------------
1465 * | BIND MOUNT OPERATION |
1466 * |**************************************************************************
1467 * | source-->| shared | private | slave | unbindable |
1468 * | dest | | | | |
1469 * | | | | | | |
1470 * | v | | | | |
1471 * |**************************************************************************
1472 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1473 * | | | | | |
1474 * |non-shared| shared (+) | private | slave (*) | invalid |
1475 * ***************************************************************************
b90fa9ae
RP
1476 * A bind operation clones the source mount and mounts the clone on the
1477 * destination mount.
1478 *
1479 * (++) the cloned mount is propagated to all the mounts in the propagation
1480 * tree of the destination mount and the cloned mount is added to
1481 * the peer group of the source mount.
1482 * (+) the cloned mount is created under the destination mount and is marked
1483 * as shared. The cloned mount is added to the peer group of the source
1484 * mount.
5afe0022
RP
1485 * (+++) the mount is propagated to all the mounts in the propagation tree
1486 * of the destination mount and the cloned mount is made slave
1487 * of the same master as that of the source mount. The cloned mount
1488 * is marked as 'shared and slave'.
1489 * (*) the cloned mount is made a slave of the same master as that of the
1490 * source mount.
1491 *
9676f0c6
RP
1492 * ---------------------------------------------------------------------------
1493 * | MOVE MOUNT OPERATION |
1494 * |**************************************************************************
1495 * | source-->| shared | private | slave | unbindable |
1496 * | dest | | | | |
1497 * | | | | | | |
1498 * | v | | | | |
1499 * |**************************************************************************
1500 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1501 * | | | | | |
1502 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1503 * ***************************************************************************
5afe0022
RP
1504 *
1505 * (+) the mount is moved to the destination. And is then propagated to
1506 * all the mounts in the propagation tree of the destination mount.
21444403 1507 * (+*) the mount is moved to the destination.
5afe0022
RP
1508 * (+++) the mount is moved to the destination and is then propagated to
1509 * all the mounts belonging to the destination mount's propagation tree.
1510 * the mount is marked as 'shared and slave'.
1511 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1512 *
1513 * if the source mount is a tree, the operations explained above is
1514 * applied to each mount in the tree.
1515 * Must be called without spinlocks held, since this function can sleep
1516 * in allocations.
1517 */
0fb54e50 1518static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1519 struct path *path, struct path *parent_path)
b90fa9ae
RP
1520{
1521 LIST_HEAD(tree_list);
a8d56d8e 1522 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1523 struct dentry *dest_dentry = path->dentry;
315fc83e 1524 struct mount *child, *p;
719f5d7f 1525 int err;
b90fa9ae 1526
fc7be130 1527 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1528 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1529 if (err)
1530 goto out;
1531 }
a8d56d8e 1532 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1533 if (err)
1534 goto out_cleanup_ids;
b90fa9ae 1535
962830df 1536 br_write_lock(&vfsmount_lock);
df1a1ad2 1537
fc7be130 1538 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1539 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1540 set_mnt_shared(p);
b90fa9ae 1541 }
1a390689 1542 if (parent_path) {
0fb54e50
AV
1543 detach_mnt(source_mnt, parent_path);
1544 attach_mnt(source_mnt, path);
143c8c91 1545 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1546 } else {
14cf1fa8 1547 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1548 commit_tree(source_mnt);
21444403 1549 }
b90fa9ae 1550
1b8e5564
AV
1551 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1552 list_del_init(&child->mnt_hash);
4b2619a5 1553 commit_tree(child);
b90fa9ae 1554 }
962830df 1555 br_write_unlock(&vfsmount_lock);
99b7db7b 1556
b90fa9ae 1557 return 0;
719f5d7f
MS
1558
1559 out_cleanup_ids:
fc7be130 1560 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1561 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1562 out:
1563 return err;
b90fa9ae
RP
1564}
1565
b12cea91
AV
1566static int lock_mount(struct path *path)
1567{
1568 struct vfsmount *mnt;
1569retry:
1570 mutex_lock(&path->dentry->d_inode->i_mutex);
1571 if (unlikely(cant_mount(path->dentry))) {
1572 mutex_unlock(&path->dentry->d_inode->i_mutex);
1573 return -ENOENT;
1574 }
1575 down_write(&namespace_sem);
1576 mnt = lookup_mnt(path);
1577 if (likely(!mnt))
1578 return 0;
1579 up_write(&namespace_sem);
1580 mutex_unlock(&path->dentry->d_inode->i_mutex);
1581 path_put(path);
1582 path->mnt = mnt;
1583 path->dentry = dget(mnt->mnt_root);
1584 goto retry;
1585}
1586
1587static void unlock_mount(struct path *path)
1588{
1589 up_write(&namespace_sem);
1590 mutex_unlock(&path->dentry->d_inode->i_mutex);
1591}
1592
95bc5f25 1593static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1594{
95bc5f25 1595 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1596 return -EINVAL;
1597
8c3ee42e 1598 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1599 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1600 return -ENOTDIR;
1601
b12cea91
AV
1602 if (d_unlinked(path->dentry))
1603 return -ENOENT;
1da177e4 1604
95bc5f25 1605 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1606}
1607
7a2e8a8f
VA
1608/*
1609 * Sanity check the flags to change_mnt_propagation.
1610 */
1611
1612static int flags_to_propagation_type(int flags)
1613{
7c6e984d 1614 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1615
1616 /* Fail if any non-propagation flags are set */
1617 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1618 return 0;
1619 /* Only one propagation flag should be set */
1620 if (!is_power_of_2(type))
1621 return 0;
1622 return type;
1623}
1624
07b20889
RP
1625/*
1626 * recursively change the type of the mountpoint.
1627 */
0a0d8a46 1628static int do_change_type(struct path *path, int flag)
07b20889 1629{
315fc83e 1630 struct mount *m;
4b8b21f4 1631 struct mount *mnt = real_mount(path->mnt);
07b20889 1632 int recurse = flag & MS_REC;
7a2e8a8f 1633 int type;
719f5d7f 1634 int err = 0;
07b20889 1635
0c55cfc4 1636 if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
ee6f9582
MS
1637 return -EPERM;
1638
2d92ab3c 1639 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1640 return -EINVAL;
1641
7a2e8a8f
VA
1642 type = flags_to_propagation_type(flag);
1643 if (!type)
1644 return -EINVAL;
1645
07b20889 1646 down_write(&namespace_sem);
719f5d7f
MS
1647 if (type == MS_SHARED) {
1648 err = invent_group_ids(mnt, recurse);
1649 if (err)
1650 goto out_unlock;
1651 }
1652
962830df 1653 br_write_lock(&vfsmount_lock);
909b0a88 1654 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1655 change_mnt_propagation(m, type);
962830df 1656 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1657
1658 out_unlock:
07b20889 1659 up_write(&namespace_sem);
719f5d7f 1660 return err;
07b20889
RP
1661}
1662
1da177e4
LT
1663/*
1664 * do loopback mount.
1665 */
808d4e3c 1666static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1667 int recurse)
1da177e4 1668{
b12cea91 1669 LIST_HEAD(umount_list);
2d92ab3c 1670 struct path old_path;
87129cc0 1671 struct mount *mnt = NULL, *old;
2d92ab3c 1672 int err = mount_is_safe(path);
1da177e4
LT
1673 if (err)
1674 return err;
1675 if (!old_name || !*old_name)
1676 return -EINVAL;
815d405c 1677 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1678 if (err)
1679 return err;
1680
8823c079
EB
1681 err = -EINVAL;
1682 if (mnt_ns_loop(&old_path))
1683 goto out;
1684
b12cea91
AV
1685 err = lock_mount(path);
1686 if (err)
1687 goto out;
1688
87129cc0
AV
1689 old = real_mount(old_path.mnt);
1690
1da177e4 1691 err = -EINVAL;
fc7be130 1692 if (IS_MNT_UNBINDABLE(old))
b12cea91 1693 goto out2;
9676f0c6 1694
143c8c91 1695 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1696 goto out2;
1da177e4 1697
ccd48bc7 1698 if (recurse)
87129cc0 1699 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1700 else
87129cc0 1701 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1702
be34d1a3
DH
1703 if (IS_ERR(mnt)) {
1704 err = PTR_ERR(mnt);
1705 goto out;
1706 }
ccd48bc7 1707
95bc5f25 1708 err = graft_tree(mnt, path);
ccd48bc7 1709 if (err) {
962830df 1710 br_write_lock(&vfsmount_lock);
761d5c38 1711 umount_tree(mnt, 0, &umount_list);
962830df 1712 br_write_unlock(&vfsmount_lock);
5b83d2c5 1713 }
b12cea91
AV
1714out2:
1715 unlock_mount(path);
1716 release_mounts(&umount_list);
ccd48bc7 1717out:
2d92ab3c 1718 path_put(&old_path);
1da177e4
LT
1719 return err;
1720}
1721
2e4b7fcd
DH
1722static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1723{
1724 int error = 0;
1725 int readonly_request = 0;
1726
1727 if (ms_flags & MS_RDONLY)
1728 readonly_request = 1;
1729 if (readonly_request == __mnt_is_readonly(mnt))
1730 return 0;
1731
1732 if (readonly_request)
83adc753 1733 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1734 else
83adc753 1735 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1736 return error;
1737}
1738
1da177e4
LT
1739/*
1740 * change filesystem flags. dir should be a physical root of filesystem.
1741 * If you've mounted a non-root directory somewhere and want to do remount
1742 * on it - tough luck.
1743 */
0a0d8a46 1744static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1745 void *data)
1746{
1747 int err;
2d92ab3c 1748 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1749 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1750
1751 if (!capable(CAP_SYS_ADMIN))
1752 return -EPERM;
1753
143c8c91 1754 if (!check_mnt(mnt))
1da177e4
LT
1755 return -EINVAL;
1756
2d92ab3c 1757 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1758 return -EINVAL;
1759
ff36fe2c
EP
1760 err = security_sb_remount(sb, data);
1761 if (err)
1762 return err;
1763
1da177e4 1764 down_write(&sb->s_umount);
2e4b7fcd 1765 if (flags & MS_BIND)
2d92ab3c 1766 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1767 else
2e4b7fcd 1768 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1769 if (!err) {
962830df 1770 br_write_lock(&vfsmount_lock);
143c8c91
AV
1771 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1772 mnt->mnt.mnt_flags = mnt_flags;
962830df 1773 br_write_unlock(&vfsmount_lock);
7b43a79f 1774 }
1da177e4 1775 up_write(&sb->s_umount);
0e55a7cc 1776 if (!err) {
962830df 1777 br_write_lock(&vfsmount_lock);
143c8c91 1778 touch_mnt_namespace(mnt->mnt_ns);
962830df 1779 br_write_unlock(&vfsmount_lock);
0e55a7cc 1780 }
1da177e4
LT
1781 return err;
1782}
1783
cbbe362c 1784static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1785{
315fc83e 1786 struct mount *p;
909b0a88 1787 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1788 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1789 return 1;
1790 }
1791 return 0;
1792}
1793
808d4e3c 1794static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1795{
2d92ab3c 1796 struct path old_path, parent_path;
676da58d 1797 struct mount *p;
0fb54e50 1798 struct mount *old;
1da177e4 1799 int err = 0;
0c55cfc4 1800 if (!ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1801 return -EPERM;
1802 if (!old_name || !*old_name)
1803 return -EINVAL;
2d92ab3c 1804 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1805 if (err)
1806 return err;
1807
b12cea91 1808 err = lock_mount(path);
cc53ce53
DH
1809 if (err < 0)
1810 goto out;
1811
143c8c91 1812 old = real_mount(old_path.mnt);
fc7be130 1813 p = real_mount(path->mnt);
143c8c91 1814
1da177e4 1815 err = -EINVAL;
fc7be130 1816 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1817 goto out1;
1818
f3da392e 1819 if (d_unlinked(path->dentry))
21444403 1820 goto out1;
1da177e4
LT
1821
1822 err = -EINVAL;
2d92ab3c 1823 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1824 goto out1;
1da177e4 1825
676da58d 1826 if (!mnt_has_parent(old))
21444403 1827 goto out1;
1da177e4 1828
2d92ab3c
AV
1829 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1830 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1831 goto out1;
1832 /*
1833 * Don't move a mount residing in a shared parent.
1834 */
fc7be130 1835 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1836 goto out1;
9676f0c6
RP
1837 /*
1838 * Don't move a mount tree containing unbindable mounts to a destination
1839 * mount which is shared.
1840 */
fc7be130 1841 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1842 goto out1;
1da177e4 1843 err = -ELOOP;
fc7be130 1844 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1845 if (p == old)
21444403 1846 goto out1;
1da177e4 1847
0fb54e50 1848 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1849 if (err)
21444403 1850 goto out1;
1da177e4
LT
1851
1852 /* if the mount is moved, it should no longer be expire
1853 * automatically */
6776db3d 1854 list_del_init(&old->mnt_expire);
1da177e4 1855out1:
b12cea91 1856 unlock_mount(path);
1da177e4 1857out:
1da177e4 1858 if (!err)
1a390689 1859 path_put(&parent_path);
2d92ab3c 1860 path_put(&old_path);
1da177e4
LT
1861 return err;
1862}
1863
9d412a43
AV
1864static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1865{
1866 int err;
1867 const char *subtype = strchr(fstype, '.');
1868 if (subtype) {
1869 subtype++;
1870 err = -EINVAL;
1871 if (!subtype[0])
1872 goto err;
1873 } else
1874 subtype = "";
1875
1876 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1877 err = -ENOMEM;
1878 if (!mnt->mnt_sb->s_subtype)
1879 goto err;
1880 return mnt;
1881
1882 err:
1883 mntput(mnt);
1884 return ERR_PTR(err);
1885}
1886
9d412a43
AV
1887/*
1888 * add a mount into a namespace's mount tree
1889 */
95bc5f25 1890static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1891{
1892 int err;
1893
1894 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1895
b12cea91
AV
1896 err = lock_mount(path);
1897 if (err)
1898 return err;
9d412a43
AV
1899
1900 err = -EINVAL;
156cacb1
AV
1901 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1902 /* that's acceptable only for automounts done in private ns */
1903 if (!(mnt_flags & MNT_SHRINKABLE))
1904 goto unlock;
1905 /* ... and for those we'd better have mountpoint still alive */
1906 if (!real_mount(path->mnt)->mnt_ns)
1907 goto unlock;
1908 }
9d412a43
AV
1909
1910 /* Refuse the same filesystem on the same mount point */
1911 err = -EBUSY;
95bc5f25 1912 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1913 path->mnt->mnt_root == path->dentry)
1914 goto unlock;
1915
1916 err = -EINVAL;
95bc5f25 1917 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1918 goto unlock;
1919
95bc5f25 1920 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1921 err = graft_tree(newmnt, path);
1922
1923unlock:
b12cea91 1924 unlock_mount(path);
9d412a43
AV
1925 return err;
1926}
b1e75df4 1927
1da177e4
LT
1928/*
1929 * create a new mount for userspace and request it to be added into the
1930 * namespace's tree
1931 */
0c55cfc4 1932static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 1933 int mnt_flags, const char *name, void *data)
1da177e4 1934{
0c55cfc4
EB
1935 struct file_system_type *type;
1936 struct user_namespace *user_ns;
1da177e4 1937 struct vfsmount *mnt;
15f9a3f3 1938 int err;
1da177e4 1939
0c55cfc4 1940 if (!fstype)
1da177e4
LT
1941 return -EINVAL;
1942
1943 /* we need capabilities... */
0c55cfc4
EB
1944 user_ns = real_mount(path->mnt)->mnt_ns->user_ns;
1945 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1946 return -EPERM;
1947
0c55cfc4
EB
1948 type = get_fs_type(fstype);
1949 if (!type)
1950 return -ENODEV;
1951
1952 if (user_ns != &init_user_ns) {
1953 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1954 put_filesystem(type);
1955 return -EPERM;
1956 }
1957 /* Only in special cases allow devices from mounts
1958 * created outside the initial user namespace.
1959 */
1960 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1961 flags |= MS_NODEV;
1962 mnt_flags |= MNT_NODEV;
1963 }
1964 }
1965
1966 mnt = vfs_kern_mount(type, flags, name, data);
1967 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1968 !mnt->mnt_sb->s_subtype)
1969 mnt = fs_set_subtype(mnt, fstype);
1970
1971 put_filesystem(type);
1da177e4
LT
1972 if (IS_ERR(mnt))
1973 return PTR_ERR(mnt);
1974
95bc5f25 1975 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1976 if (err)
1977 mntput(mnt);
1978 return err;
1da177e4
LT
1979}
1980
19a167af
AV
1981int finish_automount(struct vfsmount *m, struct path *path)
1982{
6776db3d 1983 struct mount *mnt = real_mount(m);
19a167af
AV
1984 int err;
1985 /* The new mount record should have at least 2 refs to prevent it being
1986 * expired before we get a chance to add it
1987 */
6776db3d 1988 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1989
1990 if (m->mnt_sb == path->mnt->mnt_sb &&
1991 m->mnt_root == path->dentry) {
b1e75df4
AV
1992 err = -ELOOP;
1993 goto fail;
19a167af
AV
1994 }
1995
95bc5f25 1996 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1997 if (!err)
1998 return 0;
1999fail:
2000 /* remove m from any expiration list it may be on */
6776db3d 2001 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 2002 down_write(&namespace_sem);
962830df 2003 br_write_lock(&vfsmount_lock);
6776db3d 2004 list_del_init(&mnt->mnt_expire);
962830df 2005 br_write_unlock(&vfsmount_lock);
b1e75df4 2006 up_write(&namespace_sem);
19a167af 2007 }
b1e75df4
AV
2008 mntput(m);
2009 mntput(m);
19a167af
AV
2010 return err;
2011}
2012
ea5b778a
DH
2013/**
2014 * mnt_set_expiry - Put a mount on an expiration list
2015 * @mnt: The mount to list.
2016 * @expiry_list: The list to add the mount to.
2017 */
2018void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2019{
2020 down_write(&namespace_sem);
962830df 2021 br_write_lock(&vfsmount_lock);
ea5b778a 2022
6776db3d 2023 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2024
962830df 2025 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
2026 up_write(&namespace_sem);
2027}
2028EXPORT_SYMBOL(mnt_set_expiry);
2029
1da177e4
LT
2030/*
2031 * process a list of expirable mountpoints with the intent of discarding any
2032 * mountpoints that aren't in use and haven't been touched since last we came
2033 * here
2034 */
2035void mark_mounts_for_expiry(struct list_head *mounts)
2036{
761d5c38 2037 struct mount *mnt, *next;
1da177e4 2038 LIST_HEAD(graveyard);
bcc5c7d2 2039 LIST_HEAD(umounts);
1da177e4
LT
2040
2041 if (list_empty(mounts))
2042 return;
2043
bcc5c7d2 2044 down_write(&namespace_sem);
962830df 2045 br_write_lock(&vfsmount_lock);
1da177e4
LT
2046
2047 /* extract from the expiration list every vfsmount that matches the
2048 * following criteria:
2049 * - only referenced by its parent vfsmount
2050 * - still marked for expiry (marked on the last call here; marks are
2051 * cleared by mntput())
2052 */
6776db3d 2053 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2054 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2055 propagate_mount_busy(mnt, 1))
1da177e4 2056 continue;
6776db3d 2057 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2058 }
bcc5c7d2 2059 while (!list_empty(&graveyard)) {
6776db3d 2060 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2061 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
2062 umount_tree(mnt, 1, &umounts);
2063 }
962830df 2064 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
2065 up_write(&namespace_sem);
2066
2067 release_mounts(&umounts);
5528f911
TM
2068}
2069
2070EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2071
2072/*
2073 * Ripoff of 'select_parent()'
2074 *
2075 * search the list of submounts for a given mountpoint, and move any
2076 * shrinkable submounts to the 'graveyard' list.
2077 */
692afc31 2078static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2079{
692afc31 2080 struct mount *this_parent = parent;
5528f911
TM
2081 struct list_head *next;
2082 int found = 0;
2083
2084repeat:
6b41d536 2085 next = this_parent->mnt_mounts.next;
5528f911 2086resume:
6b41d536 2087 while (next != &this_parent->mnt_mounts) {
5528f911 2088 struct list_head *tmp = next;
6b41d536 2089 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2090
2091 next = tmp->next;
692afc31 2092 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2093 continue;
5528f911
TM
2094 /*
2095 * Descend a level if the d_mounts list is non-empty.
2096 */
6b41d536 2097 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2098 this_parent = mnt;
2099 goto repeat;
2100 }
1da177e4 2101
1ab59738 2102 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2103 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2104 found++;
2105 }
1da177e4 2106 }
5528f911
TM
2107 /*
2108 * All done at this level ... ascend and resume the search
2109 */
2110 if (this_parent != parent) {
6b41d536 2111 next = this_parent->mnt_child.next;
0714a533 2112 this_parent = this_parent->mnt_parent;
5528f911
TM
2113 goto resume;
2114 }
2115 return found;
2116}
2117
2118/*
2119 * process a list of expirable mountpoints with the intent of discarding any
2120 * submounts of a specific parent mountpoint
99b7db7b
NP
2121 *
2122 * vfsmount_lock must be held for write
5528f911 2123 */
692afc31 2124static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2125{
2126 LIST_HEAD(graveyard);
761d5c38 2127 struct mount *m;
5528f911 2128
5528f911 2129 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2130 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2131 while (!list_empty(&graveyard)) {
761d5c38 2132 m = list_first_entry(&graveyard, struct mount,
6776db3d 2133 mnt_expire);
143c8c91 2134 touch_mnt_namespace(m->mnt_ns);
afef80b3 2135 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2136 }
2137 }
1da177e4
LT
2138}
2139
1da177e4
LT
2140/*
2141 * Some copy_from_user() implementations do not return the exact number of
2142 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2143 * Note that this function differs from copy_from_user() in that it will oops
2144 * on bad values of `to', rather than returning a short copy.
2145 */
b58fed8b
RP
2146static long exact_copy_from_user(void *to, const void __user * from,
2147 unsigned long n)
1da177e4
LT
2148{
2149 char *t = to;
2150 const char __user *f = from;
2151 char c;
2152
2153 if (!access_ok(VERIFY_READ, from, n))
2154 return n;
2155
2156 while (n) {
2157 if (__get_user(c, f)) {
2158 memset(t, 0, n);
2159 break;
2160 }
2161 *t++ = c;
2162 f++;
2163 n--;
2164 }
2165 return n;
2166}
2167
b58fed8b 2168int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2169{
2170 int i;
2171 unsigned long page;
2172 unsigned long size;
b58fed8b 2173
1da177e4
LT
2174 *where = 0;
2175 if (!data)
2176 return 0;
2177
2178 if (!(page = __get_free_page(GFP_KERNEL)))
2179 return -ENOMEM;
2180
2181 /* We only care that *some* data at the address the user
2182 * gave us is valid. Just in case, we'll zero
2183 * the remainder of the page.
2184 */
2185 /* copy_from_user cannot cross TASK_SIZE ! */
2186 size = TASK_SIZE - (unsigned long)data;
2187 if (size > PAGE_SIZE)
2188 size = PAGE_SIZE;
2189
2190 i = size - exact_copy_from_user((void *)page, data, size);
2191 if (!i) {
b58fed8b 2192 free_page(page);
1da177e4
LT
2193 return -EFAULT;
2194 }
2195 if (i != PAGE_SIZE)
2196 memset((char *)page + i, 0, PAGE_SIZE - i);
2197 *where = page;
2198 return 0;
2199}
2200
eca6f534
VN
2201int copy_mount_string(const void __user *data, char **where)
2202{
2203 char *tmp;
2204
2205 if (!data) {
2206 *where = NULL;
2207 return 0;
2208 }
2209
2210 tmp = strndup_user(data, PAGE_SIZE);
2211 if (IS_ERR(tmp))
2212 return PTR_ERR(tmp);
2213
2214 *where = tmp;
2215 return 0;
2216}
2217
1da177e4
LT
2218/*
2219 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2220 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2221 *
2222 * data is a (void *) that can point to any structure up to
2223 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2224 * information (or be NULL).
2225 *
2226 * Pre-0.97 versions of mount() didn't have a flags word.
2227 * When the flags word was introduced its top half was required
2228 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2229 * Therefore, if this magic number is present, it carries no information
2230 * and must be discarded.
2231 */
808d4e3c
AV
2232long do_mount(const char *dev_name, const char *dir_name,
2233 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2234{
2d92ab3c 2235 struct path path;
1da177e4
LT
2236 int retval = 0;
2237 int mnt_flags = 0;
2238
2239 /* Discard magic */
2240 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2241 flags &= ~MS_MGC_MSK;
2242
2243 /* Basic sanity checks */
2244
2245 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2246 return -EINVAL;
1da177e4
LT
2247
2248 if (data_page)
2249 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2250
a27ab9f2
TH
2251 /* ... and get the mountpoint */
2252 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2253 if (retval)
2254 return retval;
2255
2256 retval = security_sb_mount(dev_name, &path,
2257 type_page, flags, data_page);
2258 if (retval)
2259 goto dput_out;
2260
613cbe3d
AK
2261 /* Default to relatime unless overriden */
2262 if (!(flags & MS_NOATIME))
2263 mnt_flags |= MNT_RELATIME;
0a1c01c9 2264
1da177e4
LT
2265 /* Separate the per-mountpoint flags */
2266 if (flags & MS_NOSUID)
2267 mnt_flags |= MNT_NOSUID;
2268 if (flags & MS_NODEV)
2269 mnt_flags |= MNT_NODEV;
2270 if (flags & MS_NOEXEC)
2271 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2272 if (flags & MS_NOATIME)
2273 mnt_flags |= MNT_NOATIME;
2274 if (flags & MS_NODIRATIME)
2275 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2276 if (flags & MS_STRICTATIME)
2277 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2278 if (flags & MS_RDONLY)
2279 mnt_flags |= MNT_READONLY;
fc33a7bb 2280
7a4dec53 2281 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2282 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2283 MS_STRICTATIME);
1da177e4 2284
1da177e4 2285 if (flags & MS_REMOUNT)
2d92ab3c 2286 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2287 data_page);
2288 else if (flags & MS_BIND)
2d92ab3c 2289 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2290 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2291 retval = do_change_type(&path, flags);
1da177e4 2292 else if (flags & MS_MOVE)
2d92ab3c 2293 retval = do_move_mount(&path, dev_name);
1da177e4 2294 else
2d92ab3c 2295 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2296 dev_name, data_page);
2297dput_out:
2d92ab3c 2298 path_put(&path);
1da177e4
LT
2299 return retval;
2300}
2301
771b1371
EB
2302static void free_mnt_ns(struct mnt_namespace *ns)
2303{
2304 put_user_ns(ns->user_ns);
2305 kfree(ns);
2306}
2307
8823c079
EB
2308/*
2309 * Assign a sequence number so we can detect when we attempt to bind
2310 * mount a reference to an older mount namespace into the current
2311 * mount namespace, preventing reference counting loops. A 64bit
2312 * number incrementing at 10Ghz will take 12,427 years to wrap which
2313 * is effectively never, so we can ignore the possibility.
2314 */
2315static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2316
771b1371 2317static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2318{
2319 struct mnt_namespace *new_ns;
2320
2321 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2322 if (!new_ns)
2323 return ERR_PTR(-ENOMEM);
8823c079 2324 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2325 atomic_set(&new_ns->count, 1);
2326 new_ns->root = NULL;
2327 INIT_LIST_HEAD(&new_ns->list);
2328 init_waitqueue_head(&new_ns->poll);
2329 new_ns->event = 0;
771b1371 2330 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2331 return new_ns;
2332}
2333
741a2951
JD
2334/*
2335 * Allocate a new namespace structure and populate it with contents
2336 * copied from the namespace of the passed in task structure.
2337 */
e3222c4e 2338static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2339 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2340{
6b3286ed 2341 struct mnt_namespace *new_ns;
7f2da1e7 2342 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2343 struct mount *p, *q;
be08d6d2 2344 struct mount *old = mnt_ns->root;
cb338d06 2345 struct mount *new;
7a472ef4 2346 int copy_flags;
1da177e4 2347
771b1371 2348 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2349 if (IS_ERR(new_ns))
2350 return new_ns;
1da177e4 2351
390c6843 2352 down_write(&namespace_sem);
1da177e4 2353 /* First pass: copy the tree topology */
7a472ef4
EB
2354 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2355 if (user_ns != mnt_ns->user_ns)
2356 copy_flags |= CL_SHARED_TO_SLAVE;
2357 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2358 if (IS_ERR(new)) {
390c6843 2359 up_write(&namespace_sem);
771b1371 2360 free_mnt_ns(new_ns);
be34d1a3 2361 return ERR_CAST(new);
1da177e4 2362 }
be08d6d2 2363 new_ns->root = new;
962830df 2364 br_write_lock(&vfsmount_lock);
1a4eeaf2 2365 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2366 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2367
2368 /*
2369 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2370 * as belonging to new namespace. We have already acquired a private
2371 * fs_struct, so tsk->fs->lock is not needed.
2372 */
909b0a88 2373 p = old;
cb338d06 2374 q = new;
1da177e4 2375 while (p) {
143c8c91 2376 q->mnt_ns = new_ns;
1da177e4 2377 if (fs) {
315fc83e
AV
2378 if (&p->mnt == fs->root.mnt) {
2379 fs->root.mnt = mntget(&q->mnt);
315fc83e 2380 rootmnt = &p->mnt;
1da177e4 2381 }
315fc83e
AV
2382 if (&p->mnt == fs->pwd.mnt) {
2383 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2384 pwdmnt = &p->mnt;
1da177e4 2385 }
1da177e4 2386 }
909b0a88
AV
2387 p = next_mnt(p, old);
2388 q = next_mnt(q, new);
1da177e4 2389 }
390c6843 2390 up_write(&namespace_sem);
1da177e4 2391
1da177e4 2392 if (rootmnt)
f03c6599 2393 mntput(rootmnt);
1da177e4 2394 if (pwdmnt)
f03c6599 2395 mntput(pwdmnt);
1da177e4 2396
741a2951
JD
2397 return new_ns;
2398}
2399
213dd266 2400struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2401 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2402{
6b3286ed 2403 struct mnt_namespace *new_ns;
741a2951 2404
e3222c4e 2405 BUG_ON(!ns);
6b3286ed 2406 get_mnt_ns(ns);
741a2951
JD
2407
2408 if (!(flags & CLONE_NEWNS))
e3222c4e 2409 return ns;
741a2951 2410
771b1371 2411 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2412
6b3286ed 2413 put_mnt_ns(ns);
e3222c4e 2414 return new_ns;
1da177e4
LT
2415}
2416
cf8d2c11
TM
2417/**
2418 * create_mnt_ns - creates a private namespace and adds a root filesystem
2419 * @mnt: pointer to the new root filesystem mountpoint
2420 */
1a4eeaf2 2421static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2422{
771b1371 2423 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2424 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2425 struct mount *mnt = real_mount(m);
2426 mnt->mnt_ns = new_ns;
be08d6d2 2427 new_ns->root = mnt;
1a4eeaf2 2428 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2429 } else {
1a4eeaf2 2430 mntput(m);
cf8d2c11
TM
2431 }
2432 return new_ns;
2433}
cf8d2c11 2434
ea441d11
AV
2435struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2436{
2437 struct mnt_namespace *ns;
d31da0f0 2438 struct super_block *s;
ea441d11
AV
2439 struct path path;
2440 int err;
2441
2442 ns = create_mnt_ns(mnt);
2443 if (IS_ERR(ns))
2444 return ERR_CAST(ns);
2445
2446 err = vfs_path_lookup(mnt->mnt_root, mnt,
2447 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2448
2449 put_mnt_ns(ns);
2450
2451 if (err)
2452 return ERR_PTR(err);
2453
2454 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2455 s = path.mnt->mnt_sb;
2456 atomic_inc(&s->s_active);
ea441d11
AV
2457 mntput(path.mnt);
2458 /* lock the sucker */
d31da0f0 2459 down_write(&s->s_umount);
ea441d11
AV
2460 /* ... and return the root of (sub)tree on it */
2461 return path.dentry;
2462}
2463EXPORT_SYMBOL(mount_subtree);
2464
bdc480e3
HC
2465SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2466 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2467{
eca6f534
VN
2468 int ret;
2469 char *kernel_type;
91a27b2a 2470 struct filename *kernel_dir;
eca6f534 2471 char *kernel_dev;
1da177e4 2472 unsigned long data_page;
1da177e4 2473
eca6f534
VN
2474 ret = copy_mount_string(type, &kernel_type);
2475 if (ret < 0)
2476 goto out_type;
1da177e4 2477
eca6f534
VN
2478 kernel_dir = getname(dir_name);
2479 if (IS_ERR(kernel_dir)) {
2480 ret = PTR_ERR(kernel_dir);
2481 goto out_dir;
2482 }
1da177e4 2483
eca6f534
VN
2484 ret = copy_mount_string(dev_name, &kernel_dev);
2485 if (ret < 0)
2486 goto out_dev;
1da177e4 2487
eca6f534
VN
2488 ret = copy_mount_options(data, &data_page);
2489 if (ret < 0)
2490 goto out_data;
1da177e4 2491
91a27b2a 2492 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2493 (void *) data_page);
1da177e4 2494
eca6f534
VN
2495 free_page(data_page);
2496out_data:
2497 kfree(kernel_dev);
2498out_dev:
2499 putname(kernel_dir);
2500out_dir:
2501 kfree(kernel_type);
2502out_type:
2503 return ret;
1da177e4
LT
2504}
2505
afac7cba
AV
2506/*
2507 * Return true if path is reachable from root
2508 *
2509 * namespace_sem or vfsmount_lock is held
2510 */
643822b4 2511bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2512 const struct path *root)
2513{
643822b4 2514 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2515 dentry = mnt->mnt_mountpoint;
0714a533 2516 mnt = mnt->mnt_parent;
afac7cba 2517 }
643822b4 2518 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2519}
2520
2521int path_is_under(struct path *path1, struct path *path2)
2522{
2523 int res;
962830df 2524 br_read_lock(&vfsmount_lock);
643822b4 2525 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2526 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2527 return res;
2528}
2529EXPORT_SYMBOL(path_is_under);
2530
1da177e4
LT
2531/*
2532 * pivot_root Semantics:
2533 * Moves the root file system of the current process to the directory put_old,
2534 * makes new_root as the new root file system of the current process, and sets
2535 * root/cwd of all processes which had them on the current root to new_root.
2536 *
2537 * Restrictions:
2538 * The new_root and put_old must be directories, and must not be on the
2539 * same file system as the current process root. The put_old must be
2540 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2541 * pointed to by put_old must yield the same directory as new_root. No other
2542 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2543 *
4a0d11fa
NB
2544 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2545 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2546 * in this situation.
2547 *
1da177e4
LT
2548 * Notes:
2549 * - we don't move root/cwd if they are not at the root (reason: if something
2550 * cared enough to change them, it's probably wrong to force them elsewhere)
2551 * - it's okay to pick a root that isn't the root of a file system, e.g.
2552 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2553 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2554 * first.
2555 */
3480b257
HC
2556SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2557 const char __user *, put_old)
1da177e4 2558{
2d8f3038 2559 struct path new, old, parent_path, root_parent, root;
419148da 2560 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2561 int error;
2562
0c55cfc4 2563 if (!ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
2564 return -EPERM;
2565
2d8f3038 2566 error = user_path_dir(new_root, &new);
1da177e4
LT
2567 if (error)
2568 goto out0;
1da177e4 2569
2d8f3038 2570 error = user_path_dir(put_old, &old);
1da177e4
LT
2571 if (error)
2572 goto out1;
2573
2d8f3038 2574 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2575 if (error)
2576 goto out2;
1da177e4 2577
f7ad3c6b 2578 get_fs_root(current->fs, &root);
b12cea91
AV
2579 error = lock_mount(&old);
2580 if (error)
2581 goto out3;
2582
1da177e4 2583 error = -EINVAL;
419148da
AV
2584 new_mnt = real_mount(new.mnt);
2585 root_mnt = real_mount(root.mnt);
fc7be130
AV
2586 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2587 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2588 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2589 goto out4;
143c8c91 2590 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2591 goto out4;
1da177e4 2592 error = -ENOENT;
f3da392e 2593 if (d_unlinked(new.dentry))
b12cea91 2594 goto out4;
f3da392e 2595 if (d_unlinked(old.dentry))
b12cea91 2596 goto out4;
1da177e4 2597 error = -EBUSY;
2d8f3038
AV
2598 if (new.mnt == root.mnt ||
2599 old.mnt == root.mnt)
b12cea91 2600 goto out4; /* loop, on the same file system */
1da177e4 2601 error = -EINVAL;
8c3ee42e 2602 if (root.mnt->mnt_root != root.dentry)
b12cea91 2603 goto out4; /* not a mountpoint */
676da58d 2604 if (!mnt_has_parent(root_mnt))
b12cea91 2605 goto out4; /* not attached */
2d8f3038 2606 if (new.mnt->mnt_root != new.dentry)
b12cea91 2607 goto out4; /* not a mountpoint */
676da58d 2608 if (!mnt_has_parent(new_mnt))
b12cea91 2609 goto out4; /* not attached */
4ac91378 2610 /* make sure we can reach put_old from new_root */
643822b4 2611 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2612 goto out4;
962830df 2613 br_write_lock(&vfsmount_lock);
419148da
AV
2614 detach_mnt(new_mnt, &parent_path);
2615 detach_mnt(root_mnt, &root_parent);
4ac91378 2616 /* mount old root on put_old */
419148da 2617 attach_mnt(root_mnt, &old);
4ac91378 2618 /* mount new_root on / */
419148da 2619 attach_mnt(new_mnt, &root_parent);
6b3286ed 2620 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2621 br_write_unlock(&vfsmount_lock);
2d8f3038 2622 chroot_fs_refs(&root, &new);
1da177e4 2623 error = 0;
b12cea91
AV
2624out4:
2625 unlock_mount(&old);
2626 if (!error) {
2627 path_put(&root_parent);
2628 path_put(&parent_path);
2629 }
2630out3:
8c3ee42e 2631 path_put(&root);
b12cea91 2632out2:
2d8f3038 2633 path_put(&old);
1da177e4 2634out1:
2d8f3038 2635 path_put(&new);
1da177e4 2636out0:
1da177e4 2637 return error;
1da177e4
LT
2638}
2639
2640static void __init init_mount_tree(void)
2641{
2642 struct vfsmount *mnt;
6b3286ed 2643 struct mnt_namespace *ns;
ac748a09 2644 struct path root;
0c55cfc4 2645 struct file_system_type *type;
1da177e4 2646
0c55cfc4
EB
2647 type = get_fs_type("rootfs");
2648 if (!type)
2649 panic("Can't find rootfs type");
2650 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2651 put_filesystem(type);
1da177e4
LT
2652 if (IS_ERR(mnt))
2653 panic("Can't create rootfs");
b3e19d92 2654
3b22edc5
TM
2655 ns = create_mnt_ns(mnt);
2656 if (IS_ERR(ns))
1da177e4 2657 panic("Can't allocate initial namespace");
6b3286ed
KK
2658
2659 init_task.nsproxy->mnt_ns = ns;
2660 get_mnt_ns(ns);
2661
be08d6d2
AV
2662 root.mnt = mnt;
2663 root.dentry = mnt->mnt_root;
ac748a09
JB
2664
2665 set_fs_pwd(current->fs, &root);
2666 set_fs_root(current->fs, &root);
1da177e4
LT
2667}
2668
74bf17cf 2669void __init mnt_init(void)
1da177e4 2670{
13f14b4d 2671 unsigned u;
15a67dd8 2672 int err;
1da177e4 2673
390c6843
RP
2674 init_rwsem(&namespace_sem);
2675
7d6fec45 2676 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2677 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2678
b58fed8b 2679 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2680
2681 if (!mount_hashtable)
2682 panic("Failed to allocate mount hash table\n");
2683
80cdc6da 2684 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2685
2686 for (u = 0; u < HASH_SIZE; u++)
2687 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2688
962830df 2689 br_lock_init(&vfsmount_lock);
99b7db7b 2690
15a67dd8
RD
2691 err = sysfs_init();
2692 if (err)
2693 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2694 __func__, err);
00d26666
GKH
2695 fs_kobj = kobject_create_and_add("fs", NULL);
2696 if (!fs_kobj)
8e24eea7 2697 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2698 init_rootfs();
2699 init_mount_tree();
2700}
2701
616511d0 2702void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2703{
70fbcdf4 2704 LIST_HEAD(umount_list);
616511d0 2705
d498b25a 2706 if (!atomic_dec_and_test(&ns->count))
616511d0 2707 return;
390c6843 2708 down_write(&namespace_sem);
962830df 2709 br_write_lock(&vfsmount_lock);
be08d6d2 2710 umount_tree(ns->root, 0, &umount_list);
962830df 2711 br_write_unlock(&vfsmount_lock);
390c6843 2712 up_write(&namespace_sem);
70fbcdf4 2713 release_mounts(&umount_list);
771b1371 2714 free_mnt_ns(ns);
1da177e4 2715}
9d412a43
AV
2716
2717struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2718{
423e0ab0
TC
2719 struct vfsmount *mnt;
2720 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2721 if (!IS_ERR(mnt)) {
2722 /*
2723 * it is a longterm mount, don't release mnt until
2724 * we unmount before file sys is unregistered
2725 */
f7a99c5b 2726 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2727 }
2728 return mnt;
9d412a43
AV
2729}
2730EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2731
2732void kern_unmount(struct vfsmount *mnt)
2733{
2734 /* release long term mount so mount point can be released */
2735 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2736 br_write_lock(&vfsmount_lock);
2737 real_mount(mnt)->mnt_ns = NULL;
2738 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2739 mntput(mnt);
2740 }
2741}
2742EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2743
2744bool our_mnt(struct vfsmount *mnt)
2745{
143c8c91 2746 return check_mnt(real_mount(mnt));
02125a82 2747}
8823c079
EB
2748
2749static void *mntns_get(struct task_struct *task)
2750{
2751 struct mnt_namespace *ns = NULL;
2752 struct nsproxy *nsproxy;
2753
2754 rcu_read_lock();
2755 nsproxy = task_nsproxy(task);
2756 if (nsproxy) {
2757 ns = nsproxy->mnt_ns;
2758 get_mnt_ns(ns);
2759 }
2760 rcu_read_unlock();
2761
2762 return ns;
2763}
2764
2765static void mntns_put(void *ns)
2766{
2767 put_mnt_ns(ns);
2768}
2769
2770static int mntns_install(struct nsproxy *nsproxy, void *ns)
2771{
2772 struct fs_struct *fs = current->fs;
2773 struct mnt_namespace *mnt_ns = ns;
2774 struct path root;
2775
0c55cfc4
EB
2776 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2777 !nsown_capable(CAP_SYS_CHROOT))
ae11e0f1 2778 return -EPERM;
8823c079
EB
2779
2780 if (fs->users != 1)
2781 return -EINVAL;
2782
2783 get_mnt_ns(mnt_ns);
2784 put_mnt_ns(nsproxy->mnt_ns);
2785 nsproxy->mnt_ns = mnt_ns;
2786
2787 /* Find the root */
2788 root.mnt = &mnt_ns->root->mnt;
2789 root.dentry = mnt_ns->root->mnt.mnt_root;
2790 path_get(&root);
2791 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2792 ;
2793
2794 /* Update the pwd and root */
2795 set_fs_pwd(fs, &root);
2796 set_fs_root(fs, &root);
2797
2798 path_put(&root);
2799 return 0;
2800}
2801
2802const struct proc_ns_operations mntns_operations = {
2803 .name = "mnt",
2804 .type = CLONE_NEWNS,
2805 .get = mntns_get,
2806 .put = mntns_put,
2807 .install = mntns_install,
2808};