VFS: Make clone_mnt()/copy_tree()/collect_mounts() return errors
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
1da177e4
LT
15#include <linux/namei.h>
16#include <linux/security.h>
73cd49ec 17#include <linux/idr.h>
d10577a8
AV
18#include <linux/acct.h> /* acct_auto_close_mnt */
19#include <linux/ramfs.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
07b20889 23#include "pnode.h"
948730b0 24#include "internal.h"
1da177e4 25
13f14b4d
ED
26#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27#define HASH_SIZE (1UL << HASH_SHIFT)
28
5addc5dd 29static int event;
73cd49ec 30static DEFINE_IDA(mnt_id_ida);
719f5d7f 31static DEFINE_IDA(mnt_group_ida);
99b7db7b 32static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
33static int mnt_id_start = 0;
34static int mnt_group_start = 1;
1da177e4 35
fa3536cc 36static struct list_head *mount_hashtable __read_mostly;
e18b890b 37static struct kmem_cache *mnt_cache __read_mostly;
390c6843 38static struct rw_semaphore namespace_sem;
1da177e4 39
f87fd4c2 40/* /sys/fs */
00d26666
GKH
41struct kobject *fs_kobj;
42EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 43
99b7db7b
NP
44/*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52DEFINE_BRLOCK(vfsmount_lock);
53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
99b7db7b
NP
64/*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
b105e270 68static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 74 spin_lock(&mnt_id_lock);
15169fe7 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 76 if (!res)
15169fe7 77 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 78 spin_unlock(&mnt_id_lock);
73cd49ec
MS
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
b105e270 85static void mnt_free_id(struct mount *mnt)
73cd49ec 86{
15169fe7 87 int id = mnt->mnt_id;
99b7db7b 88 spin_lock(&mnt_id_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
99b7db7b 92 spin_unlock(&mnt_id_lock);
73cd49ec
MS
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
4b8b21f4 100static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
15169fe7 109 &mnt->mnt_group_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
4b8b21f4 119void mnt_release_group_id(struct mount *mnt)
719f5d7f 120{
15169fe7 121 int id = mnt->mnt_group_id;
f21f6220
AV
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
15169fe7 125 mnt->mnt_group_id = 0;
719f5d7f
MS
126}
127
b3e19d92
NP
128/*
129 * vfsmount lock must be held for read
130 */
83adc753 131static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
132{
133#ifdef CONFIG_SMP
68e8a9fe 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
135#else
136 preempt_disable();
68e8a9fe 137 mnt->mnt_count += n;
b3e19d92
NP
138 preempt_enable();
139#endif
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for write
144 */
83adc753 145unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
f03c6599 148 unsigned int count = 0;
b3e19d92
NP
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
68e8a9fe 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
153 }
154
155 return count;
156#else
68e8a9fe 157 return mnt->mnt_count;
b3e19d92
NP
158#endif
159}
160
b105e270 161static struct mount *alloc_vfsmnt(const char *name)
1da177e4 162{
c63181e6
AV
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
73cd49ec
MS
165 int err;
166
c63181e6 167 err = mnt_alloc_id(mnt);
88b38782
LZ
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
c63181e6
AV
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
88b38782 174 goto out_free_id;
73cd49ec
MS
175 }
176
b3e19d92 177#ifdef CONFIG_SMP
c63181e6
AV
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
b3e19d92
NP
180 goto out_free_devname;
181
c63181e6 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 183#else
c63181e6
AV
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
b3e19d92
NP
186#endif
187
c63181e6
AV
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
196#ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 198#endif
1da177e4 199 }
c63181e6 200 return mnt;
88b38782 201
d3ef3d73 202#ifdef CONFIG_SMP
203out_free_devname:
c63181e6 204 kfree(mnt->mnt_devname);
d3ef3d73 205#endif
88b38782 206out_free_id:
c63181e6 207 mnt_free_id(mnt);
88b38782 208out_free_cache:
c63181e6 209 kmem_cache_free(mnt_cache, mnt);
88b38782 210 return NULL;
1da177e4
LT
211}
212
3d733633
DH
213/*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221/*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232int __mnt_is_readonly(struct vfsmount *mnt)
233{
2e4b7fcd
DH
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
3d733633
DH
239}
240EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
83adc753 242static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 243{
244#ifdef CONFIG_SMP
68e8a9fe 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 246#else
68e8a9fe 247 mnt->mnt_writers++;
d3ef3d73 248#endif
249}
3d733633 250
83adc753 251static inline void mnt_dec_writers(struct mount *mnt)
3d733633 252{
d3ef3d73 253#ifdef CONFIG_SMP
68e8a9fe 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 255#else
68e8a9fe 256 mnt->mnt_writers--;
d3ef3d73 257#endif
3d733633 258}
3d733633 259
83adc753 260static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 261{
d3ef3d73 262#ifdef CONFIG_SMP
263 unsigned int count = 0;
3d733633 264 int cpu;
3d733633
DH
265
266 for_each_possible_cpu(cpu) {
68e8a9fe 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 268 }
3d733633 269
d3ef3d73 270 return count;
271#else
272 return mnt->mnt_writers;
273#endif
3d733633
DH
274}
275
4ed5e82f
MS
276static int mnt_is_readonly(struct vfsmount *mnt)
277{
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283}
284
8366025e
DH
285/*
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
291 * a filesystem.
292 */
293/**
294 * mnt_want_write - get write access to a mount
83adc753 295 * @m: the mount on which to take a write
8366025e
DH
296 *
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
302 */
83adc753 303int mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
83adc753 316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
3d733633 329 return ret;
8366025e
DH
330}
331EXPORT_SYMBOL_GPL(mnt_want_write);
332
96029c4e 333/**
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
336 *
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
341 *
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
344 */
345int mnt_clone_write(struct vfsmount *mnt)
346{
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
349 return -EROFS;
350 preempt_disable();
83adc753 351 mnt_inc_writers(real_mount(mnt));
96029c4e 352 preempt_enable();
353 return 0;
354}
355EXPORT_SYMBOL_GPL(mnt_clone_write);
356
357/**
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
360 *
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
363 */
364int mnt_want_write_file(struct file *file)
365{
2d8dd38a
OH
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 368 return mnt_want_write(file->f_path.mnt);
369 else
370 return mnt_clone_write(file->f_path.mnt);
371}
372EXPORT_SYMBOL_GPL(mnt_want_write_file);
373
8366025e
DH
374/**
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
377 *
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
381 */
382void mnt_drop_write(struct vfsmount *mnt)
383{
d3ef3d73 384 preempt_disable();
83adc753 385 mnt_dec_writers(real_mount(mnt));
d3ef3d73 386 preempt_enable();
8366025e
DH
387}
388EXPORT_SYMBOL_GPL(mnt_drop_write);
389
2a79f17e
AV
390void mnt_drop_write_file(struct file *file)
391{
392 mnt_drop_write(file->f_path.mnt);
393}
394EXPORT_SYMBOL(mnt_drop_write_file);
395
83adc753 396static int mnt_make_readonly(struct mount *mnt)
8366025e 397{
3d733633
DH
398 int ret = 0;
399
962830df 400 br_write_lock(&vfsmount_lock);
83adc753 401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 402 /*
d3ef3d73 403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
3d733633 405 */
d3ef3d73 406 smp_mb();
407
3d733633 408 /*
d3ef3d73 409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
413 *
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
3d733633 423 */
c6653a83 424 if (mnt_get_writers(mnt) > 0)
d3ef3d73 425 ret = -EBUSY;
426 else
83adc753 427 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 428 /*
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
431 */
432 smp_wmb();
83adc753 433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 434 br_write_unlock(&vfsmount_lock);
3d733633 435 return ret;
8366025e 436}
8366025e 437
83adc753 438static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 439{
962830df 440 br_write_lock(&vfsmount_lock);
83adc753 441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 442 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
443}
444
4ed5e82f
MS
445int sb_prepare_remount_readonly(struct super_block *sb)
446{
447 struct mount *mnt;
448 int err = 0;
449
8e8b8796
MS
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
452 return -EBUSY;
453
962830df 454 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 smp_mb();
459 if (mnt_get_writers(mnt) > 0) {
460 err = -EBUSY;
461 break;
462 }
463 }
464 }
8e8b8796
MS
465 if (!err && atomic_long_read(&sb->s_remove_count))
466 err = -EBUSY;
467
4ed5e82f
MS
468 if (!err) {
469 sb->s_readonly_remount = 1;
470 smp_wmb();
471 }
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 }
962830df 476 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
477
478 return err;
479}
480
b105e270 481static void free_vfsmnt(struct mount *mnt)
1da177e4 482{
52ba1621 483 kfree(mnt->mnt_devname);
73cd49ec 484 mnt_free_id(mnt);
d3ef3d73 485#ifdef CONFIG_SMP
68e8a9fe 486 free_percpu(mnt->mnt_pcp);
d3ef3d73 487#endif
b105e270 488 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
489}
490
491/*
a05964f3
RP
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 494 * vfsmount_lock must be held for read or write.
1da177e4 495 */
c7105365 496struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 497 int dir)
1da177e4 498{
b58fed8b
RP
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
c7105365 501 struct mount *p, *found = NULL;
1da177e4 502
1da177e4 503 for (;;) {
a05964f3 504 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
505 p = NULL;
506 if (tmp == head)
507 break;
1b8e5564 508 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 510 found = p;
1da177e4
LT
511 break;
512 }
513 }
1da177e4
LT
514 return found;
515}
516
a05964f3
RP
517/*
518 * lookup_mnt increments the ref count before returning
519 * the vfsmount struct.
520 */
1c755af4 521struct vfsmount *lookup_mnt(struct path *path)
a05964f3 522{
c7105365 523 struct mount *child_mnt;
99b7db7b 524
962830df 525 br_read_lock(&vfsmount_lock);
c7105365
AV
526 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
527 if (child_mnt) {
528 mnt_add_count(child_mnt, 1);
962830df 529 br_read_unlock(&vfsmount_lock);
c7105365
AV
530 return &child_mnt->mnt;
531 } else {
962830df 532 br_read_unlock(&vfsmount_lock);
c7105365
AV
533 return NULL;
534 }
a05964f3
RP
535}
536
143c8c91 537static inline int check_mnt(struct mount *mnt)
1da177e4 538{
6b3286ed 539 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
540}
541
99b7db7b
NP
542/*
543 * vfsmount lock must be held for write
544 */
6b3286ed 545static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
546{
547 if (ns) {
548 ns->event = ++event;
549 wake_up_interruptible(&ns->poll);
550 }
551}
552
99b7db7b
NP
553/*
554 * vfsmount lock must be held for write
555 */
6b3286ed 556static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
557{
558 if (ns && ns->event != event) {
559 ns->event = event;
560 wake_up_interruptible(&ns->poll);
561 }
562}
563
5f57cbcc
NP
564/*
565 * Clear dentry's mounted state if it has no remaining mounts.
566 * vfsmount_lock must be held for write.
567 */
aa0a4cf0 568static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
569{
570 unsigned u;
571
572 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 573 struct mount *p;
5f57cbcc 574
1b8e5564 575 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 576 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
577 return;
578 }
579 }
580 spin_lock(&dentry->d_lock);
581 dentry->d_flags &= ~DCACHE_MOUNTED;
582 spin_unlock(&dentry->d_lock);
583}
584
99b7db7b
NP
585/*
586 * vfsmount lock must be held for write
587 */
419148da
AV
588static void detach_mnt(struct mount *mnt, struct path *old_path)
589{
a73324da 590 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
591 old_path->mnt = &mnt->mnt_parent->mnt;
592 mnt->mnt_parent = mnt;
a73324da 593 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 594 list_del_init(&mnt->mnt_child);
1b8e5564 595 list_del_init(&mnt->mnt_hash);
aa0a4cf0 596 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
597}
598
99b7db7b
NP
599/*
600 * vfsmount lock must be held for write
601 */
14cf1fa8 602void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 603 struct mount *child_mnt)
b90fa9ae 604{
3a2393d7 605 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 606 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 607 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
608 spin_lock(&dentry->d_lock);
609 dentry->d_flags |= DCACHE_MOUNTED;
610 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
611}
612
99b7db7b
NP
613/*
614 * vfsmount lock must be held for write
615 */
419148da 616static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 617{
14cf1fa8 618 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 619 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 620 hash(path->mnt, path->dentry));
6b41d536 621 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
622}
623
624/*
99b7db7b 625 * vfsmount lock must be held for write
b90fa9ae 626 */
4b2619a5 627static void commit_tree(struct mount *mnt)
b90fa9ae 628{
0714a533 629 struct mount *parent = mnt->mnt_parent;
83adc753 630 struct mount *m;
b90fa9ae 631 LIST_HEAD(head);
143c8c91 632 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 633
0714a533 634 BUG_ON(parent == mnt);
b90fa9ae 635
1a4eeaf2 636 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 637 list_for_each_entry(m, &head, mnt_list)
143c8c91 638 m->mnt_ns = n;
f03c6599 639
b90fa9ae
RP
640 list_splice(&head, n->list.prev);
641
1b8e5564 642 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 643 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 644 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 645 touch_mnt_namespace(n);
1da177e4
LT
646}
647
909b0a88 648static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 649{
6b41d536
AV
650 struct list_head *next = p->mnt_mounts.next;
651 if (next == &p->mnt_mounts) {
1da177e4 652 while (1) {
909b0a88 653 if (p == root)
1da177e4 654 return NULL;
6b41d536
AV
655 next = p->mnt_child.next;
656 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 657 break;
0714a533 658 p = p->mnt_parent;
1da177e4
LT
659 }
660 }
6b41d536 661 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
662}
663
315fc83e 664static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 665{
6b41d536
AV
666 struct list_head *prev = p->mnt_mounts.prev;
667 while (prev != &p->mnt_mounts) {
668 p = list_entry(prev, struct mount, mnt_child);
669 prev = p->mnt_mounts.prev;
9676f0c6
RP
670 }
671 return p;
672}
673
9d412a43
AV
674struct vfsmount *
675vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
676{
b105e270 677 struct mount *mnt;
9d412a43
AV
678 struct dentry *root;
679
680 if (!type)
681 return ERR_PTR(-ENODEV);
682
683 mnt = alloc_vfsmnt(name);
684 if (!mnt)
685 return ERR_PTR(-ENOMEM);
686
687 if (flags & MS_KERNMOUNT)
b105e270 688 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
689
690 root = mount_fs(type, flags, name, data);
691 if (IS_ERR(root)) {
692 free_vfsmnt(mnt);
693 return ERR_CAST(root);
694 }
695
b105e270
AV
696 mnt->mnt.mnt_root = root;
697 mnt->mnt.mnt_sb = root->d_sb;
a73324da 698 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 699 mnt->mnt_parent = mnt;
962830df 700 br_write_lock(&vfsmount_lock);
39f7c4db 701 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 702 br_write_unlock(&vfsmount_lock);
b105e270 703 return &mnt->mnt;
9d412a43
AV
704}
705EXPORT_SYMBOL_GPL(vfs_kern_mount);
706
87129cc0 707static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 708 int flag)
1da177e4 709{
87129cc0 710 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
711 struct mount *mnt;
712 int err;
1da177e4 713
be34d1a3
DH
714 mnt = alloc_vfsmnt(old->mnt_devname);
715 if (!mnt)
716 return ERR_PTR(-ENOMEM);
719f5d7f 717
be34d1a3
DH
718 if (flag & (CL_SLAVE | CL_PRIVATE))
719 mnt->mnt_group_id = 0; /* not a peer of original */
720 else
721 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 722
be34d1a3
DH
723 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
724 err = mnt_alloc_group_id(mnt);
725 if (err)
726 goto out_free;
1da177e4 727 }
be34d1a3
DH
728
729 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
730 atomic_inc(&sb->s_active);
731 mnt->mnt.mnt_sb = sb;
732 mnt->mnt.mnt_root = dget(root);
733 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
734 mnt->mnt_parent = mnt;
735 br_write_lock(&vfsmount_lock);
736 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
737 br_write_unlock(&vfsmount_lock);
738
739 if (flag & CL_SLAVE) {
740 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
741 mnt->mnt_master = old;
742 CLEAR_MNT_SHARED(mnt);
743 } else if (!(flag & CL_PRIVATE)) {
744 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
745 list_add(&mnt->mnt_share, &old->mnt_share);
746 if (IS_MNT_SLAVE(old))
747 list_add(&mnt->mnt_slave, &old->mnt_slave);
748 mnt->mnt_master = old->mnt_master;
749 }
750 if (flag & CL_MAKE_SHARED)
751 set_mnt_shared(mnt);
752
753 /* stick the duplicate mount on the same expiry list
754 * as the original if that was on one */
755 if (flag & CL_EXPIRE) {
756 if (!list_empty(&old->mnt_expire))
757 list_add(&mnt->mnt_expire, &old->mnt_expire);
758 }
759
cb338d06 760 return mnt;
719f5d7f
MS
761
762 out_free:
763 free_vfsmnt(mnt);
be34d1a3 764 return ERR_PTR(err);
1da177e4
LT
765}
766
83adc753 767static inline void mntfree(struct mount *mnt)
1da177e4 768{
83adc753
AV
769 struct vfsmount *m = &mnt->mnt;
770 struct super_block *sb = m->mnt_sb;
b3e19d92 771
3d733633
DH
772 /*
773 * This probably indicates that somebody messed
774 * up a mnt_want/drop_write() pair. If this
775 * happens, the filesystem was probably unable
776 * to make r/w->r/o transitions.
777 */
d3ef3d73 778 /*
b3e19d92
NP
779 * The locking used to deal with mnt_count decrement provides barriers,
780 * so mnt_get_writers() below is safe.
d3ef3d73 781 */
c6653a83 782 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
783 fsnotify_vfsmount_delete(m);
784 dput(m->mnt_root);
785 free_vfsmnt(mnt);
1da177e4
LT
786 deactivate_super(sb);
787}
788
900148dc 789static void mntput_no_expire(struct mount *mnt)
b3e19d92 790{
b3e19d92 791put_again:
f03c6599 792#ifdef CONFIG_SMP
962830df 793 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
794 if (likely(mnt->mnt_ns)) {
795 /* shouldn't be the last one */
aa9c0e07 796 mnt_add_count(mnt, -1);
962830df 797 br_read_unlock(&vfsmount_lock);
f03c6599 798 return;
b3e19d92 799 }
962830df 800 br_read_unlock(&vfsmount_lock);
b3e19d92 801
962830df 802 br_write_lock(&vfsmount_lock);
aa9c0e07 803 mnt_add_count(mnt, -1);
b3e19d92 804 if (mnt_get_count(mnt)) {
962830df 805 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
806 return;
807 }
b3e19d92 808#else
aa9c0e07 809 mnt_add_count(mnt, -1);
b3e19d92 810 if (likely(mnt_get_count(mnt)))
99b7db7b 811 return;
962830df 812 br_write_lock(&vfsmount_lock);
f03c6599 813#endif
863d684f
AV
814 if (unlikely(mnt->mnt_pinned)) {
815 mnt_add_count(mnt, mnt->mnt_pinned + 1);
816 mnt->mnt_pinned = 0;
962830df 817 br_write_unlock(&vfsmount_lock);
900148dc 818 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 819 goto put_again;
7b7b1ace 820 }
962830df 821
39f7c4db 822 list_del(&mnt->mnt_instance);
962830df 823 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
824 mntfree(mnt);
825}
b3e19d92
NP
826
827void mntput(struct vfsmount *mnt)
828{
829 if (mnt) {
863d684f 830 struct mount *m = real_mount(mnt);
b3e19d92 831 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
832 if (unlikely(m->mnt_expiry_mark))
833 m->mnt_expiry_mark = 0;
834 mntput_no_expire(m);
b3e19d92
NP
835 }
836}
837EXPORT_SYMBOL(mntput);
838
839struct vfsmount *mntget(struct vfsmount *mnt)
840{
841 if (mnt)
83adc753 842 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
843 return mnt;
844}
845EXPORT_SYMBOL(mntget);
846
7b7b1ace
AV
847void mnt_pin(struct vfsmount *mnt)
848{
962830df 849 br_write_lock(&vfsmount_lock);
863d684f 850 real_mount(mnt)->mnt_pinned++;
962830df 851 br_write_unlock(&vfsmount_lock);
7b7b1ace 852}
7b7b1ace
AV
853EXPORT_SYMBOL(mnt_pin);
854
863d684f 855void mnt_unpin(struct vfsmount *m)
7b7b1ace 856{
863d684f 857 struct mount *mnt = real_mount(m);
962830df 858 br_write_lock(&vfsmount_lock);
7b7b1ace 859 if (mnt->mnt_pinned) {
863d684f 860 mnt_add_count(mnt, 1);
7b7b1ace
AV
861 mnt->mnt_pinned--;
862 }
962830df 863 br_write_unlock(&vfsmount_lock);
7b7b1ace 864}
7b7b1ace 865EXPORT_SYMBOL(mnt_unpin);
1da177e4 866
b3b304a2
MS
867static inline void mangle(struct seq_file *m, const char *s)
868{
869 seq_escape(m, s, " \t\n\\");
870}
871
872/*
873 * Simple .show_options callback for filesystems which don't want to
874 * implement more complex mount option showing.
875 *
876 * See also save_mount_options().
877 */
34c80b1d 878int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 879{
2a32cebd
AV
880 const char *options;
881
882 rcu_read_lock();
34c80b1d 883 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
884
885 if (options != NULL && options[0]) {
886 seq_putc(m, ',');
887 mangle(m, options);
888 }
2a32cebd 889 rcu_read_unlock();
b3b304a2
MS
890
891 return 0;
892}
893EXPORT_SYMBOL(generic_show_options);
894
895/*
896 * If filesystem uses generic_show_options(), this function should be
897 * called from the fill_super() callback.
898 *
899 * The .remount_fs callback usually needs to be handled in a special
900 * way, to make sure, that previous options are not overwritten if the
901 * remount fails.
902 *
903 * Also note, that if the filesystem's .remount_fs function doesn't
904 * reset all options to their default value, but changes only newly
905 * given options, then the displayed options will not reflect reality
906 * any more.
907 */
908void save_mount_options(struct super_block *sb, char *options)
909{
2a32cebd
AV
910 BUG_ON(sb->s_options);
911 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
912}
913EXPORT_SYMBOL(save_mount_options);
914
2a32cebd
AV
915void replace_mount_options(struct super_block *sb, char *options)
916{
917 char *old = sb->s_options;
918 rcu_assign_pointer(sb->s_options, options);
919 if (old) {
920 synchronize_rcu();
921 kfree(old);
922 }
923}
924EXPORT_SYMBOL(replace_mount_options);
925
a1a2c409 926#ifdef CONFIG_PROC_FS
0226f492 927/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
928static void *m_start(struct seq_file *m, loff_t *pos)
929{
6ce6e24e 930 struct proc_mounts *p = proc_mounts(m);
1da177e4 931
390c6843 932 down_read(&namespace_sem);
a1a2c409 933 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
934}
935
936static void *m_next(struct seq_file *m, void *v, loff_t *pos)
937{
6ce6e24e 938 struct proc_mounts *p = proc_mounts(m);
b0765fb8 939
a1a2c409 940 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
941}
942
943static void m_stop(struct seq_file *m, void *v)
944{
390c6843 945 up_read(&namespace_sem);
1da177e4
LT
946}
947
0226f492 948static int m_show(struct seq_file *m, void *v)
2d4d4864 949{
6ce6e24e 950 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 951 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 952 return p->show(m, &r->mnt);
1da177e4
LT
953}
954
a1a2c409 955const struct seq_operations mounts_op = {
1da177e4
LT
956 .start = m_start,
957 .next = m_next,
958 .stop = m_stop,
0226f492 959 .show = m_show,
b4629fe2 960};
a1a2c409 961#endif /* CONFIG_PROC_FS */
b4629fe2 962
1da177e4
LT
963/**
964 * may_umount_tree - check if a mount tree is busy
965 * @mnt: root of mount tree
966 *
967 * This is called to check if a tree of mounts has any
968 * open files, pwds, chroots or sub mounts that are
969 * busy.
970 */
909b0a88 971int may_umount_tree(struct vfsmount *m)
1da177e4 972{
909b0a88 973 struct mount *mnt = real_mount(m);
36341f64
RP
974 int actual_refs = 0;
975 int minimum_refs = 0;
315fc83e 976 struct mount *p;
909b0a88 977 BUG_ON(!m);
1da177e4 978
b3e19d92 979 /* write lock needed for mnt_get_count */
962830df 980 br_write_lock(&vfsmount_lock);
909b0a88 981 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 982 actual_refs += mnt_get_count(p);
1da177e4 983 minimum_refs += 2;
1da177e4 984 }
962830df 985 br_write_unlock(&vfsmount_lock);
1da177e4
LT
986
987 if (actual_refs > minimum_refs)
e3474a8e 988 return 0;
1da177e4 989
e3474a8e 990 return 1;
1da177e4
LT
991}
992
993EXPORT_SYMBOL(may_umount_tree);
994
995/**
996 * may_umount - check if a mount point is busy
997 * @mnt: root of mount
998 *
999 * This is called to check if a mount point has any
1000 * open files, pwds, chroots or sub mounts. If the
1001 * mount has sub mounts this will return busy
1002 * regardless of whether the sub mounts are busy.
1003 *
1004 * Doesn't take quota and stuff into account. IOW, in some cases it will
1005 * give false negatives. The main reason why it's here is that we need
1006 * a non-destructive way to look for easily umountable filesystems.
1007 */
1008int may_umount(struct vfsmount *mnt)
1009{
e3474a8e 1010 int ret = 1;
8ad08d8a 1011 down_read(&namespace_sem);
962830df 1012 br_write_lock(&vfsmount_lock);
1ab59738 1013 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1014 ret = 0;
962830df 1015 br_write_unlock(&vfsmount_lock);
8ad08d8a 1016 up_read(&namespace_sem);
a05964f3 1017 return ret;
1da177e4
LT
1018}
1019
1020EXPORT_SYMBOL(may_umount);
1021
b90fa9ae 1022void release_mounts(struct list_head *head)
70fbcdf4 1023{
d5e50f74 1024 struct mount *mnt;
bf066c7d 1025 while (!list_empty(head)) {
1b8e5564
AV
1026 mnt = list_first_entry(head, struct mount, mnt_hash);
1027 list_del_init(&mnt->mnt_hash);
676da58d 1028 if (mnt_has_parent(mnt)) {
70fbcdf4 1029 struct dentry *dentry;
863d684f 1030 struct mount *m;
99b7db7b 1031
962830df 1032 br_write_lock(&vfsmount_lock);
a73324da 1033 dentry = mnt->mnt_mountpoint;
863d684f 1034 m = mnt->mnt_parent;
a73324da 1035 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1036 mnt->mnt_parent = mnt;
7c4b93d8 1037 m->mnt_ghosts--;
962830df 1038 br_write_unlock(&vfsmount_lock);
70fbcdf4 1039 dput(dentry);
863d684f 1040 mntput(&m->mnt);
70fbcdf4 1041 }
d5e50f74 1042 mntput(&mnt->mnt);
70fbcdf4
RP
1043 }
1044}
1045
99b7db7b
NP
1046/*
1047 * vfsmount lock must be held for write
1048 * namespace_sem must be held for write
1049 */
761d5c38 1050void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1051{
7b8a53fd 1052 LIST_HEAD(tmp_list);
315fc83e 1053 struct mount *p;
1da177e4 1054
909b0a88 1055 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1056 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1057
a05964f3 1058 if (propagate)
7b8a53fd 1059 propagate_umount(&tmp_list);
a05964f3 1060
1b8e5564 1061 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1062 list_del_init(&p->mnt_expire);
1a4eeaf2 1063 list_del_init(&p->mnt_list);
143c8c91
AV
1064 __touch_mnt_namespace(p->mnt_ns);
1065 p->mnt_ns = NULL;
6b41d536 1066 list_del_init(&p->mnt_child);
676da58d 1067 if (mnt_has_parent(p)) {
863d684f 1068 p->mnt_parent->mnt_ghosts++;
a73324da 1069 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1070 }
0f0afb1d 1071 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1072 }
7b8a53fd 1073 list_splice(&tmp_list, kill);
1da177e4
LT
1074}
1075
692afc31 1076static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1077
1ab59738 1078static int do_umount(struct mount *mnt, int flags)
1da177e4 1079{
1ab59738 1080 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1081 int retval;
70fbcdf4 1082 LIST_HEAD(umount_list);
1da177e4 1083
1ab59738 1084 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1085 if (retval)
1086 return retval;
1087
1088 /*
1089 * Allow userspace to request a mountpoint be expired rather than
1090 * unmounting unconditionally. Unmount only happens if:
1091 * (1) the mark is already set (the mark is cleared by mntput())
1092 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1093 */
1094 if (flags & MNT_EXPIRE) {
1ab59738 1095 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1096 flags & (MNT_FORCE | MNT_DETACH))
1097 return -EINVAL;
1098
b3e19d92
NP
1099 /*
1100 * probably don't strictly need the lock here if we examined
1101 * all race cases, but it's a slowpath.
1102 */
962830df 1103 br_write_lock(&vfsmount_lock);
83adc753 1104 if (mnt_get_count(mnt) != 2) {
962830df 1105 br_write_unlock(&vfsmount_lock);
1da177e4 1106 return -EBUSY;
b3e19d92 1107 }
962830df 1108 br_write_unlock(&vfsmount_lock);
1da177e4 1109
863d684f 1110 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1111 return -EAGAIN;
1112 }
1113
1114 /*
1115 * If we may have to abort operations to get out of this
1116 * mount, and they will themselves hold resources we must
1117 * allow the fs to do things. In the Unix tradition of
1118 * 'Gee thats tricky lets do it in userspace' the umount_begin
1119 * might fail to complete on the first run through as other tasks
1120 * must return, and the like. Thats for the mount program to worry
1121 * about for the moment.
1122 */
1123
42faad99 1124 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1125 sb->s_op->umount_begin(sb);
42faad99 1126 }
1da177e4
LT
1127
1128 /*
1129 * No sense to grab the lock for this test, but test itself looks
1130 * somewhat bogus. Suggestions for better replacement?
1131 * Ho-hum... In principle, we might treat that as umount + switch
1132 * to rootfs. GC would eventually take care of the old vfsmount.
1133 * Actually it makes sense, especially if rootfs would contain a
1134 * /reboot - static binary that would close all descriptors and
1135 * call reboot(9). Then init(8) could umount root and exec /reboot.
1136 */
1ab59738 1137 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1138 /*
1139 * Special case for "unmounting" root ...
1140 * we just try to remount it readonly.
1141 */
1142 down_write(&sb->s_umount);
4aa98cf7 1143 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1144 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1145 up_write(&sb->s_umount);
1146 return retval;
1147 }
1148
390c6843 1149 down_write(&namespace_sem);
962830df 1150 br_write_lock(&vfsmount_lock);
5addc5dd 1151 event++;
1da177e4 1152
c35038be 1153 if (!(flags & MNT_DETACH))
1ab59738 1154 shrink_submounts(mnt, &umount_list);
c35038be 1155
1da177e4 1156 retval = -EBUSY;
a05964f3 1157 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1158 if (!list_empty(&mnt->mnt_list))
1ab59738 1159 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1160 retval = 0;
1161 }
962830df 1162 br_write_unlock(&vfsmount_lock);
390c6843 1163 up_write(&namespace_sem);
70fbcdf4 1164 release_mounts(&umount_list);
1da177e4
LT
1165 return retval;
1166}
1167
1168/*
1169 * Now umount can handle mount points as well as block devices.
1170 * This is important for filesystems which use unnamed block devices.
1171 *
1172 * We now support a flag for forced unmount like the other 'big iron'
1173 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1174 */
1175
bdc480e3 1176SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1177{
2d8f3038 1178 struct path path;
900148dc 1179 struct mount *mnt;
1da177e4 1180 int retval;
db1f05bb 1181 int lookup_flags = 0;
1da177e4 1182
db1f05bb
MS
1183 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1184 return -EINVAL;
1185
1186 if (!(flags & UMOUNT_NOFOLLOW))
1187 lookup_flags |= LOOKUP_FOLLOW;
1188
1189 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1190 if (retval)
1191 goto out;
900148dc 1192 mnt = real_mount(path.mnt);
1da177e4 1193 retval = -EINVAL;
2d8f3038 1194 if (path.dentry != path.mnt->mnt_root)
1da177e4 1195 goto dput_and_out;
143c8c91 1196 if (!check_mnt(mnt))
1da177e4
LT
1197 goto dput_and_out;
1198
1199 retval = -EPERM;
1200 if (!capable(CAP_SYS_ADMIN))
1201 goto dput_and_out;
1202
900148dc 1203 retval = do_umount(mnt, flags);
1da177e4 1204dput_and_out:
429731b1 1205 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1206 dput(path.dentry);
900148dc 1207 mntput_no_expire(mnt);
1da177e4
LT
1208out:
1209 return retval;
1210}
1211
1212#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1213
1214/*
b58fed8b 1215 * The 2.0 compatible umount. No flags.
1da177e4 1216 */
bdc480e3 1217SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1218{
b58fed8b 1219 return sys_umount(name, 0);
1da177e4
LT
1220}
1221
1222#endif
1223
2d92ab3c 1224static int mount_is_safe(struct path *path)
1da177e4
LT
1225{
1226 if (capable(CAP_SYS_ADMIN))
1227 return 0;
1228 return -EPERM;
1229#ifdef notyet
2d92ab3c 1230 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1231 return -EPERM;
2d92ab3c 1232 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1233 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1234 return -EPERM;
1235 }
2d92ab3c 1236 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1237 return -EPERM;
1238 return 0;
1239#endif
1240}
1241
87129cc0 1242struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1243 int flag)
1da177e4 1244{
a73324da 1245 struct mount *res, *p, *q, *r;
1a390689 1246 struct path path;
1da177e4 1247
fc7be130 1248 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1249 return ERR_PTR(-EINVAL);
9676f0c6 1250
36341f64 1251 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1252 if (IS_ERR(q))
1253 return q;
1254
a73324da 1255 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1256
1257 p = mnt;
6b41d536 1258 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1259 struct mount *s;
7ec02ef1 1260 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1261 continue;
1262
909b0a88 1263 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1264 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1265 s = skip_mnt_tree(s);
1266 continue;
1267 }
0714a533
AV
1268 while (p != s->mnt_parent) {
1269 p = p->mnt_parent;
1270 q = q->mnt_parent;
1da177e4 1271 }
87129cc0 1272 p = s;
cb338d06 1273 path.mnt = &q->mnt;
a73324da 1274 path.dentry = p->mnt_mountpoint;
87129cc0 1275 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1276 if (IS_ERR(q))
1277 goto out;
962830df 1278 br_write_lock(&vfsmount_lock);
1a4eeaf2 1279 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1280 attach_mnt(q, &path);
962830df 1281 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1282 }
1283 }
1284 return res;
be34d1a3 1285out:
1da177e4 1286 if (res) {
70fbcdf4 1287 LIST_HEAD(umount_list);
962830df 1288 br_write_lock(&vfsmount_lock);
761d5c38 1289 umount_tree(res, 0, &umount_list);
962830df 1290 br_write_unlock(&vfsmount_lock);
70fbcdf4 1291 release_mounts(&umount_list);
1da177e4 1292 }
be34d1a3 1293 return q;
1da177e4
LT
1294}
1295
be34d1a3
DH
1296/* Caller should check returned pointer for errors */
1297
589ff870 1298struct vfsmount *collect_mounts(struct path *path)
8aec0809 1299{
cb338d06 1300 struct mount *tree;
1a60a280 1301 down_write(&namespace_sem);
87129cc0
AV
1302 tree = copy_tree(real_mount(path->mnt), path->dentry,
1303 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1304 up_write(&namespace_sem);
be34d1a3
DH
1305 if (IS_ERR(tree))
1306 return NULL;
1307 return &tree->mnt;
8aec0809
AV
1308}
1309
1310void drop_collected_mounts(struct vfsmount *mnt)
1311{
1312 LIST_HEAD(umount_list);
1a60a280 1313 down_write(&namespace_sem);
962830df 1314 br_write_lock(&vfsmount_lock);
761d5c38 1315 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1316 br_write_unlock(&vfsmount_lock);
1a60a280 1317 up_write(&namespace_sem);
8aec0809
AV
1318 release_mounts(&umount_list);
1319}
1320
1f707137
AV
1321int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1322 struct vfsmount *root)
1323{
1a4eeaf2 1324 struct mount *mnt;
1f707137
AV
1325 int res = f(root, arg);
1326 if (res)
1327 return res;
1a4eeaf2
AV
1328 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1329 res = f(&mnt->mnt, arg);
1f707137
AV
1330 if (res)
1331 return res;
1332 }
1333 return 0;
1334}
1335
4b8b21f4 1336static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1337{
315fc83e 1338 struct mount *p;
719f5d7f 1339
909b0a88 1340 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1341 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1342 mnt_release_group_id(p);
719f5d7f
MS
1343 }
1344}
1345
4b8b21f4 1346static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1347{
315fc83e 1348 struct mount *p;
719f5d7f 1349
909b0a88 1350 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1351 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1352 int err = mnt_alloc_group_id(p);
719f5d7f 1353 if (err) {
4b8b21f4 1354 cleanup_group_ids(mnt, p);
719f5d7f
MS
1355 return err;
1356 }
1357 }
1358 }
1359
1360 return 0;
1361}
1362
b90fa9ae
RP
1363/*
1364 * @source_mnt : mount tree to be attached
21444403
RP
1365 * @nd : place the mount tree @source_mnt is attached
1366 * @parent_nd : if non-null, detach the source_mnt from its parent and
1367 * store the parent mount and mountpoint dentry.
1368 * (done when source_mnt is moved)
b90fa9ae
RP
1369 *
1370 * NOTE: in the table below explains the semantics when a source mount
1371 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1372 * ---------------------------------------------------------------------------
1373 * | BIND MOUNT OPERATION |
1374 * |**************************************************************************
1375 * | source-->| shared | private | slave | unbindable |
1376 * | dest | | | | |
1377 * | | | | | | |
1378 * | v | | | | |
1379 * |**************************************************************************
1380 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1381 * | | | | | |
1382 * |non-shared| shared (+) | private | slave (*) | invalid |
1383 * ***************************************************************************
b90fa9ae
RP
1384 * A bind operation clones the source mount and mounts the clone on the
1385 * destination mount.
1386 *
1387 * (++) the cloned mount is propagated to all the mounts in the propagation
1388 * tree of the destination mount and the cloned mount is added to
1389 * the peer group of the source mount.
1390 * (+) the cloned mount is created under the destination mount and is marked
1391 * as shared. The cloned mount is added to the peer group of the source
1392 * mount.
5afe0022
RP
1393 * (+++) the mount is propagated to all the mounts in the propagation tree
1394 * of the destination mount and the cloned mount is made slave
1395 * of the same master as that of the source mount. The cloned mount
1396 * is marked as 'shared and slave'.
1397 * (*) the cloned mount is made a slave of the same master as that of the
1398 * source mount.
1399 *
9676f0c6
RP
1400 * ---------------------------------------------------------------------------
1401 * | MOVE MOUNT OPERATION |
1402 * |**************************************************************************
1403 * | source-->| shared | private | slave | unbindable |
1404 * | dest | | | | |
1405 * | | | | | | |
1406 * | v | | | | |
1407 * |**************************************************************************
1408 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1409 * | | | | | |
1410 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1411 * ***************************************************************************
5afe0022
RP
1412 *
1413 * (+) the mount is moved to the destination. And is then propagated to
1414 * all the mounts in the propagation tree of the destination mount.
21444403 1415 * (+*) the mount is moved to the destination.
5afe0022
RP
1416 * (+++) the mount is moved to the destination and is then propagated to
1417 * all the mounts belonging to the destination mount's propagation tree.
1418 * the mount is marked as 'shared and slave'.
1419 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1420 *
1421 * if the source mount is a tree, the operations explained above is
1422 * applied to each mount in the tree.
1423 * Must be called without spinlocks held, since this function can sleep
1424 * in allocations.
1425 */
0fb54e50 1426static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1427 struct path *path, struct path *parent_path)
b90fa9ae
RP
1428{
1429 LIST_HEAD(tree_list);
a8d56d8e 1430 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1431 struct dentry *dest_dentry = path->dentry;
315fc83e 1432 struct mount *child, *p;
719f5d7f 1433 int err;
b90fa9ae 1434
fc7be130 1435 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1436 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1437 if (err)
1438 goto out;
1439 }
a8d56d8e 1440 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1441 if (err)
1442 goto out_cleanup_ids;
b90fa9ae 1443
962830df 1444 br_write_lock(&vfsmount_lock);
df1a1ad2 1445
fc7be130 1446 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1447 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1448 set_mnt_shared(p);
b90fa9ae 1449 }
1a390689 1450 if (parent_path) {
0fb54e50
AV
1451 detach_mnt(source_mnt, parent_path);
1452 attach_mnt(source_mnt, path);
143c8c91 1453 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1454 } else {
14cf1fa8 1455 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1456 commit_tree(source_mnt);
21444403 1457 }
b90fa9ae 1458
1b8e5564
AV
1459 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1460 list_del_init(&child->mnt_hash);
4b2619a5 1461 commit_tree(child);
b90fa9ae 1462 }
962830df 1463 br_write_unlock(&vfsmount_lock);
99b7db7b 1464
b90fa9ae 1465 return 0;
719f5d7f
MS
1466
1467 out_cleanup_ids:
fc7be130 1468 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1469 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1470 out:
1471 return err;
b90fa9ae
RP
1472}
1473
b12cea91
AV
1474static int lock_mount(struct path *path)
1475{
1476 struct vfsmount *mnt;
1477retry:
1478 mutex_lock(&path->dentry->d_inode->i_mutex);
1479 if (unlikely(cant_mount(path->dentry))) {
1480 mutex_unlock(&path->dentry->d_inode->i_mutex);
1481 return -ENOENT;
1482 }
1483 down_write(&namespace_sem);
1484 mnt = lookup_mnt(path);
1485 if (likely(!mnt))
1486 return 0;
1487 up_write(&namespace_sem);
1488 mutex_unlock(&path->dentry->d_inode->i_mutex);
1489 path_put(path);
1490 path->mnt = mnt;
1491 path->dentry = dget(mnt->mnt_root);
1492 goto retry;
1493}
1494
1495static void unlock_mount(struct path *path)
1496{
1497 up_write(&namespace_sem);
1498 mutex_unlock(&path->dentry->d_inode->i_mutex);
1499}
1500
95bc5f25 1501static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1502{
95bc5f25 1503 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1504 return -EINVAL;
1505
8c3ee42e 1506 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1507 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1508 return -ENOTDIR;
1509
b12cea91
AV
1510 if (d_unlinked(path->dentry))
1511 return -ENOENT;
1da177e4 1512
95bc5f25 1513 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1514}
1515
7a2e8a8f
VA
1516/*
1517 * Sanity check the flags to change_mnt_propagation.
1518 */
1519
1520static int flags_to_propagation_type(int flags)
1521{
7c6e984d 1522 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1523
1524 /* Fail if any non-propagation flags are set */
1525 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1526 return 0;
1527 /* Only one propagation flag should be set */
1528 if (!is_power_of_2(type))
1529 return 0;
1530 return type;
1531}
1532
07b20889
RP
1533/*
1534 * recursively change the type of the mountpoint.
1535 */
0a0d8a46 1536static int do_change_type(struct path *path, int flag)
07b20889 1537{
315fc83e 1538 struct mount *m;
4b8b21f4 1539 struct mount *mnt = real_mount(path->mnt);
07b20889 1540 int recurse = flag & MS_REC;
7a2e8a8f 1541 int type;
719f5d7f 1542 int err = 0;
07b20889 1543
ee6f9582
MS
1544 if (!capable(CAP_SYS_ADMIN))
1545 return -EPERM;
1546
2d92ab3c 1547 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1548 return -EINVAL;
1549
7a2e8a8f
VA
1550 type = flags_to_propagation_type(flag);
1551 if (!type)
1552 return -EINVAL;
1553
07b20889 1554 down_write(&namespace_sem);
719f5d7f
MS
1555 if (type == MS_SHARED) {
1556 err = invent_group_ids(mnt, recurse);
1557 if (err)
1558 goto out_unlock;
1559 }
1560
962830df 1561 br_write_lock(&vfsmount_lock);
909b0a88 1562 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1563 change_mnt_propagation(m, type);
962830df 1564 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1565
1566 out_unlock:
07b20889 1567 up_write(&namespace_sem);
719f5d7f 1568 return err;
07b20889
RP
1569}
1570
1da177e4
LT
1571/*
1572 * do loopback mount.
1573 */
0a0d8a46 1574static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1575 int recurse)
1da177e4 1576{
b12cea91 1577 LIST_HEAD(umount_list);
2d92ab3c 1578 struct path old_path;
87129cc0 1579 struct mount *mnt = NULL, *old;
2d92ab3c 1580 int err = mount_is_safe(path);
1da177e4
LT
1581 if (err)
1582 return err;
1583 if (!old_name || !*old_name)
1584 return -EINVAL;
815d405c 1585 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1586 if (err)
1587 return err;
1588
b12cea91
AV
1589 err = lock_mount(path);
1590 if (err)
1591 goto out;
1592
87129cc0
AV
1593 old = real_mount(old_path.mnt);
1594
1da177e4 1595 err = -EINVAL;
fc7be130 1596 if (IS_MNT_UNBINDABLE(old))
b12cea91 1597 goto out2;
9676f0c6 1598
143c8c91 1599 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1600 goto out2;
1da177e4 1601
ccd48bc7 1602 if (recurse)
87129cc0 1603 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1604 else
87129cc0 1605 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1606
be34d1a3
DH
1607 if (IS_ERR(mnt)) {
1608 err = PTR_ERR(mnt);
1609 goto out;
1610 }
ccd48bc7 1611
95bc5f25 1612 err = graft_tree(mnt, path);
ccd48bc7 1613 if (err) {
962830df 1614 br_write_lock(&vfsmount_lock);
761d5c38 1615 umount_tree(mnt, 0, &umount_list);
962830df 1616 br_write_unlock(&vfsmount_lock);
5b83d2c5 1617 }
b12cea91
AV
1618out2:
1619 unlock_mount(path);
1620 release_mounts(&umount_list);
ccd48bc7 1621out:
2d92ab3c 1622 path_put(&old_path);
1da177e4
LT
1623 return err;
1624}
1625
2e4b7fcd
DH
1626static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1627{
1628 int error = 0;
1629 int readonly_request = 0;
1630
1631 if (ms_flags & MS_RDONLY)
1632 readonly_request = 1;
1633 if (readonly_request == __mnt_is_readonly(mnt))
1634 return 0;
1635
1636 if (readonly_request)
83adc753 1637 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1638 else
83adc753 1639 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1640 return error;
1641}
1642
1da177e4
LT
1643/*
1644 * change filesystem flags. dir should be a physical root of filesystem.
1645 * If you've mounted a non-root directory somewhere and want to do remount
1646 * on it - tough luck.
1647 */
0a0d8a46 1648static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1649 void *data)
1650{
1651 int err;
2d92ab3c 1652 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1653 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1654
1655 if (!capable(CAP_SYS_ADMIN))
1656 return -EPERM;
1657
143c8c91 1658 if (!check_mnt(mnt))
1da177e4
LT
1659 return -EINVAL;
1660
2d92ab3c 1661 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1662 return -EINVAL;
1663
ff36fe2c
EP
1664 err = security_sb_remount(sb, data);
1665 if (err)
1666 return err;
1667
1da177e4 1668 down_write(&sb->s_umount);
2e4b7fcd 1669 if (flags & MS_BIND)
2d92ab3c 1670 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1671 else
2e4b7fcd 1672 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1673 if (!err) {
962830df 1674 br_write_lock(&vfsmount_lock);
143c8c91
AV
1675 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1676 mnt->mnt.mnt_flags = mnt_flags;
962830df 1677 br_write_unlock(&vfsmount_lock);
7b43a79f 1678 }
1da177e4 1679 up_write(&sb->s_umount);
0e55a7cc 1680 if (!err) {
962830df 1681 br_write_lock(&vfsmount_lock);
143c8c91 1682 touch_mnt_namespace(mnt->mnt_ns);
962830df 1683 br_write_unlock(&vfsmount_lock);
0e55a7cc 1684 }
1da177e4
LT
1685 return err;
1686}
1687
cbbe362c 1688static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1689{
315fc83e 1690 struct mount *p;
909b0a88 1691 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1692 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1693 return 1;
1694 }
1695 return 0;
1696}
1697
0a0d8a46 1698static int do_move_mount(struct path *path, char *old_name)
1da177e4 1699{
2d92ab3c 1700 struct path old_path, parent_path;
676da58d 1701 struct mount *p;
0fb54e50 1702 struct mount *old;
1da177e4
LT
1703 int err = 0;
1704 if (!capable(CAP_SYS_ADMIN))
1705 return -EPERM;
1706 if (!old_name || !*old_name)
1707 return -EINVAL;
2d92ab3c 1708 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1709 if (err)
1710 return err;
1711
b12cea91 1712 err = lock_mount(path);
cc53ce53
DH
1713 if (err < 0)
1714 goto out;
1715
143c8c91 1716 old = real_mount(old_path.mnt);
fc7be130 1717 p = real_mount(path->mnt);
143c8c91 1718
1da177e4 1719 err = -EINVAL;
fc7be130 1720 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1721 goto out1;
1722
f3da392e 1723 if (d_unlinked(path->dentry))
21444403 1724 goto out1;
1da177e4
LT
1725
1726 err = -EINVAL;
2d92ab3c 1727 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1728 goto out1;
1da177e4 1729
676da58d 1730 if (!mnt_has_parent(old))
21444403 1731 goto out1;
1da177e4 1732
2d92ab3c
AV
1733 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1734 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1735 goto out1;
1736 /*
1737 * Don't move a mount residing in a shared parent.
1738 */
fc7be130 1739 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1740 goto out1;
9676f0c6
RP
1741 /*
1742 * Don't move a mount tree containing unbindable mounts to a destination
1743 * mount which is shared.
1744 */
fc7be130 1745 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1746 goto out1;
1da177e4 1747 err = -ELOOP;
fc7be130 1748 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1749 if (p == old)
21444403 1750 goto out1;
1da177e4 1751
0fb54e50 1752 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1753 if (err)
21444403 1754 goto out1;
1da177e4
LT
1755
1756 /* if the mount is moved, it should no longer be expire
1757 * automatically */
6776db3d 1758 list_del_init(&old->mnt_expire);
1da177e4 1759out1:
b12cea91 1760 unlock_mount(path);
1da177e4 1761out:
1da177e4 1762 if (!err)
1a390689 1763 path_put(&parent_path);
2d92ab3c 1764 path_put(&old_path);
1da177e4
LT
1765 return err;
1766}
1767
9d412a43
AV
1768static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1769{
1770 int err;
1771 const char *subtype = strchr(fstype, '.');
1772 if (subtype) {
1773 subtype++;
1774 err = -EINVAL;
1775 if (!subtype[0])
1776 goto err;
1777 } else
1778 subtype = "";
1779
1780 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1781 err = -ENOMEM;
1782 if (!mnt->mnt_sb->s_subtype)
1783 goto err;
1784 return mnt;
1785
1786 err:
1787 mntput(mnt);
1788 return ERR_PTR(err);
1789}
1790
79e801a9 1791static struct vfsmount *
9d412a43
AV
1792do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1793{
1794 struct file_system_type *type = get_fs_type(fstype);
1795 struct vfsmount *mnt;
1796 if (!type)
1797 return ERR_PTR(-ENODEV);
1798 mnt = vfs_kern_mount(type, flags, name, data);
1799 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1800 !mnt->mnt_sb->s_subtype)
1801 mnt = fs_set_subtype(mnt, fstype);
1802 put_filesystem(type);
1803 return mnt;
1804}
9d412a43
AV
1805
1806/*
1807 * add a mount into a namespace's mount tree
1808 */
95bc5f25 1809static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1810{
1811 int err;
1812
1813 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1814
b12cea91
AV
1815 err = lock_mount(path);
1816 if (err)
1817 return err;
9d412a43
AV
1818
1819 err = -EINVAL;
143c8c91 1820 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1821 goto unlock;
1822
1823 /* Refuse the same filesystem on the same mount point */
1824 err = -EBUSY;
95bc5f25 1825 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1826 path->mnt->mnt_root == path->dentry)
1827 goto unlock;
1828
1829 err = -EINVAL;
95bc5f25 1830 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1831 goto unlock;
1832
95bc5f25 1833 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1834 err = graft_tree(newmnt, path);
1835
1836unlock:
b12cea91 1837 unlock_mount(path);
9d412a43
AV
1838 return err;
1839}
b1e75df4 1840
1da177e4
LT
1841/*
1842 * create a new mount for userspace and request it to be added into the
1843 * namespace's tree
1844 */
0a0d8a46 1845static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1846 int mnt_flags, char *name, void *data)
1847{
1848 struct vfsmount *mnt;
15f9a3f3 1849 int err;
1da177e4 1850
eca6f534 1851 if (!type)
1da177e4
LT
1852 return -EINVAL;
1853
1854 /* we need capabilities... */
1855 if (!capable(CAP_SYS_ADMIN))
1856 return -EPERM;
1857
1858 mnt = do_kern_mount(type, flags, name, data);
1859 if (IS_ERR(mnt))
1860 return PTR_ERR(mnt);
1861
95bc5f25 1862 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1863 if (err)
1864 mntput(mnt);
1865 return err;
1da177e4
LT
1866}
1867
19a167af
AV
1868int finish_automount(struct vfsmount *m, struct path *path)
1869{
6776db3d 1870 struct mount *mnt = real_mount(m);
19a167af
AV
1871 int err;
1872 /* The new mount record should have at least 2 refs to prevent it being
1873 * expired before we get a chance to add it
1874 */
6776db3d 1875 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1876
1877 if (m->mnt_sb == path->mnt->mnt_sb &&
1878 m->mnt_root == path->dentry) {
b1e75df4
AV
1879 err = -ELOOP;
1880 goto fail;
19a167af
AV
1881 }
1882
95bc5f25 1883 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1884 if (!err)
1885 return 0;
1886fail:
1887 /* remove m from any expiration list it may be on */
6776db3d 1888 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 1889 down_write(&namespace_sem);
962830df 1890 br_write_lock(&vfsmount_lock);
6776db3d 1891 list_del_init(&mnt->mnt_expire);
962830df 1892 br_write_unlock(&vfsmount_lock);
b1e75df4 1893 up_write(&namespace_sem);
19a167af 1894 }
b1e75df4
AV
1895 mntput(m);
1896 mntput(m);
19a167af
AV
1897 return err;
1898}
1899
ea5b778a
DH
1900/**
1901 * mnt_set_expiry - Put a mount on an expiration list
1902 * @mnt: The mount to list.
1903 * @expiry_list: The list to add the mount to.
1904 */
1905void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1906{
1907 down_write(&namespace_sem);
962830df 1908 br_write_lock(&vfsmount_lock);
ea5b778a 1909
6776db3d 1910 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 1911
962830df 1912 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
1913 up_write(&namespace_sem);
1914}
1915EXPORT_SYMBOL(mnt_set_expiry);
1916
1da177e4
LT
1917/*
1918 * process a list of expirable mountpoints with the intent of discarding any
1919 * mountpoints that aren't in use and haven't been touched since last we came
1920 * here
1921 */
1922void mark_mounts_for_expiry(struct list_head *mounts)
1923{
761d5c38 1924 struct mount *mnt, *next;
1da177e4 1925 LIST_HEAD(graveyard);
bcc5c7d2 1926 LIST_HEAD(umounts);
1da177e4
LT
1927
1928 if (list_empty(mounts))
1929 return;
1930
bcc5c7d2 1931 down_write(&namespace_sem);
962830df 1932 br_write_lock(&vfsmount_lock);
1da177e4
LT
1933
1934 /* extract from the expiration list every vfsmount that matches the
1935 * following criteria:
1936 * - only referenced by its parent vfsmount
1937 * - still marked for expiry (marked on the last call here; marks are
1938 * cleared by mntput())
1939 */
6776db3d 1940 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 1941 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 1942 propagate_mount_busy(mnt, 1))
1da177e4 1943 continue;
6776db3d 1944 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1945 }
bcc5c7d2 1946 while (!list_empty(&graveyard)) {
6776db3d 1947 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 1948 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
1949 umount_tree(mnt, 1, &umounts);
1950 }
962830df 1951 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
1952 up_write(&namespace_sem);
1953
1954 release_mounts(&umounts);
5528f911
TM
1955}
1956
1957EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1958
1959/*
1960 * Ripoff of 'select_parent()'
1961 *
1962 * search the list of submounts for a given mountpoint, and move any
1963 * shrinkable submounts to the 'graveyard' list.
1964 */
692afc31 1965static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 1966{
692afc31 1967 struct mount *this_parent = parent;
5528f911
TM
1968 struct list_head *next;
1969 int found = 0;
1970
1971repeat:
6b41d536 1972 next = this_parent->mnt_mounts.next;
5528f911 1973resume:
6b41d536 1974 while (next != &this_parent->mnt_mounts) {
5528f911 1975 struct list_head *tmp = next;
6b41d536 1976 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
1977
1978 next = tmp->next;
692afc31 1979 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 1980 continue;
5528f911
TM
1981 /*
1982 * Descend a level if the d_mounts list is non-empty.
1983 */
6b41d536 1984 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
1985 this_parent = mnt;
1986 goto repeat;
1987 }
1da177e4 1988
1ab59738 1989 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 1990 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
1991 found++;
1992 }
1da177e4 1993 }
5528f911
TM
1994 /*
1995 * All done at this level ... ascend and resume the search
1996 */
1997 if (this_parent != parent) {
6b41d536 1998 next = this_parent->mnt_child.next;
0714a533 1999 this_parent = this_parent->mnt_parent;
5528f911
TM
2000 goto resume;
2001 }
2002 return found;
2003}
2004
2005/*
2006 * process a list of expirable mountpoints with the intent of discarding any
2007 * submounts of a specific parent mountpoint
99b7db7b
NP
2008 *
2009 * vfsmount_lock must be held for write
5528f911 2010 */
692afc31 2011static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2012{
2013 LIST_HEAD(graveyard);
761d5c38 2014 struct mount *m;
5528f911 2015
5528f911 2016 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2017 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2018 while (!list_empty(&graveyard)) {
761d5c38 2019 m = list_first_entry(&graveyard, struct mount,
6776db3d 2020 mnt_expire);
143c8c91 2021 touch_mnt_namespace(m->mnt_ns);
afef80b3 2022 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2023 }
2024 }
1da177e4
LT
2025}
2026
1da177e4
LT
2027/*
2028 * Some copy_from_user() implementations do not return the exact number of
2029 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2030 * Note that this function differs from copy_from_user() in that it will oops
2031 * on bad values of `to', rather than returning a short copy.
2032 */
b58fed8b
RP
2033static long exact_copy_from_user(void *to, const void __user * from,
2034 unsigned long n)
1da177e4
LT
2035{
2036 char *t = to;
2037 const char __user *f = from;
2038 char c;
2039
2040 if (!access_ok(VERIFY_READ, from, n))
2041 return n;
2042
2043 while (n) {
2044 if (__get_user(c, f)) {
2045 memset(t, 0, n);
2046 break;
2047 }
2048 *t++ = c;
2049 f++;
2050 n--;
2051 }
2052 return n;
2053}
2054
b58fed8b 2055int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2056{
2057 int i;
2058 unsigned long page;
2059 unsigned long size;
b58fed8b 2060
1da177e4
LT
2061 *where = 0;
2062 if (!data)
2063 return 0;
2064
2065 if (!(page = __get_free_page(GFP_KERNEL)))
2066 return -ENOMEM;
2067
2068 /* We only care that *some* data at the address the user
2069 * gave us is valid. Just in case, we'll zero
2070 * the remainder of the page.
2071 */
2072 /* copy_from_user cannot cross TASK_SIZE ! */
2073 size = TASK_SIZE - (unsigned long)data;
2074 if (size > PAGE_SIZE)
2075 size = PAGE_SIZE;
2076
2077 i = size - exact_copy_from_user((void *)page, data, size);
2078 if (!i) {
b58fed8b 2079 free_page(page);
1da177e4
LT
2080 return -EFAULT;
2081 }
2082 if (i != PAGE_SIZE)
2083 memset((char *)page + i, 0, PAGE_SIZE - i);
2084 *where = page;
2085 return 0;
2086}
2087
eca6f534
VN
2088int copy_mount_string(const void __user *data, char **where)
2089{
2090 char *tmp;
2091
2092 if (!data) {
2093 *where = NULL;
2094 return 0;
2095 }
2096
2097 tmp = strndup_user(data, PAGE_SIZE);
2098 if (IS_ERR(tmp))
2099 return PTR_ERR(tmp);
2100
2101 *where = tmp;
2102 return 0;
2103}
2104
1da177e4
LT
2105/*
2106 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2107 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2108 *
2109 * data is a (void *) that can point to any structure up to
2110 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2111 * information (or be NULL).
2112 *
2113 * Pre-0.97 versions of mount() didn't have a flags word.
2114 * When the flags word was introduced its top half was required
2115 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2116 * Therefore, if this magic number is present, it carries no information
2117 * and must be discarded.
2118 */
b58fed8b 2119long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2120 unsigned long flags, void *data_page)
2121{
2d92ab3c 2122 struct path path;
1da177e4
LT
2123 int retval = 0;
2124 int mnt_flags = 0;
2125
2126 /* Discard magic */
2127 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2128 flags &= ~MS_MGC_MSK;
2129
2130 /* Basic sanity checks */
2131
2132 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2133 return -EINVAL;
1da177e4
LT
2134
2135 if (data_page)
2136 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2137
a27ab9f2
TH
2138 /* ... and get the mountpoint */
2139 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2140 if (retval)
2141 return retval;
2142
2143 retval = security_sb_mount(dev_name, &path,
2144 type_page, flags, data_page);
2145 if (retval)
2146 goto dput_out;
2147
613cbe3d
AK
2148 /* Default to relatime unless overriden */
2149 if (!(flags & MS_NOATIME))
2150 mnt_flags |= MNT_RELATIME;
0a1c01c9 2151
1da177e4
LT
2152 /* Separate the per-mountpoint flags */
2153 if (flags & MS_NOSUID)
2154 mnt_flags |= MNT_NOSUID;
2155 if (flags & MS_NODEV)
2156 mnt_flags |= MNT_NODEV;
2157 if (flags & MS_NOEXEC)
2158 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2159 if (flags & MS_NOATIME)
2160 mnt_flags |= MNT_NOATIME;
2161 if (flags & MS_NODIRATIME)
2162 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2163 if (flags & MS_STRICTATIME)
2164 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2165 if (flags & MS_RDONLY)
2166 mnt_flags |= MNT_READONLY;
fc33a7bb 2167
7a4dec53 2168 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2169 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2170 MS_STRICTATIME);
1da177e4 2171
1da177e4 2172 if (flags & MS_REMOUNT)
2d92ab3c 2173 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2174 data_page);
2175 else if (flags & MS_BIND)
2d92ab3c 2176 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2177 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2178 retval = do_change_type(&path, flags);
1da177e4 2179 else if (flags & MS_MOVE)
2d92ab3c 2180 retval = do_move_mount(&path, dev_name);
1da177e4 2181 else
2d92ab3c 2182 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2183 dev_name, data_page);
2184dput_out:
2d92ab3c 2185 path_put(&path);
1da177e4
LT
2186 return retval;
2187}
2188
cf8d2c11
TM
2189static struct mnt_namespace *alloc_mnt_ns(void)
2190{
2191 struct mnt_namespace *new_ns;
2192
2193 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2194 if (!new_ns)
2195 return ERR_PTR(-ENOMEM);
2196 atomic_set(&new_ns->count, 1);
2197 new_ns->root = NULL;
2198 INIT_LIST_HEAD(&new_ns->list);
2199 init_waitqueue_head(&new_ns->poll);
2200 new_ns->event = 0;
2201 return new_ns;
2202}
2203
741a2951
JD
2204/*
2205 * Allocate a new namespace structure and populate it with contents
2206 * copied from the namespace of the passed in task structure.
2207 */
e3222c4e 2208static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2209 struct fs_struct *fs)
1da177e4 2210{
6b3286ed 2211 struct mnt_namespace *new_ns;
7f2da1e7 2212 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2213 struct mount *p, *q;
be08d6d2 2214 struct mount *old = mnt_ns->root;
cb338d06 2215 struct mount *new;
1da177e4 2216
cf8d2c11
TM
2217 new_ns = alloc_mnt_ns();
2218 if (IS_ERR(new_ns))
2219 return new_ns;
1da177e4 2220
390c6843 2221 down_write(&namespace_sem);
1da177e4 2222 /* First pass: copy the tree topology */
909b0a88 2223 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
be34d1a3 2224 if (IS_ERR(new)) {
390c6843 2225 up_write(&namespace_sem);
1da177e4 2226 kfree(new_ns);
be34d1a3 2227 return ERR_CAST(new);
1da177e4 2228 }
be08d6d2 2229 new_ns->root = new;
962830df 2230 br_write_lock(&vfsmount_lock);
1a4eeaf2 2231 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2232 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2233
2234 /*
2235 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2236 * as belonging to new namespace. We have already acquired a private
2237 * fs_struct, so tsk->fs->lock is not needed.
2238 */
909b0a88 2239 p = old;
cb338d06 2240 q = new;
1da177e4 2241 while (p) {
143c8c91 2242 q->mnt_ns = new_ns;
1da177e4 2243 if (fs) {
315fc83e
AV
2244 if (&p->mnt == fs->root.mnt) {
2245 fs->root.mnt = mntget(&q->mnt);
315fc83e 2246 rootmnt = &p->mnt;
1da177e4 2247 }
315fc83e
AV
2248 if (&p->mnt == fs->pwd.mnt) {
2249 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2250 pwdmnt = &p->mnt;
1da177e4 2251 }
1da177e4 2252 }
909b0a88
AV
2253 p = next_mnt(p, old);
2254 q = next_mnt(q, new);
1da177e4 2255 }
390c6843 2256 up_write(&namespace_sem);
1da177e4 2257
1da177e4 2258 if (rootmnt)
f03c6599 2259 mntput(rootmnt);
1da177e4 2260 if (pwdmnt)
f03c6599 2261 mntput(pwdmnt);
1da177e4 2262
741a2951
JD
2263 return new_ns;
2264}
2265
213dd266 2266struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2267 struct fs_struct *new_fs)
741a2951 2268{
6b3286ed 2269 struct mnt_namespace *new_ns;
741a2951 2270
e3222c4e 2271 BUG_ON(!ns);
6b3286ed 2272 get_mnt_ns(ns);
741a2951
JD
2273
2274 if (!(flags & CLONE_NEWNS))
e3222c4e 2275 return ns;
741a2951 2276
e3222c4e 2277 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2278
6b3286ed 2279 put_mnt_ns(ns);
e3222c4e 2280 return new_ns;
1da177e4
LT
2281}
2282
cf8d2c11
TM
2283/**
2284 * create_mnt_ns - creates a private namespace and adds a root filesystem
2285 * @mnt: pointer to the new root filesystem mountpoint
2286 */
1a4eeaf2 2287static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2288{
1a4eeaf2 2289 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2290 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2291 struct mount *mnt = real_mount(m);
2292 mnt->mnt_ns = new_ns;
be08d6d2 2293 new_ns->root = mnt;
1a4eeaf2 2294 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2295 } else {
1a4eeaf2 2296 mntput(m);
cf8d2c11
TM
2297 }
2298 return new_ns;
2299}
cf8d2c11 2300
ea441d11
AV
2301struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2302{
2303 struct mnt_namespace *ns;
d31da0f0 2304 struct super_block *s;
ea441d11
AV
2305 struct path path;
2306 int err;
2307
2308 ns = create_mnt_ns(mnt);
2309 if (IS_ERR(ns))
2310 return ERR_CAST(ns);
2311
2312 err = vfs_path_lookup(mnt->mnt_root, mnt,
2313 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2314
2315 put_mnt_ns(ns);
2316
2317 if (err)
2318 return ERR_PTR(err);
2319
2320 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2321 s = path.mnt->mnt_sb;
2322 atomic_inc(&s->s_active);
ea441d11
AV
2323 mntput(path.mnt);
2324 /* lock the sucker */
d31da0f0 2325 down_write(&s->s_umount);
ea441d11
AV
2326 /* ... and return the root of (sub)tree on it */
2327 return path.dentry;
2328}
2329EXPORT_SYMBOL(mount_subtree);
2330
bdc480e3
HC
2331SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2332 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2333{
eca6f534
VN
2334 int ret;
2335 char *kernel_type;
2336 char *kernel_dir;
2337 char *kernel_dev;
1da177e4 2338 unsigned long data_page;
1da177e4 2339
eca6f534
VN
2340 ret = copy_mount_string(type, &kernel_type);
2341 if (ret < 0)
2342 goto out_type;
1da177e4 2343
eca6f534
VN
2344 kernel_dir = getname(dir_name);
2345 if (IS_ERR(kernel_dir)) {
2346 ret = PTR_ERR(kernel_dir);
2347 goto out_dir;
2348 }
1da177e4 2349
eca6f534
VN
2350 ret = copy_mount_string(dev_name, &kernel_dev);
2351 if (ret < 0)
2352 goto out_dev;
1da177e4 2353
eca6f534
VN
2354 ret = copy_mount_options(data, &data_page);
2355 if (ret < 0)
2356 goto out_data;
1da177e4 2357
eca6f534
VN
2358 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2359 (void *) data_page);
1da177e4 2360
eca6f534
VN
2361 free_page(data_page);
2362out_data:
2363 kfree(kernel_dev);
2364out_dev:
2365 putname(kernel_dir);
2366out_dir:
2367 kfree(kernel_type);
2368out_type:
2369 return ret;
1da177e4
LT
2370}
2371
afac7cba
AV
2372/*
2373 * Return true if path is reachable from root
2374 *
2375 * namespace_sem or vfsmount_lock is held
2376 */
643822b4 2377bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2378 const struct path *root)
2379{
643822b4 2380 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2381 dentry = mnt->mnt_mountpoint;
0714a533 2382 mnt = mnt->mnt_parent;
afac7cba 2383 }
643822b4 2384 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2385}
2386
2387int path_is_under(struct path *path1, struct path *path2)
2388{
2389 int res;
962830df 2390 br_read_lock(&vfsmount_lock);
643822b4 2391 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2392 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2393 return res;
2394}
2395EXPORT_SYMBOL(path_is_under);
2396
1da177e4
LT
2397/*
2398 * pivot_root Semantics:
2399 * Moves the root file system of the current process to the directory put_old,
2400 * makes new_root as the new root file system of the current process, and sets
2401 * root/cwd of all processes which had them on the current root to new_root.
2402 *
2403 * Restrictions:
2404 * The new_root and put_old must be directories, and must not be on the
2405 * same file system as the current process root. The put_old must be
2406 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2407 * pointed to by put_old must yield the same directory as new_root. No other
2408 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2409 *
4a0d11fa
NB
2410 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2411 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2412 * in this situation.
2413 *
1da177e4
LT
2414 * Notes:
2415 * - we don't move root/cwd if they are not at the root (reason: if something
2416 * cared enough to change them, it's probably wrong to force them elsewhere)
2417 * - it's okay to pick a root that isn't the root of a file system, e.g.
2418 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2419 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2420 * first.
2421 */
3480b257
HC
2422SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2423 const char __user *, put_old)
1da177e4 2424{
2d8f3038 2425 struct path new, old, parent_path, root_parent, root;
419148da 2426 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2427 int error;
2428
2429 if (!capable(CAP_SYS_ADMIN))
2430 return -EPERM;
2431
2d8f3038 2432 error = user_path_dir(new_root, &new);
1da177e4
LT
2433 if (error)
2434 goto out0;
1da177e4 2435
2d8f3038 2436 error = user_path_dir(put_old, &old);
1da177e4
LT
2437 if (error)
2438 goto out1;
2439
2d8f3038 2440 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2441 if (error)
2442 goto out2;
1da177e4 2443
f7ad3c6b 2444 get_fs_root(current->fs, &root);
b12cea91
AV
2445 error = lock_mount(&old);
2446 if (error)
2447 goto out3;
2448
1da177e4 2449 error = -EINVAL;
419148da
AV
2450 new_mnt = real_mount(new.mnt);
2451 root_mnt = real_mount(root.mnt);
fc7be130
AV
2452 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2453 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2454 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2455 goto out4;
143c8c91 2456 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2457 goto out4;
1da177e4 2458 error = -ENOENT;
f3da392e 2459 if (d_unlinked(new.dentry))
b12cea91 2460 goto out4;
f3da392e 2461 if (d_unlinked(old.dentry))
b12cea91 2462 goto out4;
1da177e4 2463 error = -EBUSY;
2d8f3038
AV
2464 if (new.mnt == root.mnt ||
2465 old.mnt == root.mnt)
b12cea91 2466 goto out4; /* loop, on the same file system */
1da177e4 2467 error = -EINVAL;
8c3ee42e 2468 if (root.mnt->mnt_root != root.dentry)
b12cea91 2469 goto out4; /* not a mountpoint */
676da58d 2470 if (!mnt_has_parent(root_mnt))
b12cea91 2471 goto out4; /* not attached */
2d8f3038 2472 if (new.mnt->mnt_root != new.dentry)
b12cea91 2473 goto out4; /* not a mountpoint */
676da58d 2474 if (!mnt_has_parent(new_mnt))
b12cea91 2475 goto out4; /* not attached */
4ac91378 2476 /* make sure we can reach put_old from new_root */
643822b4 2477 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2478 goto out4;
962830df 2479 br_write_lock(&vfsmount_lock);
419148da
AV
2480 detach_mnt(new_mnt, &parent_path);
2481 detach_mnt(root_mnt, &root_parent);
4ac91378 2482 /* mount old root on put_old */
419148da 2483 attach_mnt(root_mnt, &old);
4ac91378 2484 /* mount new_root on / */
419148da 2485 attach_mnt(new_mnt, &root_parent);
6b3286ed 2486 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2487 br_write_unlock(&vfsmount_lock);
2d8f3038 2488 chroot_fs_refs(&root, &new);
1da177e4 2489 error = 0;
b12cea91
AV
2490out4:
2491 unlock_mount(&old);
2492 if (!error) {
2493 path_put(&root_parent);
2494 path_put(&parent_path);
2495 }
2496out3:
8c3ee42e 2497 path_put(&root);
b12cea91 2498out2:
2d8f3038 2499 path_put(&old);
1da177e4 2500out1:
2d8f3038 2501 path_put(&new);
1da177e4 2502out0:
1da177e4 2503 return error;
1da177e4
LT
2504}
2505
2506static void __init init_mount_tree(void)
2507{
2508 struct vfsmount *mnt;
6b3286ed 2509 struct mnt_namespace *ns;
ac748a09 2510 struct path root;
1da177e4
LT
2511
2512 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2513 if (IS_ERR(mnt))
2514 panic("Can't create rootfs");
b3e19d92 2515
3b22edc5
TM
2516 ns = create_mnt_ns(mnt);
2517 if (IS_ERR(ns))
1da177e4 2518 panic("Can't allocate initial namespace");
6b3286ed
KK
2519
2520 init_task.nsproxy->mnt_ns = ns;
2521 get_mnt_ns(ns);
2522
be08d6d2
AV
2523 root.mnt = mnt;
2524 root.dentry = mnt->mnt_root;
ac748a09
JB
2525
2526 set_fs_pwd(current->fs, &root);
2527 set_fs_root(current->fs, &root);
1da177e4
LT
2528}
2529
74bf17cf 2530void __init mnt_init(void)
1da177e4 2531{
13f14b4d 2532 unsigned u;
15a67dd8 2533 int err;
1da177e4 2534
390c6843
RP
2535 init_rwsem(&namespace_sem);
2536
7d6fec45 2537 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2538 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2539
b58fed8b 2540 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2541
2542 if (!mount_hashtable)
2543 panic("Failed to allocate mount hash table\n");
2544
80cdc6da 2545 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2546
2547 for (u = 0; u < HASH_SIZE; u++)
2548 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2549
962830df 2550 br_lock_init(&vfsmount_lock);
99b7db7b 2551
15a67dd8
RD
2552 err = sysfs_init();
2553 if (err)
2554 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2555 __func__, err);
00d26666
GKH
2556 fs_kobj = kobject_create_and_add("fs", NULL);
2557 if (!fs_kobj)
8e24eea7 2558 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2559 init_rootfs();
2560 init_mount_tree();
2561}
2562
616511d0 2563void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2564{
70fbcdf4 2565 LIST_HEAD(umount_list);
616511d0 2566
d498b25a 2567 if (!atomic_dec_and_test(&ns->count))
616511d0 2568 return;
390c6843 2569 down_write(&namespace_sem);
962830df 2570 br_write_lock(&vfsmount_lock);
be08d6d2 2571 umount_tree(ns->root, 0, &umount_list);
962830df 2572 br_write_unlock(&vfsmount_lock);
390c6843 2573 up_write(&namespace_sem);
70fbcdf4 2574 release_mounts(&umount_list);
6b3286ed 2575 kfree(ns);
1da177e4 2576}
9d412a43
AV
2577
2578struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2579{
423e0ab0
TC
2580 struct vfsmount *mnt;
2581 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2582 if (!IS_ERR(mnt)) {
2583 /*
2584 * it is a longterm mount, don't release mnt until
2585 * we unmount before file sys is unregistered
2586 */
f7a99c5b 2587 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2588 }
2589 return mnt;
9d412a43
AV
2590}
2591EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2592
2593void kern_unmount(struct vfsmount *mnt)
2594{
2595 /* release long term mount so mount point can be released */
2596 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2597 br_write_lock(&vfsmount_lock);
2598 real_mount(mnt)->mnt_ns = NULL;
2599 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2600 mntput(mnt);
2601 }
2602}
2603EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2604
2605bool our_mnt(struct vfsmount *mnt)
2606{
143c8c91 2607 return check_mnt(real_mount(mnt));
02125a82 2608}