vfs: More precise tests in d_invalidate
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
228#ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 230#endif
1da177e4 231 }
c63181e6 232 return mnt;
88b38782 233
d3ef3d73 234#ifdef CONFIG_SMP
235out_free_devname:
c63181e6 236 kfree(mnt->mnt_devname);
d3ef3d73 237#endif
88b38782 238out_free_id:
c63181e6 239 mnt_free_id(mnt);
88b38782 240out_free_cache:
c63181e6 241 kmem_cache_free(mnt_cache, mnt);
88b38782 242 return NULL;
1da177e4
LT
243}
244
3d733633
DH
245/*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253/*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264int __mnt_is_readonly(struct vfsmount *mnt)
265{
2e4b7fcd
DH
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
3d733633
DH
271}
272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
83adc753 274static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 275{
276#ifdef CONFIG_SMP
68e8a9fe 277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 278#else
68e8a9fe 279 mnt->mnt_writers++;
d3ef3d73 280#endif
281}
3d733633 282
83adc753 283static inline void mnt_dec_writers(struct mount *mnt)
3d733633 284{
d3ef3d73 285#ifdef CONFIG_SMP
68e8a9fe 286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 287#else
68e8a9fe 288 mnt->mnt_writers--;
d3ef3d73 289#endif
3d733633 290}
3d733633 291
83adc753 292static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 293{
d3ef3d73 294#ifdef CONFIG_SMP
295 unsigned int count = 0;
3d733633 296 int cpu;
3d733633
DH
297
298 for_each_possible_cpu(cpu) {
68e8a9fe 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 300 }
3d733633 301
d3ef3d73 302 return count;
303#else
304 return mnt->mnt_writers;
305#endif
3d733633
DH
306}
307
4ed5e82f
MS
308static int mnt_is_readonly(struct vfsmount *mnt)
309{
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315}
316
8366025e 317/*
eb04c282
JK
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
8366025e
DH
322 */
323/**
eb04c282 324 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 325 * @m: the mount on which to take a write
8366025e 326 *
eb04c282
JK
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
8366025e 332 */
eb04c282 333int __mnt_want_write(struct vfsmount *m)
8366025e 334{
83adc753 335 struct mount *mnt = real_mount(m);
3d733633 336 int ret = 0;
3d733633 337
d3ef3d73 338 preempt_disable();
c6653a83 339 mnt_inc_writers(mnt);
d3ef3d73 340 /*
c6653a83 341 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
1e75529e 346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
4ed5e82f 354 if (mnt_is_readonly(m)) {
c6653a83 355 mnt_dec_writers(mnt);
3d733633 356 ret = -EROFS;
3d733633 357 }
d3ef3d73 358 preempt_enable();
eb04c282
JK
359
360 return ret;
361}
362
363/**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372int mnt_want_write(struct vfsmount *m)
373{
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
3d733633 380 return ret;
8366025e
DH
381}
382EXPORT_SYMBOL_GPL(mnt_want_write);
383
96029c4e 384/**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396int mnt_clone_write(struct vfsmount *mnt)
397{
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
83adc753 402 mnt_inc_writers(real_mount(mnt));
96029c4e 403 preempt_enable();
404 return 0;
405}
406EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408/**
eb04c282 409 * __mnt_want_write_file - get write access to a file's mount
96029c4e 410 * @file: the file who's mount on which to take a write
411 *
eb04c282 412 * This is like __mnt_want_write, but it takes a file and can
96029c4e 413 * do some optimisations if the file is open for write already
414 */
eb04c282 415int __mnt_want_write_file(struct file *file)
96029c4e 416{
83f936c7 417 if (!(file->f_mode & FMODE_WRITER))
eb04c282 418 return __mnt_want_write(file->f_path.mnt);
96029c4e 419 else
420 return mnt_clone_write(file->f_path.mnt);
421}
eb04c282
JK
422
423/**
424 * mnt_want_write_file - get write access to a file's mount
425 * @file: the file who's mount on which to take a write
426 *
427 * This is like mnt_want_write, but it takes a file and can
428 * do some optimisations if the file is open for write already
429 */
430int mnt_want_write_file(struct file *file)
431{
432 int ret;
433
434 sb_start_write(file->f_path.mnt->mnt_sb);
435 ret = __mnt_want_write_file(file);
436 if (ret)
437 sb_end_write(file->f_path.mnt->mnt_sb);
438 return ret;
439}
96029c4e 440EXPORT_SYMBOL_GPL(mnt_want_write_file);
441
8366025e 442/**
eb04c282 443 * __mnt_drop_write - give up write access to a mount
8366025e
DH
444 * @mnt: the mount on which to give up write access
445 *
446 * Tells the low-level filesystem that we are done
447 * performing writes to it. Must be matched with
eb04c282 448 * __mnt_want_write() call above.
8366025e 449 */
eb04c282 450void __mnt_drop_write(struct vfsmount *mnt)
8366025e 451{
d3ef3d73 452 preempt_disable();
83adc753 453 mnt_dec_writers(real_mount(mnt));
d3ef3d73 454 preempt_enable();
8366025e 455}
eb04c282
JK
456
457/**
458 * mnt_drop_write - give up write access to a mount
459 * @mnt: the mount on which to give up write access
460 *
461 * Tells the low-level filesystem that we are done performing writes to it and
462 * also allows filesystem to be frozen again. Must be matched with
463 * mnt_want_write() call above.
464 */
465void mnt_drop_write(struct vfsmount *mnt)
466{
467 __mnt_drop_write(mnt);
468 sb_end_write(mnt->mnt_sb);
469}
8366025e
DH
470EXPORT_SYMBOL_GPL(mnt_drop_write);
471
eb04c282
JK
472void __mnt_drop_write_file(struct file *file)
473{
474 __mnt_drop_write(file->f_path.mnt);
475}
476
2a79f17e
AV
477void mnt_drop_write_file(struct file *file)
478{
479 mnt_drop_write(file->f_path.mnt);
480}
481EXPORT_SYMBOL(mnt_drop_write_file);
482
83adc753 483static int mnt_make_readonly(struct mount *mnt)
8366025e 484{
3d733633
DH
485 int ret = 0;
486
719ea2fb 487 lock_mount_hash();
83adc753 488 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 489 /*
d3ef3d73 490 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
491 * should be visible before we do.
3d733633 492 */
d3ef3d73 493 smp_mb();
494
3d733633 495 /*
d3ef3d73 496 * With writers on hold, if this value is zero, then there are
497 * definitely no active writers (although held writers may subsequently
498 * increment the count, they'll have to wait, and decrement it after
499 * seeing MNT_READONLY).
500 *
501 * It is OK to have counter incremented on one CPU and decremented on
502 * another: the sum will add up correctly. The danger would be when we
503 * sum up each counter, if we read a counter before it is incremented,
504 * but then read another CPU's count which it has been subsequently
505 * decremented from -- we would see more decrements than we should.
506 * MNT_WRITE_HOLD protects against this scenario, because
507 * mnt_want_write first increments count, then smp_mb, then spins on
508 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
509 * we're counting up here.
3d733633 510 */
c6653a83 511 if (mnt_get_writers(mnt) > 0)
d3ef3d73 512 ret = -EBUSY;
513 else
83adc753 514 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 515 /*
516 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
517 * that become unheld will see MNT_READONLY.
518 */
519 smp_wmb();
83adc753 520 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 521 unlock_mount_hash();
3d733633 522 return ret;
8366025e 523}
8366025e 524
83adc753 525static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 526{
719ea2fb 527 lock_mount_hash();
83adc753 528 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 529 unlock_mount_hash();
2e4b7fcd
DH
530}
531
4ed5e82f
MS
532int sb_prepare_remount_readonly(struct super_block *sb)
533{
534 struct mount *mnt;
535 int err = 0;
536
8e8b8796
MS
537 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
538 if (atomic_long_read(&sb->s_remove_count))
539 return -EBUSY;
540
719ea2fb 541 lock_mount_hash();
4ed5e82f
MS
542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
544 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
545 smp_mb();
546 if (mnt_get_writers(mnt) > 0) {
547 err = -EBUSY;
548 break;
549 }
550 }
551 }
8e8b8796
MS
552 if (!err && atomic_long_read(&sb->s_remove_count))
553 err = -EBUSY;
554
4ed5e82f
MS
555 if (!err) {
556 sb->s_readonly_remount = 1;
557 smp_wmb();
558 }
559 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
560 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
561 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
562 }
719ea2fb 563 unlock_mount_hash();
4ed5e82f
MS
564
565 return err;
566}
567
b105e270 568static void free_vfsmnt(struct mount *mnt)
1da177e4 569{
52ba1621 570 kfree(mnt->mnt_devname);
d3ef3d73 571#ifdef CONFIG_SMP
68e8a9fe 572 free_percpu(mnt->mnt_pcp);
d3ef3d73 573#endif
b105e270 574 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
575}
576
8ffcb32e
DH
577static void delayed_free_vfsmnt(struct rcu_head *head)
578{
579 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
580}
581
48a066e7
AV
582/* call under rcu_read_lock */
583bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
584{
585 struct mount *mnt;
586 if (read_seqretry(&mount_lock, seq))
587 return false;
588 if (bastard == NULL)
589 return true;
590 mnt = real_mount(bastard);
591 mnt_add_count(mnt, 1);
592 if (likely(!read_seqretry(&mount_lock, seq)))
593 return true;
594 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
595 mnt_add_count(mnt, -1);
596 return false;
597 }
598 rcu_read_unlock();
599 mntput(bastard);
600 rcu_read_lock();
601 return false;
602}
603
1da177e4 604/*
474279dc 605 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 606 * call under rcu_read_lock()
1da177e4 607 */
474279dc 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 609{
38129a13 610 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
611 struct mount *p;
612
38129a13 613 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
619/*
620 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 621 * mount_lock must be held.
474279dc
AV
622 */
623struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
624{
38129a13
AV
625 struct mount *p, *res;
626 res = p = __lookup_mnt(mnt, dentry);
627 if (!p)
628 goto out;
629 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
630 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
631 break;
632 res = p;
633 }
38129a13 634out:
1d6a32ac 635 return res;
1da177e4
LT
636}
637
a05964f3 638/*
f015f126
DH
639 * lookup_mnt - Return the first child mount mounted at path
640 *
641 * "First" means first mounted chronologically. If you create the
642 * following mounts:
643 *
644 * mount /dev/sda1 /mnt
645 * mount /dev/sda2 /mnt
646 * mount /dev/sda3 /mnt
647 *
648 * Then lookup_mnt() on the base /mnt dentry in the root mount will
649 * return successively the root dentry and vfsmount of /dev/sda1, then
650 * /dev/sda2, then /dev/sda3, then NULL.
651 *
652 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 653 */
1c755af4 654struct vfsmount *lookup_mnt(struct path *path)
a05964f3 655{
c7105365 656 struct mount *child_mnt;
48a066e7
AV
657 struct vfsmount *m;
658 unsigned seq;
99b7db7b 659
48a066e7
AV
660 rcu_read_lock();
661 do {
662 seq = read_seqbegin(&mount_lock);
663 child_mnt = __lookup_mnt(path->mnt, path->dentry);
664 m = child_mnt ? &child_mnt->mnt : NULL;
665 } while (!legitimize_mnt(m, seq));
666 rcu_read_unlock();
667 return m;
a05964f3
RP
668}
669
84d17192
AV
670static struct mountpoint *new_mountpoint(struct dentry *dentry)
671{
0818bf27 672 struct hlist_head *chain = mp_hash(dentry);
84d17192 673 struct mountpoint *mp;
eed81007 674 int ret;
84d17192 675
0818bf27 676 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
677 if (mp->m_dentry == dentry) {
678 /* might be worth a WARN_ON() */
679 if (d_unlinked(dentry))
680 return ERR_PTR(-ENOENT);
681 mp->m_count++;
682 return mp;
683 }
684 }
685
686 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
687 if (!mp)
688 return ERR_PTR(-ENOMEM);
689
eed81007
MS
690 ret = d_set_mounted(dentry);
691 if (ret) {
84d17192 692 kfree(mp);
eed81007 693 return ERR_PTR(ret);
84d17192 694 }
eed81007 695
84d17192
AV
696 mp->m_dentry = dentry;
697 mp->m_count = 1;
0818bf27 698 hlist_add_head(&mp->m_hash, chain);
84d17192
AV
699 return mp;
700}
701
702static void put_mountpoint(struct mountpoint *mp)
703{
704 if (!--mp->m_count) {
705 struct dentry *dentry = mp->m_dentry;
706 spin_lock(&dentry->d_lock);
707 dentry->d_flags &= ~DCACHE_MOUNTED;
708 spin_unlock(&dentry->d_lock);
0818bf27 709 hlist_del(&mp->m_hash);
84d17192
AV
710 kfree(mp);
711 }
712}
713
143c8c91 714static inline int check_mnt(struct mount *mnt)
1da177e4 715{
6b3286ed 716 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
717}
718
99b7db7b
NP
719/*
720 * vfsmount lock must be held for write
721 */
6b3286ed 722static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
723{
724 if (ns) {
725 ns->event = ++event;
726 wake_up_interruptible(&ns->poll);
727 }
728}
729
99b7db7b
NP
730/*
731 * vfsmount lock must be held for write
732 */
6b3286ed 733static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
734{
735 if (ns && ns->event != event) {
736 ns->event = event;
737 wake_up_interruptible(&ns->poll);
738 }
739}
740
99b7db7b
NP
741/*
742 * vfsmount lock must be held for write
743 */
419148da
AV
744static void detach_mnt(struct mount *mnt, struct path *old_path)
745{
a73324da 746 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
747 old_path->mnt = &mnt->mnt_parent->mnt;
748 mnt->mnt_parent = mnt;
a73324da 749 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 750 list_del_init(&mnt->mnt_child);
38129a13 751 hlist_del_init_rcu(&mnt->mnt_hash);
84d17192
AV
752 put_mountpoint(mnt->mnt_mp);
753 mnt->mnt_mp = NULL;
1da177e4
LT
754}
755
99b7db7b
NP
756/*
757 * vfsmount lock must be held for write
758 */
84d17192
AV
759void mnt_set_mountpoint(struct mount *mnt,
760 struct mountpoint *mp,
44d964d6 761 struct mount *child_mnt)
b90fa9ae 762{
84d17192 763 mp->m_count++;
3a2393d7 764 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 765 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 766 child_mnt->mnt_parent = mnt;
84d17192 767 child_mnt->mnt_mp = mp;
b90fa9ae
RP
768}
769
99b7db7b
NP
770/*
771 * vfsmount lock must be held for write
772 */
84d17192
AV
773static void attach_mnt(struct mount *mnt,
774 struct mount *parent,
775 struct mountpoint *mp)
1da177e4 776{
84d17192 777 mnt_set_mountpoint(parent, mp, mnt);
38129a13 778 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 779 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
780}
781
12a5b529
AV
782static void attach_shadowed(struct mount *mnt,
783 struct mount *parent,
784 struct mount *shadows)
785{
786 if (shadows) {
f6f99332 787 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
788 list_add(&mnt->mnt_child, &shadows->mnt_child);
789 } else {
790 hlist_add_head_rcu(&mnt->mnt_hash,
791 m_hash(&parent->mnt, mnt->mnt_mountpoint));
792 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
793 }
794}
795
b90fa9ae 796/*
99b7db7b 797 * vfsmount lock must be held for write
b90fa9ae 798 */
1d6a32ac 799static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 800{
0714a533 801 struct mount *parent = mnt->mnt_parent;
83adc753 802 struct mount *m;
b90fa9ae 803 LIST_HEAD(head);
143c8c91 804 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 805
0714a533 806 BUG_ON(parent == mnt);
b90fa9ae 807
1a4eeaf2 808 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 809 list_for_each_entry(m, &head, mnt_list)
143c8c91 810 m->mnt_ns = n;
f03c6599 811
b90fa9ae
RP
812 list_splice(&head, n->list.prev);
813
12a5b529 814 attach_shadowed(mnt, parent, shadows);
6b3286ed 815 touch_mnt_namespace(n);
1da177e4
LT
816}
817
909b0a88 818static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 819{
6b41d536
AV
820 struct list_head *next = p->mnt_mounts.next;
821 if (next == &p->mnt_mounts) {
1da177e4 822 while (1) {
909b0a88 823 if (p == root)
1da177e4 824 return NULL;
6b41d536
AV
825 next = p->mnt_child.next;
826 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 827 break;
0714a533 828 p = p->mnt_parent;
1da177e4
LT
829 }
830 }
6b41d536 831 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
832}
833
315fc83e 834static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 835{
6b41d536
AV
836 struct list_head *prev = p->mnt_mounts.prev;
837 while (prev != &p->mnt_mounts) {
838 p = list_entry(prev, struct mount, mnt_child);
839 prev = p->mnt_mounts.prev;
9676f0c6
RP
840 }
841 return p;
842}
843
9d412a43
AV
844struct vfsmount *
845vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
846{
b105e270 847 struct mount *mnt;
9d412a43
AV
848 struct dentry *root;
849
850 if (!type)
851 return ERR_PTR(-ENODEV);
852
853 mnt = alloc_vfsmnt(name);
854 if (!mnt)
855 return ERR_PTR(-ENOMEM);
856
857 if (flags & MS_KERNMOUNT)
b105e270 858 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
859
860 root = mount_fs(type, flags, name, data);
861 if (IS_ERR(root)) {
8ffcb32e 862 mnt_free_id(mnt);
9d412a43
AV
863 free_vfsmnt(mnt);
864 return ERR_CAST(root);
865 }
866
b105e270
AV
867 mnt->mnt.mnt_root = root;
868 mnt->mnt.mnt_sb = root->d_sb;
a73324da 869 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 870 mnt->mnt_parent = mnt;
719ea2fb 871 lock_mount_hash();
39f7c4db 872 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 873 unlock_mount_hash();
b105e270 874 return &mnt->mnt;
9d412a43
AV
875}
876EXPORT_SYMBOL_GPL(vfs_kern_mount);
877
87129cc0 878static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 879 int flag)
1da177e4 880{
87129cc0 881 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
882 struct mount *mnt;
883 int err;
1da177e4 884
be34d1a3
DH
885 mnt = alloc_vfsmnt(old->mnt_devname);
886 if (!mnt)
887 return ERR_PTR(-ENOMEM);
719f5d7f 888
7a472ef4 889 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
890 mnt->mnt_group_id = 0; /* not a peer of original */
891 else
892 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 893
be34d1a3
DH
894 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
895 err = mnt_alloc_group_id(mnt);
896 if (err)
897 goto out_free;
1da177e4 898 }
be34d1a3 899
f2ebb3a9 900 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 901 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
902 if (flag & CL_UNPRIVILEGED) {
903 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
904
905 if (mnt->mnt.mnt_flags & MNT_READONLY)
906 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
907
908 if (mnt->mnt.mnt_flags & MNT_NODEV)
909 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
910
911 if (mnt->mnt.mnt_flags & MNT_NOSUID)
912 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
913
914 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
915 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
916 }
132c94e3 917
5ff9d8a6
EB
918 /* Don't allow unprivileged users to reveal what is under a mount */
919 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
920 mnt->mnt.mnt_flags |= MNT_LOCKED;
921
be34d1a3
DH
922 atomic_inc(&sb->s_active);
923 mnt->mnt.mnt_sb = sb;
924 mnt->mnt.mnt_root = dget(root);
925 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
926 mnt->mnt_parent = mnt;
719ea2fb 927 lock_mount_hash();
be34d1a3 928 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 929 unlock_mount_hash();
be34d1a3 930
7a472ef4
EB
931 if ((flag & CL_SLAVE) ||
932 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
933 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
934 mnt->mnt_master = old;
935 CLEAR_MNT_SHARED(mnt);
936 } else if (!(flag & CL_PRIVATE)) {
937 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
938 list_add(&mnt->mnt_share, &old->mnt_share);
939 if (IS_MNT_SLAVE(old))
940 list_add(&mnt->mnt_slave, &old->mnt_slave);
941 mnt->mnt_master = old->mnt_master;
942 }
943 if (flag & CL_MAKE_SHARED)
944 set_mnt_shared(mnt);
945
946 /* stick the duplicate mount on the same expiry list
947 * as the original if that was on one */
948 if (flag & CL_EXPIRE) {
949 if (!list_empty(&old->mnt_expire))
950 list_add(&mnt->mnt_expire, &old->mnt_expire);
951 }
952
cb338d06 953 return mnt;
719f5d7f
MS
954
955 out_free:
8ffcb32e 956 mnt_free_id(mnt);
719f5d7f 957 free_vfsmnt(mnt);
be34d1a3 958 return ERR_PTR(err);
1da177e4
LT
959}
960
9ea459e1
AV
961static void cleanup_mnt(struct mount *mnt)
962{
963 /*
964 * This probably indicates that somebody messed
965 * up a mnt_want/drop_write() pair. If this
966 * happens, the filesystem was probably unable
967 * to make r/w->r/o transitions.
968 */
969 /*
970 * The locking used to deal with mnt_count decrement provides barriers,
971 * so mnt_get_writers() below is safe.
972 */
973 WARN_ON(mnt_get_writers(mnt));
974 if (unlikely(mnt->mnt_pins.first))
975 mnt_pin_kill(mnt);
976 fsnotify_vfsmount_delete(&mnt->mnt);
977 dput(mnt->mnt.mnt_root);
978 deactivate_super(mnt->mnt.mnt_sb);
979 mnt_free_id(mnt);
980 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
981}
982
983static void __cleanup_mnt(struct rcu_head *head)
984{
985 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
986}
987
988static LLIST_HEAD(delayed_mntput_list);
989static void delayed_mntput(struct work_struct *unused)
990{
991 struct llist_node *node = llist_del_all(&delayed_mntput_list);
992 struct llist_node *next;
993
994 for (; node; node = next) {
995 next = llist_next(node);
996 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
997 }
998}
999static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1000
900148dc 1001static void mntput_no_expire(struct mount *mnt)
b3e19d92 1002{
48a066e7
AV
1003 rcu_read_lock();
1004 mnt_add_count(mnt, -1);
1005 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1006 rcu_read_unlock();
f03c6599 1007 return;
b3e19d92 1008 }
719ea2fb 1009 lock_mount_hash();
b3e19d92 1010 if (mnt_get_count(mnt)) {
48a066e7 1011 rcu_read_unlock();
719ea2fb 1012 unlock_mount_hash();
99b7db7b
NP
1013 return;
1014 }
48a066e7
AV
1015 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1016 rcu_read_unlock();
1017 unlock_mount_hash();
1018 return;
1019 }
1020 mnt->mnt.mnt_flags |= MNT_DOOMED;
1021 rcu_read_unlock();
962830df 1022
39f7c4db 1023 list_del(&mnt->mnt_instance);
719ea2fb 1024 unlock_mount_hash();
649a795a 1025
9ea459e1
AV
1026 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1027 struct task_struct *task = current;
1028 if (likely(!(task->flags & PF_KTHREAD))) {
1029 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1030 if (!task_work_add(task, &mnt->mnt_rcu, true))
1031 return;
1032 }
1033 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1034 schedule_delayed_work(&delayed_mntput_work, 1);
1035 return;
1036 }
1037 cleanup_mnt(mnt);
b3e19d92 1038}
b3e19d92
NP
1039
1040void mntput(struct vfsmount *mnt)
1041{
1042 if (mnt) {
863d684f 1043 struct mount *m = real_mount(mnt);
b3e19d92 1044 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1045 if (unlikely(m->mnt_expiry_mark))
1046 m->mnt_expiry_mark = 0;
1047 mntput_no_expire(m);
b3e19d92
NP
1048 }
1049}
1050EXPORT_SYMBOL(mntput);
1051
1052struct vfsmount *mntget(struct vfsmount *mnt)
1053{
1054 if (mnt)
83adc753 1055 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1056 return mnt;
1057}
1058EXPORT_SYMBOL(mntget);
1059
3064c356 1060struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1061{
3064c356
AV
1062 struct mount *p;
1063 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1064 if (IS_ERR(p))
1065 return ERR_CAST(p);
1066 p->mnt.mnt_flags |= MNT_INTERNAL;
1067 return &p->mnt;
7b7b1ace 1068}
1da177e4 1069
b3b304a2
MS
1070static inline void mangle(struct seq_file *m, const char *s)
1071{
1072 seq_escape(m, s, " \t\n\\");
1073}
1074
1075/*
1076 * Simple .show_options callback for filesystems which don't want to
1077 * implement more complex mount option showing.
1078 *
1079 * See also save_mount_options().
1080 */
34c80b1d 1081int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1082{
2a32cebd
AV
1083 const char *options;
1084
1085 rcu_read_lock();
34c80b1d 1086 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1087
1088 if (options != NULL && options[0]) {
1089 seq_putc(m, ',');
1090 mangle(m, options);
1091 }
2a32cebd 1092 rcu_read_unlock();
b3b304a2
MS
1093
1094 return 0;
1095}
1096EXPORT_SYMBOL(generic_show_options);
1097
1098/*
1099 * If filesystem uses generic_show_options(), this function should be
1100 * called from the fill_super() callback.
1101 *
1102 * The .remount_fs callback usually needs to be handled in a special
1103 * way, to make sure, that previous options are not overwritten if the
1104 * remount fails.
1105 *
1106 * Also note, that if the filesystem's .remount_fs function doesn't
1107 * reset all options to their default value, but changes only newly
1108 * given options, then the displayed options will not reflect reality
1109 * any more.
1110 */
1111void save_mount_options(struct super_block *sb, char *options)
1112{
2a32cebd
AV
1113 BUG_ON(sb->s_options);
1114 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1115}
1116EXPORT_SYMBOL(save_mount_options);
1117
2a32cebd
AV
1118void replace_mount_options(struct super_block *sb, char *options)
1119{
1120 char *old = sb->s_options;
1121 rcu_assign_pointer(sb->s_options, options);
1122 if (old) {
1123 synchronize_rcu();
1124 kfree(old);
1125 }
1126}
1127EXPORT_SYMBOL(replace_mount_options);
1128
a1a2c409 1129#ifdef CONFIG_PROC_FS
0226f492 1130/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1131static void *m_start(struct seq_file *m, loff_t *pos)
1132{
6ce6e24e 1133 struct proc_mounts *p = proc_mounts(m);
1da177e4 1134
390c6843 1135 down_read(&namespace_sem);
c7999c36
AV
1136 if (p->cached_event == p->ns->event) {
1137 void *v = p->cached_mount;
1138 if (*pos == p->cached_index)
1139 return v;
1140 if (*pos == p->cached_index + 1) {
1141 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1142 return p->cached_mount = v;
1143 }
1144 }
1145
1146 p->cached_event = p->ns->event;
1147 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1148 p->cached_index = *pos;
1149 return p->cached_mount;
1da177e4
LT
1150}
1151
1152static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1153{
6ce6e24e 1154 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1155
c7999c36
AV
1156 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1157 p->cached_index = *pos;
1158 return p->cached_mount;
1da177e4
LT
1159}
1160
1161static void m_stop(struct seq_file *m, void *v)
1162{
390c6843 1163 up_read(&namespace_sem);
1da177e4
LT
1164}
1165
0226f492 1166static int m_show(struct seq_file *m, void *v)
2d4d4864 1167{
6ce6e24e 1168 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1169 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1170 return p->show(m, &r->mnt);
1da177e4
LT
1171}
1172
a1a2c409 1173const struct seq_operations mounts_op = {
1da177e4
LT
1174 .start = m_start,
1175 .next = m_next,
1176 .stop = m_stop,
0226f492 1177 .show = m_show,
b4629fe2 1178};
a1a2c409 1179#endif /* CONFIG_PROC_FS */
b4629fe2 1180
1da177e4
LT
1181/**
1182 * may_umount_tree - check if a mount tree is busy
1183 * @mnt: root of mount tree
1184 *
1185 * This is called to check if a tree of mounts has any
1186 * open files, pwds, chroots or sub mounts that are
1187 * busy.
1188 */
909b0a88 1189int may_umount_tree(struct vfsmount *m)
1da177e4 1190{
909b0a88 1191 struct mount *mnt = real_mount(m);
36341f64
RP
1192 int actual_refs = 0;
1193 int minimum_refs = 0;
315fc83e 1194 struct mount *p;
909b0a88 1195 BUG_ON(!m);
1da177e4 1196
b3e19d92 1197 /* write lock needed for mnt_get_count */
719ea2fb 1198 lock_mount_hash();
909b0a88 1199 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1200 actual_refs += mnt_get_count(p);
1da177e4 1201 minimum_refs += 2;
1da177e4 1202 }
719ea2fb 1203 unlock_mount_hash();
1da177e4
LT
1204
1205 if (actual_refs > minimum_refs)
e3474a8e 1206 return 0;
1da177e4 1207
e3474a8e 1208 return 1;
1da177e4
LT
1209}
1210
1211EXPORT_SYMBOL(may_umount_tree);
1212
1213/**
1214 * may_umount - check if a mount point is busy
1215 * @mnt: root of mount
1216 *
1217 * This is called to check if a mount point has any
1218 * open files, pwds, chroots or sub mounts. If the
1219 * mount has sub mounts this will return busy
1220 * regardless of whether the sub mounts are busy.
1221 *
1222 * Doesn't take quota and stuff into account. IOW, in some cases it will
1223 * give false negatives. The main reason why it's here is that we need
1224 * a non-destructive way to look for easily umountable filesystems.
1225 */
1226int may_umount(struct vfsmount *mnt)
1227{
e3474a8e 1228 int ret = 1;
8ad08d8a 1229 down_read(&namespace_sem);
719ea2fb 1230 lock_mount_hash();
1ab59738 1231 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1232 ret = 0;
719ea2fb 1233 unlock_mount_hash();
8ad08d8a 1234 up_read(&namespace_sem);
a05964f3 1235 return ret;
1da177e4
LT
1236}
1237
1238EXPORT_SYMBOL(may_umount);
1239
38129a13 1240static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1241
97216be0 1242static void namespace_unlock(void)
70fbcdf4 1243{
d5e50f74 1244 struct mount *mnt;
38129a13 1245 struct hlist_head head = unmounted;
97216be0 1246
38129a13 1247 if (likely(hlist_empty(&head))) {
97216be0
AV
1248 up_write(&namespace_sem);
1249 return;
1250 }
1251
38129a13
AV
1252 head.first->pprev = &head.first;
1253 INIT_HLIST_HEAD(&unmounted);
1254
81b6b061
AV
1255 /* undo decrements we'd done in umount_tree() */
1256 hlist_for_each_entry(mnt, &head, mnt_hash)
1257 if (mnt->mnt_ex_mountpoint.mnt)
1258 mntget(mnt->mnt_ex_mountpoint.mnt);
1259
97216be0
AV
1260 up_write(&namespace_sem);
1261
48a066e7
AV
1262 synchronize_rcu();
1263
38129a13
AV
1264 while (!hlist_empty(&head)) {
1265 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1266 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1267 if (mnt->mnt_ex_mountpoint.mnt)
1268 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1269 mntput(&mnt->mnt);
70fbcdf4
RP
1270 }
1271}
1272
97216be0 1273static inline void namespace_lock(void)
e3197d83 1274{
97216be0 1275 down_write(&namespace_sem);
e3197d83
AV
1276}
1277
99b7db7b 1278/*
48a066e7 1279 * mount_lock must be held
99b7db7b 1280 * namespace_sem must be held for write
48a066e7
AV
1281 * how = 0 => just this tree, don't propagate
1282 * how = 1 => propagate; we know that nobody else has reference to any victims
1283 * how = 2 => lazy umount
99b7db7b 1284 */
48a066e7 1285void umount_tree(struct mount *mnt, int how)
1da177e4 1286{
38129a13 1287 HLIST_HEAD(tmp_list);
315fc83e 1288 struct mount *p;
38129a13 1289 struct mount *last = NULL;
1da177e4 1290
38129a13
AV
1291 for (p = mnt; p; p = next_mnt(p, mnt)) {
1292 hlist_del_init_rcu(&p->mnt_hash);
1293 hlist_add_head(&p->mnt_hash, &tmp_list);
1294 }
1da177e4 1295
88b368f2
AV
1296 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1297 list_del_init(&p->mnt_child);
1298
48a066e7 1299 if (how)
7b8a53fd 1300 propagate_umount(&tmp_list);
a05964f3 1301
38129a13 1302 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1303 list_del_init(&p->mnt_expire);
1a4eeaf2 1304 list_del_init(&p->mnt_list);
143c8c91
AV
1305 __touch_mnt_namespace(p->mnt_ns);
1306 p->mnt_ns = NULL;
48a066e7
AV
1307 if (how < 2)
1308 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
676da58d 1309 if (mnt_has_parent(p)) {
84d17192 1310 put_mountpoint(p->mnt_mp);
81b6b061 1311 mnt_add_count(p->mnt_parent, -1);
aba809cf
AV
1312 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1313 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1314 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1315 p->mnt_mountpoint = p->mnt.mnt_root;
1316 p->mnt_parent = p;
84d17192 1317 p->mnt_mp = NULL;
7c4b93d8 1318 }
0f0afb1d 1319 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1320 last = p;
1321 }
1322 if (last) {
1323 last->mnt_hash.next = unmounted.first;
1324 unmounted.first = tmp_list.first;
1325 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1326 }
1327}
1328
b54b9be7 1329static void shrink_submounts(struct mount *mnt);
c35038be 1330
1ab59738 1331static int do_umount(struct mount *mnt, int flags)
1da177e4 1332{
1ab59738 1333 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1334 int retval;
1335
1ab59738 1336 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1337 if (retval)
1338 return retval;
1339
1340 /*
1341 * Allow userspace to request a mountpoint be expired rather than
1342 * unmounting unconditionally. Unmount only happens if:
1343 * (1) the mark is already set (the mark is cleared by mntput())
1344 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1345 */
1346 if (flags & MNT_EXPIRE) {
1ab59738 1347 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1348 flags & (MNT_FORCE | MNT_DETACH))
1349 return -EINVAL;
1350
b3e19d92
NP
1351 /*
1352 * probably don't strictly need the lock here if we examined
1353 * all race cases, but it's a slowpath.
1354 */
719ea2fb 1355 lock_mount_hash();
83adc753 1356 if (mnt_get_count(mnt) != 2) {
719ea2fb 1357 unlock_mount_hash();
1da177e4 1358 return -EBUSY;
b3e19d92 1359 }
719ea2fb 1360 unlock_mount_hash();
1da177e4 1361
863d684f 1362 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1363 return -EAGAIN;
1364 }
1365
1366 /*
1367 * If we may have to abort operations to get out of this
1368 * mount, and they will themselves hold resources we must
1369 * allow the fs to do things. In the Unix tradition of
1370 * 'Gee thats tricky lets do it in userspace' the umount_begin
1371 * might fail to complete on the first run through as other tasks
1372 * must return, and the like. Thats for the mount program to worry
1373 * about for the moment.
1374 */
1375
42faad99 1376 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1377 sb->s_op->umount_begin(sb);
42faad99 1378 }
1da177e4
LT
1379
1380 /*
1381 * No sense to grab the lock for this test, but test itself looks
1382 * somewhat bogus. Suggestions for better replacement?
1383 * Ho-hum... In principle, we might treat that as umount + switch
1384 * to rootfs. GC would eventually take care of the old vfsmount.
1385 * Actually it makes sense, especially if rootfs would contain a
1386 * /reboot - static binary that would close all descriptors and
1387 * call reboot(9). Then init(8) could umount root and exec /reboot.
1388 */
1ab59738 1389 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1390 /*
1391 * Special case for "unmounting" root ...
1392 * we just try to remount it readonly.
1393 */
1394 down_write(&sb->s_umount);
4aa98cf7 1395 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1396 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1397 up_write(&sb->s_umount);
1398 return retval;
1399 }
1400
97216be0 1401 namespace_lock();
719ea2fb 1402 lock_mount_hash();
5addc5dd 1403 event++;
1da177e4 1404
48a066e7 1405 if (flags & MNT_DETACH) {
1a4eeaf2 1406 if (!list_empty(&mnt->mnt_list))
48a066e7 1407 umount_tree(mnt, 2);
1da177e4 1408 retval = 0;
48a066e7
AV
1409 } else {
1410 shrink_submounts(mnt);
1411 retval = -EBUSY;
1412 if (!propagate_mount_busy(mnt, 2)) {
1413 if (!list_empty(&mnt->mnt_list))
1414 umount_tree(mnt, 1);
1415 retval = 0;
1416 }
1da177e4 1417 }
719ea2fb 1418 unlock_mount_hash();
e3197d83 1419 namespace_unlock();
1da177e4
LT
1420 return retval;
1421}
1422
9b40bc90
AV
1423/*
1424 * Is the caller allowed to modify his namespace?
1425 */
1426static inline bool may_mount(void)
1427{
1428 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1429}
1430
1da177e4
LT
1431/*
1432 * Now umount can handle mount points as well as block devices.
1433 * This is important for filesystems which use unnamed block devices.
1434 *
1435 * We now support a flag for forced unmount like the other 'big iron'
1436 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1437 */
1438
bdc480e3 1439SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1440{
2d8f3038 1441 struct path path;
900148dc 1442 struct mount *mnt;
1da177e4 1443 int retval;
db1f05bb 1444 int lookup_flags = 0;
1da177e4 1445
db1f05bb
MS
1446 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1447 return -EINVAL;
1448
9b40bc90
AV
1449 if (!may_mount())
1450 return -EPERM;
1451
db1f05bb
MS
1452 if (!(flags & UMOUNT_NOFOLLOW))
1453 lookup_flags |= LOOKUP_FOLLOW;
1454
197df04c 1455 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1456 if (retval)
1457 goto out;
900148dc 1458 mnt = real_mount(path.mnt);
1da177e4 1459 retval = -EINVAL;
2d8f3038 1460 if (path.dentry != path.mnt->mnt_root)
1da177e4 1461 goto dput_and_out;
143c8c91 1462 if (!check_mnt(mnt))
1da177e4 1463 goto dput_and_out;
5ff9d8a6
EB
1464 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1465 goto dput_and_out;
1da177e4 1466
900148dc 1467 retval = do_umount(mnt, flags);
1da177e4 1468dput_and_out:
429731b1 1469 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1470 dput(path.dentry);
900148dc 1471 mntput_no_expire(mnt);
1da177e4
LT
1472out:
1473 return retval;
1474}
1475
1476#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1477
1478/*
b58fed8b 1479 * The 2.0 compatible umount. No flags.
1da177e4 1480 */
bdc480e3 1481SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1482{
b58fed8b 1483 return sys_umount(name, 0);
1da177e4
LT
1484}
1485
1486#endif
1487
4ce5d2b1 1488static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1489{
4ce5d2b1
EB
1490 /* Is this a proxy for a mount namespace? */
1491 struct inode *inode = dentry->d_inode;
0bb80f24 1492 struct proc_ns *ei;
8823c079
EB
1493
1494 if (!proc_ns_inode(inode))
1495 return false;
1496
0bb80f24 1497 ei = get_proc_ns(inode);
8823c079
EB
1498 if (ei->ns_ops != &mntns_operations)
1499 return false;
1500
4ce5d2b1
EB
1501 return true;
1502}
1503
1504static bool mnt_ns_loop(struct dentry *dentry)
1505{
1506 /* Could bind mounting the mount namespace inode cause a
1507 * mount namespace loop?
1508 */
1509 struct mnt_namespace *mnt_ns;
1510 if (!is_mnt_ns_file(dentry))
1511 return false;
1512
1513 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1514 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1515}
1516
87129cc0 1517struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1518 int flag)
1da177e4 1519{
84d17192 1520 struct mount *res, *p, *q, *r, *parent;
1da177e4 1521
4ce5d2b1
EB
1522 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1523 return ERR_PTR(-EINVAL);
1524
1525 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1526 return ERR_PTR(-EINVAL);
9676f0c6 1527
36341f64 1528 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1529 if (IS_ERR(q))
1530 return q;
1531
5ff9d8a6 1532 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1533 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1534
1535 p = mnt;
6b41d536 1536 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1537 struct mount *s;
7ec02ef1 1538 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1539 continue;
1540
909b0a88 1541 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1542 struct mount *t = NULL;
4ce5d2b1
EB
1543 if (!(flag & CL_COPY_UNBINDABLE) &&
1544 IS_MNT_UNBINDABLE(s)) {
1545 s = skip_mnt_tree(s);
1546 continue;
1547 }
1548 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1549 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1550 s = skip_mnt_tree(s);
1551 continue;
1552 }
0714a533
AV
1553 while (p != s->mnt_parent) {
1554 p = p->mnt_parent;
1555 q = q->mnt_parent;
1da177e4 1556 }
87129cc0 1557 p = s;
84d17192 1558 parent = q;
87129cc0 1559 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1560 if (IS_ERR(q))
1561 goto out;
719ea2fb 1562 lock_mount_hash();
1a4eeaf2 1563 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1564 mnt_set_mountpoint(parent, p->mnt_mp, q);
1565 if (!list_empty(&parent->mnt_mounts)) {
1566 t = list_last_entry(&parent->mnt_mounts,
1567 struct mount, mnt_child);
1568 if (t->mnt_mp != p->mnt_mp)
1569 t = NULL;
1570 }
1571 attach_shadowed(q, parent, t);
719ea2fb 1572 unlock_mount_hash();
1da177e4
LT
1573 }
1574 }
1575 return res;
be34d1a3 1576out:
1da177e4 1577 if (res) {
719ea2fb 1578 lock_mount_hash();
328e6d90 1579 umount_tree(res, 0);
719ea2fb 1580 unlock_mount_hash();
1da177e4 1581 }
be34d1a3 1582 return q;
1da177e4
LT
1583}
1584
be34d1a3
DH
1585/* Caller should check returned pointer for errors */
1586
589ff870 1587struct vfsmount *collect_mounts(struct path *path)
8aec0809 1588{
cb338d06 1589 struct mount *tree;
97216be0 1590 namespace_lock();
87129cc0
AV
1591 tree = copy_tree(real_mount(path->mnt), path->dentry,
1592 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1593 namespace_unlock();
be34d1a3 1594 if (IS_ERR(tree))
52e220d3 1595 return ERR_CAST(tree);
be34d1a3 1596 return &tree->mnt;
8aec0809
AV
1597}
1598
1599void drop_collected_mounts(struct vfsmount *mnt)
1600{
97216be0 1601 namespace_lock();
719ea2fb 1602 lock_mount_hash();
328e6d90 1603 umount_tree(real_mount(mnt), 0);
719ea2fb 1604 unlock_mount_hash();
3ab6abee 1605 namespace_unlock();
8aec0809
AV
1606}
1607
1f707137
AV
1608int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1609 struct vfsmount *root)
1610{
1a4eeaf2 1611 struct mount *mnt;
1f707137
AV
1612 int res = f(root, arg);
1613 if (res)
1614 return res;
1a4eeaf2
AV
1615 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1616 res = f(&mnt->mnt, arg);
1f707137
AV
1617 if (res)
1618 return res;
1619 }
1620 return 0;
1621}
1622
4b8b21f4 1623static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1624{
315fc83e 1625 struct mount *p;
719f5d7f 1626
909b0a88 1627 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1628 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1629 mnt_release_group_id(p);
719f5d7f
MS
1630 }
1631}
1632
4b8b21f4 1633static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1634{
315fc83e 1635 struct mount *p;
719f5d7f 1636
909b0a88 1637 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1638 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1639 int err = mnt_alloc_group_id(p);
719f5d7f 1640 if (err) {
4b8b21f4 1641 cleanup_group_ids(mnt, p);
719f5d7f
MS
1642 return err;
1643 }
1644 }
1645 }
1646
1647 return 0;
1648}
1649
b90fa9ae
RP
1650/*
1651 * @source_mnt : mount tree to be attached
21444403
RP
1652 * @nd : place the mount tree @source_mnt is attached
1653 * @parent_nd : if non-null, detach the source_mnt from its parent and
1654 * store the parent mount and mountpoint dentry.
1655 * (done when source_mnt is moved)
b90fa9ae
RP
1656 *
1657 * NOTE: in the table below explains the semantics when a source mount
1658 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1659 * ---------------------------------------------------------------------------
1660 * | BIND MOUNT OPERATION |
1661 * |**************************************************************************
1662 * | source-->| shared | private | slave | unbindable |
1663 * | dest | | | | |
1664 * | | | | | | |
1665 * | v | | | | |
1666 * |**************************************************************************
1667 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1668 * | | | | | |
1669 * |non-shared| shared (+) | private | slave (*) | invalid |
1670 * ***************************************************************************
b90fa9ae
RP
1671 * A bind operation clones the source mount and mounts the clone on the
1672 * destination mount.
1673 *
1674 * (++) the cloned mount is propagated to all the mounts in the propagation
1675 * tree of the destination mount and the cloned mount is added to
1676 * the peer group of the source mount.
1677 * (+) the cloned mount is created under the destination mount and is marked
1678 * as shared. The cloned mount is added to the peer group of the source
1679 * mount.
5afe0022
RP
1680 * (+++) the mount is propagated to all the mounts in the propagation tree
1681 * of the destination mount and the cloned mount is made slave
1682 * of the same master as that of the source mount. The cloned mount
1683 * is marked as 'shared and slave'.
1684 * (*) the cloned mount is made a slave of the same master as that of the
1685 * source mount.
1686 *
9676f0c6
RP
1687 * ---------------------------------------------------------------------------
1688 * | MOVE MOUNT OPERATION |
1689 * |**************************************************************************
1690 * | source-->| shared | private | slave | unbindable |
1691 * | dest | | | | |
1692 * | | | | | | |
1693 * | v | | | | |
1694 * |**************************************************************************
1695 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1696 * | | | | | |
1697 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1698 * ***************************************************************************
5afe0022
RP
1699 *
1700 * (+) the mount is moved to the destination. And is then propagated to
1701 * all the mounts in the propagation tree of the destination mount.
21444403 1702 * (+*) the mount is moved to the destination.
5afe0022
RP
1703 * (+++) the mount is moved to the destination and is then propagated to
1704 * all the mounts belonging to the destination mount's propagation tree.
1705 * the mount is marked as 'shared and slave'.
1706 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1707 *
1708 * if the source mount is a tree, the operations explained above is
1709 * applied to each mount in the tree.
1710 * Must be called without spinlocks held, since this function can sleep
1711 * in allocations.
1712 */
0fb54e50 1713static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1714 struct mount *dest_mnt,
1715 struct mountpoint *dest_mp,
1716 struct path *parent_path)
b90fa9ae 1717{
38129a13 1718 HLIST_HEAD(tree_list);
315fc83e 1719 struct mount *child, *p;
38129a13 1720 struct hlist_node *n;
719f5d7f 1721 int err;
b90fa9ae 1722
fc7be130 1723 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1724 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1725 if (err)
1726 goto out;
0b1b901b 1727 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1728 lock_mount_hash();
0b1b901b
AV
1729 if (err)
1730 goto out_cleanup_ids;
909b0a88 1731 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1732 set_mnt_shared(p);
0b1b901b
AV
1733 } else {
1734 lock_mount_hash();
b90fa9ae 1735 }
1a390689 1736 if (parent_path) {
0fb54e50 1737 detach_mnt(source_mnt, parent_path);
84d17192 1738 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1739 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1740 } else {
84d17192 1741 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1742 commit_tree(source_mnt, NULL);
21444403 1743 }
b90fa9ae 1744
38129a13 1745 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1746 struct mount *q;
38129a13 1747 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1748 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1749 child->mnt_mountpoint);
1750 commit_tree(child, q);
b90fa9ae 1751 }
719ea2fb 1752 unlock_mount_hash();
99b7db7b 1753
b90fa9ae 1754 return 0;
719f5d7f
MS
1755
1756 out_cleanup_ids:
f2ebb3a9
AV
1757 while (!hlist_empty(&tree_list)) {
1758 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1759 umount_tree(child, 0);
1760 }
1761 unlock_mount_hash();
0b1b901b 1762 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1763 out:
1764 return err;
b90fa9ae
RP
1765}
1766
84d17192 1767static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1768{
1769 struct vfsmount *mnt;
84d17192 1770 struct dentry *dentry = path->dentry;
b12cea91 1771retry:
84d17192
AV
1772 mutex_lock(&dentry->d_inode->i_mutex);
1773 if (unlikely(cant_mount(dentry))) {
1774 mutex_unlock(&dentry->d_inode->i_mutex);
1775 return ERR_PTR(-ENOENT);
b12cea91 1776 }
97216be0 1777 namespace_lock();
b12cea91 1778 mnt = lookup_mnt(path);
84d17192
AV
1779 if (likely(!mnt)) {
1780 struct mountpoint *mp = new_mountpoint(dentry);
1781 if (IS_ERR(mp)) {
97216be0 1782 namespace_unlock();
84d17192
AV
1783 mutex_unlock(&dentry->d_inode->i_mutex);
1784 return mp;
1785 }
1786 return mp;
1787 }
97216be0 1788 namespace_unlock();
b12cea91
AV
1789 mutex_unlock(&path->dentry->d_inode->i_mutex);
1790 path_put(path);
1791 path->mnt = mnt;
84d17192 1792 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1793 goto retry;
1794}
1795
84d17192 1796static void unlock_mount(struct mountpoint *where)
b12cea91 1797{
84d17192
AV
1798 struct dentry *dentry = where->m_dentry;
1799 put_mountpoint(where);
328e6d90 1800 namespace_unlock();
84d17192 1801 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1802}
1803
84d17192 1804static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1805{
95bc5f25 1806 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1807 return -EINVAL;
1808
84d17192 1809 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1810 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1811 return -ENOTDIR;
1812
84d17192 1813 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1814}
1815
7a2e8a8f
VA
1816/*
1817 * Sanity check the flags to change_mnt_propagation.
1818 */
1819
1820static int flags_to_propagation_type(int flags)
1821{
7c6e984d 1822 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1823
1824 /* Fail if any non-propagation flags are set */
1825 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1826 return 0;
1827 /* Only one propagation flag should be set */
1828 if (!is_power_of_2(type))
1829 return 0;
1830 return type;
1831}
1832
07b20889
RP
1833/*
1834 * recursively change the type of the mountpoint.
1835 */
0a0d8a46 1836static int do_change_type(struct path *path, int flag)
07b20889 1837{
315fc83e 1838 struct mount *m;
4b8b21f4 1839 struct mount *mnt = real_mount(path->mnt);
07b20889 1840 int recurse = flag & MS_REC;
7a2e8a8f 1841 int type;
719f5d7f 1842 int err = 0;
07b20889 1843
2d92ab3c 1844 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1845 return -EINVAL;
1846
7a2e8a8f
VA
1847 type = flags_to_propagation_type(flag);
1848 if (!type)
1849 return -EINVAL;
1850
97216be0 1851 namespace_lock();
719f5d7f
MS
1852 if (type == MS_SHARED) {
1853 err = invent_group_ids(mnt, recurse);
1854 if (err)
1855 goto out_unlock;
1856 }
1857
719ea2fb 1858 lock_mount_hash();
909b0a88 1859 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1860 change_mnt_propagation(m, type);
719ea2fb 1861 unlock_mount_hash();
719f5d7f
MS
1862
1863 out_unlock:
97216be0 1864 namespace_unlock();
719f5d7f 1865 return err;
07b20889
RP
1866}
1867
5ff9d8a6
EB
1868static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1869{
1870 struct mount *child;
1871 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1872 if (!is_subdir(child->mnt_mountpoint, dentry))
1873 continue;
1874
1875 if (child->mnt.mnt_flags & MNT_LOCKED)
1876 return true;
1877 }
1878 return false;
1879}
1880
1da177e4
LT
1881/*
1882 * do loopback mount.
1883 */
808d4e3c 1884static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1885 int recurse)
1da177e4 1886{
2d92ab3c 1887 struct path old_path;
84d17192
AV
1888 struct mount *mnt = NULL, *old, *parent;
1889 struct mountpoint *mp;
57eccb83 1890 int err;
1da177e4
LT
1891 if (!old_name || !*old_name)
1892 return -EINVAL;
815d405c 1893 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1894 if (err)
1895 return err;
1896
8823c079 1897 err = -EINVAL;
4ce5d2b1 1898 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1899 goto out;
1900
84d17192
AV
1901 mp = lock_mount(path);
1902 err = PTR_ERR(mp);
1903 if (IS_ERR(mp))
b12cea91
AV
1904 goto out;
1905
87129cc0 1906 old = real_mount(old_path.mnt);
84d17192 1907 parent = real_mount(path->mnt);
87129cc0 1908
1da177e4 1909 err = -EINVAL;
fc7be130 1910 if (IS_MNT_UNBINDABLE(old))
b12cea91 1911 goto out2;
9676f0c6 1912
84d17192 1913 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1914 goto out2;
1da177e4 1915
5ff9d8a6
EB
1916 if (!recurse && has_locked_children(old, old_path.dentry))
1917 goto out2;
1918
ccd48bc7 1919 if (recurse)
4ce5d2b1 1920 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1921 else
87129cc0 1922 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1923
be34d1a3
DH
1924 if (IS_ERR(mnt)) {
1925 err = PTR_ERR(mnt);
e9c5d8a5 1926 goto out2;
be34d1a3 1927 }
ccd48bc7 1928
5ff9d8a6
EB
1929 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1930
84d17192 1931 err = graft_tree(mnt, parent, mp);
ccd48bc7 1932 if (err) {
719ea2fb 1933 lock_mount_hash();
328e6d90 1934 umount_tree(mnt, 0);
719ea2fb 1935 unlock_mount_hash();
5b83d2c5 1936 }
b12cea91 1937out2:
84d17192 1938 unlock_mount(mp);
ccd48bc7 1939out:
2d92ab3c 1940 path_put(&old_path);
1da177e4
LT
1941 return err;
1942}
1943
2e4b7fcd
DH
1944static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1945{
1946 int error = 0;
1947 int readonly_request = 0;
1948
1949 if (ms_flags & MS_RDONLY)
1950 readonly_request = 1;
1951 if (readonly_request == __mnt_is_readonly(mnt))
1952 return 0;
1953
1954 if (readonly_request)
83adc753 1955 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1956 else
83adc753 1957 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1958 return error;
1959}
1960
1da177e4
LT
1961/*
1962 * change filesystem flags. dir should be a physical root of filesystem.
1963 * If you've mounted a non-root directory somewhere and want to do remount
1964 * on it - tough luck.
1965 */
0a0d8a46 1966static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1967 void *data)
1968{
1969 int err;
2d92ab3c 1970 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1971 struct mount *mnt = real_mount(path->mnt);
1da177e4 1972
143c8c91 1973 if (!check_mnt(mnt))
1da177e4
LT
1974 return -EINVAL;
1975
2d92ab3c 1976 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1977 return -EINVAL;
1978
07b64558
EB
1979 /* Don't allow changing of locked mnt flags.
1980 *
1981 * No locks need to be held here while testing the various
1982 * MNT_LOCK flags because those flags can never be cleared
1983 * once they are set.
1984 */
1985 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1986 !(mnt_flags & MNT_READONLY)) {
1987 return -EPERM;
1988 }
9566d674
EB
1989 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1990 !(mnt_flags & MNT_NODEV)) {
1991 return -EPERM;
1992 }
1993 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1994 !(mnt_flags & MNT_NOSUID)) {
1995 return -EPERM;
1996 }
1997 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1998 !(mnt_flags & MNT_NOEXEC)) {
1999 return -EPERM;
2000 }
2001 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2002 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2003 return -EPERM;
2004 }
2005
ff36fe2c
EP
2006 err = security_sb_remount(sb, data);
2007 if (err)
2008 return err;
2009
1da177e4 2010 down_write(&sb->s_umount);
2e4b7fcd 2011 if (flags & MS_BIND)
2d92ab3c 2012 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2013 else if (!capable(CAP_SYS_ADMIN))
2014 err = -EPERM;
4aa98cf7 2015 else
2e4b7fcd 2016 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2017 if (!err) {
719ea2fb 2018 lock_mount_hash();
a6138db8 2019 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2020 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2021 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2022 unlock_mount_hash();
0e55a7cc 2023 }
6339dab8 2024 up_write(&sb->s_umount);
1da177e4
LT
2025 return err;
2026}
2027
cbbe362c 2028static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2029{
315fc83e 2030 struct mount *p;
909b0a88 2031 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2032 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2033 return 1;
2034 }
2035 return 0;
2036}
2037
808d4e3c 2038static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2039{
2d92ab3c 2040 struct path old_path, parent_path;
676da58d 2041 struct mount *p;
0fb54e50 2042 struct mount *old;
84d17192 2043 struct mountpoint *mp;
57eccb83 2044 int err;
1da177e4
LT
2045 if (!old_name || !*old_name)
2046 return -EINVAL;
2d92ab3c 2047 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2048 if (err)
2049 return err;
2050
84d17192
AV
2051 mp = lock_mount(path);
2052 err = PTR_ERR(mp);
2053 if (IS_ERR(mp))
cc53ce53
DH
2054 goto out;
2055
143c8c91 2056 old = real_mount(old_path.mnt);
fc7be130 2057 p = real_mount(path->mnt);
143c8c91 2058
1da177e4 2059 err = -EINVAL;
fc7be130 2060 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2061 goto out1;
2062
5ff9d8a6
EB
2063 if (old->mnt.mnt_flags & MNT_LOCKED)
2064 goto out1;
2065
1da177e4 2066 err = -EINVAL;
2d92ab3c 2067 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2068 goto out1;
1da177e4 2069
676da58d 2070 if (!mnt_has_parent(old))
21444403 2071 goto out1;
1da177e4 2072
2d92ab3c
AV
2073 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2074 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
2075 goto out1;
2076 /*
2077 * Don't move a mount residing in a shared parent.
2078 */
fc7be130 2079 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2080 goto out1;
9676f0c6
RP
2081 /*
2082 * Don't move a mount tree containing unbindable mounts to a destination
2083 * mount which is shared.
2084 */
fc7be130 2085 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2086 goto out1;
1da177e4 2087 err = -ELOOP;
fc7be130 2088 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2089 if (p == old)
21444403 2090 goto out1;
1da177e4 2091
84d17192 2092 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2093 if (err)
21444403 2094 goto out1;
1da177e4
LT
2095
2096 /* if the mount is moved, it should no longer be expire
2097 * automatically */
6776db3d 2098 list_del_init(&old->mnt_expire);
1da177e4 2099out1:
84d17192 2100 unlock_mount(mp);
1da177e4 2101out:
1da177e4 2102 if (!err)
1a390689 2103 path_put(&parent_path);
2d92ab3c 2104 path_put(&old_path);
1da177e4
LT
2105 return err;
2106}
2107
9d412a43
AV
2108static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2109{
2110 int err;
2111 const char *subtype = strchr(fstype, '.');
2112 if (subtype) {
2113 subtype++;
2114 err = -EINVAL;
2115 if (!subtype[0])
2116 goto err;
2117 } else
2118 subtype = "";
2119
2120 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2121 err = -ENOMEM;
2122 if (!mnt->mnt_sb->s_subtype)
2123 goto err;
2124 return mnt;
2125
2126 err:
2127 mntput(mnt);
2128 return ERR_PTR(err);
2129}
2130
9d412a43
AV
2131/*
2132 * add a mount into a namespace's mount tree
2133 */
95bc5f25 2134static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2135{
84d17192
AV
2136 struct mountpoint *mp;
2137 struct mount *parent;
9d412a43
AV
2138 int err;
2139
f2ebb3a9 2140 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2141
84d17192
AV
2142 mp = lock_mount(path);
2143 if (IS_ERR(mp))
2144 return PTR_ERR(mp);
9d412a43 2145
84d17192 2146 parent = real_mount(path->mnt);
9d412a43 2147 err = -EINVAL;
84d17192 2148 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2149 /* that's acceptable only for automounts done in private ns */
2150 if (!(mnt_flags & MNT_SHRINKABLE))
2151 goto unlock;
2152 /* ... and for those we'd better have mountpoint still alive */
84d17192 2153 if (!parent->mnt_ns)
156cacb1
AV
2154 goto unlock;
2155 }
9d412a43
AV
2156
2157 /* Refuse the same filesystem on the same mount point */
2158 err = -EBUSY;
95bc5f25 2159 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2160 path->mnt->mnt_root == path->dentry)
2161 goto unlock;
2162
2163 err = -EINVAL;
95bc5f25 2164 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2165 goto unlock;
2166
95bc5f25 2167 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2168 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2169
2170unlock:
84d17192 2171 unlock_mount(mp);
9d412a43
AV
2172 return err;
2173}
b1e75df4 2174
1da177e4
LT
2175/*
2176 * create a new mount for userspace and request it to be added into the
2177 * namespace's tree
2178 */
0c55cfc4 2179static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2180 int mnt_flags, const char *name, void *data)
1da177e4 2181{
0c55cfc4 2182 struct file_system_type *type;
9b40bc90 2183 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2184 struct vfsmount *mnt;
15f9a3f3 2185 int err;
1da177e4 2186
0c55cfc4 2187 if (!fstype)
1da177e4
LT
2188 return -EINVAL;
2189
0c55cfc4
EB
2190 type = get_fs_type(fstype);
2191 if (!type)
2192 return -ENODEV;
2193
2194 if (user_ns != &init_user_ns) {
2195 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2196 put_filesystem(type);
2197 return -EPERM;
2198 }
2199 /* Only in special cases allow devices from mounts
2200 * created outside the initial user namespace.
2201 */
2202 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2203 flags |= MS_NODEV;
9566d674 2204 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2205 }
2206 }
2207
2208 mnt = vfs_kern_mount(type, flags, name, data);
2209 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2210 !mnt->mnt_sb->s_subtype)
2211 mnt = fs_set_subtype(mnt, fstype);
2212
2213 put_filesystem(type);
1da177e4
LT
2214 if (IS_ERR(mnt))
2215 return PTR_ERR(mnt);
2216
95bc5f25 2217 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2218 if (err)
2219 mntput(mnt);
2220 return err;
1da177e4
LT
2221}
2222
19a167af
AV
2223int finish_automount(struct vfsmount *m, struct path *path)
2224{
6776db3d 2225 struct mount *mnt = real_mount(m);
19a167af
AV
2226 int err;
2227 /* The new mount record should have at least 2 refs to prevent it being
2228 * expired before we get a chance to add it
2229 */
6776db3d 2230 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2231
2232 if (m->mnt_sb == path->mnt->mnt_sb &&
2233 m->mnt_root == path->dentry) {
b1e75df4
AV
2234 err = -ELOOP;
2235 goto fail;
19a167af
AV
2236 }
2237
95bc5f25 2238 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2239 if (!err)
2240 return 0;
2241fail:
2242 /* remove m from any expiration list it may be on */
6776db3d 2243 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2244 namespace_lock();
6776db3d 2245 list_del_init(&mnt->mnt_expire);
97216be0 2246 namespace_unlock();
19a167af 2247 }
b1e75df4
AV
2248 mntput(m);
2249 mntput(m);
19a167af
AV
2250 return err;
2251}
2252
ea5b778a
DH
2253/**
2254 * mnt_set_expiry - Put a mount on an expiration list
2255 * @mnt: The mount to list.
2256 * @expiry_list: The list to add the mount to.
2257 */
2258void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2259{
97216be0 2260 namespace_lock();
ea5b778a 2261
6776db3d 2262 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2263
97216be0 2264 namespace_unlock();
ea5b778a
DH
2265}
2266EXPORT_SYMBOL(mnt_set_expiry);
2267
1da177e4
LT
2268/*
2269 * process a list of expirable mountpoints with the intent of discarding any
2270 * mountpoints that aren't in use and haven't been touched since last we came
2271 * here
2272 */
2273void mark_mounts_for_expiry(struct list_head *mounts)
2274{
761d5c38 2275 struct mount *mnt, *next;
1da177e4
LT
2276 LIST_HEAD(graveyard);
2277
2278 if (list_empty(mounts))
2279 return;
2280
97216be0 2281 namespace_lock();
719ea2fb 2282 lock_mount_hash();
1da177e4
LT
2283
2284 /* extract from the expiration list every vfsmount that matches the
2285 * following criteria:
2286 * - only referenced by its parent vfsmount
2287 * - still marked for expiry (marked on the last call here; marks are
2288 * cleared by mntput())
2289 */
6776db3d 2290 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2291 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2292 propagate_mount_busy(mnt, 1))
1da177e4 2293 continue;
6776db3d 2294 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2295 }
bcc5c7d2 2296 while (!list_empty(&graveyard)) {
6776db3d 2297 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2298 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2299 umount_tree(mnt, 1);
bcc5c7d2 2300 }
719ea2fb 2301 unlock_mount_hash();
3ab6abee 2302 namespace_unlock();
5528f911
TM
2303}
2304
2305EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2306
2307/*
2308 * Ripoff of 'select_parent()'
2309 *
2310 * search the list of submounts for a given mountpoint, and move any
2311 * shrinkable submounts to the 'graveyard' list.
2312 */
692afc31 2313static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2314{
692afc31 2315 struct mount *this_parent = parent;
5528f911
TM
2316 struct list_head *next;
2317 int found = 0;
2318
2319repeat:
6b41d536 2320 next = this_parent->mnt_mounts.next;
5528f911 2321resume:
6b41d536 2322 while (next != &this_parent->mnt_mounts) {
5528f911 2323 struct list_head *tmp = next;
6b41d536 2324 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2325
2326 next = tmp->next;
692afc31 2327 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2328 continue;
5528f911
TM
2329 /*
2330 * Descend a level if the d_mounts list is non-empty.
2331 */
6b41d536 2332 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2333 this_parent = mnt;
2334 goto repeat;
2335 }
1da177e4 2336
1ab59738 2337 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2338 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2339 found++;
2340 }
1da177e4 2341 }
5528f911
TM
2342 /*
2343 * All done at this level ... ascend and resume the search
2344 */
2345 if (this_parent != parent) {
6b41d536 2346 next = this_parent->mnt_child.next;
0714a533 2347 this_parent = this_parent->mnt_parent;
5528f911
TM
2348 goto resume;
2349 }
2350 return found;
2351}
2352
2353/*
2354 * process a list of expirable mountpoints with the intent of discarding any
2355 * submounts of a specific parent mountpoint
99b7db7b 2356 *
48a066e7 2357 * mount_lock must be held for write
5528f911 2358 */
b54b9be7 2359static void shrink_submounts(struct mount *mnt)
5528f911
TM
2360{
2361 LIST_HEAD(graveyard);
761d5c38 2362 struct mount *m;
5528f911 2363
5528f911 2364 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2365 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2366 while (!list_empty(&graveyard)) {
761d5c38 2367 m = list_first_entry(&graveyard, struct mount,
6776db3d 2368 mnt_expire);
143c8c91 2369 touch_mnt_namespace(m->mnt_ns);
328e6d90 2370 umount_tree(m, 1);
bcc5c7d2
AV
2371 }
2372 }
1da177e4
LT
2373}
2374
1da177e4
LT
2375/*
2376 * Some copy_from_user() implementations do not return the exact number of
2377 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2378 * Note that this function differs from copy_from_user() in that it will oops
2379 * on bad values of `to', rather than returning a short copy.
2380 */
b58fed8b
RP
2381static long exact_copy_from_user(void *to, const void __user * from,
2382 unsigned long n)
1da177e4
LT
2383{
2384 char *t = to;
2385 const char __user *f = from;
2386 char c;
2387
2388 if (!access_ok(VERIFY_READ, from, n))
2389 return n;
2390
2391 while (n) {
2392 if (__get_user(c, f)) {
2393 memset(t, 0, n);
2394 break;
2395 }
2396 *t++ = c;
2397 f++;
2398 n--;
2399 }
2400 return n;
2401}
2402
b58fed8b 2403int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2404{
2405 int i;
2406 unsigned long page;
2407 unsigned long size;
b58fed8b 2408
1da177e4
LT
2409 *where = 0;
2410 if (!data)
2411 return 0;
2412
2413 if (!(page = __get_free_page(GFP_KERNEL)))
2414 return -ENOMEM;
2415
2416 /* We only care that *some* data at the address the user
2417 * gave us is valid. Just in case, we'll zero
2418 * the remainder of the page.
2419 */
2420 /* copy_from_user cannot cross TASK_SIZE ! */
2421 size = TASK_SIZE - (unsigned long)data;
2422 if (size > PAGE_SIZE)
2423 size = PAGE_SIZE;
2424
2425 i = size - exact_copy_from_user((void *)page, data, size);
2426 if (!i) {
b58fed8b 2427 free_page(page);
1da177e4
LT
2428 return -EFAULT;
2429 }
2430 if (i != PAGE_SIZE)
2431 memset((char *)page + i, 0, PAGE_SIZE - i);
2432 *where = page;
2433 return 0;
2434}
2435
eca6f534
VN
2436int copy_mount_string(const void __user *data, char **where)
2437{
2438 char *tmp;
2439
2440 if (!data) {
2441 *where = NULL;
2442 return 0;
2443 }
2444
2445 tmp = strndup_user(data, PAGE_SIZE);
2446 if (IS_ERR(tmp))
2447 return PTR_ERR(tmp);
2448
2449 *where = tmp;
2450 return 0;
2451}
2452
1da177e4
LT
2453/*
2454 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2455 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2456 *
2457 * data is a (void *) that can point to any structure up to
2458 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2459 * information (or be NULL).
2460 *
2461 * Pre-0.97 versions of mount() didn't have a flags word.
2462 * When the flags word was introduced its top half was required
2463 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2464 * Therefore, if this magic number is present, it carries no information
2465 * and must be discarded.
2466 */
808d4e3c
AV
2467long do_mount(const char *dev_name, const char *dir_name,
2468 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2469{
2d92ab3c 2470 struct path path;
1da177e4
LT
2471 int retval = 0;
2472 int mnt_flags = 0;
2473
2474 /* Discard magic */
2475 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2476 flags &= ~MS_MGC_MSK;
2477
2478 /* Basic sanity checks */
2479
2480 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2481 return -EINVAL;
1da177e4
LT
2482
2483 if (data_page)
2484 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2485
a27ab9f2
TH
2486 /* ... and get the mountpoint */
2487 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2488 if (retval)
2489 return retval;
2490
2491 retval = security_sb_mount(dev_name, &path,
2492 type_page, flags, data_page);
0d5cadb8
AV
2493 if (!retval && !may_mount())
2494 retval = -EPERM;
a27ab9f2
TH
2495 if (retval)
2496 goto dput_out;
2497
613cbe3d
AK
2498 /* Default to relatime unless overriden */
2499 if (!(flags & MS_NOATIME))
2500 mnt_flags |= MNT_RELATIME;
0a1c01c9 2501
1da177e4
LT
2502 /* Separate the per-mountpoint flags */
2503 if (flags & MS_NOSUID)
2504 mnt_flags |= MNT_NOSUID;
2505 if (flags & MS_NODEV)
2506 mnt_flags |= MNT_NODEV;
2507 if (flags & MS_NOEXEC)
2508 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2509 if (flags & MS_NOATIME)
2510 mnt_flags |= MNT_NOATIME;
2511 if (flags & MS_NODIRATIME)
2512 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2513 if (flags & MS_STRICTATIME)
2514 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2515 if (flags & MS_RDONLY)
2516 mnt_flags |= MNT_READONLY;
fc33a7bb 2517
ffbc6f0e
EB
2518 /* The default atime for remount is preservation */
2519 if ((flags & MS_REMOUNT) &&
2520 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2521 MS_STRICTATIME)) == 0)) {
2522 mnt_flags &= ~MNT_ATIME_MASK;
2523 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2524 }
2525
7a4dec53 2526 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2527 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2528 MS_STRICTATIME);
1da177e4 2529
1da177e4 2530 if (flags & MS_REMOUNT)
2d92ab3c 2531 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2532 data_page);
2533 else if (flags & MS_BIND)
2d92ab3c 2534 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2535 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2536 retval = do_change_type(&path, flags);
1da177e4 2537 else if (flags & MS_MOVE)
2d92ab3c 2538 retval = do_move_mount(&path, dev_name);
1da177e4 2539 else
2d92ab3c 2540 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2541 dev_name, data_page);
2542dput_out:
2d92ab3c 2543 path_put(&path);
1da177e4
LT
2544 return retval;
2545}
2546
771b1371
EB
2547static void free_mnt_ns(struct mnt_namespace *ns)
2548{
98f842e6 2549 proc_free_inum(ns->proc_inum);
771b1371
EB
2550 put_user_ns(ns->user_ns);
2551 kfree(ns);
2552}
2553
8823c079
EB
2554/*
2555 * Assign a sequence number so we can detect when we attempt to bind
2556 * mount a reference to an older mount namespace into the current
2557 * mount namespace, preventing reference counting loops. A 64bit
2558 * number incrementing at 10Ghz will take 12,427 years to wrap which
2559 * is effectively never, so we can ignore the possibility.
2560 */
2561static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2562
771b1371 2563static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2564{
2565 struct mnt_namespace *new_ns;
98f842e6 2566 int ret;
cf8d2c11
TM
2567
2568 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2569 if (!new_ns)
2570 return ERR_PTR(-ENOMEM);
98f842e6
EB
2571 ret = proc_alloc_inum(&new_ns->proc_inum);
2572 if (ret) {
2573 kfree(new_ns);
2574 return ERR_PTR(ret);
2575 }
8823c079 2576 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2577 atomic_set(&new_ns->count, 1);
2578 new_ns->root = NULL;
2579 INIT_LIST_HEAD(&new_ns->list);
2580 init_waitqueue_head(&new_ns->poll);
2581 new_ns->event = 0;
771b1371 2582 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2583 return new_ns;
2584}
2585
9559f689
AV
2586struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2587 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2588{
6b3286ed 2589 struct mnt_namespace *new_ns;
7f2da1e7 2590 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2591 struct mount *p, *q;
9559f689 2592 struct mount *old;
cb338d06 2593 struct mount *new;
7a472ef4 2594 int copy_flags;
1da177e4 2595
9559f689
AV
2596 BUG_ON(!ns);
2597
2598 if (likely(!(flags & CLONE_NEWNS))) {
2599 get_mnt_ns(ns);
2600 return ns;
2601 }
2602
2603 old = ns->root;
2604
771b1371 2605 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2606 if (IS_ERR(new_ns))
2607 return new_ns;
1da177e4 2608
97216be0 2609 namespace_lock();
1da177e4 2610 /* First pass: copy the tree topology */
4ce5d2b1 2611 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2612 if (user_ns != ns->user_ns)
132c94e3 2613 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2614 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2615 if (IS_ERR(new)) {
328e6d90 2616 namespace_unlock();
771b1371 2617 free_mnt_ns(new_ns);
be34d1a3 2618 return ERR_CAST(new);
1da177e4 2619 }
be08d6d2 2620 new_ns->root = new;
1a4eeaf2 2621 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2622
2623 /*
2624 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2625 * as belonging to new namespace. We have already acquired a private
2626 * fs_struct, so tsk->fs->lock is not needed.
2627 */
909b0a88 2628 p = old;
cb338d06 2629 q = new;
1da177e4 2630 while (p) {
143c8c91 2631 q->mnt_ns = new_ns;
9559f689
AV
2632 if (new_fs) {
2633 if (&p->mnt == new_fs->root.mnt) {
2634 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2635 rootmnt = &p->mnt;
1da177e4 2636 }
9559f689
AV
2637 if (&p->mnt == new_fs->pwd.mnt) {
2638 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2639 pwdmnt = &p->mnt;
1da177e4 2640 }
1da177e4 2641 }
909b0a88
AV
2642 p = next_mnt(p, old);
2643 q = next_mnt(q, new);
4ce5d2b1
EB
2644 if (!q)
2645 break;
2646 while (p->mnt.mnt_root != q->mnt.mnt_root)
2647 p = next_mnt(p, old);
1da177e4 2648 }
328e6d90 2649 namespace_unlock();
1da177e4 2650
1da177e4 2651 if (rootmnt)
f03c6599 2652 mntput(rootmnt);
1da177e4 2653 if (pwdmnt)
f03c6599 2654 mntput(pwdmnt);
1da177e4 2655
741a2951 2656 return new_ns;
1da177e4
LT
2657}
2658
cf8d2c11
TM
2659/**
2660 * create_mnt_ns - creates a private namespace and adds a root filesystem
2661 * @mnt: pointer to the new root filesystem mountpoint
2662 */
1a4eeaf2 2663static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2664{
771b1371 2665 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2666 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2667 struct mount *mnt = real_mount(m);
2668 mnt->mnt_ns = new_ns;
be08d6d2 2669 new_ns->root = mnt;
b1983cd8 2670 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2671 } else {
1a4eeaf2 2672 mntput(m);
cf8d2c11
TM
2673 }
2674 return new_ns;
2675}
cf8d2c11 2676
ea441d11
AV
2677struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2678{
2679 struct mnt_namespace *ns;
d31da0f0 2680 struct super_block *s;
ea441d11
AV
2681 struct path path;
2682 int err;
2683
2684 ns = create_mnt_ns(mnt);
2685 if (IS_ERR(ns))
2686 return ERR_CAST(ns);
2687
2688 err = vfs_path_lookup(mnt->mnt_root, mnt,
2689 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2690
2691 put_mnt_ns(ns);
2692
2693 if (err)
2694 return ERR_PTR(err);
2695
2696 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2697 s = path.mnt->mnt_sb;
2698 atomic_inc(&s->s_active);
ea441d11
AV
2699 mntput(path.mnt);
2700 /* lock the sucker */
d31da0f0 2701 down_write(&s->s_umount);
ea441d11
AV
2702 /* ... and return the root of (sub)tree on it */
2703 return path.dentry;
2704}
2705EXPORT_SYMBOL(mount_subtree);
2706
bdc480e3
HC
2707SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2708 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2709{
eca6f534
VN
2710 int ret;
2711 char *kernel_type;
91a27b2a 2712 struct filename *kernel_dir;
eca6f534 2713 char *kernel_dev;
1da177e4 2714 unsigned long data_page;
1da177e4 2715
eca6f534
VN
2716 ret = copy_mount_string(type, &kernel_type);
2717 if (ret < 0)
2718 goto out_type;
1da177e4 2719
eca6f534
VN
2720 kernel_dir = getname(dir_name);
2721 if (IS_ERR(kernel_dir)) {
2722 ret = PTR_ERR(kernel_dir);
2723 goto out_dir;
2724 }
1da177e4 2725
eca6f534
VN
2726 ret = copy_mount_string(dev_name, &kernel_dev);
2727 if (ret < 0)
2728 goto out_dev;
1da177e4 2729
eca6f534
VN
2730 ret = copy_mount_options(data, &data_page);
2731 if (ret < 0)
2732 goto out_data;
1da177e4 2733
91a27b2a 2734 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2735 (void *) data_page);
1da177e4 2736
eca6f534
VN
2737 free_page(data_page);
2738out_data:
2739 kfree(kernel_dev);
2740out_dev:
2741 putname(kernel_dir);
2742out_dir:
2743 kfree(kernel_type);
2744out_type:
2745 return ret;
1da177e4
LT
2746}
2747
afac7cba
AV
2748/*
2749 * Return true if path is reachable from root
2750 *
48a066e7 2751 * namespace_sem or mount_lock is held
afac7cba 2752 */
643822b4 2753bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2754 const struct path *root)
2755{
643822b4 2756 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2757 dentry = mnt->mnt_mountpoint;
0714a533 2758 mnt = mnt->mnt_parent;
afac7cba 2759 }
643822b4 2760 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2761}
2762
2763int path_is_under(struct path *path1, struct path *path2)
2764{
2765 int res;
48a066e7 2766 read_seqlock_excl(&mount_lock);
643822b4 2767 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2768 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2769 return res;
2770}
2771EXPORT_SYMBOL(path_is_under);
2772
1da177e4
LT
2773/*
2774 * pivot_root Semantics:
2775 * Moves the root file system of the current process to the directory put_old,
2776 * makes new_root as the new root file system of the current process, and sets
2777 * root/cwd of all processes which had them on the current root to new_root.
2778 *
2779 * Restrictions:
2780 * The new_root and put_old must be directories, and must not be on the
2781 * same file system as the current process root. The put_old must be
2782 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2783 * pointed to by put_old must yield the same directory as new_root. No other
2784 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2785 *
4a0d11fa
NB
2786 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2787 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2788 * in this situation.
2789 *
1da177e4
LT
2790 * Notes:
2791 * - we don't move root/cwd if they are not at the root (reason: if something
2792 * cared enough to change them, it's probably wrong to force them elsewhere)
2793 * - it's okay to pick a root that isn't the root of a file system, e.g.
2794 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2795 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2796 * first.
2797 */
3480b257
HC
2798SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2799 const char __user *, put_old)
1da177e4 2800{
2d8f3038 2801 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2802 struct mount *new_mnt, *root_mnt, *old_mnt;
2803 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2804 int error;
2805
9b40bc90 2806 if (!may_mount())
1da177e4
LT
2807 return -EPERM;
2808
2d8f3038 2809 error = user_path_dir(new_root, &new);
1da177e4
LT
2810 if (error)
2811 goto out0;
1da177e4 2812
2d8f3038 2813 error = user_path_dir(put_old, &old);
1da177e4
LT
2814 if (error)
2815 goto out1;
2816
2d8f3038 2817 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2818 if (error)
2819 goto out2;
1da177e4 2820
f7ad3c6b 2821 get_fs_root(current->fs, &root);
84d17192
AV
2822 old_mp = lock_mount(&old);
2823 error = PTR_ERR(old_mp);
2824 if (IS_ERR(old_mp))
b12cea91
AV
2825 goto out3;
2826
1da177e4 2827 error = -EINVAL;
419148da
AV
2828 new_mnt = real_mount(new.mnt);
2829 root_mnt = real_mount(root.mnt);
84d17192
AV
2830 old_mnt = real_mount(old.mnt);
2831 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2832 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2833 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2834 goto out4;
143c8c91 2835 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2836 goto out4;
5ff9d8a6
EB
2837 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2838 goto out4;
1da177e4 2839 error = -ENOENT;
f3da392e 2840 if (d_unlinked(new.dentry))
b12cea91 2841 goto out4;
1da177e4 2842 error = -EBUSY;
84d17192 2843 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2844 goto out4; /* loop, on the same file system */
1da177e4 2845 error = -EINVAL;
8c3ee42e 2846 if (root.mnt->mnt_root != root.dentry)
b12cea91 2847 goto out4; /* not a mountpoint */
676da58d 2848 if (!mnt_has_parent(root_mnt))
b12cea91 2849 goto out4; /* not attached */
84d17192 2850 root_mp = root_mnt->mnt_mp;
2d8f3038 2851 if (new.mnt->mnt_root != new.dentry)
b12cea91 2852 goto out4; /* not a mountpoint */
676da58d 2853 if (!mnt_has_parent(new_mnt))
b12cea91 2854 goto out4; /* not attached */
4ac91378 2855 /* make sure we can reach put_old from new_root */
84d17192 2856 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2857 goto out4;
84d17192 2858 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2859 lock_mount_hash();
419148da
AV
2860 detach_mnt(new_mnt, &parent_path);
2861 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2862 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2863 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2864 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2865 }
4ac91378 2866 /* mount old root on put_old */
84d17192 2867 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2868 /* mount new_root on / */
84d17192 2869 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2870 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2871 unlock_mount_hash();
2d8f3038 2872 chroot_fs_refs(&root, &new);
84d17192 2873 put_mountpoint(root_mp);
1da177e4 2874 error = 0;
b12cea91 2875out4:
84d17192 2876 unlock_mount(old_mp);
b12cea91
AV
2877 if (!error) {
2878 path_put(&root_parent);
2879 path_put(&parent_path);
2880 }
2881out3:
8c3ee42e 2882 path_put(&root);
b12cea91 2883out2:
2d8f3038 2884 path_put(&old);
1da177e4 2885out1:
2d8f3038 2886 path_put(&new);
1da177e4 2887out0:
1da177e4 2888 return error;
1da177e4
LT
2889}
2890
2891static void __init init_mount_tree(void)
2892{
2893 struct vfsmount *mnt;
6b3286ed 2894 struct mnt_namespace *ns;
ac748a09 2895 struct path root;
0c55cfc4 2896 struct file_system_type *type;
1da177e4 2897
0c55cfc4
EB
2898 type = get_fs_type("rootfs");
2899 if (!type)
2900 panic("Can't find rootfs type");
2901 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2902 put_filesystem(type);
1da177e4
LT
2903 if (IS_ERR(mnt))
2904 panic("Can't create rootfs");
b3e19d92 2905
3b22edc5
TM
2906 ns = create_mnt_ns(mnt);
2907 if (IS_ERR(ns))
1da177e4 2908 panic("Can't allocate initial namespace");
6b3286ed
KK
2909
2910 init_task.nsproxy->mnt_ns = ns;
2911 get_mnt_ns(ns);
2912
be08d6d2
AV
2913 root.mnt = mnt;
2914 root.dentry = mnt->mnt_root;
ac748a09
JB
2915
2916 set_fs_pwd(current->fs, &root);
2917 set_fs_root(current->fs, &root);
1da177e4
LT
2918}
2919
74bf17cf 2920void __init mnt_init(void)
1da177e4 2921{
13f14b4d 2922 unsigned u;
15a67dd8 2923 int err;
1da177e4 2924
7d6fec45 2925 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2926 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2927
0818bf27 2928 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 2929 sizeof(struct hlist_head),
0818bf27
AV
2930 mhash_entries, 19,
2931 0,
2932 &m_hash_shift, &m_hash_mask, 0, 0);
2933 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2934 sizeof(struct hlist_head),
2935 mphash_entries, 19,
2936 0,
2937 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 2938
84d17192 2939 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2940 panic("Failed to allocate mount hash table\n");
2941
0818bf27 2942 for (u = 0; u <= m_hash_mask; u++)
38129a13 2943 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
2944 for (u = 0; u <= mp_hash_mask; u++)
2945 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2946
4b93dc9b
TH
2947 kernfs_init();
2948
15a67dd8
RD
2949 err = sysfs_init();
2950 if (err)
2951 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2952 __func__, err);
00d26666
GKH
2953 fs_kobj = kobject_create_and_add("fs", NULL);
2954 if (!fs_kobj)
8e24eea7 2955 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2956 init_rootfs();
2957 init_mount_tree();
2958}
2959
616511d0 2960void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2961{
d498b25a 2962 if (!atomic_dec_and_test(&ns->count))
616511d0 2963 return;
7b00ed6f 2964 drop_collected_mounts(&ns->root->mnt);
771b1371 2965 free_mnt_ns(ns);
1da177e4 2966}
9d412a43
AV
2967
2968struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2969{
423e0ab0
TC
2970 struct vfsmount *mnt;
2971 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2972 if (!IS_ERR(mnt)) {
2973 /*
2974 * it is a longterm mount, don't release mnt until
2975 * we unmount before file sys is unregistered
2976 */
f7a99c5b 2977 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2978 }
2979 return mnt;
9d412a43
AV
2980}
2981EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2982
2983void kern_unmount(struct vfsmount *mnt)
2984{
2985 /* release long term mount so mount point can be released */
2986 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 2987 real_mount(mnt)->mnt_ns = NULL;
48a066e7 2988 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
2989 mntput(mnt);
2990 }
2991}
2992EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2993
2994bool our_mnt(struct vfsmount *mnt)
2995{
143c8c91 2996 return check_mnt(real_mount(mnt));
02125a82 2997}
8823c079 2998
3151527e
EB
2999bool current_chrooted(void)
3000{
3001 /* Does the current process have a non-standard root */
3002 struct path ns_root;
3003 struct path fs_root;
3004 bool chrooted;
3005
3006 /* Find the namespace root */
3007 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3008 ns_root.dentry = ns_root.mnt->mnt_root;
3009 path_get(&ns_root);
3010 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3011 ;
3012
3013 get_fs_root(current->fs, &fs_root);
3014
3015 chrooted = !path_equal(&fs_root, &ns_root);
3016
3017 path_put(&fs_root);
3018 path_put(&ns_root);
3019
3020 return chrooted;
3021}
3022
e51db735 3023bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3024{
3025 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3026 struct mount *mnt;
e51db735 3027 bool visible = false;
87a8ebd6 3028
e51db735
EB
3029 if (unlikely(!ns))
3030 return false;
3031
44bb4385 3032 down_read(&namespace_sem);
87a8ebd6 3033 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3034 struct mount *child;
3035 if (mnt->mnt.mnt_sb->s_type != type)
3036 continue;
3037
3038 /* This mount is not fully visible if there are any child mounts
3039 * that cover anything except for empty directories.
3040 */
3041 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3042 struct inode *inode = child->mnt_mountpoint->d_inode;
3043 if (!S_ISDIR(inode->i_mode))
3044 goto next;
41301ae7 3045 if (inode->i_nlink > 2)
e51db735 3046 goto next;
87a8ebd6 3047 }
e51db735
EB
3048 visible = true;
3049 goto found;
3050 next: ;
87a8ebd6 3051 }
e51db735 3052found:
44bb4385 3053 up_read(&namespace_sem);
e51db735 3054 return visible;
87a8ebd6
EB
3055}
3056
8823c079
EB
3057static void *mntns_get(struct task_struct *task)
3058{
3059 struct mnt_namespace *ns = NULL;
3060 struct nsproxy *nsproxy;
3061
728dba3a
EB
3062 task_lock(task);
3063 nsproxy = task->nsproxy;
8823c079
EB
3064 if (nsproxy) {
3065 ns = nsproxy->mnt_ns;
3066 get_mnt_ns(ns);
3067 }
728dba3a 3068 task_unlock(task);
8823c079
EB
3069
3070 return ns;
3071}
3072
3073static void mntns_put(void *ns)
3074{
3075 put_mnt_ns(ns);
3076}
3077
3078static int mntns_install(struct nsproxy *nsproxy, void *ns)
3079{
3080 struct fs_struct *fs = current->fs;
3081 struct mnt_namespace *mnt_ns = ns;
3082 struct path root;
3083
0c55cfc4 3084 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3085 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3086 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3087 return -EPERM;
8823c079
EB
3088
3089 if (fs->users != 1)
3090 return -EINVAL;
3091
3092 get_mnt_ns(mnt_ns);
3093 put_mnt_ns(nsproxy->mnt_ns);
3094 nsproxy->mnt_ns = mnt_ns;
3095
3096 /* Find the root */
3097 root.mnt = &mnt_ns->root->mnt;
3098 root.dentry = mnt_ns->root->mnt.mnt_root;
3099 path_get(&root);
3100 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3101 ;
3102
3103 /* Update the pwd and root */
3104 set_fs_pwd(fs, &root);
3105 set_fs_root(fs, &root);
3106
3107 path_put(&root);
3108 return 0;
3109}
3110
98f842e6
EB
3111static unsigned int mntns_inum(void *ns)
3112{
3113 struct mnt_namespace *mnt_ns = ns;
3114 return mnt_ns->proc_inum;
3115}
3116
8823c079
EB
3117const struct proc_ns_operations mntns_operations = {
3118 .name = "mnt",
3119 .type = CLONE_NEWNS,
3120 .get = mntns_get,
3121 .put = mntns_put,
3122 .install = mntns_install,
98f842e6 3123 .inum = mntns_inum,
8823c079 3124};