get rid of the second argument of shrink_submounts()
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
8823c079 24#include <linux/proc_fs.h>
07b20889 25#include "pnode.h"
948730b0 26#include "internal.h"
1da177e4 27
13f14b4d
ED
28#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29#define HASH_SIZE (1UL << HASH_SHIFT)
30
5addc5dd 31static int event;
73cd49ec 32static DEFINE_IDA(mnt_id_ida);
719f5d7f 33static DEFINE_IDA(mnt_group_ida);
99b7db7b 34static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
35static int mnt_id_start = 0;
36static int mnt_group_start = 1;
1da177e4 37
fa3536cc 38static struct list_head *mount_hashtable __read_mostly;
84d17192 39static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 40static struct kmem_cache *mnt_cache __read_mostly;
390c6843 41static struct rw_semaphore namespace_sem;
1da177e4 42
f87fd4c2 43/* /sys/fs */
00d26666
GKH
44struct kobject *fs_kobj;
45EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 46
99b7db7b
NP
47/*
48 * vfsmount lock may be taken for read to prevent changes to the
49 * vfsmount hash, ie. during mountpoint lookups or walking back
50 * up the tree.
51 *
52 * It should be taken for write in all cases where the vfsmount
53 * tree or hash is modified or when a vfsmount structure is modified.
54 */
55DEFINE_BRLOCK(vfsmount_lock);
56
1da177e4
LT
57static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58{
b58fed8b
RP
59 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
61 tmp = tmp + (tmp >> HASH_SHIFT);
62 return tmp & (HASH_SIZE - 1);
1da177e4
LT
63}
64
3d733633
DH
65#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66
99b7db7b
NP
67/*
68 * allocation is serialized by namespace_sem, but we need the spinlock to
69 * serialize with freeing.
70 */
b105e270 71static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
72{
73 int res;
74
75retry:
76 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 77 spin_lock(&mnt_id_lock);
15169fe7 78 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 79 if (!res)
15169fe7 80 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 81 spin_unlock(&mnt_id_lock);
73cd49ec
MS
82 if (res == -EAGAIN)
83 goto retry;
84
85 return res;
86}
87
b105e270 88static void mnt_free_id(struct mount *mnt)
73cd49ec 89{
15169fe7 90 int id = mnt->mnt_id;
99b7db7b 91 spin_lock(&mnt_id_lock);
f21f6220
AV
92 ida_remove(&mnt_id_ida, id);
93 if (mnt_id_start > id)
94 mnt_id_start = id;
99b7db7b 95 spin_unlock(&mnt_id_lock);
73cd49ec
MS
96}
97
719f5d7f
MS
98/*
99 * Allocate a new peer group ID
100 *
101 * mnt_group_ida is protected by namespace_sem
102 */
4b8b21f4 103static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 104{
f21f6220
AV
105 int res;
106
719f5d7f
MS
107 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
108 return -ENOMEM;
109
f21f6220
AV
110 res = ida_get_new_above(&mnt_group_ida,
111 mnt_group_start,
15169fe7 112 &mnt->mnt_group_id);
f21f6220 113 if (!res)
15169fe7 114 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
115
116 return res;
719f5d7f
MS
117}
118
119/*
120 * Release a peer group ID
121 */
4b8b21f4 122void mnt_release_group_id(struct mount *mnt)
719f5d7f 123{
15169fe7 124 int id = mnt->mnt_group_id;
f21f6220
AV
125 ida_remove(&mnt_group_ida, id);
126 if (mnt_group_start > id)
127 mnt_group_start = id;
15169fe7 128 mnt->mnt_group_id = 0;
719f5d7f
MS
129}
130
b3e19d92
NP
131/*
132 * vfsmount lock must be held for read
133 */
83adc753 134static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
135{
136#ifdef CONFIG_SMP
68e8a9fe 137 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
138#else
139 preempt_disable();
68e8a9fe 140 mnt->mnt_count += n;
b3e19d92
NP
141 preempt_enable();
142#endif
143}
144
b3e19d92
NP
145/*
146 * vfsmount lock must be held for write
147 */
83adc753 148unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
149{
150#ifdef CONFIG_SMP
f03c6599 151 unsigned int count = 0;
b3e19d92
NP
152 int cpu;
153
154 for_each_possible_cpu(cpu) {
68e8a9fe 155 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
156 }
157
158 return count;
159#else
68e8a9fe 160 return mnt->mnt_count;
b3e19d92
NP
161#endif
162}
163
b105e270 164static struct mount *alloc_vfsmnt(const char *name)
1da177e4 165{
c63181e6
AV
166 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
167 if (mnt) {
73cd49ec
MS
168 int err;
169
c63181e6 170 err = mnt_alloc_id(mnt);
88b38782
LZ
171 if (err)
172 goto out_free_cache;
173
174 if (name) {
c63181e6
AV
175 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
176 if (!mnt->mnt_devname)
88b38782 177 goto out_free_id;
73cd49ec
MS
178 }
179
b3e19d92 180#ifdef CONFIG_SMP
c63181e6
AV
181 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
182 if (!mnt->mnt_pcp)
b3e19d92
NP
183 goto out_free_devname;
184
c63181e6 185 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 186#else
c63181e6
AV
187 mnt->mnt_count = 1;
188 mnt->mnt_writers = 0;
b3e19d92
NP
189#endif
190
c63181e6
AV
191 INIT_LIST_HEAD(&mnt->mnt_hash);
192 INIT_LIST_HEAD(&mnt->mnt_child);
193 INIT_LIST_HEAD(&mnt->mnt_mounts);
194 INIT_LIST_HEAD(&mnt->mnt_list);
195 INIT_LIST_HEAD(&mnt->mnt_expire);
196 INIT_LIST_HEAD(&mnt->mnt_share);
197 INIT_LIST_HEAD(&mnt->mnt_slave_list);
198 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
199#ifdef CONFIG_FSNOTIFY
200 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 201#endif
1da177e4 202 }
c63181e6 203 return mnt;
88b38782 204
d3ef3d73 205#ifdef CONFIG_SMP
206out_free_devname:
c63181e6 207 kfree(mnt->mnt_devname);
d3ef3d73 208#endif
88b38782 209out_free_id:
c63181e6 210 mnt_free_id(mnt);
88b38782 211out_free_cache:
c63181e6 212 kmem_cache_free(mnt_cache, mnt);
88b38782 213 return NULL;
1da177e4
LT
214}
215
3d733633
DH
216/*
217 * Most r/o checks on a fs are for operations that take
218 * discrete amounts of time, like a write() or unlink().
219 * We must keep track of when those operations start
220 * (for permission checks) and when they end, so that
221 * we can determine when writes are able to occur to
222 * a filesystem.
223 */
224/*
225 * __mnt_is_readonly: check whether a mount is read-only
226 * @mnt: the mount to check for its write status
227 *
228 * This shouldn't be used directly ouside of the VFS.
229 * It does not guarantee that the filesystem will stay
230 * r/w, just that it is right *now*. This can not and
231 * should not be used in place of IS_RDONLY(inode).
232 * mnt_want/drop_write() will _keep_ the filesystem
233 * r/w.
234 */
235int __mnt_is_readonly(struct vfsmount *mnt)
236{
2e4b7fcd
DH
237 if (mnt->mnt_flags & MNT_READONLY)
238 return 1;
239 if (mnt->mnt_sb->s_flags & MS_RDONLY)
240 return 1;
241 return 0;
3d733633
DH
242}
243EXPORT_SYMBOL_GPL(__mnt_is_readonly);
244
83adc753 245static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 246{
247#ifdef CONFIG_SMP
68e8a9fe 248 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 249#else
68e8a9fe 250 mnt->mnt_writers++;
d3ef3d73 251#endif
252}
3d733633 253
83adc753 254static inline void mnt_dec_writers(struct mount *mnt)
3d733633 255{
d3ef3d73 256#ifdef CONFIG_SMP
68e8a9fe 257 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 258#else
68e8a9fe 259 mnt->mnt_writers--;
d3ef3d73 260#endif
3d733633 261}
3d733633 262
83adc753 263static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 264{
d3ef3d73 265#ifdef CONFIG_SMP
266 unsigned int count = 0;
3d733633 267 int cpu;
3d733633
DH
268
269 for_each_possible_cpu(cpu) {
68e8a9fe 270 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 271 }
3d733633 272
d3ef3d73 273 return count;
274#else
275 return mnt->mnt_writers;
276#endif
3d733633
DH
277}
278
4ed5e82f
MS
279static int mnt_is_readonly(struct vfsmount *mnt)
280{
281 if (mnt->mnt_sb->s_readonly_remount)
282 return 1;
283 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
284 smp_rmb();
285 return __mnt_is_readonly(mnt);
286}
287
8366025e 288/*
eb04c282
JK
289 * Most r/o & frozen checks on a fs are for operations that take discrete
290 * amounts of time, like a write() or unlink(). We must keep track of when
291 * those operations start (for permission checks) and when they end, so that we
292 * can determine when writes are able to occur to a filesystem.
8366025e
DH
293 */
294/**
eb04c282 295 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 296 * @m: the mount on which to take a write
8366025e 297 *
eb04c282
JK
298 * This tells the low-level filesystem that a write is about to be performed to
299 * it, and makes sure that writes are allowed (mnt it read-write) before
300 * returning success. This operation does not protect against filesystem being
301 * frozen. When the write operation is finished, __mnt_drop_write() must be
302 * called. This is effectively a refcount.
8366025e 303 */
eb04c282 304int __mnt_want_write(struct vfsmount *m)
8366025e 305{
83adc753 306 struct mount *mnt = real_mount(m);
3d733633 307 int ret = 0;
3d733633 308
d3ef3d73 309 preempt_disable();
c6653a83 310 mnt_inc_writers(mnt);
d3ef3d73 311 /*
c6653a83 312 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 313 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
314 * incremented count after it has set MNT_WRITE_HOLD.
315 */
316 smp_mb();
1e75529e 317 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 318 cpu_relax();
319 /*
320 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
321 * be set to match its requirements. So we must not load that until
322 * MNT_WRITE_HOLD is cleared.
323 */
324 smp_rmb();
4ed5e82f 325 if (mnt_is_readonly(m)) {
c6653a83 326 mnt_dec_writers(mnt);
3d733633 327 ret = -EROFS;
3d733633 328 }
d3ef3d73 329 preempt_enable();
eb04c282
JK
330
331 return ret;
332}
333
334/**
335 * mnt_want_write - get write access to a mount
336 * @m: the mount on which to take a write
337 *
338 * This tells the low-level filesystem that a write is about to be performed to
339 * it, and makes sure that writes are allowed (mount is read-write, filesystem
340 * is not frozen) before returning success. When the write operation is
341 * finished, mnt_drop_write() must be called. This is effectively a refcount.
342 */
343int mnt_want_write(struct vfsmount *m)
344{
345 int ret;
346
347 sb_start_write(m->mnt_sb);
348 ret = __mnt_want_write(m);
349 if (ret)
350 sb_end_write(m->mnt_sb);
3d733633 351 return ret;
8366025e
DH
352}
353EXPORT_SYMBOL_GPL(mnt_want_write);
354
96029c4e 355/**
356 * mnt_clone_write - get write access to a mount
357 * @mnt: the mount on which to take a write
358 *
359 * This is effectively like mnt_want_write, except
360 * it must only be used to take an extra write reference
361 * on a mountpoint that we already know has a write reference
362 * on it. This allows some optimisation.
363 *
364 * After finished, mnt_drop_write must be called as usual to
365 * drop the reference.
366 */
367int mnt_clone_write(struct vfsmount *mnt)
368{
369 /* superblock may be r/o */
370 if (__mnt_is_readonly(mnt))
371 return -EROFS;
372 preempt_disable();
83adc753 373 mnt_inc_writers(real_mount(mnt));
96029c4e 374 preempt_enable();
375 return 0;
376}
377EXPORT_SYMBOL_GPL(mnt_clone_write);
378
379/**
eb04c282 380 * __mnt_want_write_file - get write access to a file's mount
96029c4e 381 * @file: the file who's mount on which to take a write
382 *
eb04c282 383 * This is like __mnt_want_write, but it takes a file and can
96029c4e 384 * do some optimisations if the file is open for write already
385 */
eb04c282 386int __mnt_want_write_file(struct file *file)
96029c4e 387{
496ad9aa 388 struct inode *inode = file_inode(file);
eb04c282 389
2d8dd38a 390 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 391 return __mnt_want_write(file->f_path.mnt);
96029c4e 392 else
393 return mnt_clone_write(file->f_path.mnt);
394}
eb04c282
JK
395
396/**
397 * mnt_want_write_file - get write access to a file's mount
398 * @file: the file who's mount on which to take a write
399 *
400 * This is like mnt_want_write, but it takes a file and can
401 * do some optimisations if the file is open for write already
402 */
403int mnt_want_write_file(struct file *file)
404{
405 int ret;
406
407 sb_start_write(file->f_path.mnt->mnt_sb);
408 ret = __mnt_want_write_file(file);
409 if (ret)
410 sb_end_write(file->f_path.mnt->mnt_sb);
411 return ret;
412}
96029c4e 413EXPORT_SYMBOL_GPL(mnt_want_write_file);
414
8366025e 415/**
eb04c282 416 * __mnt_drop_write - give up write access to a mount
8366025e
DH
417 * @mnt: the mount on which to give up write access
418 *
419 * Tells the low-level filesystem that we are done
420 * performing writes to it. Must be matched with
eb04c282 421 * __mnt_want_write() call above.
8366025e 422 */
eb04c282 423void __mnt_drop_write(struct vfsmount *mnt)
8366025e 424{
d3ef3d73 425 preempt_disable();
83adc753 426 mnt_dec_writers(real_mount(mnt));
d3ef3d73 427 preempt_enable();
8366025e 428}
eb04c282
JK
429
430/**
431 * mnt_drop_write - give up write access to a mount
432 * @mnt: the mount on which to give up write access
433 *
434 * Tells the low-level filesystem that we are done performing writes to it and
435 * also allows filesystem to be frozen again. Must be matched with
436 * mnt_want_write() call above.
437 */
438void mnt_drop_write(struct vfsmount *mnt)
439{
440 __mnt_drop_write(mnt);
441 sb_end_write(mnt->mnt_sb);
442}
8366025e
DH
443EXPORT_SYMBOL_GPL(mnt_drop_write);
444
eb04c282
JK
445void __mnt_drop_write_file(struct file *file)
446{
447 __mnt_drop_write(file->f_path.mnt);
448}
449
2a79f17e
AV
450void mnt_drop_write_file(struct file *file)
451{
452 mnt_drop_write(file->f_path.mnt);
453}
454EXPORT_SYMBOL(mnt_drop_write_file);
455
83adc753 456static int mnt_make_readonly(struct mount *mnt)
8366025e 457{
3d733633
DH
458 int ret = 0;
459
962830df 460 br_write_lock(&vfsmount_lock);
83adc753 461 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 462 /*
d3ef3d73 463 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
464 * should be visible before we do.
3d733633 465 */
d3ef3d73 466 smp_mb();
467
3d733633 468 /*
d3ef3d73 469 * With writers on hold, if this value is zero, then there are
470 * definitely no active writers (although held writers may subsequently
471 * increment the count, they'll have to wait, and decrement it after
472 * seeing MNT_READONLY).
473 *
474 * It is OK to have counter incremented on one CPU and decremented on
475 * another: the sum will add up correctly. The danger would be when we
476 * sum up each counter, if we read a counter before it is incremented,
477 * but then read another CPU's count which it has been subsequently
478 * decremented from -- we would see more decrements than we should.
479 * MNT_WRITE_HOLD protects against this scenario, because
480 * mnt_want_write first increments count, then smp_mb, then spins on
481 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
482 * we're counting up here.
3d733633 483 */
c6653a83 484 if (mnt_get_writers(mnt) > 0)
d3ef3d73 485 ret = -EBUSY;
486 else
83adc753 487 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 488 /*
489 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
490 * that become unheld will see MNT_READONLY.
491 */
492 smp_wmb();
83adc753 493 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 494 br_write_unlock(&vfsmount_lock);
3d733633 495 return ret;
8366025e 496}
8366025e 497
83adc753 498static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 499{
962830df 500 br_write_lock(&vfsmount_lock);
83adc753 501 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 502 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
503}
504
4ed5e82f
MS
505int sb_prepare_remount_readonly(struct super_block *sb)
506{
507 struct mount *mnt;
508 int err = 0;
509
8e8b8796
MS
510 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
511 if (atomic_long_read(&sb->s_remove_count))
512 return -EBUSY;
513
962830df 514 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
515 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
516 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
517 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
518 smp_mb();
519 if (mnt_get_writers(mnt) > 0) {
520 err = -EBUSY;
521 break;
522 }
523 }
524 }
8e8b8796
MS
525 if (!err && atomic_long_read(&sb->s_remove_count))
526 err = -EBUSY;
527
4ed5e82f
MS
528 if (!err) {
529 sb->s_readonly_remount = 1;
530 smp_wmb();
531 }
532 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 }
962830df 536 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
537
538 return err;
539}
540
b105e270 541static void free_vfsmnt(struct mount *mnt)
1da177e4 542{
52ba1621 543 kfree(mnt->mnt_devname);
73cd49ec 544 mnt_free_id(mnt);
d3ef3d73 545#ifdef CONFIG_SMP
68e8a9fe 546 free_percpu(mnt->mnt_pcp);
d3ef3d73 547#endif
b105e270 548 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
549}
550
551/*
a05964f3
RP
552 * find the first or last mount at @dentry on vfsmount @mnt depending on
553 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 554 * vfsmount_lock must be held for read or write.
1da177e4 555 */
c7105365 556struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 557 int dir)
1da177e4 558{
b58fed8b
RP
559 struct list_head *head = mount_hashtable + hash(mnt, dentry);
560 struct list_head *tmp = head;
c7105365 561 struct mount *p, *found = NULL;
1da177e4 562
1da177e4 563 for (;;) {
a05964f3 564 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
565 p = NULL;
566 if (tmp == head)
567 break;
1b8e5564 568 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 569 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 570 found = p;
1da177e4
LT
571 break;
572 }
573 }
1da177e4
LT
574 return found;
575}
576
a05964f3 577/*
f015f126
DH
578 * lookup_mnt - Return the first child mount mounted at path
579 *
580 * "First" means first mounted chronologically. If you create the
581 * following mounts:
582 *
583 * mount /dev/sda1 /mnt
584 * mount /dev/sda2 /mnt
585 * mount /dev/sda3 /mnt
586 *
587 * Then lookup_mnt() on the base /mnt dentry in the root mount will
588 * return successively the root dentry and vfsmount of /dev/sda1, then
589 * /dev/sda2, then /dev/sda3, then NULL.
590 *
591 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 592 */
1c755af4 593struct vfsmount *lookup_mnt(struct path *path)
a05964f3 594{
c7105365 595 struct mount *child_mnt;
99b7db7b 596
962830df 597 br_read_lock(&vfsmount_lock);
c7105365
AV
598 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
599 if (child_mnt) {
600 mnt_add_count(child_mnt, 1);
962830df 601 br_read_unlock(&vfsmount_lock);
c7105365
AV
602 return &child_mnt->mnt;
603 } else {
962830df 604 br_read_unlock(&vfsmount_lock);
c7105365
AV
605 return NULL;
606 }
a05964f3
RP
607}
608
84d17192
AV
609static struct mountpoint *new_mountpoint(struct dentry *dentry)
610{
611 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
612 struct mountpoint *mp;
613
614 list_for_each_entry(mp, chain, m_hash) {
615 if (mp->m_dentry == dentry) {
616 /* might be worth a WARN_ON() */
617 if (d_unlinked(dentry))
618 return ERR_PTR(-ENOENT);
619 mp->m_count++;
620 return mp;
621 }
622 }
623
624 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
625 if (!mp)
626 return ERR_PTR(-ENOMEM);
627
628 spin_lock(&dentry->d_lock);
629 if (d_unlinked(dentry)) {
630 spin_unlock(&dentry->d_lock);
631 kfree(mp);
632 return ERR_PTR(-ENOENT);
633 }
634 dentry->d_flags |= DCACHE_MOUNTED;
635 spin_unlock(&dentry->d_lock);
636 mp->m_dentry = dentry;
637 mp->m_count = 1;
638 list_add(&mp->m_hash, chain);
639 return mp;
640}
641
642static void put_mountpoint(struct mountpoint *mp)
643{
644 if (!--mp->m_count) {
645 struct dentry *dentry = mp->m_dentry;
646 spin_lock(&dentry->d_lock);
647 dentry->d_flags &= ~DCACHE_MOUNTED;
648 spin_unlock(&dentry->d_lock);
649 list_del(&mp->m_hash);
650 kfree(mp);
651 }
652}
653
143c8c91 654static inline int check_mnt(struct mount *mnt)
1da177e4 655{
6b3286ed 656 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
657}
658
99b7db7b
NP
659/*
660 * vfsmount lock must be held for write
661 */
6b3286ed 662static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
663{
664 if (ns) {
665 ns->event = ++event;
666 wake_up_interruptible(&ns->poll);
667 }
668}
669
99b7db7b
NP
670/*
671 * vfsmount lock must be held for write
672 */
6b3286ed 673static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
674{
675 if (ns && ns->event != event) {
676 ns->event = event;
677 wake_up_interruptible(&ns->poll);
678 }
679}
680
99b7db7b
NP
681/*
682 * vfsmount lock must be held for write
683 */
419148da
AV
684static void detach_mnt(struct mount *mnt, struct path *old_path)
685{
a73324da 686 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
687 old_path->mnt = &mnt->mnt_parent->mnt;
688 mnt->mnt_parent = mnt;
a73324da 689 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 690 list_del_init(&mnt->mnt_child);
1b8e5564 691 list_del_init(&mnt->mnt_hash);
84d17192
AV
692 put_mountpoint(mnt->mnt_mp);
693 mnt->mnt_mp = NULL;
1da177e4
LT
694}
695
99b7db7b
NP
696/*
697 * vfsmount lock must be held for write
698 */
84d17192
AV
699void mnt_set_mountpoint(struct mount *mnt,
700 struct mountpoint *mp,
44d964d6 701 struct mount *child_mnt)
b90fa9ae 702{
84d17192 703 mp->m_count++;
3a2393d7 704 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 705 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 706 child_mnt->mnt_parent = mnt;
84d17192 707 child_mnt->mnt_mp = mp;
b90fa9ae
RP
708}
709
99b7db7b
NP
710/*
711 * vfsmount lock must be held for write
712 */
84d17192
AV
713static void attach_mnt(struct mount *mnt,
714 struct mount *parent,
715 struct mountpoint *mp)
1da177e4 716{
84d17192 717 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 718 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
719 hash(&parent->mnt, mp->m_dentry));
720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
721}
722
723/*
99b7db7b 724 * vfsmount lock must be held for write
b90fa9ae 725 */
4b2619a5 726static void commit_tree(struct mount *mnt)
b90fa9ae 727{
0714a533 728 struct mount *parent = mnt->mnt_parent;
83adc753 729 struct mount *m;
b90fa9ae 730 LIST_HEAD(head);
143c8c91 731 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 732
0714a533 733 BUG_ON(parent == mnt);
b90fa9ae 734
1a4eeaf2 735 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 736 list_for_each_entry(m, &head, mnt_list)
143c8c91 737 m->mnt_ns = n;
f03c6599 738
b90fa9ae
RP
739 list_splice(&head, n->list.prev);
740
1b8e5564 741 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 742 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 744 touch_mnt_namespace(n);
1da177e4
LT
745}
746
909b0a88 747static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 748{
6b41d536
AV
749 struct list_head *next = p->mnt_mounts.next;
750 if (next == &p->mnt_mounts) {
1da177e4 751 while (1) {
909b0a88 752 if (p == root)
1da177e4 753 return NULL;
6b41d536
AV
754 next = p->mnt_child.next;
755 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 756 break;
0714a533 757 p = p->mnt_parent;
1da177e4
LT
758 }
759 }
6b41d536 760 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
761}
762
315fc83e 763static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 764{
6b41d536
AV
765 struct list_head *prev = p->mnt_mounts.prev;
766 while (prev != &p->mnt_mounts) {
767 p = list_entry(prev, struct mount, mnt_child);
768 prev = p->mnt_mounts.prev;
9676f0c6
RP
769 }
770 return p;
771}
772
9d412a43
AV
773struct vfsmount *
774vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
775{
b105e270 776 struct mount *mnt;
9d412a43
AV
777 struct dentry *root;
778
779 if (!type)
780 return ERR_PTR(-ENODEV);
781
782 mnt = alloc_vfsmnt(name);
783 if (!mnt)
784 return ERR_PTR(-ENOMEM);
785
786 if (flags & MS_KERNMOUNT)
b105e270 787 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
788
789 root = mount_fs(type, flags, name, data);
790 if (IS_ERR(root)) {
791 free_vfsmnt(mnt);
792 return ERR_CAST(root);
793 }
794
b105e270
AV
795 mnt->mnt.mnt_root = root;
796 mnt->mnt.mnt_sb = root->d_sb;
a73324da 797 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 798 mnt->mnt_parent = mnt;
962830df 799 br_write_lock(&vfsmount_lock);
39f7c4db 800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 801 br_write_unlock(&vfsmount_lock);
b105e270 802 return &mnt->mnt;
9d412a43
AV
803}
804EXPORT_SYMBOL_GPL(vfs_kern_mount);
805
87129cc0 806static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 807 int flag)
1da177e4 808{
87129cc0 809 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
810 struct mount *mnt;
811 int err;
1da177e4 812
be34d1a3
DH
813 mnt = alloc_vfsmnt(old->mnt_devname);
814 if (!mnt)
815 return ERR_PTR(-ENOMEM);
719f5d7f 816
7a472ef4 817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
818 mnt->mnt_group_id = 0; /* not a peer of original */
819 else
820 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 821
be34d1a3
DH
822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
823 err = mnt_alloc_group_id(mnt);
824 if (err)
825 goto out_free;
1da177e4 826 }
be34d1a3
DH
827
828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
829 atomic_inc(&sb->s_active);
830 mnt->mnt.mnt_sb = sb;
831 mnt->mnt.mnt_root = dget(root);
832 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 mnt->mnt_parent = mnt;
834 br_write_lock(&vfsmount_lock);
835 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
836 br_write_unlock(&vfsmount_lock);
837
7a472ef4
EB
838 if ((flag & CL_SLAVE) ||
839 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
840 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
841 mnt->mnt_master = old;
842 CLEAR_MNT_SHARED(mnt);
843 } else if (!(flag & CL_PRIVATE)) {
844 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
845 list_add(&mnt->mnt_share, &old->mnt_share);
846 if (IS_MNT_SLAVE(old))
847 list_add(&mnt->mnt_slave, &old->mnt_slave);
848 mnt->mnt_master = old->mnt_master;
849 }
850 if (flag & CL_MAKE_SHARED)
851 set_mnt_shared(mnt);
852
853 /* stick the duplicate mount on the same expiry list
854 * as the original if that was on one */
855 if (flag & CL_EXPIRE) {
856 if (!list_empty(&old->mnt_expire))
857 list_add(&mnt->mnt_expire, &old->mnt_expire);
858 }
859
cb338d06 860 return mnt;
719f5d7f
MS
861
862 out_free:
863 free_vfsmnt(mnt);
be34d1a3 864 return ERR_PTR(err);
1da177e4
LT
865}
866
83adc753 867static inline void mntfree(struct mount *mnt)
1da177e4 868{
83adc753
AV
869 struct vfsmount *m = &mnt->mnt;
870 struct super_block *sb = m->mnt_sb;
b3e19d92 871
3d733633
DH
872 /*
873 * This probably indicates that somebody messed
874 * up a mnt_want/drop_write() pair. If this
875 * happens, the filesystem was probably unable
876 * to make r/w->r/o transitions.
877 */
d3ef3d73 878 /*
b3e19d92
NP
879 * The locking used to deal with mnt_count decrement provides barriers,
880 * so mnt_get_writers() below is safe.
d3ef3d73 881 */
c6653a83 882 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
883 fsnotify_vfsmount_delete(m);
884 dput(m->mnt_root);
885 free_vfsmnt(mnt);
1da177e4
LT
886 deactivate_super(sb);
887}
888
900148dc 889static void mntput_no_expire(struct mount *mnt)
b3e19d92 890{
b3e19d92 891put_again:
f03c6599 892#ifdef CONFIG_SMP
962830df 893 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
894 if (likely(mnt->mnt_ns)) {
895 /* shouldn't be the last one */
aa9c0e07 896 mnt_add_count(mnt, -1);
962830df 897 br_read_unlock(&vfsmount_lock);
f03c6599 898 return;
b3e19d92 899 }
962830df 900 br_read_unlock(&vfsmount_lock);
b3e19d92 901
962830df 902 br_write_lock(&vfsmount_lock);
aa9c0e07 903 mnt_add_count(mnt, -1);
b3e19d92 904 if (mnt_get_count(mnt)) {
962830df 905 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
906 return;
907 }
b3e19d92 908#else
aa9c0e07 909 mnt_add_count(mnt, -1);
b3e19d92 910 if (likely(mnt_get_count(mnt)))
99b7db7b 911 return;
962830df 912 br_write_lock(&vfsmount_lock);
f03c6599 913#endif
863d684f
AV
914 if (unlikely(mnt->mnt_pinned)) {
915 mnt_add_count(mnt, mnt->mnt_pinned + 1);
916 mnt->mnt_pinned = 0;
962830df 917 br_write_unlock(&vfsmount_lock);
900148dc 918 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 919 goto put_again;
7b7b1ace 920 }
962830df 921
39f7c4db 922 list_del(&mnt->mnt_instance);
962830df 923 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
924 mntfree(mnt);
925}
b3e19d92
NP
926
927void mntput(struct vfsmount *mnt)
928{
929 if (mnt) {
863d684f 930 struct mount *m = real_mount(mnt);
b3e19d92 931 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
932 if (unlikely(m->mnt_expiry_mark))
933 m->mnt_expiry_mark = 0;
934 mntput_no_expire(m);
b3e19d92
NP
935 }
936}
937EXPORT_SYMBOL(mntput);
938
939struct vfsmount *mntget(struct vfsmount *mnt)
940{
941 if (mnt)
83adc753 942 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
943 return mnt;
944}
945EXPORT_SYMBOL(mntget);
946
7b7b1ace
AV
947void mnt_pin(struct vfsmount *mnt)
948{
962830df 949 br_write_lock(&vfsmount_lock);
863d684f 950 real_mount(mnt)->mnt_pinned++;
962830df 951 br_write_unlock(&vfsmount_lock);
7b7b1ace 952}
7b7b1ace
AV
953EXPORT_SYMBOL(mnt_pin);
954
863d684f 955void mnt_unpin(struct vfsmount *m)
7b7b1ace 956{
863d684f 957 struct mount *mnt = real_mount(m);
962830df 958 br_write_lock(&vfsmount_lock);
7b7b1ace 959 if (mnt->mnt_pinned) {
863d684f 960 mnt_add_count(mnt, 1);
7b7b1ace
AV
961 mnt->mnt_pinned--;
962 }
962830df 963 br_write_unlock(&vfsmount_lock);
7b7b1ace 964}
7b7b1ace 965EXPORT_SYMBOL(mnt_unpin);
1da177e4 966
b3b304a2
MS
967static inline void mangle(struct seq_file *m, const char *s)
968{
969 seq_escape(m, s, " \t\n\\");
970}
971
972/*
973 * Simple .show_options callback for filesystems which don't want to
974 * implement more complex mount option showing.
975 *
976 * See also save_mount_options().
977 */
34c80b1d 978int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 979{
2a32cebd
AV
980 const char *options;
981
982 rcu_read_lock();
34c80b1d 983 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
984
985 if (options != NULL && options[0]) {
986 seq_putc(m, ',');
987 mangle(m, options);
988 }
2a32cebd 989 rcu_read_unlock();
b3b304a2
MS
990
991 return 0;
992}
993EXPORT_SYMBOL(generic_show_options);
994
995/*
996 * If filesystem uses generic_show_options(), this function should be
997 * called from the fill_super() callback.
998 *
999 * The .remount_fs callback usually needs to be handled in a special
1000 * way, to make sure, that previous options are not overwritten if the
1001 * remount fails.
1002 *
1003 * Also note, that if the filesystem's .remount_fs function doesn't
1004 * reset all options to their default value, but changes only newly
1005 * given options, then the displayed options will not reflect reality
1006 * any more.
1007 */
1008void save_mount_options(struct super_block *sb, char *options)
1009{
2a32cebd
AV
1010 BUG_ON(sb->s_options);
1011 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1012}
1013EXPORT_SYMBOL(save_mount_options);
1014
2a32cebd
AV
1015void replace_mount_options(struct super_block *sb, char *options)
1016{
1017 char *old = sb->s_options;
1018 rcu_assign_pointer(sb->s_options, options);
1019 if (old) {
1020 synchronize_rcu();
1021 kfree(old);
1022 }
1023}
1024EXPORT_SYMBOL(replace_mount_options);
1025
a1a2c409 1026#ifdef CONFIG_PROC_FS
0226f492 1027/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1028static void *m_start(struct seq_file *m, loff_t *pos)
1029{
6ce6e24e 1030 struct proc_mounts *p = proc_mounts(m);
1da177e4 1031
390c6843 1032 down_read(&namespace_sem);
a1a2c409 1033 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1034}
1035
1036static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1037{
6ce6e24e 1038 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1039
a1a2c409 1040 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1041}
1042
1043static void m_stop(struct seq_file *m, void *v)
1044{
390c6843 1045 up_read(&namespace_sem);
1da177e4
LT
1046}
1047
0226f492 1048static int m_show(struct seq_file *m, void *v)
2d4d4864 1049{
6ce6e24e 1050 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1051 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1052 return p->show(m, &r->mnt);
1da177e4
LT
1053}
1054
a1a2c409 1055const struct seq_operations mounts_op = {
1da177e4
LT
1056 .start = m_start,
1057 .next = m_next,
1058 .stop = m_stop,
0226f492 1059 .show = m_show,
b4629fe2 1060};
a1a2c409 1061#endif /* CONFIG_PROC_FS */
b4629fe2 1062
1da177e4
LT
1063/**
1064 * may_umount_tree - check if a mount tree is busy
1065 * @mnt: root of mount tree
1066 *
1067 * This is called to check if a tree of mounts has any
1068 * open files, pwds, chroots or sub mounts that are
1069 * busy.
1070 */
909b0a88 1071int may_umount_tree(struct vfsmount *m)
1da177e4 1072{
909b0a88 1073 struct mount *mnt = real_mount(m);
36341f64
RP
1074 int actual_refs = 0;
1075 int minimum_refs = 0;
315fc83e 1076 struct mount *p;
909b0a88 1077 BUG_ON(!m);
1da177e4 1078
b3e19d92 1079 /* write lock needed for mnt_get_count */
962830df 1080 br_write_lock(&vfsmount_lock);
909b0a88 1081 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1082 actual_refs += mnt_get_count(p);
1da177e4 1083 minimum_refs += 2;
1da177e4 1084 }
962830df 1085 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1086
1087 if (actual_refs > minimum_refs)
e3474a8e 1088 return 0;
1da177e4 1089
e3474a8e 1090 return 1;
1da177e4
LT
1091}
1092
1093EXPORT_SYMBOL(may_umount_tree);
1094
1095/**
1096 * may_umount - check if a mount point is busy
1097 * @mnt: root of mount
1098 *
1099 * This is called to check if a mount point has any
1100 * open files, pwds, chroots or sub mounts. If the
1101 * mount has sub mounts this will return busy
1102 * regardless of whether the sub mounts are busy.
1103 *
1104 * Doesn't take quota and stuff into account. IOW, in some cases it will
1105 * give false negatives. The main reason why it's here is that we need
1106 * a non-destructive way to look for easily umountable filesystems.
1107 */
1108int may_umount(struct vfsmount *mnt)
1109{
e3474a8e 1110 int ret = 1;
8ad08d8a 1111 down_read(&namespace_sem);
962830df 1112 br_write_lock(&vfsmount_lock);
1ab59738 1113 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1114 ret = 0;
962830df 1115 br_write_unlock(&vfsmount_lock);
8ad08d8a 1116 up_read(&namespace_sem);
a05964f3 1117 return ret;
1da177e4
LT
1118}
1119
1120EXPORT_SYMBOL(may_umount);
1121
e3197d83
AV
1122static LIST_HEAD(unmounted); /* protected by namespace_sem */
1123
b90fa9ae 1124void release_mounts(struct list_head *head)
70fbcdf4 1125{
d5e50f74 1126 struct mount *mnt;
bf066c7d 1127 while (!list_empty(head)) {
1b8e5564
AV
1128 mnt = list_first_entry(head, struct mount, mnt_hash);
1129 list_del_init(&mnt->mnt_hash);
676da58d 1130 if (mnt_has_parent(mnt)) {
70fbcdf4 1131 struct dentry *dentry;
863d684f 1132 struct mount *m;
99b7db7b 1133
962830df 1134 br_write_lock(&vfsmount_lock);
a73324da 1135 dentry = mnt->mnt_mountpoint;
863d684f 1136 m = mnt->mnt_parent;
a73324da 1137 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1138 mnt->mnt_parent = mnt;
7c4b93d8 1139 m->mnt_ghosts--;
962830df 1140 br_write_unlock(&vfsmount_lock);
70fbcdf4 1141 dput(dentry);
863d684f 1142 mntput(&m->mnt);
70fbcdf4 1143 }
d5e50f74 1144 mntput(&mnt->mnt);
70fbcdf4
RP
1145 }
1146}
1147
e3197d83
AV
1148static void namespace_unlock(void)
1149{
1150 LIST_HEAD(head);
1151 list_splice_init(&unmounted, &head);
1152 up_write(&namespace_sem);
1153 release_mounts(&head);
1154}
1155
99b7db7b
NP
1156/*
1157 * vfsmount lock must be held for write
1158 * namespace_sem must be held for write
1159 */
761d5c38 1160void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1161{
7b8a53fd 1162 LIST_HEAD(tmp_list);
315fc83e 1163 struct mount *p;
1da177e4 1164
909b0a88 1165 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1166 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1167
a05964f3 1168 if (propagate)
7b8a53fd 1169 propagate_umount(&tmp_list);
a05964f3 1170
1b8e5564 1171 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1172 list_del_init(&p->mnt_expire);
1a4eeaf2 1173 list_del_init(&p->mnt_list);
143c8c91
AV
1174 __touch_mnt_namespace(p->mnt_ns);
1175 p->mnt_ns = NULL;
6b41d536 1176 list_del_init(&p->mnt_child);
676da58d 1177 if (mnt_has_parent(p)) {
863d684f 1178 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1179 put_mountpoint(p->mnt_mp);
1180 p->mnt_mp = NULL;
7c4b93d8 1181 }
0f0afb1d 1182 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1183 }
7b8a53fd 1184 list_splice(&tmp_list, kill);
1da177e4
LT
1185}
1186
b54b9be7 1187static void shrink_submounts(struct mount *mnt);
c35038be 1188
1ab59738 1189static int do_umount(struct mount *mnt, int flags)
1da177e4 1190{
1ab59738 1191 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1192 int retval;
70fbcdf4 1193 LIST_HEAD(umount_list);
1da177e4 1194
1ab59738 1195 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1196 if (retval)
1197 return retval;
1198
1199 /*
1200 * Allow userspace to request a mountpoint be expired rather than
1201 * unmounting unconditionally. Unmount only happens if:
1202 * (1) the mark is already set (the mark is cleared by mntput())
1203 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1204 */
1205 if (flags & MNT_EXPIRE) {
1ab59738 1206 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1207 flags & (MNT_FORCE | MNT_DETACH))
1208 return -EINVAL;
1209
b3e19d92
NP
1210 /*
1211 * probably don't strictly need the lock here if we examined
1212 * all race cases, but it's a slowpath.
1213 */
962830df 1214 br_write_lock(&vfsmount_lock);
83adc753 1215 if (mnt_get_count(mnt) != 2) {
962830df 1216 br_write_unlock(&vfsmount_lock);
1da177e4 1217 return -EBUSY;
b3e19d92 1218 }
962830df 1219 br_write_unlock(&vfsmount_lock);
1da177e4 1220
863d684f 1221 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1222 return -EAGAIN;
1223 }
1224
1225 /*
1226 * If we may have to abort operations to get out of this
1227 * mount, and they will themselves hold resources we must
1228 * allow the fs to do things. In the Unix tradition of
1229 * 'Gee thats tricky lets do it in userspace' the umount_begin
1230 * might fail to complete on the first run through as other tasks
1231 * must return, and the like. Thats for the mount program to worry
1232 * about for the moment.
1233 */
1234
42faad99 1235 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1236 sb->s_op->umount_begin(sb);
42faad99 1237 }
1da177e4
LT
1238
1239 /*
1240 * No sense to grab the lock for this test, but test itself looks
1241 * somewhat bogus. Suggestions for better replacement?
1242 * Ho-hum... In principle, we might treat that as umount + switch
1243 * to rootfs. GC would eventually take care of the old vfsmount.
1244 * Actually it makes sense, especially if rootfs would contain a
1245 * /reboot - static binary that would close all descriptors and
1246 * call reboot(9). Then init(8) could umount root and exec /reboot.
1247 */
1ab59738 1248 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1249 /*
1250 * Special case for "unmounting" root ...
1251 * we just try to remount it readonly.
1252 */
1253 down_write(&sb->s_umount);
4aa98cf7 1254 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1255 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1256 up_write(&sb->s_umount);
1257 return retval;
1258 }
1259
390c6843 1260 down_write(&namespace_sem);
962830df 1261 br_write_lock(&vfsmount_lock);
5addc5dd 1262 event++;
1da177e4 1263
c35038be 1264 if (!(flags & MNT_DETACH))
b54b9be7 1265 shrink_submounts(mnt);
c35038be 1266
1da177e4 1267 retval = -EBUSY;
a05964f3 1268 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1269 if (!list_empty(&mnt->mnt_list))
e3197d83 1270 umount_tree(mnt, 1, &unmounted);
1da177e4
LT
1271 retval = 0;
1272 }
962830df 1273 br_write_unlock(&vfsmount_lock);
e3197d83 1274 namespace_unlock();
1da177e4
LT
1275 return retval;
1276}
1277
9b40bc90
AV
1278/*
1279 * Is the caller allowed to modify his namespace?
1280 */
1281static inline bool may_mount(void)
1282{
1283 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1284}
1285
1da177e4
LT
1286/*
1287 * Now umount can handle mount points as well as block devices.
1288 * This is important for filesystems which use unnamed block devices.
1289 *
1290 * We now support a flag for forced unmount like the other 'big iron'
1291 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1292 */
1293
bdc480e3 1294SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1295{
2d8f3038 1296 struct path path;
900148dc 1297 struct mount *mnt;
1da177e4 1298 int retval;
db1f05bb 1299 int lookup_flags = 0;
1da177e4 1300
db1f05bb
MS
1301 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1302 return -EINVAL;
1303
9b40bc90
AV
1304 if (!may_mount())
1305 return -EPERM;
1306
db1f05bb
MS
1307 if (!(flags & UMOUNT_NOFOLLOW))
1308 lookup_flags |= LOOKUP_FOLLOW;
1309
1310 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1311 if (retval)
1312 goto out;
900148dc 1313 mnt = real_mount(path.mnt);
1da177e4 1314 retval = -EINVAL;
2d8f3038 1315 if (path.dentry != path.mnt->mnt_root)
1da177e4 1316 goto dput_and_out;
143c8c91 1317 if (!check_mnt(mnt))
1da177e4
LT
1318 goto dput_and_out;
1319
900148dc 1320 retval = do_umount(mnt, flags);
1da177e4 1321dput_and_out:
429731b1 1322 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1323 dput(path.dentry);
900148dc 1324 mntput_no_expire(mnt);
1da177e4
LT
1325out:
1326 return retval;
1327}
1328
1329#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1330
1331/*
b58fed8b 1332 * The 2.0 compatible umount. No flags.
1da177e4 1333 */
bdc480e3 1334SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1335{
b58fed8b 1336 return sys_umount(name, 0);
1da177e4
LT
1337}
1338
1339#endif
1340
8823c079
EB
1341static bool mnt_ns_loop(struct path *path)
1342{
1343 /* Could bind mounting the mount namespace inode cause a
1344 * mount namespace loop?
1345 */
1346 struct inode *inode = path->dentry->d_inode;
1347 struct proc_inode *ei;
1348 struct mnt_namespace *mnt_ns;
1349
1350 if (!proc_ns_inode(inode))
1351 return false;
1352
1353 ei = PROC_I(inode);
1354 if (ei->ns_ops != &mntns_operations)
1355 return false;
1356
1357 mnt_ns = ei->ns;
1358 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1359}
1360
87129cc0 1361struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1362 int flag)
1da177e4 1363{
84d17192 1364 struct mount *res, *p, *q, *r, *parent;
1da177e4 1365
fc7be130 1366 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1367 return ERR_PTR(-EINVAL);
9676f0c6 1368
36341f64 1369 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1370 if (IS_ERR(q))
1371 return q;
1372
a73324da 1373 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1374
1375 p = mnt;
6b41d536 1376 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1377 struct mount *s;
7ec02ef1 1378 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1379 continue;
1380
909b0a88 1381 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1382 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1383 s = skip_mnt_tree(s);
1384 continue;
1385 }
0714a533
AV
1386 while (p != s->mnt_parent) {
1387 p = p->mnt_parent;
1388 q = q->mnt_parent;
1da177e4 1389 }
87129cc0 1390 p = s;
84d17192 1391 parent = q;
87129cc0 1392 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1393 if (IS_ERR(q))
1394 goto out;
962830df 1395 br_write_lock(&vfsmount_lock);
1a4eeaf2 1396 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1397 attach_mnt(q, parent, p->mnt_mp);
962830df 1398 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1399 }
1400 }
1401 return res;
be34d1a3 1402out:
1da177e4 1403 if (res) {
70fbcdf4 1404 LIST_HEAD(umount_list);
962830df 1405 br_write_lock(&vfsmount_lock);
761d5c38 1406 umount_tree(res, 0, &umount_list);
962830df 1407 br_write_unlock(&vfsmount_lock);
70fbcdf4 1408 release_mounts(&umount_list);
1da177e4 1409 }
be34d1a3 1410 return q;
1da177e4
LT
1411}
1412
be34d1a3
DH
1413/* Caller should check returned pointer for errors */
1414
589ff870 1415struct vfsmount *collect_mounts(struct path *path)
8aec0809 1416{
cb338d06 1417 struct mount *tree;
1a60a280 1418 down_write(&namespace_sem);
87129cc0
AV
1419 tree = copy_tree(real_mount(path->mnt), path->dentry,
1420 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1421 up_write(&namespace_sem);
be34d1a3
DH
1422 if (IS_ERR(tree))
1423 return NULL;
1424 return &tree->mnt;
8aec0809
AV
1425}
1426
1427void drop_collected_mounts(struct vfsmount *mnt)
1428{
1429 LIST_HEAD(umount_list);
1a60a280 1430 down_write(&namespace_sem);
962830df 1431 br_write_lock(&vfsmount_lock);
761d5c38 1432 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1433 br_write_unlock(&vfsmount_lock);
1a60a280 1434 up_write(&namespace_sem);
8aec0809
AV
1435 release_mounts(&umount_list);
1436}
1437
1f707137
AV
1438int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1439 struct vfsmount *root)
1440{
1a4eeaf2 1441 struct mount *mnt;
1f707137
AV
1442 int res = f(root, arg);
1443 if (res)
1444 return res;
1a4eeaf2
AV
1445 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1446 res = f(&mnt->mnt, arg);
1f707137
AV
1447 if (res)
1448 return res;
1449 }
1450 return 0;
1451}
1452
4b8b21f4 1453static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1454{
315fc83e 1455 struct mount *p;
719f5d7f 1456
909b0a88 1457 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1458 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1459 mnt_release_group_id(p);
719f5d7f
MS
1460 }
1461}
1462
4b8b21f4 1463static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1464{
315fc83e 1465 struct mount *p;
719f5d7f 1466
909b0a88 1467 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1468 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1469 int err = mnt_alloc_group_id(p);
719f5d7f 1470 if (err) {
4b8b21f4 1471 cleanup_group_ids(mnt, p);
719f5d7f
MS
1472 return err;
1473 }
1474 }
1475 }
1476
1477 return 0;
1478}
1479
b90fa9ae
RP
1480/*
1481 * @source_mnt : mount tree to be attached
21444403
RP
1482 * @nd : place the mount tree @source_mnt is attached
1483 * @parent_nd : if non-null, detach the source_mnt from its parent and
1484 * store the parent mount and mountpoint dentry.
1485 * (done when source_mnt is moved)
b90fa9ae
RP
1486 *
1487 * NOTE: in the table below explains the semantics when a source mount
1488 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1489 * ---------------------------------------------------------------------------
1490 * | BIND MOUNT OPERATION |
1491 * |**************************************************************************
1492 * | source-->| shared | private | slave | unbindable |
1493 * | dest | | | | |
1494 * | | | | | | |
1495 * | v | | | | |
1496 * |**************************************************************************
1497 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1498 * | | | | | |
1499 * |non-shared| shared (+) | private | slave (*) | invalid |
1500 * ***************************************************************************
b90fa9ae
RP
1501 * A bind operation clones the source mount and mounts the clone on the
1502 * destination mount.
1503 *
1504 * (++) the cloned mount is propagated to all the mounts in the propagation
1505 * tree of the destination mount and the cloned mount is added to
1506 * the peer group of the source mount.
1507 * (+) the cloned mount is created under the destination mount and is marked
1508 * as shared. The cloned mount is added to the peer group of the source
1509 * mount.
5afe0022
RP
1510 * (+++) the mount is propagated to all the mounts in the propagation tree
1511 * of the destination mount and the cloned mount is made slave
1512 * of the same master as that of the source mount. The cloned mount
1513 * is marked as 'shared and slave'.
1514 * (*) the cloned mount is made a slave of the same master as that of the
1515 * source mount.
1516 *
9676f0c6
RP
1517 * ---------------------------------------------------------------------------
1518 * | MOVE MOUNT OPERATION |
1519 * |**************************************************************************
1520 * | source-->| shared | private | slave | unbindable |
1521 * | dest | | | | |
1522 * | | | | | | |
1523 * | v | | | | |
1524 * |**************************************************************************
1525 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1526 * | | | | | |
1527 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1528 * ***************************************************************************
5afe0022
RP
1529 *
1530 * (+) the mount is moved to the destination. And is then propagated to
1531 * all the mounts in the propagation tree of the destination mount.
21444403 1532 * (+*) the mount is moved to the destination.
5afe0022
RP
1533 * (+++) the mount is moved to the destination and is then propagated to
1534 * all the mounts belonging to the destination mount's propagation tree.
1535 * the mount is marked as 'shared and slave'.
1536 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1537 *
1538 * if the source mount is a tree, the operations explained above is
1539 * applied to each mount in the tree.
1540 * Must be called without spinlocks held, since this function can sleep
1541 * in allocations.
1542 */
0fb54e50 1543static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1544 struct mount *dest_mnt,
1545 struct mountpoint *dest_mp,
1546 struct path *parent_path)
b90fa9ae
RP
1547{
1548 LIST_HEAD(tree_list);
315fc83e 1549 struct mount *child, *p;
719f5d7f 1550 int err;
b90fa9ae 1551
fc7be130 1552 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1553 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1554 if (err)
1555 goto out;
1556 }
84d17192 1557 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1558 if (err)
1559 goto out_cleanup_ids;
b90fa9ae 1560
962830df 1561 br_write_lock(&vfsmount_lock);
df1a1ad2 1562
fc7be130 1563 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1564 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1565 set_mnt_shared(p);
b90fa9ae 1566 }
1a390689 1567 if (parent_path) {
0fb54e50 1568 detach_mnt(source_mnt, parent_path);
84d17192 1569 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1570 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1571 } else {
84d17192 1572 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1573 commit_tree(source_mnt);
21444403 1574 }
b90fa9ae 1575
1b8e5564
AV
1576 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1577 list_del_init(&child->mnt_hash);
4b2619a5 1578 commit_tree(child);
b90fa9ae 1579 }
962830df 1580 br_write_unlock(&vfsmount_lock);
99b7db7b 1581
b90fa9ae 1582 return 0;
719f5d7f
MS
1583
1584 out_cleanup_ids:
fc7be130 1585 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1586 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1587 out:
1588 return err;
b90fa9ae
RP
1589}
1590
84d17192 1591static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1592{
1593 struct vfsmount *mnt;
84d17192 1594 struct dentry *dentry = path->dentry;
b12cea91 1595retry:
84d17192
AV
1596 mutex_lock(&dentry->d_inode->i_mutex);
1597 if (unlikely(cant_mount(dentry))) {
1598 mutex_unlock(&dentry->d_inode->i_mutex);
1599 return ERR_PTR(-ENOENT);
b12cea91
AV
1600 }
1601 down_write(&namespace_sem);
1602 mnt = lookup_mnt(path);
84d17192
AV
1603 if (likely(!mnt)) {
1604 struct mountpoint *mp = new_mountpoint(dentry);
1605 if (IS_ERR(mp)) {
1606 up_write(&namespace_sem);
1607 mutex_unlock(&dentry->d_inode->i_mutex);
1608 return mp;
1609 }
1610 return mp;
1611 }
b12cea91
AV
1612 up_write(&namespace_sem);
1613 mutex_unlock(&path->dentry->d_inode->i_mutex);
1614 path_put(path);
1615 path->mnt = mnt;
84d17192 1616 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1617 goto retry;
1618}
1619
84d17192 1620static void unlock_mount(struct mountpoint *where)
b12cea91 1621{
84d17192
AV
1622 struct dentry *dentry = where->m_dentry;
1623 put_mountpoint(where);
b12cea91 1624 up_write(&namespace_sem);
84d17192 1625 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1626}
1627
84d17192 1628static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1629{
95bc5f25 1630 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1631 return -EINVAL;
1632
84d17192 1633 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1634 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1635 return -ENOTDIR;
1636
84d17192 1637 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1638}
1639
7a2e8a8f
VA
1640/*
1641 * Sanity check the flags to change_mnt_propagation.
1642 */
1643
1644static int flags_to_propagation_type(int flags)
1645{
7c6e984d 1646 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1647
1648 /* Fail if any non-propagation flags are set */
1649 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1650 return 0;
1651 /* Only one propagation flag should be set */
1652 if (!is_power_of_2(type))
1653 return 0;
1654 return type;
1655}
1656
07b20889
RP
1657/*
1658 * recursively change the type of the mountpoint.
1659 */
0a0d8a46 1660static int do_change_type(struct path *path, int flag)
07b20889 1661{
315fc83e 1662 struct mount *m;
4b8b21f4 1663 struct mount *mnt = real_mount(path->mnt);
07b20889 1664 int recurse = flag & MS_REC;
7a2e8a8f 1665 int type;
719f5d7f 1666 int err = 0;
07b20889 1667
2d92ab3c 1668 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1669 return -EINVAL;
1670
7a2e8a8f
VA
1671 type = flags_to_propagation_type(flag);
1672 if (!type)
1673 return -EINVAL;
1674
07b20889 1675 down_write(&namespace_sem);
719f5d7f
MS
1676 if (type == MS_SHARED) {
1677 err = invent_group_ids(mnt, recurse);
1678 if (err)
1679 goto out_unlock;
1680 }
1681
962830df 1682 br_write_lock(&vfsmount_lock);
909b0a88 1683 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1684 change_mnt_propagation(m, type);
962830df 1685 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1686
1687 out_unlock:
07b20889 1688 up_write(&namespace_sem);
719f5d7f 1689 return err;
07b20889
RP
1690}
1691
1da177e4
LT
1692/*
1693 * do loopback mount.
1694 */
808d4e3c 1695static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1696 int recurse)
1da177e4 1697{
b12cea91 1698 LIST_HEAD(umount_list);
2d92ab3c 1699 struct path old_path;
84d17192
AV
1700 struct mount *mnt = NULL, *old, *parent;
1701 struct mountpoint *mp;
57eccb83 1702 int err;
1da177e4
LT
1703 if (!old_name || !*old_name)
1704 return -EINVAL;
815d405c 1705 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1706 if (err)
1707 return err;
1708
8823c079
EB
1709 err = -EINVAL;
1710 if (mnt_ns_loop(&old_path))
1711 goto out;
1712
84d17192
AV
1713 mp = lock_mount(path);
1714 err = PTR_ERR(mp);
1715 if (IS_ERR(mp))
b12cea91
AV
1716 goto out;
1717
87129cc0 1718 old = real_mount(old_path.mnt);
84d17192 1719 parent = real_mount(path->mnt);
87129cc0 1720
1da177e4 1721 err = -EINVAL;
fc7be130 1722 if (IS_MNT_UNBINDABLE(old))
b12cea91 1723 goto out2;
9676f0c6 1724
84d17192 1725 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1726 goto out2;
1da177e4 1727
ccd48bc7 1728 if (recurse)
87129cc0 1729 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1730 else
87129cc0 1731 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1732
be34d1a3
DH
1733 if (IS_ERR(mnt)) {
1734 err = PTR_ERR(mnt);
e9c5d8a5 1735 goto out2;
be34d1a3 1736 }
ccd48bc7 1737
84d17192 1738 err = graft_tree(mnt, parent, mp);
ccd48bc7 1739 if (err) {
962830df 1740 br_write_lock(&vfsmount_lock);
761d5c38 1741 umount_tree(mnt, 0, &umount_list);
962830df 1742 br_write_unlock(&vfsmount_lock);
5b83d2c5 1743 }
b12cea91 1744out2:
84d17192 1745 unlock_mount(mp);
b12cea91 1746 release_mounts(&umount_list);
ccd48bc7 1747out:
2d92ab3c 1748 path_put(&old_path);
1da177e4
LT
1749 return err;
1750}
1751
2e4b7fcd
DH
1752static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1753{
1754 int error = 0;
1755 int readonly_request = 0;
1756
1757 if (ms_flags & MS_RDONLY)
1758 readonly_request = 1;
1759 if (readonly_request == __mnt_is_readonly(mnt))
1760 return 0;
1761
1762 if (readonly_request)
83adc753 1763 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1764 else
83adc753 1765 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1766 return error;
1767}
1768
1da177e4
LT
1769/*
1770 * change filesystem flags. dir should be a physical root of filesystem.
1771 * If you've mounted a non-root directory somewhere and want to do remount
1772 * on it - tough luck.
1773 */
0a0d8a46 1774static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1775 void *data)
1776{
1777 int err;
2d92ab3c 1778 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1779 struct mount *mnt = real_mount(path->mnt);
1da177e4 1780
143c8c91 1781 if (!check_mnt(mnt))
1da177e4
LT
1782 return -EINVAL;
1783
2d92ab3c 1784 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1785 return -EINVAL;
1786
ff36fe2c
EP
1787 err = security_sb_remount(sb, data);
1788 if (err)
1789 return err;
1790
1da177e4 1791 down_write(&sb->s_umount);
2e4b7fcd 1792 if (flags & MS_BIND)
2d92ab3c 1793 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1794 else if (!capable(CAP_SYS_ADMIN))
1795 err = -EPERM;
4aa98cf7 1796 else
2e4b7fcd 1797 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1798 if (!err) {
962830df 1799 br_write_lock(&vfsmount_lock);
143c8c91
AV
1800 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1801 mnt->mnt.mnt_flags = mnt_flags;
962830df 1802 br_write_unlock(&vfsmount_lock);
7b43a79f 1803 }
1da177e4 1804 up_write(&sb->s_umount);
0e55a7cc 1805 if (!err) {
962830df 1806 br_write_lock(&vfsmount_lock);
143c8c91 1807 touch_mnt_namespace(mnt->mnt_ns);
962830df 1808 br_write_unlock(&vfsmount_lock);
0e55a7cc 1809 }
1da177e4
LT
1810 return err;
1811}
1812
cbbe362c 1813static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1814{
315fc83e 1815 struct mount *p;
909b0a88 1816 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1817 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1818 return 1;
1819 }
1820 return 0;
1821}
1822
808d4e3c 1823static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1824{
2d92ab3c 1825 struct path old_path, parent_path;
676da58d 1826 struct mount *p;
0fb54e50 1827 struct mount *old;
84d17192 1828 struct mountpoint *mp;
57eccb83 1829 int err;
1da177e4
LT
1830 if (!old_name || !*old_name)
1831 return -EINVAL;
2d92ab3c 1832 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1833 if (err)
1834 return err;
1835
84d17192
AV
1836 mp = lock_mount(path);
1837 err = PTR_ERR(mp);
1838 if (IS_ERR(mp))
cc53ce53
DH
1839 goto out;
1840
143c8c91 1841 old = real_mount(old_path.mnt);
fc7be130 1842 p = real_mount(path->mnt);
143c8c91 1843
1da177e4 1844 err = -EINVAL;
fc7be130 1845 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1846 goto out1;
1847
1da177e4 1848 err = -EINVAL;
2d92ab3c 1849 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1850 goto out1;
1da177e4 1851
676da58d 1852 if (!mnt_has_parent(old))
21444403 1853 goto out1;
1da177e4 1854
2d92ab3c
AV
1855 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1856 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1857 goto out1;
1858 /*
1859 * Don't move a mount residing in a shared parent.
1860 */
fc7be130 1861 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1862 goto out1;
9676f0c6
RP
1863 /*
1864 * Don't move a mount tree containing unbindable mounts to a destination
1865 * mount which is shared.
1866 */
fc7be130 1867 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1868 goto out1;
1da177e4 1869 err = -ELOOP;
fc7be130 1870 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1871 if (p == old)
21444403 1872 goto out1;
1da177e4 1873
84d17192 1874 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1875 if (err)
21444403 1876 goto out1;
1da177e4
LT
1877
1878 /* if the mount is moved, it should no longer be expire
1879 * automatically */
6776db3d 1880 list_del_init(&old->mnt_expire);
1da177e4 1881out1:
84d17192 1882 unlock_mount(mp);
1da177e4 1883out:
1da177e4 1884 if (!err)
1a390689 1885 path_put(&parent_path);
2d92ab3c 1886 path_put(&old_path);
1da177e4
LT
1887 return err;
1888}
1889
9d412a43
AV
1890static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1891{
1892 int err;
1893 const char *subtype = strchr(fstype, '.');
1894 if (subtype) {
1895 subtype++;
1896 err = -EINVAL;
1897 if (!subtype[0])
1898 goto err;
1899 } else
1900 subtype = "";
1901
1902 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1903 err = -ENOMEM;
1904 if (!mnt->mnt_sb->s_subtype)
1905 goto err;
1906 return mnt;
1907
1908 err:
1909 mntput(mnt);
1910 return ERR_PTR(err);
1911}
1912
9d412a43
AV
1913/*
1914 * add a mount into a namespace's mount tree
1915 */
95bc5f25 1916static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1917{
84d17192
AV
1918 struct mountpoint *mp;
1919 struct mount *parent;
9d412a43
AV
1920 int err;
1921
1922 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1923
84d17192
AV
1924 mp = lock_mount(path);
1925 if (IS_ERR(mp))
1926 return PTR_ERR(mp);
9d412a43 1927
84d17192 1928 parent = real_mount(path->mnt);
9d412a43 1929 err = -EINVAL;
84d17192 1930 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1931 /* that's acceptable only for automounts done in private ns */
1932 if (!(mnt_flags & MNT_SHRINKABLE))
1933 goto unlock;
1934 /* ... and for those we'd better have mountpoint still alive */
84d17192 1935 if (!parent->mnt_ns)
156cacb1
AV
1936 goto unlock;
1937 }
9d412a43
AV
1938
1939 /* Refuse the same filesystem on the same mount point */
1940 err = -EBUSY;
95bc5f25 1941 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1942 path->mnt->mnt_root == path->dentry)
1943 goto unlock;
1944
1945 err = -EINVAL;
95bc5f25 1946 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1947 goto unlock;
1948
95bc5f25 1949 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 1950 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
1951
1952unlock:
84d17192 1953 unlock_mount(mp);
9d412a43
AV
1954 return err;
1955}
b1e75df4 1956
1da177e4
LT
1957/*
1958 * create a new mount for userspace and request it to be added into the
1959 * namespace's tree
1960 */
0c55cfc4 1961static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 1962 int mnt_flags, const char *name, void *data)
1da177e4 1963{
0c55cfc4 1964 struct file_system_type *type;
9b40bc90 1965 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 1966 struct vfsmount *mnt;
15f9a3f3 1967 int err;
1da177e4 1968
0c55cfc4 1969 if (!fstype)
1da177e4
LT
1970 return -EINVAL;
1971
0c55cfc4
EB
1972 type = get_fs_type(fstype);
1973 if (!type)
1974 return -ENODEV;
1975
1976 if (user_ns != &init_user_ns) {
1977 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1978 put_filesystem(type);
1979 return -EPERM;
1980 }
1981 /* Only in special cases allow devices from mounts
1982 * created outside the initial user namespace.
1983 */
1984 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1985 flags |= MS_NODEV;
1986 mnt_flags |= MNT_NODEV;
1987 }
1988 }
1989
1990 mnt = vfs_kern_mount(type, flags, name, data);
1991 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1992 !mnt->mnt_sb->s_subtype)
1993 mnt = fs_set_subtype(mnt, fstype);
1994
1995 put_filesystem(type);
1da177e4
LT
1996 if (IS_ERR(mnt))
1997 return PTR_ERR(mnt);
1998
95bc5f25 1999 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2000 if (err)
2001 mntput(mnt);
2002 return err;
1da177e4
LT
2003}
2004
19a167af
AV
2005int finish_automount(struct vfsmount *m, struct path *path)
2006{
6776db3d 2007 struct mount *mnt = real_mount(m);
19a167af
AV
2008 int err;
2009 /* The new mount record should have at least 2 refs to prevent it being
2010 * expired before we get a chance to add it
2011 */
6776db3d 2012 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2013
2014 if (m->mnt_sb == path->mnt->mnt_sb &&
2015 m->mnt_root == path->dentry) {
b1e75df4
AV
2016 err = -ELOOP;
2017 goto fail;
19a167af
AV
2018 }
2019
95bc5f25 2020 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2021 if (!err)
2022 return 0;
2023fail:
2024 /* remove m from any expiration list it may be on */
6776db3d 2025 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 2026 down_write(&namespace_sem);
962830df 2027 br_write_lock(&vfsmount_lock);
6776db3d 2028 list_del_init(&mnt->mnt_expire);
962830df 2029 br_write_unlock(&vfsmount_lock);
b1e75df4 2030 up_write(&namespace_sem);
19a167af 2031 }
b1e75df4
AV
2032 mntput(m);
2033 mntput(m);
19a167af
AV
2034 return err;
2035}
2036
ea5b778a
DH
2037/**
2038 * mnt_set_expiry - Put a mount on an expiration list
2039 * @mnt: The mount to list.
2040 * @expiry_list: The list to add the mount to.
2041 */
2042void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2043{
2044 down_write(&namespace_sem);
962830df 2045 br_write_lock(&vfsmount_lock);
ea5b778a 2046
6776db3d 2047 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2048
962830df 2049 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
2050 up_write(&namespace_sem);
2051}
2052EXPORT_SYMBOL(mnt_set_expiry);
2053
1da177e4
LT
2054/*
2055 * process a list of expirable mountpoints with the intent of discarding any
2056 * mountpoints that aren't in use and haven't been touched since last we came
2057 * here
2058 */
2059void mark_mounts_for_expiry(struct list_head *mounts)
2060{
761d5c38 2061 struct mount *mnt, *next;
1da177e4 2062 LIST_HEAD(graveyard);
bcc5c7d2 2063 LIST_HEAD(umounts);
1da177e4
LT
2064
2065 if (list_empty(mounts))
2066 return;
2067
bcc5c7d2 2068 down_write(&namespace_sem);
962830df 2069 br_write_lock(&vfsmount_lock);
1da177e4
LT
2070
2071 /* extract from the expiration list every vfsmount that matches the
2072 * following criteria:
2073 * - only referenced by its parent vfsmount
2074 * - still marked for expiry (marked on the last call here; marks are
2075 * cleared by mntput())
2076 */
6776db3d 2077 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2078 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2079 propagate_mount_busy(mnt, 1))
1da177e4 2080 continue;
6776db3d 2081 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2082 }
bcc5c7d2 2083 while (!list_empty(&graveyard)) {
6776db3d 2084 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2085 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
2086 umount_tree(mnt, 1, &umounts);
2087 }
962830df 2088 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
2089 up_write(&namespace_sem);
2090
2091 release_mounts(&umounts);
5528f911
TM
2092}
2093
2094EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2095
2096/*
2097 * Ripoff of 'select_parent()'
2098 *
2099 * search the list of submounts for a given mountpoint, and move any
2100 * shrinkable submounts to the 'graveyard' list.
2101 */
692afc31 2102static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2103{
692afc31 2104 struct mount *this_parent = parent;
5528f911
TM
2105 struct list_head *next;
2106 int found = 0;
2107
2108repeat:
6b41d536 2109 next = this_parent->mnt_mounts.next;
5528f911 2110resume:
6b41d536 2111 while (next != &this_parent->mnt_mounts) {
5528f911 2112 struct list_head *tmp = next;
6b41d536 2113 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2114
2115 next = tmp->next;
692afc31 2116 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2117 continue;
5528f911
TM
2118 /*
2119 * Descend a level if the d_mounts list is non-empty.
2120 */
6b41d536 2121 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2122 this_parent = mnt;
2123 goto repeat;
2124 }
1da177e4 2125
1ab59738 2126 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2127 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2128 found++;
2129 }
1da177e4 2130 }
5528f911
TM
2131 /*
2132 * All done at this level ... ascend and resume the search
2133 */
2134 if (this_parent != parent) {
6b41d536 2135 next = this_parent->mnt_child.next;
0714a533 2136 this_parent = this_parent->mnt_parent;
5528f911
TM
2137 goto resume;
2138 }
2139 return found;
2140}
2141
2142/*
2143 * process a list of expirable mountpoints with the intent of discarding any
2144 * submounts of a specific parent mountpoint
99b7db7b
NP
2145 *
2146 * vfsmount_lock must be held for write
5528f911 2147 */
b54b9be7 2148static void shrink_submounts(struct mount *mnt)
5528f911
TM
2149{
2150 LIST_HEAD(graveyard);
761d5c38 2151 struct mount *m;
5528f911 2152
5528f911 2153 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2154 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2155 while (!list_empty(&graveyard)) {
761d5c38 2156 m = list_first_entry(&graveyard, struct mount,
6776db3d 2157 mnt_expire);
143c8c91 2158 touch_mnt_namespace(m->mnt_ns);
b54b9be7 2159 umount_tree(m, 1, &unmounted);
bcc5c7d2
AV
2160 }
2161 }
1da177e4
LT
2162}
2163
1da177e4
LT
2164/*
2165 * Some copy_from_user() implementations do not return the exact number of
2166 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2167 * Note that this function differs from copy_from_user() in that it will oops
2168 * on bad values of `to', rather than returning a short copy.
2169 */
b58fed8b
RP
2170static long exact_copy_from_user(void *to, const void __user * from,
2171 unsigned long n)
1da177e4
LT
2172{
2173 char *t = to;
2174 const char __user *f = from;
2175 char c;
2176
2177 if (!access_ok(VERIFY_READ, from, n))
2178 return n;
2179
2180 while (n) {
2181 if (__get_user(c, f)) {
2182 memset(t, 0, n);
2183 break;
2184 }
2185 *t++ = c;
2186 f++;
2187 n--;
2188 }
2189 return n;
2190}
2191
b58fed8b 2192int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2193{
2194 int i;
2195 unsigned long page;
2196 unsigned long size;
b58fed8b 2197
1da177e4
LT
2198 *where = 0;
2199 if (!data)
2200 return 0;
2201
2202 if (!(page = __get_free_page(GFP_KERNEL)))
2203 return -ENOMEM;
2204
2205 /* We only care that *some* data at the address the user
2206 * gave us is valid. Just in case, we'll zero
2207 * the remainder of the page.
2208 */
2209 /* copy_from_user cannot cross TASK_SIZE ! */
2210 size = TASK_SIZE - (unsigned long)data;
2211 if (size > PAGE_SIZE)
2212 size = PAGE_SIZE;
2213
2214 i = size - exact_copy_from_user((void *)page, data, size);
2215 if (!i) {
b58fed8b 2216 free_page(page);
1da177e4
LT
2217 return -EFAULT;
2218 }
2219 if (i != PAGE_SIZE)
2220 memset((char *)page + i, 0, PAGE_SIZE - i);
2221 *where = page;
2222 return 0;
2223}
2224
eca6f534
VN
2225int copy_mount_string(const void __user *data, char **where)
2226{
2227 char *tmp;
2228
2229 if (!data) {
2230 *where = NULL;
2231 return 0;
2232 }
2233
2234 tmp = strndup_user(data, PAGE_SIZE);
2235 if (IS_ERR(tmp))
2236 return PTR_ERR(tmp);
2237
2238 *where = tmp;
2239 return 0;
2240}
2241
1da177e4
LT
2242/*
2243 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2244 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2245 *
2246 * data is a (void *) that can point to any structure up to
2247 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2248 * information (or be NULL).
2249 *
2250 * Pre-0.97 versions of mount() didn't have a flags word.
2251 * When the flags word was introduced its top half was required
2252 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2253 * Therefore, if this magic number is present, it carries no information
2254 * and must be discarded.
2255 */
808d4e3c
AV
2256long do_mount(const char *dev_name, const char *dir_name,
2257 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2258{
2d92ab3c 2259 struct path path;
1da177e4
LT
2260 int retval = 0;
2261 int mnt_flags = 0;
2262
2263 /* Discard magic */
2264 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2265 flags &= ~MS_MGC_MSK;
2266
2267 /* Basic sanity checks */
2268
2269 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2270 return -EINVAL;
1da177e4
LT
2271
2272 if (data_page)
2273 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2274
a27ab9f2
TH
2275 /* ... and get the mountpoint */
2276 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2277 if (retval)
2278 return retval;
2279
2280 retval = security_sb_mount(dev_name, &path,
2281 type_page, flags, data_page);
2282 if (retval)
2283 goto dput_out;
2284
57eccb83
AV
2285 if (!may_mount())
2286 return -EPERM;
2287
613cbe3d
AK
2288 /* Default to relatime unless overriden */
2289 if (!(flags & MS_NOATIME))
2290 mnt_flags |= MNT_RELATIME;
0a1c01c9 2291
1da177e4
LT
2292 /* Separate the per-mountpoint flags */
2293 if (flags & MS_NOSUID)
2294 mnt_flags |= MNT_NOSUID;
2295 if (flags & MS_NODEV)
2296 mnt_flags |= MNT_NODEV;
2297 if (flags & MS_NOEXEC)
2298 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2299 if (flags & MS_NOATIME)
2300 mnt_flags |= MNT_NOATIME;
2301 if (flags & MS_NODIRATIME)
2302 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2303 if (flags & MS_STRICTATIME)
2304 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2305 if (flags & MS_RDONLY)
2306 mnt_flags |= MNT_READONLY;
fc33a7bb 2307
7a4dec53 2308 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2309 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2310 MS_STRICTATIME);
1da177e4 2311
1da177e4 2312 if (flags & MS_REMOUNT)
2d92ab3c 2313 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2314 data_page);
2315 else if (flags & MS_BIND)
2d92ab3c 2316 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2317 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2318 retval = do_change_type(&path, flags);
1da177e4 2319 else if (flags & MS_MOVE)
2d92ab3c 2320 retval = do_move_mount(&path, dev_name);
1da177e4 2321 else
2d92ab3c 2322 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2323 dev_name, data_page);
2324dput_out:
2d92ab3c 2325 path_put(&path);
1da177e4
LT
2326 return retval;
2327}
2328
771b1371
EB
2329static void free_mnt_ns(struct mnt_namespace *ns)
2330{
98f842e6 2331 proc_free_inum(ns->proc_inum);
771b1371
EB
2332 put_user_ns(ns->user_ns);
2333 kfree(ns);
2334}
2335
8823c079
EB
2336/*
2337 * Assign a sequence number so we can detect when we attempt to bind
2338 * mount a reference to an older mount namespace into the current
2339 * mount namespace, preventing reference counting loops. A 64bit
2340 * number incrementing at 10Ghz will take 12,427 years to wrap which
2341 * is effectively never, so we can ignore the possibility.
2342 */
2343static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2344
771b1371 2345static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2346{
2347 struct mnt_namespace *new_ns;
98f842e6 2348 int ret;
cf8d2c11
TM
2349
2350 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2351 if (!new_ns)
2352 return ERR_PTR(-ENOMEM);
98f842e6
EB
2353 ret = proc_alloc_inum(&new_ns->proc_inum);
2354 if (ret) {
2355 kfree(new_ns);
2356 return ERR_PTR(ret);
2357 }
8823c079 2358 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2359 atomic_set(&new_ns->count, 1);
2360 new_ns->root = NULL;
2361 INIT_LIST_HEAD(&new_ns->list);
2362 init_waitqueue_head(&new_ns->poll);
2363 new_ns->event = 0;
771b1371 2364 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2365 return new_ns;
2366}
2367
741a2951
JD
2368/*
2369 * Allocate a new namespace structure and populate it with contents
2370 * copied from the namespace of the passed in task structure.
2371 */
e3222c4e 2372static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2373 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2374{
6b3286ed 2375 struct mnt_namespace *new_ns;
7f2da1e7 2376 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2377 struct mount *p, *q;
be08d6d2 2378 struct mount *old = mnt_ns->root;
cb338d06 2379 struct mount *new;
7a472ef4 2380 int copy_flags;
1da177e4 2381
771b1371 2382 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2383 if (IS_ERR(new_ns))
2384 return new_ns;
1da177e4 2385
390c6843 2386 down_write(&namespace_sem);
1da177e4 2387 /* First pass: copy the tree topology */
7a472ef4
EB
2388 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2389 if (user_ns != mnt_ns->user_ns)
2390 copy_flags |= CL_SHARED_TO_SLAVE;
2391 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2392 if (IS_ERR(new)) {
390c6843 2393 up_write(&namespace_sem);
771b1371 2394 free_mnt_ns(new_ns);
be34d1a3 2395 return ERR_CAST(new);
1da177e4 2396 }
be08d6d2 2397 new_ns->root = new;
962830df 2398 br_write_lock(&vfsmount_lock);
1a4eeaf2 2399 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2400 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2401
2402 /*
2403 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2404 * as belonging to new namespace. We have already acquired a private
2405 * fs_struct, so tsk->fs->lock is not needed.
2406 */
909b0a88 2407 p = old;
cb338d06 2408 q = new;
1da177e4 2409 while (p) {
143c8c91 2410 q->mnt_ns = new_ns;
1da177e4 2411 if (fs) {
315fc83e
AV
2412 if (&p->mnt == fs->root.mnt) {
2413 fs->root.mnt = mntget(&q->mnt);
315fc83e 2414 rootmnt = &p->mnt;
1da177e4 2415 }
315fc83e
AV
2416 if (&p->mnt == fs->pwd.mnt) {
2417 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2418 pwdmnt = &p->mnt;
1da177e4 2419 }
1da177e4 2420 }
909b0a88
AV
2421 p = next_mnt(p, old);
2422 q = next_mnt(q, new);
1da177e4 2423 }
390c6843 2424 up_write(&namespace_sem);
1da177e4 2425
1da177e4 2426 if (rootmnt)
f03c6599 2427 mntput(rootmnt);
1da177e4 2428 if (pwdmnt)
f03c6599 2429 mntput(pwdmnt);
1da177e4 2430
741a2951
JD
2431 return new_ns;
2432}
2433
213dd266 2434struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2435 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2436{
6b3286ed 2437 struct mnt_namespace *new_ns;
741a2951 2438
e3222c4e 2439 BUG_ON(!ns);
6b3286ed 2440 get_mnt_ns(ns);
741a2951
JD
2441
2442 if (!(flags & CLONE_NEWNS))
e3222c4e 2443 return ns;
741a2951 2444
771b1371 2445 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2446
6b3286ed 2447 put_mnt_ns(ns);
e3222c4e 2448 return new_ns;
1da177e4
LT
2449}
2450
cf8d2c11
TM
2451/**
2452 * create_mnt_ns - creates a private namespace and adds a root filesystem
2453 * @mnt: pointer to the new root filesystem mountpoint
2454 */
1a4eeaf2 2455static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2456{
771b1371 2457 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2458 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2459 struct mount *mnt = real_mount(m);
2460 mnt->mnt_ns = new_ns;
be08d6d2 2461 new_ns->root = mnt;
1a4eeaf2 2462 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2463 } else {
1a4eeaf2 2464 mntput(m);
cf8d2c11
TM
2465 }
2466 return new_ns;
2467}
cf8d2c11 2468
ea441d11
AV
2469struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2470{
2471 struct mnt_namespace *ns;
d31da0f0 2472 struct super_block *s;
ea441d11
AV
2473 struct path path;
2474 int err;
2475
2476 ns = create_mnt_ns(mnt);
2477 if (IS_ERR(ns))
2478 return ERR_CAST(ns);
2479
2480 err = vfs_path_lookup(mnt->mnt_root, mnt,
2481 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2482
2483 put_mnt_ns(ns);
2484
2485 if (err)
2486 return ERR_PTR(err);
2487
2488 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2489 s = path.mnt->mnt_sb;
2490 atomic_inc(&s->s_active);
ea441d11
AV
2491 mntput(path.mnt);
2492 /* lock the sucker */
d31da0f0 2493 down_write(&s->s_umount);
ea441d11
AV
2494 /* ... and return the root of (sub)tree on it */
2495 return path.dentry;
2496}
2497EXPORT_SYMBOL(mount_subtree);
2498
bdc480e3
HC
2499SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2500 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2501{
eca6f534
VN
2502 int ret;
2503 char *kernel_type;
91a27b2a 2504 struct filename *kernel_dir;
eca6f534 2505 char *kernel_dev;
1da177e4 2506 unsigned long data_page;
1da177e4 2507
eca6f534
VN
2508 ret = copy_mount_string(type, &kernel_type);
2509 if (ret < 0)
2510 goto out_type;
1da177e4 2511
eca6f534
VN
2512 kernel_dir = getname(dir_name);
2513 if (IS_ERR(kernel_dir)) {
2514 ret = PTR_ERR(kernel_dir);
2515 goto out_dir;
2516 }
1da177e4 2517
eca6f534
VN
2518 ret = copy_mount_string(dev_name, &kernel_dev);
2519 if (ret < 0)
2520 goto out_dev;
1da177e4 2521
eca6f534
VN
2522 ret = copy_mount_options(data, &data_page);
2523 if (ret < 0)
2524 goto out_data;
1da177e4 2525
91a27b2a 2526 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2527 (void *) data_page);
1da177e4 2528
eca6f534
VN
2529 free_page(data_page);
2530out_data:
2531 kfree(kernel_dev);
2532out_dev:
2533 putname(kernel_dir);
2534out_dir:
2535 kfree(kernel_type);
2536out_type:
2537 return ret;
1da177e4
LT
2538}
2539
afac7cba
AV
2540/*
2541 * Return true if path is reachable from root
2542 *
2543 * namespace_sem or vfsmount_lock is held
2544 */
643822b4 2545bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2546 const struct path *root)
2547{
643822b4 2548 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2549 dentry = mnt->mnt_mountpoint;
0714a533 2550 mnt = mnt->mnt_parent;
afac7cba 2551 }
643822b4 2552 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2553}
2554
2555int path_is_under(struct path *path1, struct path *path2)
2556{
2557 int res;
962830df 2558 br_read_lock(&vfsmount_lock);
643822b4 2559 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2560 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2561 return res;
2562}
2563EXPORT_SYMBOL(path_is_under);
2564
1da177e4
LT
2565/*
2566 * pivot_root Semantics:
2567 * Moves the root file system of the current process to the directory put_old,
2568 * makes new_root as the new root file system of the current process, and sets
2569 * root/cwd of all processes which had them on the current root to new_root.
2570 *
2571 * Restrictions:
2572 * The new_root and put_old must be directories, and must not be on the
2573 * same file system as the current process root. The put_old must be
2574 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2575 * pointed to by put_old must yield the same directory as new_root. No other
2576 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2577 *
4a0d11fa
NB
2578 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2579 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2580 * in this situation.
2581 *
1da177e4
LT
2582 * Notes:
2583 * - we don't move root/cwd if they are not at the root (reason: if something
2584 * cared enough to change them, it's probably wrong to force them elsewhere)
2585 * - it's okay to pick a root that isn't the root of a file system, e.g.
2586 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2587 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2588 * first.
2589 */
3480b257
HC
2590SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2591 const char __user *, put_old)
1da177e4 2592{
2d8f3038 2593 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2594 struct mount *new_mnt, *root_mnt, *old_mnt;
2595 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2596 int error;
2597
9b40bc90 2598 if (!may_mount())
1da177e4
LT
2599 return -EPERM;
2600
2d8f3038 2601 error = user_path_dir(new_root, &new);
1da177e4
LT
2602 if (error)
2603 goto out0;
1da177e4 2604
2d8f3038 2605 error = user_path_dir(put_old, &old);
1da177e4
LT
2606 if (error)
2607 goto out1;
2608
2d8f3038 2609 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2610 if (error)
2611 goto out2;
1da177e4 2612
f7ad3c6b 2613 get_fs_root(current->fs, &root);
84d17192
AV
2614 old_mp = lock_mount(&old);
2615 error = PTR_ERR(old_mp);
2616 if (IS_ERR(old_mp))
b12cea91
AV
2617 goto out3;
2618
1da177e4 2619 error = -EINVAL;
419148da
AV
2620 new_mnt = real_mount(new.mnt);
2621 root_mnt = real_mount(root.mnt);
84d17192
AV
2622 old_mnt = real_mount(old.mnt);
2623 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2624 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2625 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2626 goto out4;
143c8c91 2627 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2628 goto out4;
1da177e4 2629 error = -ENOENT;
f3da392e 2630 if (d_unlinked(new.dentry))
b12cea91 2631 goto out4;
1da177e4 2632 error = -EBUSY;
84d17192 2633 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2634 goto out4; /* loop, on the same file system */
1da177e4 2635 error = -EINVAL;
8c3ee42e 2636 if (root.mnt->mnt_root != root.dentry)
b12cea91 2637 goto out4; /* not a mountpoint */
676da58d 2638 if (!mnt_has_parent(root_mnt))
b12cea91 2639 goto out4; /* not attached */
84d17192 2640 root_mp = root_mnt->mnt_mp;
2d8f3038 2641 if (new.mnt->mnt_root != new.dentry)
b12cea91 2642 goto out4; /* not a mountpoint */
676da58d 2643 if (!mnt_has_parent(new_mnt))
b12cea91 2644 goto out4; /* not attached */
4ac91378 2645 /* make sure we can reach put_old from new_root */
84d17192 2646 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2647 goto out4;
84d17192 2648 root_mp->m_count++; /* pin it so it won't go away */
962830df 2649 br_write_lock(&vfsmount_lock);
419148da
AV
2650 detach_mnt(new_mnt, &parent_path);
2651 detach_mnt(root_mnt, &root_parent);
4ac91378 2652 /* mount old root on put_old */
84d17192 2653 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2654 /* mount new_root on / */
84d17192 2655 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2656 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2657 br_write_unlock(&vfsmount_lock);
2d8f3038 2658 chroot_fs_refs(&root, &new);
84d17192 2659 put_mountpoint(root_mp);
1da177e4 2660 error = 0;
b12cea91 2661out4:
84d17192 2662 unlock_mount(old_mp);
b12cea91
AV
2663 if (!error) {
2664 path_put(&root_parent);
2665 path_put(&parent_path);
2666 }
2667out3:
8c3ee42e 2668 path_put(&root);
b12cea91 2669out2:
2d8f3038 2670 path_put(&old);
1da177e4 2671out1:
2d8f3038 2672 path_put(&new);
1da177e4 2673out0:
1da177e4 2674 return error;
1da177e4
LT
2675}
2676
2677static void __init init_mount_tree(void)
2678{
2679 struct vfsmount *mnt;
6b3286ed 2680 struct mnt_namespace *ns;
ac748a09 2681 struct path root;
0c55cfc4 2682 struct file_system_type *type;
1da177e4 2683
0c55cfc4
EB
2684 type = get_fs_type("rootfs");
2685 if (!type)
2686 panic("Can't find rootfs type");
2687 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2688 put_filesystem(type);
1da177e4
LT
2689 if (IS_ERR(mnt))
2690 panic("Can't create rootfs");
b3e19d92 2691
3b22edc5
TM
2692 ns = create_mnt_ns(mnt);
2693 if (IS_ERR(ns))
1da177e4 2694 panic("Can't allocate initial namespace");
6b3286ed
KK
2695
2696 init_task.nsproxy->mnt_ns = ns;
2697 get_mnt_ns(ns);
2698
be08d6d2
AV
2699 root.mnt = mnt;
2700 root.dentry = mnt->mnt_root;
ac748a09
JB
2701
2702 set_fs_pwd(current->fs, &root);
2703 set_fs_root(current->fs, &root);
1da177e4
LT
2704}
2705
74bf17cf 2706void __init mnt_init(void)
1da177e4 2707{
13f14b4d 2708 unsigned u;
15a67dd8 2709 int err;
1da177e4 2710
390c6843
RP
2711 init_rwsem(&namespace_sem);
2712
7d6fec45 2713 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2714 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2715
b58fed8b 2716 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2717 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2718
84d17192 2719 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2720 panic("Failed to allocate mount hash table\n");
2721
80cdc6da 2722 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2723
2724 for (u = 0; u < HASH_SIZE; u++)
2725 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2726 for (u = 0; u < HASH_SIZE; u++)
2727 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2728
962830df 2729 br_lock_init(&vfsmount_lock);
99b7db7b 2730
15a67dd8
RD
2731 err = sysfs_init();
2732 if (err)
2733 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2734 __func__, err);
00d26666
GKH
2735 fs_kobj = kobject_create_and_add("fs", NULL);
2736 if (!fs_kobj)
8e24eea7 2737 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2738 init_rootfs();
2739 init_mount_tree();
2740}
2741
616511d0 2742void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2743{
70fbcdf4 2744 LIST_HEAD(umount_list);
616511d0 2745
d498b25a 2746 if (!atomic_dec_and_test(&ns->count))
616511d0 2747 return;
390c6843 2748 down_write(&namespace_sem);
962830df 2749 br_write_lock(&vfsmount_lock);
be08d6d2 2750 umount_tree(ns->root, 0, &umount_list);
962830df 2751 br_write_unlock(&vfsmount_lock);
390c6843 2752 up_write(&namespace_sem);
70fbcdf4 2753 release_mounts(&umount_list);
771b1371 2754 free_mnt_ns(ns);
1da177e4 2755}
9d412a43
AV
2756
2757struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2758{
423e0ab0
TC
2759 struct vfsmount *mnt;
2760 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2761 if (!IS_ERR(mnt)) {
2762 /*
2763 * it is a longterm mount, don't release mnt until
2764 * we unmount before file sys is unregistered
2765 */
f7a99c5b 2766 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2767 }
2768 return mnt;
9d412a43
AV
2769}
2770EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2771
2772void kern_unmount(struct vfsmount *mnt)
2773{
2774 /* release long term mount so mount point can be released */
2775 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2776 br_write_lock(&vfsmount_lock);
2777 real_mount(mnt)->mnt_ns = NULL;
2778 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2779 mntput(mnt);
2780 }
2781}
2782EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2783
2784bool our_mnt(struct vfsmount *mnt)
2785{
143c8c91 2786 return check_mnt(real_mount(mnt));
02125a82 2787}
8823c079
EB
2788
2789static void *mntns_get(struct task_struct *task)
2790{
2791 struct mnt_namespace *ns = NULL;
2792 struct nsproxy *nsproxy;
2793
2794 rcu_read_lock();
2795 nsproxy = task_nsproxy(task);
2796 if (nsproxy) {
2797 ns = nsproxy->mnt_ns;
2798 get_mnt_ns(ns);
2799 }
2800 rcu_read_unlock();
2801
2802 return ns;
2803}
2804
2805static void mntns_put(void *ns)
2806{
2807 put_mnt_ns(ns);
2808}
2809
2810static int mntns_install(struct nsproxy *nsproxy, void *ns)
2811{
2812 struct fs_struct *fs = current->fs;
2813 struct mnt_namespace *mnt_ns = ns;
2814 struct path root;
2815
0c55cfc4 2816 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2817 !nsown_capable(CAP_SYS_CHROOT) ||
2818 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2819 return -EPERM;
8823c079
EB
2820
2821 if (fs->users != 1)
2822 return -EINVAL;
2823
2824 get_mnt_ns(mnt_ns);
2825 put_mnt_ns(nsproxy->mnt_ns);
2826 nsproxy->mnt_ns = mnt_ns;
2827
2828 /* Find the root */
2829 root.mnt = &mnt_ns->root->mnt;
2830 root.dentry = mnt_ns->root->mnt.mnt_root;
2831 path_get(&root);
2832 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2833 ;
2834
2835 /* Update the pwd and root */
2836 set_fs_pwd(fs, &root);
2837 set_fs_root(fs, &root);
2838
2839 path_put(&root);
2840 return 0;
2841}
2842
98f842e6
EB
2843static unsigned int mntns_inum(void *ns)
2844{
2845 struct mnt_namespace *mnt_ns = ns;
2846 return mnt_ns->proc_inum;
2847}
2848
8823c079
EB
2849const struct proc_ns_operations mntns_operations = {
2850 .name = "mnt",
2851 .type = CLONE_NEWNS,
2852 .get = mntns_get,
2853 .put = mntns_put,
2854 .install = mntns_install,
98f842e6 2855 .inum = mntns_inum,
8823c079 2856};