mnt: Use hlist_move_list in namespace_unlock
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
87b95ce0
AV
193static void drop_mountpoint(struct fs_pin *p)
194{
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199}
200
b105e270 201static struct mount *alloc_vfsmnt(const char *name)
1da177e4 202{
c63181e6
AV
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
73cd49ec
MS
205 int err;
206
c63181e6 207 err = mnt_alloc_id(mnt);
88b38782
LZ
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
fcc139ae 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 213 if (!mnt->mnt_devname)
88b38782 214 goto out_free_id;
73cd49ec
MS
215 }
216
b3e19d92 217#ifdef CONFIG_SMP
c63181e6
AV
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
b3e19d92
NP
220 goto out_free_devname;
221
c63181e6 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 223#else
c63181e6
AV
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
b3e19d92
NP
226#endif
227
38129a13 228 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
237#ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 239#endif
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449}
96029c4e 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
8366025e 452/**
eb04c282 453 * __mnt_drop_write - give up write access to a mount
8366025e
DH
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
eb04c282 458 * __mnt_want_write() call above.
8366025e 459 */
eb04c282 460void __mnt_drop_write(struct vfsmount *mnt)
8366025e 461{
d3ef3d73 462 preempt_disable();
83adc753 463 mnt_dec_writers(real_mount(mnt));
d3ef3d73 464 preempt_enable();
8366025e 465}
eb04c282
JK
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
8366025e
DH
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
eb04c282
JK
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
2a79f17e
AV
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
83adc753 493static int mnt_make_readonly(struct mount *mnt)
8366025e 494{
3d733633
DH
495 int ret = 0;
496
719ea2fb 497 lock_mount_hash();
83adc753 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 499 /*
d3ef3d73 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
3d733633 502 */
d3ef3d73 503 smp_mb();
504
3d733633 505 /*
d3ef3d73 506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
3d733633 520 */
c6653a83 521 if (mnt_get_writers(mnt) > 0)
d3ef3d73 522 ret = -EBUSY;
523 else
83adc753 524 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 531 unlock_mount_hash();
3d733633 532 return ret;
8366025e 533}
8366025e 534
83adc753 535static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 536{
719ea2fb 537 lock_mount_hash();
83adc753 538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 539 unlock_mount_hash();
2e4b7fcd
DH
540}
541
4ed5e82f
MS
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
8e8b8796
MS
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
719ea2fb 551 lock_mount_hash();
4ed5e82f
MS
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
8e8b8796
MS
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
4ed5e82f
MS
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
719ea2fb 573 unlock_mount_hash();
4ed5e82f
MS
574
575 return err;
576}
577
b105e270 578static void free_vfsmnt(struct mount *mnt)
1da177e4 579{
fcc139ae 580 kfree_const(mnt->mnt_devname);
d3ef3d73 581#ifdef CONFIG_SMP
68e8a9fe 582 free_percpu(mnt->mnt_pcp);
d3ef3d73 583#endif
b105e270 584 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
585}
586
8ffcb32e
DH
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
48a066e7
AV
592/* call under rcu_read_lock */
593bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
607 }
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
612}
613
1da177e4 614/*
474279dc 615 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 616 * call under rcu_read_lock()
1da177e4 617 */
474279dc 618struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 619{
38129a13 620 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
621 struct mount *p;
622
38129a13 623 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
627}
628
629/*
630 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 631 * mount_lock must be held.
474279dc
AV
632 */
633struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634{
38129a13
AV
635 struct mount *p, *res;
636 res = p = __lookup_mnt(mnt, dentry);
637 if (!p)
638 goto out;
639 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
640 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
641 break;
642 res = p;
643 }
38129a13 644out:
1d6a32ac 645 return res;
1da177e4
LT
646}
647
a05964f3 648/*
f015f126
DH
649 * lookup_mnt - Return the first child mount mounted at path
650 *
651 * "First" means first mounted chronologically. If you create the
652 * following mounts:
653 *
654 * mount /dev/sda1 /mnt
655 * mount /dev/sda2 /mnt
656 * mount /dev/sda3 /mnt
657 *
658 * Then lookup_mnt() on the base /mnt dentry in the root mount will
659 * return successively the root dentry and vfsmount of /dev/sda1, then
660 * /dev/sda2, then /dev/sda3, then NULL.
661 *
662 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 663 */
1c755af4 664struct vfsmount *lookup_mnt(struct path *path)
a05964f3 665{
c7105365 666 struct mount *child_mnt;
48a066e7
AV
667 struct vfsmount *m;
668 unsigned seq;
99b7db7b 669
48a066e7
AV
670 rcu_read_lock();
671 do {
672 seq = read_seqbegin(&mount_lock);
673 child_mnt = __lookup_mnt(path->mnt, path->dentry);
674 m = child_mnt ? &child_mnt->mnt : NULL;
675 } while (!legitimize_mnt(m, seq));
676 rcu_read_unlock();
677 return m;
a05964f3
RP
678}
679
7af1364f
EB
680/*
681 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
682 * current mount namespace.
683 *
684 * The common case is dentries are not mountpoints at all and that
685 * test is handled inline. For the slow case when we are actually
686 * dealing with a mountpoint of some kind, walk through all of the
687 * mounts in the current mount namespace and test to see if the dentry
688 * is a mountpoint.
689 *
690 * The mount_hashtable is not usable in the context because we
691 * need to identify all mounts that may be in the current mount
692 * namespace not just a mount that happens to have some specified
693 * parent mount.
694 */
695bool __is_local_mountpoint(struct dentry *dentry)
696{
697 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
698 struct mount *mnt;
699 bool is_covered = false;
700
701 if (!d_mountpoint(dentry))
702 goto out;
703
704 down_read(&namespace_sem);
705 list_for_each_entry(mnt, &ns->list, mnt_list) {
706 is_covered = (mnt->mnt_mountpoint == dentry);
707 if (is_covered)
708 break;
709 }
710 up_read(&namespace_sem);
711out:
712 return is_covered;
713}
714
e2dfa935 715static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 716{
0818bf27 717 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
718 struct mountpoint *mp;
719
0818bf27 720 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
721 if (mp->m_dentry == dentry) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry))
724 return ERR_PTR(-ENOENT);
725 mp->m_count++;
726 return mp;
727 }
728 }
e2dfa935
EB
729 return NULL;
730}
731
732static struct mountpoint *new_mountpoint(struct dentry *dentry)
733{
734 struct hlist_head *chain = mp_hash(dentry);
735 struct mountpoint *mp;
736 int ret;
84d17192
AV
737
738 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
739 if (!mp)
740 return ERR_PTR(-ENOMEM);
741
eed81007
MS
742 ret = d_set_mounted(dentry);
743 if (ret) {
84d17192 744 kfree(mp);
eed81007 745 return ERR_PTR(ret);
84d17192 746 }
eed81007 747
84d17192
AV
748 mp->m_dentry = dentry;
749 mp->m_count = 1;
0818bf27 750 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 751 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
752 return mp;
753}
754
755static void put_mountpoint(struct mountpoint *mp)
756{
757 if (!--mp->m_count) {
758 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 759 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
760 spin_lock(&dentry->d_lock);
761 dentry->d_flags &= ~DCACHE_MOUNTED;
762 spin_unlock(&dentry->d_lock);
0818bf27 763 hlist_del(&mp->m_hash);
84d17192
AV
764 kfree(mp);
765 }
766}
767
143c8c91 768static inline int check_mnt(struct mount *mnt)
1da177e4 769{
6b3286ed 770 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
771}
772
99b7db7b
NP
773/*
774 * vfsmount lock must be held for write
775 */
6b3286ed 776static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
777{
778 if (ns) {
779 ns->event = ++event;
780 wake_up_interruptible(&ns->poll);
781 }
782}
783
99b7db7b
NP
784/*
785 * vfsmount lock must be held for write
786 */
6b3286ed 787static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
788{
789 if (ns && ns->event != event) {
790 ns->event = event;
791 wake_up_interruptible(&ns->poll);
792 }
793}
794
99b7db7b
NP
795/*
796 * vfsmount lock must be held for write
797 */
419148da
AV
798static void detach_mnt(struct mount *mnt, struct path *old_path)
799{
a73324da 800 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
801 old_path->mnt = &mnt->mnt_parent->mnt;
802 mnt->mnt_parent = mnt;
a73324da 803 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 804 list_del_init(&mnt->mnt_child);
38129a13 805 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 806 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
807 put_mountpoint(mnt->mnt_mp);
808 mnt->mnt_mp = NULL;
1da177e4
LT
809}
810
99b7db7b
NP
811/*
812 * vfsmount lock must be held for write
813 */
84d17192
AV
814void mnt_set_mountpoint(struct mount *mnt,
815 struct mountpoint *mp,
44d964d6 816 struct mount *child_mnt)
b90fa9ae 817{
84d17192 818 mp->m_count++;
3a2393d7 819 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 820 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 821 child_mnt->mnt_parent = mnt;
84d17192 822 child_mnt->mnt_mp = mp;
0a5eb7c8 823 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
824}
825
99b7db7b
NP
826/*
827 * vfsmount lock must be held for write
828 */
84d17192
AV
829static void attach_mnt(struct mount *mnt,
830 struct mount *parent,
831 struct mountpoint *mp)
1da177e4 832{
84d17192 833 mnt_set_mountpoint(parent, mp, mnt);
38129a13 834 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 835 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
836}
837
12a5b529
AV
838static void attach_shadowed(struct mount *mnt,
839 struct mount *parent,
840 struct mount *shadows)
841{
842 if (shadows) {
f6f99332 843 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
844 list_add(&mnt->mnt_child, &shadows->mnt_child);
845 } else {
846 hlist_add_head_rcu(&mnt->mnt_hash,
847 m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849 }
850}
851
b90fa9ae 852/*
99b7db7b 853 * vfsmount lock must be held for write
b90fa9ae 854 */
1d6a32ac 855static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 856{
0714a533 857 struct mount *parent = mnt->mnt_parent;
83adc753 858 struct mount *m;
b90fa9ae 859 LIST_HEAD(head);
143c8c91 860 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 861
0714a533 862 BUG_ON(parent == mnt);
b90fa9ae 863
1a4eeaf2 864 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 865 list_for_each_entry(m, &head, mnt_list)
143c8c91 866 m->mnt_ns = n;
f03c6599 867
b90fa9ae
RP
868 list_splice(&head, n->list.prev);
869
12a5b529 870 attach_shadowed(mnt, parent, shadows);
6b3286ed 871 touch_mnt_namespace(n);
1da177e4
LT
872}
873
909b0a88 874static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 875{
6b41d536
AV
876 struct list_head *next = p->mnt_mounts.next;
877 if (next == &p->mnt_mounts) {
1da177e4 878 while (1) {
909b0a88 879 if (p == root)
1da177e4 880 return NULL;
6b41d536
AV
881 next = p->mnt_child.next;
882 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 883 break;
0714a533 884 p = p->mnt_parent;
1da177e4
LT
885 }
886 }
6b41d536 887 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
888}
889
315fc83e 890static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 891{
6b41d536
AV
892 struct list_head *prev = p->mnt_mounts.prev;
893 while (prev != &p->mnt_mounts) {
894 p = list_entry(prev, struct mount, mnt_child);
895 prev = p->mnt_mounts.prev;
9676f0c6
RP
896 }
897 return p;
898}
899
9d412a43
AV
900struct vfsmount *
901vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
902{
b105e270 903 struct mount *mnt;
9d412a43
AV
904 struct dentry *root;
905
906 if (!type)
907 return ERR_PTR(-ENODEV);
908
909 mnt = alloc_vfsmnt(name);
910 if (!mnt)
911 return ERR_PTR(-ENOMEM);
912
913 if (flags & MS_KERNMOUNT)
b105e270 914 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
915
916 root = mount_fs(type, flags, name, data);
917 if (IS_ERR(root)) {
8ffcb32e 918 mnt_free_id(mnt);
9d412a43
AV
919 free_vfsmnt(mnt);
920 return ERR_CAST(root);
921 }
922
b105e270
AV
923 mnt->mnt.mnt_root = root;
924 mnt->mnt.mnt_sb = root->d_sb;
a73324da 925 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 926 mnt->mnt_parent = mnt;
719ea2fb 927 lock_mount_hash();
39f7c4db 928 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 929 unlock_mount_hash();
b105e270 930 return &mnt->mnt;
9d412a43
AV
931}
932EXPORT_SYMBOL_GPL(vfs_kern_mount);
933
87129cc0 934static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 935 int flag)
1da177e4 936{
87129cc0 937 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
938 struct mount *mnt;
939 int err;
1da177e4 940
be34d1a3
DH
941 mnt = alloc_vfsmnt(old->mnt_devname);
942 if (!mnt)
943 return ERR_PTR(-ENOMEM);
719f5d7f 944
7a472ef4 945 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
946 mnt->mnt_group_id = 0; /* not a peer of original */
947 else
948 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 949
be34d1a3
DH
950 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
951 err = mnt_alloc_group_id(mnt);
952 if (err)
953 goto out_free;
1da177e4 954 }
be34d1a3 955
f2ebb3a9 956 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 957 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
958 if (flag & CL_UNPRIVILEGED) {
959 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
960
961 if (mnt->mnt.mnt_flags & MNT_READONLY)
962 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
963
964 if (mnt->mnt.mnt_flags & MNT_NODEV)
965 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
966
967 if (mnt->mnt.mnt_flags & MNT_NOSUID)
968 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
969
970 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
971 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
972 }
132c94e3 973
5ff9d8a6 974 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
975 if ((flag & CL_UNPRIVILEGED) &&
976 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
977 mnt->mnt.mnt_flags |= MNT_LOCKED;
978
be34d1a3
DH
979 atomic_inc(&sb->s_active);
980 mnt->mnt.mnt_sb = sb;
981 mnt->mnt.mnt_root = dget(root);
982 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
983 mnt->mnt_parent = mnt;
719ea2fb 984 lock_mount_hash();
be34d1a3 985 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 986 unlock_mount_hash();
be34d1a3 987
7a472ef4
EB
988 if ((flag & CL_SLAVE) ||
989 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
990 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
991 mnt->mnt_master = old;
992 CLEAR_MNT_SHARED(mnt);
993 } else if (!(flag & CL_PRIVATE)) {
994 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
995 list_add(&mnt->mnt_share, &old->mnt_share);
996 if (IS_MNT_SLAVE(old))
997 list_add(&mnt->mnt_slave, &old->mnt_slave);
998 mnt->mnt_master = old->mnt_master;
999 }
1000 if (flag & CL_MAKE_SHARED)
1001 set_mnt_shared(mnt);
1002
1003 /* stick the duplicate mount on the same expiry list
1004 * as the original if that was on one */
1005 if (flag & CL_EXPIRE) {
1006 if (!list_empty(&old->mnt_expire))
1007 list_add(&mnt->mnt_expire, &old->mnt_expire);
1008 }
1009
cb338d06 1010 return mnt;
719f5d7f
MS
1011
1012 out_free:
8ffcb32e 1013 mnt_free_id(mnt);
719f5d7f 1014 free_vfsmnt(mnt);
be34d1a3 1015 return ERR_PTR(err);
1da177e4
LT
1016}
1017
9ea459e1
AV
1018static void cleanup_mnt(struct mount *mnt)
1019{
1020 /*
1021 * This probably indicates that somebody messed
1022 * up a mnt_want/drop_write() pair. If this
1023 * happens, the filesystem was probably unable
1024 * to make r/w->r/o transitions.
1025 */
1026 /*
1027 * The locking used to deal with mnt_count decrement provides barriers,
1028 * so mnt_get_writers() below is safe.
1029 */
1030 WARN_ON(mnt_get_writers(mnt));
1031 if (unlikely(mnt->mnt_pins.first))
1032 mnt_pin_kill(mnt);
1033 fsnotify_vfsmount_delete(&mnt->mnt);
1034 dput(mnt->mnt.mnt_root);
1035 deactivate_super(mnt->mnt.mnt_sb);
1036 mnt_free_id(mnt);
1037 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1038}
1039
1040static void __cleanup_mnt(struct rcu_head *head)
1041{
1042 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1043}
1044
1045static LLIST_HEAD(delayed_mntput_list);
1046static void delayed_mntput(struct work_struct *unused)
1047{
1048 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1049 struct llist_node *next;
1050
1051 for (; node; node = next) {
1052 next = llist_next(node);
1053 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1054 }
1055}
1056static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1057
900148dc 1058static void mntput_no_expire(struct mount *mnt)
b3e19d92 1059{
48a066e7
AV
1060 rcu_read_lock();
1061 mnt_add_count(mnt, -1);
1062 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1063 rcu_read_unlock();
f03c6599 1064 return;
b3e19d92 1065 }
719ea2fb 1066 lock_mount_hash();
b3e19d92 1067 if (mnt_get_count(mnt)) {
48a066e7 1068 rcu_read_unlock();
719ea2fb 1069 unlock_mount_hash();
99b7db7b
NP
1070 return;
1071 }
48a066e7
AV
1072 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1073 rcu_read_unlock();
1074 unlock_mount_hash();
1075 return;
1076 }
1077 mnt->mnt.mnt_flags |= MNT_DOOMED;
1078 rcu_read_unlock();
962830df 1079
39f7c4db 1080 list_del(&mnt->mnt_instance);
719ea2fb 1081 unlock_mount_hash();
649a795a 1082
9ea459e1
AV
1083 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1084 struct task_struct *task = current;
1085 if (likely(!(task->flags & PF_KTHREAD))) {
1086 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1087 if (!task_work_add(task, &mnt->mnt_rcu, true))
1088 return;
1089 }
1090 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1091 schedule_delayed_work(&delayed_mntput_work, 1);
1092 return;
1093 }
1094 cleanup_mnt(mnt);
b3e19d92 1095}
b3e19d92
NP
1096
1097void mntput(struct vfsmount *mnt)
1098{
1099 if (mnt) {
863d684f 1100 struct mount *m = real_mount(mnt);
b3e19d92 1101 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1102 if (unlikely(m->mnt_expiry_mark))
1103 m->mnt_expiry_mark = 0;
1104 mntput_no_expire(m);
b3e19d92
NP
1105 }
1106}
1107EXPORT_SYMBOL(mntput);
1108
1109struct vfsmount *mntget(struct vfsmount *mnt)
1110{
1111 if (mnt)
83adc753 1112 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1113 return mnt;
1114}
1115EXPORT_SYMBOL(mntget);
1116
3064c356 1117struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1118{
3064c356
AV
1119 struct mount *p;
1120 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1121 if (IS_ERR(p))
1122 return ERR_CAST(p);
1123 p->mnt.mnt_flags |= MNT_INTERNAL;
1124 return &p->mnt;
7b7b1ace 1125}
1da177e4 1126
b3b304a2
MS
1127static inline void mangle(struct seq_file *m, const char *s)
1128{
1129 seq_escape(m, s, " \t\n\\");
1130}
1131
1132/*
1133 * Simple .show_options callback for filesystems which don't want to
1134 * implement more complex mount option showing.
1135 *
1136 * See also save_mount_options().
1137 */
34c80b1d 1138int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1139{
2a32cebd
AV
1140 const char *options;
1141
1142 rcu_read_lock();
34c80b1d 1143 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1144
1145 if (options != NULL && options[0]) {
1146 seq_putc(m, ',');
1147 mangle(m, options);
1148 }
2a32cebd 1149 rcu_read_unlock();
b3b304a2
MS
1150
1151 return 0;
1152}
1153EXPORT_SYMBOL(generic_show_options);
1154
1155/*
1156 * If filesystem uses generic_show_options(), this function should be
1157 * called from the fill_super() callback.
1158 *
1159 * The .remount_fs callback usually needs to be handled in a special
1160 * way, to make sure, that previous options are not overwritten if the
1161 * remount fails.
1162 *
1163 * Also note, that if the filesystem's .remount_fs function doesn't
1164 * reset all options to their default value, but changes only newly
1165 * given options, then the displayed options will not reflect reality
1166 * any more.
1167 */
1168void save_mount_options(struct super_block *sb, char *options)
1169{
2a32cebd
AV
1170 BUG_ON(sb->s_options);
1171 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1172}
1173EXPORT_SYMBOL(save_mount_options);
1174
2a32cebd
AV
1175void replace_mount_options(struct super_block *sb, char *options)
1176{
1177 char *old = sb->s_options;
1178 rcu_assign_pointer(sb->s_options, options);
1179 if (old) {
1180 synchronize_rcu();
1181 kfree(old);
1182 }
1183}
1184EXPORT_SYMBOL(replace_mount_options);
1185
a1a2c409 1186#ifdef CONFIG_PROC_FS
0226f492 1187/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1188static void *m_start(struct seq_file *m, loff_t *pos)
1189{
6ce6e24e 1190 struct proc_mounts *p = proc_mounts(m);
1da177e4 1191
390c6843 1192 down_read(&namespace_sem);
c7999c36
AV
1193 if (p->cached_event == p->ns->event) {
1194 void *v = p->cached_mount;
1195 if (*pos == p->cached_index)
1196 return v;
1197 if (*pos == p->cached_index + 1) {
1198 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1199 return p->cached_mount = v;
1200 }
1201 }
1202
1203 p->cached_event = p->ns->event;
1204 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1205 p->cached_index = *pos;
1206 return p->cached_mount;
1da177e4
LT
1207}
1208
1209static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1210{
6ce6e24e 1211 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1212
c7999c36
AV
1213 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1214 p->cached_index = *pos;
1215 return p->cached_mount;
1da177e4
LT
1216}
1217
1218static void m_stop(struct seq_file *m, void *v)
1219{
390c6843 1220 up_read(&namespace_sem);
1da177e4
LT
1221}
1222
0226f492 1223static int m_show(struct seq_file *m, void *v)
2d4d4864 1224{
6ce6e24e 1225 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1226 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1227 return p->show(m, &r->mnt);
1da177e4
LT
1228}
1229
a1a2c409 1230const struct seq_operations mounts_op = {
1da177e4
LT
1231 .start = m_start,
1232 .next = m_next,
1233 .stop = m_stop,
0226f492 1234 .show = m_show,
b4629fe2 1235};
a1a2c409 1236#endif /* CONFIG_PROC_FS */
b4629fe2 1237
1da177e4
LT
1238/**
1239 * may_umount_tree - check if a mount tree is busy
1240 * @mnt: root of mount tree
1241 *
1242 * This is called to check if a tree of mounts has any
1243 * open files, pwds, chroots or sub mounts that are
1244 * busy.
1245 */
909b0a88 1246int may_umount_tree(struct vfsmount *m)
1da177e4 1247{
909b0a88 1248 struct mount *mnt = real_mount(m);
36341f64
RP
1249 int actual_refs = 0;
1250 int minimum_refs = 0;
315fc83e 1251 struct mount *p;
909b0a88 1252 BUG_ON(!m);
1da177e4 1253
b3e19d92 1254 /* write lock needed for mnt_get_count */
719ea2fb 1255 lock_mount_hash();
909b0a88 1256 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1257 actual_refs += mnt_get_count(p);
1da177e4 1258 minimum_refs += 2;
1da177e4 1259 }
719ea2fb 1260 unlock_mount_hash();
1da177e4
LT
1261
1262 if (actual_refs > minimum_refs)
e3474a8e 1263 return 0;
1da177e4 1264
e3474a8e 1265 return 1;
1da177e4
LT
1266}
1267
1268EXPORT_SYMBOL(may_umount_tree);
1269
1270/**
1271 * may_umount - check if a mount point is busy
1272 * @mnt: root of mount
1273 *
1274 * This is called to check if a mount point has any
1275 * open files, pwds, chroots or sub mounts. If the
1276 * mount has sub mounts this will return busy
1277 * regardless of whether the sub mounts are busy.
1278 *
1279 * Doesn't take quota and stuff into account. IOW, in some cases it will
1280 * give false negatives. The main reason why it's here is that we need
1281 * a non-destructive way to look for easily umountable filesystems.
1282 */
1283int may_umount(struct vfsmount *mnt)
1284{
e3474a8e 1285 int ret = 1;
8ad08d8a 1286 down_read(&namespace_sem);
719ea2fb 1287 lock_mount_hash();
1ab59738 1288 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1289 ret = 0;
719ea2fb 1290 unlock_mount_hash();
8ad08d8a 1291 up_read(&namespace_sem);
a05964f3 1292 return ret;
1da177e4
LT
1293}
1294
1295EXPORT_SYMBOL(may_umount);
1296
38129a13 1297static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1298
97216be0 1299static void namespace_unlock(void)
70fbcdf4 1300{
a3b3c562 1301 struct hlist_head head;
97216be0 1302
a3b3c562 1303 hlist_move_list(&unmounted, &head);
97216be0 1304
97216be0
AV
1305 up_write(&namespace_sem);
1306
a3b3c562
EB
1307 if (likely(hlist_empty(&head)))
1308 return;
1309
48a066e7
AV
1310 synchronize_rcu();
1311
87b95ce0 1312 group_pin_kill(&head);
70fbcdf4
RP
1313}
1314
97216be0 1315static inline void namespace_lock(void)
e3197d83 1316{
97216be0 1317 down_write(&namespace_sem);
e3197d83
AV
1318}
1319
99b7db7b 1320/*
48a066e7 1321 * mount_lock must be held
99b7db7b 1322 * namespace_sem must be held for write
48a066e7
AV
1323 * how = 0 => just this tree, don't propagate
1324 * how = 1 => propagate; we know that nobody else has reference to any victims
1325 * how = 2 => lazy umount
99b7db7b 1326 */
48a066e7 1327void umount_tree(struct mount *mnt, int how)
1da177e4 1328{
38129a13 1329 HLIST_HEAD(tmp_list);
315fc83e 1330 struct mount *p;
1da177e4 1331
38129a13
AV
1332 for (p = mnt; p; p = next_mnt(p, mnt)) {
1333 hlist_del_init_rcu(&p->mnt_hash);
1334 hlist_add_head(&p->mnt_hash, &tmp_list);
1335 }
1da177e4 1336
88b368f2
AV
1337 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1338 list_del_init(&p->mnt_child);
1339
48a066e7 1340 if (how)
7b8a53fd 1341 propagate_umount(&tmp_list);
a05964f3 1342
87b95ce0
AV
1343 while (!hlist_empty(&tmp_list)) {
1344 p = hlist_entry(tmp_list.first, struct mount, mnt_hash);
1345 hlist_del_init_rcu(&p->mnt_hash);
6776db3d 1346 list_del_init(&p->mnt_expire);
1a4eeaf2 1347 list_del_init(&p->mnt_list);
143c8c91
AV
1348 __touch_mnt_namespace(p->mnt_ns);
1349 p->mnt_ns = NULL;
48a066e7
AV
1350 if (how < 2)
1351 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0
AV
1352
1353 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted);
676da58d 1354 if (mnt_has_parent(p)) {
0a5eb7c8 1355 hlist_del_init(&p->mnt_mp_list);
84d17192 1356 put_mountpoint(p->mnt_mp);
81b6b061 1357 mnt_add_count(p->mnt_parent, -1);
87b95ce0
AV
1358 /* old mountpoint will be dropped when we can do that */
1359 p->mnt_ex_mountpoint = p->mnt_mountpoint;
aba809cf
AV
1360 p->mnt_mountpoint = p->mnt.mnt_root;
1361 p->mnt_parent = p;
84d17192 1362 p->mnt_mp = NULL;
7c4b93d8 1363 }
0f0afb1d 1364 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1365 }
1366}
1367
b54b9be7 1368static void shrink_submounts(struct mount *mnt);
c35038be 1369
1ab59738 1370static int do_umount(struct mount *mnt, int flags)
1da177e4 1371{
1ab59738 1372 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1373 int retval;
1374
1ab59738 1375 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1376 if (retval)
1377 return retval;
1378
1379 /*
1380 * Allow userspace to request a mountpoint be expired rather than
1381 * unmounting unconditionally. Unmount only happens if:
1382 * (1) the mark is already set (the mark is cleared by mntput())
1383 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1384 */
1385 if (flags & MNT_EXPIRE) {
1ab59738 1386 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1387 flags & (MNT_FORCE | MNT_DETACH))
1388 return -EINVAL;
1389
b3e19d92
NP
1390 /*
1391 * probably don't strictly need the lock here if we examined
1392 * all race cases, but it's a slowpath.
1393 */
719ea2fb 1394 lock_mount_hash();
83adc753 1395 if (mnt_get_count(mnt) != 2) {
719ea2fb 1396 unlock_mount_hash();
1da177e4 1397 return -EBUSY;
b3e19d92 1398 }
719ea2fb 1399 unlock_mount_hash();
1da177e4 1400
863d684f 1401 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1402 return -EAGAIN;
1403 }
1404
1405 /*
1406 * If we may have to abort operations to get out of this
1407 * mount, and they will themselves hold resources we must
1408 * allow the fs to do things. In the Unix tradition of
1409 * 'Gee thats tricky lets do it in userspace' the umount_begin
1410 * might fail to complete on the first run through as other tasks
1411 * must return, and the like. Thats for the mount program to worry
1412 * about for the moment.
1413 */
1414
42faad99 1415 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1416 sb->s_op->umount_begin(sb);
42faad99 1417 }
1da177e4
LT
1418
1419 /*
1420 * No sense to grab the lock for this test, but test itself looks
1421 * somewhat bogus. Suggestions for better replacement?
1422 * Ho-hum... In principle, we might treat that as umount + switch
1423 * to rootfs. GC would eventually take care of the old vfsmount.
1424 * Actually it makes sense, especially if rootfs would contain a
1425 * /reboot - static binary that would close all descriptors and
1426 * call reboot(9). Then init(8) could umount root and exec /reboot.
1427 */
1ab59738 1428 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1429 /*
1430 * Special case for "unmounting" root ...
1431 * we just try to remount it readonly.
1432 */
a1480dcc
AL
1433 if (!capable(CAP_SYS_ADMIN))
1434 return -EPERM;
1da177e4 1435 down_write(&sb->s_umount);
4aa98cf7 1436 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1437 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1438 up_write(&sb->s_umount);
1439 return retval;
1440 }
1441
97216be0 1442 namespace_lock();
719ea2fb 1443 lock_mount_hash();
5addc5dd 1444 event++;
1da177e4 1445
48a066e7 1446 if (flags & MNT_DETACH) {
1a4eeaf2 1447 if (!list_empty(&mnt->mnt_list))
48a066e7 1448 umount_tree(mnt, 2);
1da177e4 1449 retval = 0;
48a066e7
AV
1450 } else {
1451 shrink_submounts(mnt);
1452 retval = -EBUSY;
1453 if (!propagate_mount_busy(mnt, 2)) {
1454 if (!list_empty(&mnt->mnt_list))
1455 umount_tree(mnt, 1);
1456 retval = 0;
1457 }
1da177e4 1458 }
719ea2fb 1459 unlock_mount_hash();
e3197d83 1460 namespace_unlock();
1da177e4
LT
1461 return retval;
1462}
1463
80b5dce8
EB
1464/*
1465 * __detach_mounts - lazily unmount all mounts on the specified dentry
1466 *
1467 * During unlink, rmdir, and d_drop it is possible to loose the path
1468 * to an existing mountpoint, and wind up leaking the mount.
1469 * detach_mounts allows lazily unmounting those mounts instead of
1470 * leaking them.
1471 *
1472 * The caller may hold dentry->d_inode->i_mutex.
1473 */
1474void __detach_mounts(struct dentry *dentry)
1475{
1476 struct mountpoint *mp;
1477 struct mount *mnt;
1478
1479 namespace_lock();
1480 mp = lookup_mountpoint(dentry);
1481 if (!mp)
1482 goto out_unlock;
1483
1484 lock_mount_hash();
1485 while (!hlist_empty(&mp->m_list)) {
1486 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1487 umount_tree(mnt, 2);
1488 }
1489 unlock_mount_hash();
1490 put_mountpoint(mp);
1491out_unlock:
1492 namespace_unlock();
1493}
1494
9b40bc90
AV
1495/*
1496 * Is the caller allowed to modify his namespace?
1497 */
1498static inline bool may_mount(void)
1499{
1500 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1501}
1502
1da177e4
LT
1503/*
1504 * Now umount can handle mount points as well as block devices.
1505 * This is important for filesystems which use unnamed block devices.
1506 *
1507 * We now support a flag for forced unmount like the other 'big iron'
1508 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1509 */
1510
bdc480e3 1511SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1512{
2d8f3038 1513 struct path path;
900148dc 1514 struct mount *mnt;
1da177e4 1515 int retval;
db1f05bb 1516 int lookup_flags = 0;
1da177e4 1517
db1f05bb
MS
1518 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1519 return -EINVAL;
1520
9b40bc90
AV
1521 if (!may_mount())
1522 return -EPERM;
1523
db1f05bb
MS
1524 if (!(flags & UMOUNT_NOFOLLOW))
1525 lookup_flags |= LOOKUP_FOLLOW;
1526
197df04c 1527 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1528 if (retval)
1529 goto out;
900148dc 1530 mnt = real_mount(path.mnt);
1da177e4 1531 retval = -EINVAL;
2d8f3038 1532 if (path.dentry != path.mnt->mnt_root)
1da177e4 1533 goto dput_and_out;
143c8c91 1534 if (!check_mnt(mnt))
1da177e4 1535 goto dput_and_out;
5ff9d8a6
EB
1536 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1537 goto dput_and_out;
b2f5d4dc
EB
1538 retval = -EPERM;
1539 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1540 goto dput_and_out;
1da177e4 1541
900148dc 1542 retval = do_umount(mnt, flags);
1da177e4 1543dput_and_out:
429731b1 1544 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1545 dput(path.dentry);
900148dc 1546 mntput_no_expire(mnt);
1da177e4
LT
1547out:
1548 return retval;
1549}
1550
1551#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1552
1553/*
b58fed8b 1554 * The 2.0 compatible umount. No flags.
1da177e4 1555 */
bdc480e3 1556SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1557{
b58fed8b 1558 return sys_umount(name, 0);
1da177e4
LT
1559}
1560
1561#endif
1562
4ce5d2b1 1563static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1564{
4ce5d2b1 1565 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1566 return dentry->d_op == &ns_dentry_operations &&
1567 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1568}
1569
58be2825
AV
1570struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1571{
1572 return container_of(ns, struct mnt_namespace, ns);
1573}
1574
4ce5d2b1
EB
1575static bool mnt_ns_loop(struct dentry *dentry)
1576{
1577 /* Could bind mounting the mount namespace inode cause a
1578 * mount namespace loop?
1579 */
1580 struct mnt_namespace *mnt_ns;
1581 if (!is_mnt_ns_file(dentry))
1582 return false;
1583
f77c8014 1584 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1585 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1586}
1587
87129cc0 1588struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1589 int flag)
1da177e4 1590{
84d17192 1591 struct mount *res, *p, *q, *r, *parent;
1da177e4 1592
4ce5d2b1
EB
1593 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1594 return ERR_PTR(-EINVAL);
1595
1596 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1597 return ERR_PTR(-EINVAL);
9676f0c6 1598
36341f64 1599 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1600 if (IS_ERR(q))
1601 return q;
1602
a73324da 1603 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1604
1605 p = mnt;
6b41d536 1606 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1607 struct mount *s;
7ec02ef1 1608 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1609 continue;
1610
909b0a88 1611 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1612 struct mount *t = NULL;
4ce5d2b1
EB
1613 if (!(flag & CL_COPY_UNBINDABLE) &&
1614 IS_MNT_UNBINDABLE(s)) {
1615 s = skip_mnt_tree(s);
1616 continue;
1617 }
1618 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1619 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1620 s = skip_mnt_tree(s);
1621 continue;
1622 }
0714a533
AV
1623 while (p != s->mnt_parent) {
1624 p = p->mnt_parent;
1625 q = q->mnt_parent;
1da177e4 1626 }
87129cc0 1627 p = s;
84d17192 1628 parent = q;
87129cc0 1629 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1630 if (IS_ERR(q))
1631 goto out;
719ea2fb 1632 lock_mount_hash();
1a4eeaf2 1633 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1634 mnt_set_mountpoint(parent, p->mnt_mp, q);
1635 if (!list_empty(&parent->mnt_mounts)) {
1636 t = list_last_entry(&parent->mnt_mounts,
1637 struct mount, mnt_child);
1638 if (t->mnt_mp != p->mnt_mp)
1639 t = NULL;
1640 }
1641 attach_shadowed(q, parent, t);
719ea2fb 1642 unlock_mount_hash();
1da177e4
LT
1643 }
1644 }
1645 return res;
be34d1a3 1646out:
1da177e4 1647 if (res) {
719ea2fb 1648 lock_mount_hash();
328e6d90 1649 umount_tree(res, 0);
719ea2fb 1650 unlock_mount_hash();
1da177e4 1651 }
be34d1a3 1652 return q;
1da177e4
LT
1653}
1654
be34d1a3
DH
1655/* Caller should check returned pointer for errors */
1656
589ff870 1657struct vfsmount *collect_mounts(struct path *path)
8aec0809 1658{
cb338d06 1659 struct mount *tree;
97216be0 1660 namespace_lock();
87129cc0
AV
1661 tree = copy_tree(real_mount(path->mnt), path->dentry,
1662 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1663 namespace_unlock();
be34d1a3 1664 if (IS_ERR(tree))
52e220d3 1665 return ERR_CAST(tree);
be34d1a3 1666 return &tree->mnt;
8aec0809
AV
1667}
1668
1669void drop_collected_mounts(struct vfsmount *mnt)
1670{
97216be0 1671 namespace_lock();
719ea2fb 1672 lock_mount_hash();
328e6d90 1673 umount_tree(real_mount(mnt), 0);
719ea2fb 1674 unlock_mount_hash();
3ab6abee 1675 namespace_unlock();
8aec0809
AV
1676}
1677
c771d683
MS
1678/**
1679 * clone_private_mount - create a private clone of a path
1680 *
1681 * This creates a new vfsmount, which will be the clone of @path. The new will
1682 * not be attached anywhere in the namespace and will be private (i.e. changes
1683 * to the originating mount won't be propagated into this).
1684 *
1685 * Release with mntput().
1686 */
1687struct vfsmount *clone_private_mount(struct path *path)
1688{
1689 struct mount *old_mnt = real_mount(path->mnt);
1690 struct mount *new_mnt;
1691
1692 if (IS_MNT_UNBINDABLE(old_mnt))
1693 return ERR_PTR(-EINVAL);
1694
1695 down_read(&namespace_sem);
1696 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1697 up_read(&namespace_sem);
1698 if (IS_ERR(new_mnt))
1699 return ERR_CAST(new_mnt);
1700
1701 return &new_mnt->mnt;
1702}
1703EXPORT_SYMBOL_GPL(clone_private_mount);
1704
1f707137
AV
1705int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1706 struct vfsmount *root)
1707{
1a4eeaf2 1708 struct mount *mnt;
1f707137
AV
1709 int res = f(root, arg);
1710 if (res)
1711 return res;
1a4eeaf2
AV
1712 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1713 res = f(&mnt->mnt, arg);
1f707137
AV
1714 if (res)
1715 return res;
1716 }
1717 return 0;
1718}
1719
4b8b21f4 1720static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1721{
315fc83e 1722 struct mount *p;
719f5d7f 1723
909b0a88 1724 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1725 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1726 mnt_release_group_id(p);
719f5d7f
MS
1727 }
1728}
1729
4b8b21f4 1730static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1731{
315fc83e 1732 struct mount *p;
719f5d7f 1733
909b0a88 1734 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1735 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1736 int err = mnt_alloc_group_id(p);
719f5d7f 1737 if (err) {
4b8b21f4 1738 cleanup_group_ids(mnt, p);
719f5d7f
MS
1739 return err;
1740 }
1741 }
1742 }
1743
1744 return 0;
1745}
1746
b90fa9ae
RP
1747/*
1748 * @source_mnt : mount tree to be attached
21444403
RP
1749 * @nd : place the mount tree @source_mnt is attached
1750 * @parent_nd : if non-null, detach the source_mnt from its parent and
1751 * store the parent mount and mountpoint dentry.
1752 * (done when source_mnt is moved)
b90fa9ae
RP
1753 *
1754 * NOTE: in the table below explains the semantics when a source mount
1755 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1756 * ---------------------------------------------------------------------------
1757 * | BIND MOUNT OPERATION |
1758 * |**************************************************************************
1759 * | source-->| shared | private | slave | unbindable |
1760 * | dest | | | | |
1761 * | | | | | | |
1762 * | v | | | | |
1763 * |**************************************************************************
1764 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1765 * | | | | | |
1766 * |non-shared| shared (+) | private | slave (*) | invalid |
1767 * ***************************************************************************
b90fa9ae
RP
1768 * A bind operation clones the source mount and mounts the clone on the
1769 * destination mount.
1770 *
1771 * (++) the cloned mount is propagated to all the mounts in the propagation
1772 * tree of the destination mount and the cloned mount is added to
1773 * the peer group of the source mount.
1774 * (+) the cloned mount is created under the destination mount and is marked
1775 * as shared. The cloned mount is added to the peer group of the source
1776 * mount.
5afe0022
RP
1777 * (+++) the mount is propagated to all the mounts in the propagation tree
1778 * of the destination mount and the cloned mount is made slave
1779 * of the same master as that of the source mount. The cloned mount
1780 * is marked as 'shared and slave'.
1781 * (*) the cloned mount is made a slave of the same master as that of the
1782 * source mount.
1783 *
9676f0c6
RP
1784 * ---------------------------------------------------------------------------
1785 * | MOVE MOUNT OPERATION |
1786 * |**************************************************************************
1787 * | source-->| shared | private | slave | unbindable |
1788 * | dest | | | | |
1789 * | | | | | | |
1790 * | v | | | | |
1791 * |**************************************************************************
1792 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1793 * | | | | | |
1794 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1795 * ***************************************************************************
5afe0022
RP
1796 *
1797 * (+) the mount is moved to the destination. And is then propagated to
1798 * all the mounts in the propagation tree of the destination mount.
21444403 1799 * (+*) the mount is moved to the destination.
5afe0022
RP
1800 * (+++) the mount is moved to the destination and is then propagated to
1801 * all the mounts belonging to the destination mount's propagation tree.
1802 * the mount is marked as 'shared and slave'.
1803 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1804 *
1805 * if the source mount is a tree, the operations explained above is
1806 * applied to each mount in the tree.
1807 * Must be called without spinlocks held, since this function can sleep
1808 * in allocations.
1809 */
0fb54e50 1810static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1811 struct mount *dest_mnt,
1812 struct mountpoint *dest_mp,
1813 struct path *parent_path)
b90fa9ae 1814{
38129a13 1815 HLIST_HEAD(tree_list);
315fc83e 1816 struct mount *child, *p;
38129a13 1817 struct hlist_node *n;
719f5d7f 1818 int err;
b90fa9ae 1819
fc7be130 1820 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1821 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1822 if (err)
1823 goto out;
0b1b901b 1824 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1825 lock_mount_hash();
0b1b901b
AV
1826 if (err)
1827 goto out_cleanup_ids;
909b0a88 1828 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1829 set_mnt_shared(p);
0b1b901b
AV
1830 } else {
1831 lock_mount_hash();
b90fa9ae 1832 }
1a390689 1833 if (parent_path) {
0fb54e50 1834 detach_mnt(source_mnt, parent_path);
84d17192 1835 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1836 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1837 } else {
84d17192 1838 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1839 commit_tree(source_mnt, NULL);
21444403 1840 }
b90fa9ae 1841
38129a13 1842 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1843 struct mount *q;
38129a13 1844 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1845 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1846 child->mnt_mountpoint);
1847 commit_tree(child, q);
b90fa9ae 1848 }
719ea2fb 1849 unlock_mount_hash();
99b7db7b 1850
b90fa9ae 1851 return 0;
719f5d7f
MS
1852
1853 out_cleanup_ids:
f2ebb3a9
AV
1854 while (!hlist_empty(&tree_list)) {
1855 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1856 umount_tree(child, 0);
1857 }
1858 unlock_mount_hash();
0b1b901b 1859 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1860 out:
1861 return err;
b90fa9ae
RP
1862}
1863
84d17192 1864static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1865{
1866 struct vfsmount *mnt;
84d17192 1867 struct dentry *dentry = path->dentry;
b12cea91 1868retry:
84d17192
AV
1869 mutex_lock(&dentry->d_inode->i_mutex);
1870 if (unlikely(cant_mount(dentry))) {
1871 mutex_unlock(&dentry->d_inode->i_mutex);
1872 return ERR_PTR(-ENOENT);
b12cea91 1873 }
97216be0 1874 namespace_lock();
b12cea91 1875 mnt = lookup_mnt(path);
84d17192 1876 if (likely(!mnt)) {
e2dfa935
EB
1877 struct mountpoint *mp = lookup_mountpoint(dentry);
1878 if (!mp)
1879 mp = new_mountpoint(dentry);
84d17192 1880 if (IS_ERR(mp)) {
97216be0 1881 namespace_unlock();
84d17192
AV
1882 mutex_unlock(&dentry->d_inode->i_mutex);
1883 return mp;
1884 }
1885 return mp;
1886 }
97216be0 1887 namespace_unlock();
b12cea91
AV
1888 mutex_unlock(&path->dentry->d_inode->i_mutex);
1889 path_put(path);
1890 path->mnt = mnt;
84d17192 1891 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1892 goto retry;
1893}
1894
84d17192 1895static void unlock_mount(struct mountpoint *where)
b12cea91 1896{
84d17192
AV
1897 struct dentry *dentry = where->m_dentry;
1898 put_mountpoint(where);
328e6d90 1899 namespace_unlock();
84d17192 1900 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1901}
1902
84d17192 1903static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1904{
95bc5f25 1905 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1906 return -EINVAL;
1907
e36cb0b8
DH
1908 if (d_is_dir(mp->m_dentry) !=
1909 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
1910 return -ENOTDIR;
1911
84d17192 1912 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1913}
1914
7a2e8a8f
VA
1915/*
1916 * Sanity check the flags to change_mnt_propagation.
1917 */
1918
1919static int flags_to_propagation_type(int flags)
1920{
7c6e984d 1921 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1922
1923 /* Fail if any non-propagation flags are set */
1924 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1925 return 0;
1926 /* Only one propagation flag should be set */
1927 if (!is_power_of_2(type))
1928 return 0;
1929 return type;
1930}
1931
07b20889
RP
1932/*
1933 * recursively change the type of the mountpoint.
1934 */
0a0d8a46 1935static int do_change_type(struct path *path, int flag)
07b20889 1936{
315fc83e 1937 struct mount *m;
4b8b21f4 1938 struct mount *mnt = real_mount(path->mnt);
07b20889 1939 int recurse = flag & MS_REC;
7a2e8a8f 1940 int type;
719f5d7f 1941 int err = 0;
07b20889 1942
2d92ab3c 1943 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1944 return -EINVAL;
1945
7a2e8a8f
VA
1946 type = flags_to_propagation_type(flag);
1947 if (!type)
1948 return -EINVAL;
1949
97216be0 1950 namespace_lock();
719f5d7f
MS
1951 if (type == MS_SHARED) {
1952 err = invent_group_ids(mnt, recurse);
1953 if (err)
1954 goto out_unlock;
1955 }
1956
719ea2fb 1957 lock_mount_hash();
909b0a88 1958 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1959 change_mnt_propagation(m, type);
719ea2fb 1960 unlock_mount_hash();
719f5d7f
MS
1961
1962 out_unlock:
97216be0 1963 namespace_unlock();
719f5d7f 1964 return err;
07b20889
RP
1965}
1966
5ff9d8a6
EB
1967static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1968{
1969 struct mount *child;
1970 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1971 if (!is_subdir(child->mnt_mountpoint, dentry))
1972 continue;
1973
1974 if (child->mnt.mnt_flags & MNT_LOCKED)
1975 return true;
1976 }
1977 return false;
1978}
1979
1da177e4
LT
1980/*
1981 * do loopback mount.
1982 */
808d4e3c 1983static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1984 int recurse)
1da177e4 1985{
2d92ab3c 1986 struct path old_path;
84d17192
AV
1987 struct mount *mnt = NULL, *old, *parent;
1988 struct mountpoint *mp;
57eccb83 1989 int err;
1da177e4
LT
1990 if (!old_name || !*old_name)
1991 return -EINVAL;
815d405c 1992 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1993 if (err)
1994 return err;
1995
8823c079 1996 err = -EINVAL;
4ce5d2b1 1997 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1998 goto out;
1999
84d17192
AV
2000 mp = lock_mount(path);
2001 err = PTR_ERR(mp);
2002 if (IS_ERR(mp))
b12cea91
AV
2003 goto out;
2004
87129cc0 2005 old = real_mount(old_path.mnt);
84d17192 2006 parent = real_mount(path->mnt);
87129cc0 2007
1da177e4 2008 err = -EINVAL;
fc7be130 2009 if (IS_MNT_UNBINDABLE(old))
b12cea91 2010 goto out2;
9676f0c6 2011
e149ed2b
AV
2012 if (!check_mnt(parent))
2013 goto out2;
2014
2015 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2016 goto out2;
1da177e4 2017
5ff9d8a6
EB
2018 if (!recurse && has_locked_children(old, old_path.dentry))
2019 goto out2;
2020
ccd48bc7 2021 if (recurse)
4ce5d2b1 2022 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2023 else
87129cc0 2024 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2025
be34d1a3
DH
2026 if (IS_ERR(mnt)) {
2027 err = PTR_ERR(mnt);
e9c5d8a5 2028 goto out2;
be34d1a3 2029 }
ccd48bc7 2030
5ff9d8a6
EB
2031 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2032
84d17192 2033 err = graft_tree(mnt, parent, mp);
ccd48bc7 2034 if (err) {
719ea2fb 2035 lock_mount_hash();
328e6d90 2036 umount_tree(mnt, 0);
719ea2fb 2037 unlock_mount_hash();
5b83d2c5 2038 }
b12cea91 2039out2:
84d17192 2040 unlock_mount(mp);
ccd48bc7 2041out:
2d92ab3c 2042 path_put(&old_path);
1da177e4
LT
2043 return err;
2044}
2045
2e4b7fcd
DH
2046static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2047{
2048 int error = 0;
2049 int readonly_request = 0;
2050
2051 if (ms_flags & MS_RDONLY)
2052 readonly_request = 1;
2053 if (readonly_request == __mnt_is_readonly(mnt))
2054 return 0;
2055
2056 if (readonly_request)
83adc753 2057 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2058 else
83adc753 2059 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2060 return error;
2061}
2062
1da177e4
LT
2063/*
2064 * change filesystem flags. dir should be a physical root of filesystem.
2065 * If you've mounted a non-root directory somewhere and want to do remount
2066 * on it - tough luck.
2067 */
0a0d8a46 2068static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2069 void *data)
2070{
2071 int err;
2d92ab3c 2072 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2073 struct mount *mnt = real_mount(path->mnt);
1da177e4 2074
143c8c91 2075 if (!check_mnt(mnt))
1da177e4
LT
2076 return -EINVAL;
2077
2d92ab3c 2078 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2079 return -EINVAL;
2080
07b64558
EB
2081 /* Don't allow changing of locked mnt flags.
2082 *
2083 * No locks need to be held here while testing the various
2084 * MNT_LOCK flags because those flags can never be cleared
2085 * once they are set.
2086 */
2087 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2088 !(mnt_flags & MNT_READONLY)) {
2089 return -EPERM;
2090 }
9566d674
EB
2091 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2092 !(mnt_flags & MNT_NODEV)) {
3e186641
EB
2093 /* Was the nodev implicitly added in mount? */
2094 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2095 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2096 mnt_flags |= MNT_NODEV;
2097 } else {
2098 return -EPERM;
2099 }
9566d674
EB
2100 }
2101 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2102 !(mnt_flags & MNT_NOSUID)) {
2103 return -EPERM;
2104 }
2105 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2106 !(mnt_flags & MNT_NOEXEC)) {
2107 return -EPERM;
2108 }
2109 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2110 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2111 return -EPERM;
2112 }
2113
ff36fe2c
EP
2114 err = security_sb_remount(sb, data);
2115 if (err)
2116 return err;
2117
1da177e4 2118 down_write(&sb->s_umount);
2e4b7fcd 2119 if (flags & MS_BIND)
2d92ab3c 2120 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2121 else if (!capable(CAP_SYS_ADMIN))
2122 err = -EPERM;
4aa98cf7 2123 else
2e4b7fcd 2124 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2125 if (!err) {
719ea2fb 2126 lock_mount_hash();
a6138db8 2127 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2128 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2129 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2130 unlock_mount_hash();
0e55a7cc 2131 }
6339dab8 2132 up_write(&sb->s_umount);
1da177e4
LT
2133 return err;
2134}
2135
cbbe362c 2136static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2137{
315fc83e 2138 struct mount *p;
909b0a88 2139 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2140 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2141 return 1;
2142 }
2143 return 0;
2144}
2145
808d4e3c 2146static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2147{
2d92ab3c 2148 struct path old_path, parent_path;
676da58d 2149 struct mount *p;
0fb54e50 2150 struct mount *old;
84d17192 2151 struct mountpoint *mp;
57eccb83 2152 int err;
1da177e4
LT
2153 if (!old_name || !*old_name)
2154 return -EINVAL;
2d92ab3c 2155 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2156 if (err)
2157 return err;
2158
84d17192
AV
2159 mp = lock_mount(path);
2160 err = PTR_ERR(mp);
2161 if (IS_ERR(mp))
cc53ce53
DH
2162 goto out;
2163
143c8c91 2164 old = real_mount(old_path.mnt);
fc7be130 2165 p = real_mount(path->mnt);
143c8c91 2166
1da177e4 2167 err = -EINVAL;
fc7be130 2168 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2169 goto out1;
2170
5ff9d8a6
EB
2171 if (old->mnt.mnt_flags & MNT_LOCKED)
2172 goto out1;
2173
1da177e4 2174 err = -EINVAL;
2d92ab3c 2175 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2176 goto out1;
1da177e4 2177
676da58d 2178 if (!mnt_has_parent(old))
21444403 2179 goto out1;
1da177e4 2180
e36cb0b8
DH
2181 if (d_is_dir(path->dentry) !=
2182 d_is_dir(old_path.dentry))
21444403
RP
2183 goto out1;
2184 /*
2185 * Don't move a mount residing in a shared parent.
2186 */
fc7be130 2187 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2188 goto out1;
9676f0c6
RP
2189 /*
2190 * Don't move a mount tree containing unbindable mounts to a destination
2191 * mount which is shared.
2192 */
fc7be130 2193 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2194 goto out1;
1da177e4 2195 err = -ELOOP;
fc7be130 2196 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2197 if (p == old)
21444403 2198 goto out1;
1da177e4 2199
84d17192 2200 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2201 if (err)
21444403 2202 goto out1;
1da177e4
LT
2203
2204 /* if the mount is moved, it should no longer be expire
2205 * automatically */
6776db3d 2206 list_del_init(&old->mnt_expire);
1da177e4 2207out1:
84d17192 2208 unlock_mount(mp);
1da177e4 2209out:
1da177e4 2210 if (!err)
1a390689 2211 path_put(&parent_path);
2d92ab3c 2212 path_put(&old_path);
1da177e4
LT
2213 return err;
2214}
2215
9d412a43
AV
2216static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2217{
2218 int err;
2219 const char *subtype = strchr(fstype, '.');
2220 if (subtype) {
2221 subtype++;
2222 err = -EINVAL;
2223 if (!subtype[0])
2224 goto err;
2225 } else
2226 subtype = "";
2227
2228 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2229 err = -ENOMEM;
2230 if (!mnt->mnt_sb->s_subtype)
2231 goto err;
2232 return mnt;
2233
2234 err:
2235 mntput(mnt);
2236 return ERR_PTR(err);
2237}
2238
9d412a43
AV
2239/*
2240 * add a mount into a namespace's mount tree
2241 */
95bc5f25 2242static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2243{
84d17192
AV
2244 struct mountpoint *mp;
2245 struct mount *parent;
9d412a43
AV
2246 int err;
2247
f2ebb3a9 2248 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2249
84d17192
AV
2250 mp = lock_mount(path);
2251 if (IS_ERR(mp))
2252 return PTR_ERR(mp);
9d412a43 2253
84d17192 2254 parent = real_mount(path->mnt);
9d412a43 2255 err = -EINVAL;
84d17192 2256 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2257 /* that's acceptable only for automounts done in private ns */
2258 if (!(mnt_flags & MNT_SHRINKABLE))
2259 goto unlock;
2260 /* ... and for those we'd better have mountpoint still alive */
84d17192 2261 if (!parent->mnt_ns)
156cacb1
AV
2262 goto unlock;
2263 }
9d412a43
AV
2264
2265 /* Refuse the same filesystem on the same mount point */
2266 err = -EBUSY;
95bc5f25 2267 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2268 path->mnt->mnt_root == path->dentry)
2269 goto unlock;
2270
2271 err = -EINVAL;
e36cb0b8 2272 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2273 goto unlock;
2274
95bc5f25 2275 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2276 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2277
2278unlock:
84d17192 2279 unlock_mount(mp);
9d412a43
AV
2280 return err;
2281}
b1e75df4 2282
1da177e4
LT
2283/*
2284 * create a new mount for userspace and request it to be added into the
2285 * namespace's tree
2286 */
0c55cfc4 2287static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2288 int mnt_flags, const char *name, void *data)
1da177e4 2289{
0c55cfc4 2290 struct file_system_type *type;
9b40bc90 2291 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2292 struct vfsmount *mnt;
15f9a3f3 2293 int err;
1da177e4 2294
0c55cfc4 2295 if (!fstype)
1da177e4
LT
2296 return -EINVAL;
2297
0c55cfc4
EB
2298 type = get_fs_type(fstype);
2299 if (!type)
2300 return -ENODEV;
2301
2302 if (user_ns != &init_user_ns) {
2303 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2304 put_filesystem(type);
2305 return -EPERM;
2306 }
2307 /* Only in special cases allow devices from mounts
2308 * created outside the initial user namespace.
2309 */
2310 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2311 flags |= MS_NODEV;
9566d674 2312 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2313 }
2314 }
2315
2316 mnt = vfs_kern_mount(type, flags, name, data);
2317 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2318 !mnt->mnt_sb->s_subtype)
2319 mnt = fs_set_subtype(mnt, fstype);
2320
2321 put_filesystem(type);
1da177e4
LT
2322 if (IS_ERR(mnt))
2323 return PTR_ERR(mnt);
2324
95bc5f25 2325 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2326 if (err)
2327 mntput(mnt);
2328 return err;
1da177e4
LT
2329}
2330
19a167af
AV
2331int finish_automount(struct vfsmount *m, struct path *path)
2332{
6776db3d 2333 struct mount *mnt = real_mount(m);
19a167af
AV
2334 int err;
2335 /* The new mount record should have at least 2 refs to prevent it being
2336 * expired before we get a chance to add it
2337 */
6776db3d 2338 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2339
2340 if (m->mnt_sb == path->mnt->mnt_sb &&
2341 m->mnt_root == path->dentry) {
b1e75df4
AV
2342 err = -ELOOP;
2343 goto fail;
19a167af
AV
2344 }
2345
95bc5f25 2346 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2347 if (!err)
2348 return 0;
2349fail:
2350 /* remove m from any expiration list it may be on */
6776db3d 2351 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2352 namespace_lock();
6776db3d 2353 list_del_init(&mnt->mnt_expire);
97216be0 2354 namespace_unlock();
19a167af 2355 }
b1e75df4
AV
2356 mntput(m);
2357 mntput(m);
19a167af
AV
2358 return err;
2359}
2360
ea5b778a
DH
2361/**
2362 * mnt_set_expiry - Put a mount on an expiration list
2363 * @mnt: The mount to list.
2364 * @expiry_list: The list to add the mount to.
2365 */
2366void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2367{
97216be0 2368 namespace_lock();
ea5b778a 2369
6776db3d 2370 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2371
97216be0 2372 namespace_unlock();
ea5b778a
DH
2373}
2374EXPORT_SYMBOL(mnt_set_expiry);
2375
1da177e4
LT
2376/*
2377 * process a list of expirable mountpoints with the intent of discarding any
2378 * mountpoints that aren't in use and haven't been touched since last we came
2379 * here
2380 */
2381void mark_mounts_for_expiry(struct list_head *mounts)
2382{
761d5c38 2383 struct mount *mnt, *next;
1da177e4
LT
2384 LIST_HEAD(graveyard);
2385
2386 if (list_empty(mounts))
2387 return;
2388
97216be0 2389 namespace_lock();
719ea2fb 2390 lock_mount_hash();
1da177e4
LT
2391
2392 /* extract from the expiration list every vfsmount that matches the
2393 * following criteria:
2394 * - only referenced by its parent vfsmount
2395 * - still marked for expiry (marked on the last call here; marks are
2396 * cleared by mntput())
2397 */
6776db3d 2398 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2399 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2400 propagate_mount_busy(mnt, 1))
1da177e4 2401 continue;
6776db3d 2402 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2403 }
bcc5c7d2 2404 while (!list_empty(&graveyard)) {
6776db3d 2405 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2406 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2407 umount_tree(mnt, 1);
bcc5c7d2 2408 }
719ea2fb 2409 unlock_mount_hash();
3ab6abee 2410 namespace_unlock();
5528f911
TM
2411}
2412
2413EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2414
2415/*
2416 * Ripoff of 'select_parent()'
2417 *
2418 * search the list of submounts for a given mountpoint, and move any
2419 * shrinkable submounts to the 'graveyard' list.
2420 */
692afc31 2421static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2422{
692afc31 2423 struct mount *this_parent = parent;
5528f911
TM
2424 struct list_head *next;
2425 int found = 0;
2426
2427repeat:
6b41d536 2428 next = this_parent->mnt_mounts.next;
5528f911 2429resume:
6b41d536 2430 while (next != &this_parent->mnt_mounts) {
5528f911 2431 struct list_head *tmp = next;
6b41d536 2432 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2433
2434 next = tmp->next;
692afc31 2435 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2436 continue;
5528f911
TM
2437 /*
2438 * Descend a level if the d_mounts list is non-empty.
2439 */
6b41d536 2440 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2441 this_parent = mnt;
2442 goto repeat;
2443 }
1da177e4 2444
1ab59738 2445 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2446 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2447 found++;
2448 }
1da177e4 2449 }
5528f911
TM
2450 /*
2451 * All done at this level ... ascend and resume the search
2452 */
2453 if (this_parent != parent) {
6b41d536 2454 next = this_parent->mnt_child.next;
0714a533 2455 this_parent = this_parent->mnt_parent;
5528f911
TM
2456 goto resume;
2457 }
2458 return found;
2459}
2460
2461/*
2462 * process a list of expirable mountpoints with the intent of discarding any
2463 * submounts of a specific parent mountpoint
99b7db7b 2464 *
48a066e7 2465 * mount_lock must be held for write
5528f911 2466 */
b54b9be7 2467static void shrink_submounts(struct mount *mnt)
5528f911
TM
2468{
2469 LIST_HEAD(graveyard);
761d5c38 2470 struct mount *m;
5528f911 2471
5528f911 2472 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2473 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2474 while (!list_empty(&graveyard)) {
761d5c38 2475 m = list_first_entry(&graveyard, struct mount,
6776db3d 2476 mnt_expire);
143c8c91 2477 touch_mnt_namespace(m->mnt_ns);
328e6d90 2478 umount_tree(m, 1);
bcc5c7d2
AV
2479 }
2480 }
1da177e4
LT
2481}
2482
1da177e4
LT
2483/*
2484 * Some copy_from_user() implementations do not return the exact number of
2485 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2486 * Note that this function differs from copy_from_user() in that it will oops
2487 * on bad values of `to', rather than returning a short copy.
2488 */
b58fed8b
RP
2489static long exact_copy_from_user(void *to, const void __user * from,
2490 unsigned long n)
1da177e4
LT
2491{
2492 char *t = to;
2493 const char __user *f = from;
2494 char c;
2495
2496 if (!access_ok(VERIFY_READ, from, n))
2497 return n;
2498
2499 while (n) {
2500 if (__get_user(c, f)) {
2501 memset(t, 0, n);
2502 break;
2503 }
2504 *t++ = c;
2505 f++;
2506 n--;
2507 }
2508 return n;
2509}
2510
b58fed8b 2511int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2512{
2513 int i;
2514 unsigned long page;
2515 unsigned long size;
b58fed8b 2516
1da177e4
LT
2517 *where = 0;
2518 if (!data)
2519 return 0;
2520
2521 if (!(page = __get_free_page(GFP_KERNEL)))
2522 return -ENOMEM;
2523
2524 /* We only care that *some* data at the address the user
2525 * gave us is valid. Just in case, we'll zero
2526 * the remainder of the page.
2527 */
2528 /* copy_from_user cannot cross TASK_SIZE ! */
2529 size = TASK_SIZE - (unsigned long)data;
2530 if (size > PAGE_SIZE)
2531 size = PAGE_SIZE;
2532
2533 i = size - exact_copy_from_user((void *)page, data, size);
2534 if (!i) {
b58fed8b 2535 free_page(page);
1da177e4
LT
2536 return -EFAULT;
2537 }
2538 if (i != PAGE_SIZE)
2539 memset((char *)page + i, 0, PAGE_SIZE - i);
2540 *where = page;
2541 return 0;
2542}
2543
b8850d1f 2544char *copy_mount_string(const void __user *data)
eca6f534 2545{
b8850d1f 2546 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2547}
2548
1da177e4
LT
2549/*
2550 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2551 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2552 *
2553 * data is a (void *) that can point to any structure up to
2554 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2555 * information (or be NULL).
2556 *
2557 * Pre-0.97 versions of mount() didn't have a flags word.
2558 * When the flags word was introduced its top half was required
2559 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2560 * Therefore, if this magic number is present, it carries no information
2561 * and must be discarded.
2562 */
5e6123f3 2563long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2564 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2565{
2d92ab3c 2566 struct path path;
1da177e4
LT
2567 int retval = 0;
2568 int mnt_flags = 0;
2569
2570 /* Discard magic */
2571 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2572 flags &= ~MS_MGC_MSK;
2573
2574 /* Basic sanity checks */
1da177e4
LT
2575 if (data_page)
2576 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2577
a27ab9f2 2578 /* ... and get the mountpoint */
5e6123f3 2579 retval = user_path(dir_name, &path);
a27ab9f2
TH
2580 if (retval)
2581 return retval;
2582
2583 retval = security_sb_mount(dev_name, &path,
2584 type_page, flags, data_page);
0d5cadb8
AV
2585 if (!retval && !may_mount())
2586 retval = -EPERM;
a27ab9f2
TH
2587 if (retval)
2588 goto dput_out;
2589
613cbe3d
AK
2590 /* Default to relatime unless overriden */
2591 if (!(flags & MS_NOATIME))
2592 mnt_flags |= MNT_RELATIME;
0a1c01c9 2593
1da177e4
LT
2594 /* Separate the per-mountpoint flags */
2595 if (flags & MS_NOSUID)
2596 mnt_flags |= MNT_NOSUID;
2597 if (flags & MS_NODEV)
2598 mnt_flags |= MNT_NODEV;
2599 if (flags & MS_NOEXEC)
2600 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2601 if (flags & MS_NOATIME)
2602 mnt_flags |= MNT_NOATIME;
2603 if (flags & MS_NODIRATIME)
2604 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2605 if (flags & MS_STRICTATIME)
2606 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2607 if (flags & MS_RDONLY)
2608 mnt_flags |= MNT_READONLY;
fc33a7bb 2609
ffbc6f0e
EB
2610 /* The default atime for remount is preservation */
2611 if ((flags & MS_REMOUNT) &&
2612 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2613 MS_STRICTATIME)) == 0)) {
2614 mnt_flags &= ~MNT_ATIME_MASK;
2615 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2616 }
2617
7a4dec53 2618 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2619 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2620 MS_STRICTATIME);
1da177e4 2621
1da177e4 2622 if (flags & MS_REMOUNT)
2d92ab3c 2623 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2624 data_page);
2625 else if (flags & MS_BIND)
2d92ab3c 2626 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2627 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2628 retval = do_change_type(&path, flags);
1da177e4 2629 else if (flags & MS_MOVE)
2d92ab3c 2630 retval = do_move_mount(&path, dev_name);
1da177e4 2631 else
2d92ab3c 2632 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2633 dev_name, data_page);
2634dput_out:
2d92ab3c 2635 path_put(&path);
1da177e4
LT
2636 return retval;
2637}
2638
771b1371
EB
2639static void free_mnt_ns(struct mnt_namespace *ns)
2640{
6344c433 2641 ns_free_inum(&ns->ns);
771b1371
EB
2642 put_user_ns(ns->user_ns);
2643 kfree(ns);
2644}
2645
8823c079
EB
2646/*
2647 * Assign a sequence number so we can detect when we attempt to bind
2648 * mount a reference to an older mount namespace into the current
2649 * mount namespace, preventing reference counting loops. A 64bit
2650 * number incrementing at 10Ghz will take 12,427 years to wrap which
2651 * is effectively never, so we can ignore the possibility.
2652 */
2653static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2654
771b1371 2655static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2656{
2657 struct mnt_namespace *new_ns;
98f842e6 2658 int ret;
cf8d2c11
TM
2659
2660 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2661 if (!new_ns)
2662 return ERR_PTR(-ENOMEM);
6344c433 2663 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2664 if (ret) {
2665 kfree(new_ns);
2666 return ERR_PTR(ret);
2667 }
33c42940 2668 new_ns->ns.ops = &mntns_operations;
8823c079 2669 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2670 atomic_set(&new_ns->count, 1);
2671 new_ns->root = NULL;
2672 INIT_LIST_HEAD(&new_ns->list);
2673 init_waitqueue_head(&new_ns->poll);
2674 new_ns->event = 0;
771b1371 2675 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2676 return new_ns;
2677}
2678
9559f689
AV
2679struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2680 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2681{
6b3286ed 2682 struct mnt_namespace *new_ns;
7f2da1e7 2683 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2684 struct mount *p, *q;
9559f689 2685 struct mount *old;
cb338d06 2686 struct mount *new;
7a472ef4 2687 int copy_flags;
1da177e4 2688
9559f689
AV
2689 BUG_ON(!ns);
2690
2691 if (likely(!(flags & CLONE_NEWNS))) {
2692 get_mnt_ns(ns);
2693 return ns;
2694 }
2695
2696 old = ns->root;
2697
771b1371 2698 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2699 if (IS_ERR(new_ns))
2700 return new_ns;
1da177e4 2701
97216be0 2702 namespace_lock();
1da177e4 2703 /* First pass: copy the tree topology */
4ce5d2b1 2704 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2705 if (user_ns != ns->user_ns)
132c94e3 2706 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2707 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2708 if (IS_ERR(new)) {
328e6d90 2709 namespace_unlock();
771b1371 2710 free_mnt_ns(new_ns);
be34d1a3 2711 return ERR_CAST(new);
1da177e4 2712 }
be08d6d2 2713 new_ns->root = new;
1a4eeaf2 2714 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2715
2716 /*
2717 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2718 * as belonging to new namespace. We have already acquired a private
2719 * fs_struct, so tsk->fs->lock is not needed.
2720 */
909b0a88 2721 p = old;
cb338d06 2722 q = new;
1da177e4 2723 while (p) {
143c8c91 2724 q->mnt_ns = new_ns;
9559f689
AV
2725 if (new_fs) {
2726 if (&p->mnt == new_fs->root.mnt) {
2727 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2728 rootmnt = &p->mnt;
1da177e4 2729 }
9559f689
AV
2730 if (&p->mnt == new_fs->pwd.mnt) {
2731 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2732 pwdmnt = &p->mnt;
1da177e4 2733 }
1da177e4 2734 }
909b0a88
AV
2735 p = next_mnt(p, old);
2736 q = next_mnt(q, new);
4ce5d2b1
EB
2737 if (!q)
2738 break;
2739 while (p->mnt.mnt_root != q->mnt.mnt_root)
2740 p = next_mnt(p, old);
1da177e4 2741 }
328e6d90 2742 namespace_unlock();
1da177e4 2743
1da177e4 2744 if (rootmnt)
f03c6599 2745 mntput(rootmnt);
1da177e4 2746 if (pwdmnt)
f03c6599 2747 mntput(pwdmnt);
1da177e4 2748
741a2951 2749 return new_ns;
1da177e4
LT
2750}
2751
cf8d2c11
TM
2752/**
2753 * create_mnt_ns - creates a private namespace and adds a root filesystem
2754 * @mnt: pointer to the new root filesystem mountpoint
2755 */
1a4eeaf2 2756static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2757{
771b1371 2758 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2759 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2760 struct mount *mnt = real_mount(m);
2761 mnt->mnt_ns = new_ns;
be08d6d2 2762 new_ns->root = mnt;
b1983cd8 2763 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2764 } else {
1a4eeaf2 2765 mntput(m);
cf8d2c11
TM
2766 }
2767 return new_ns;
2768}
cf8d2c11 2769
ea441d11
AV
2770struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2771{
2772 struct mnt_namespace *ns;
d31da0f0 2773 struct super_block *s;
ea441d11
AV
2774 struct path path;
2775 int err;
2776
2777 ns = create_mnt_ns(mnt);
2778 if (IS_ERR(ns))
2779 return ERR_CAST(ns);
2780
2781 err = vfs_path_lookup(mnt->mnt_root, mnt,
2782 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2783
2784 put_mnt_ns(ns);
2785
2786 if (err)
2787 return ERR_PTR(err);
2788
2789 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2790 s = path.mnt->mnt_sb;
2791 atomic_inc(&s->s_active);
ea441d11
AV
2792 mntput(path.mnt);
2793 /* lock the sucker */
d31da0f0 2794 down_write(&s->s_umount);
ea441d11
AV
2795 /* ... and return the root of (sub)tree on it */
2796 return path.dentry;
2797}
2798EXPORT_SYMBOL(mount_subtree);
2799
bdc480e3
HC
2800SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2801 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2802{
eca6f534
VN
2803 int ret;
2804 char *kernel_type;
eca6f534 2805 char *kernel_dev;
1da177e4 2806 unsigned long data_page;
1da177e4 2807
b8850d1f
TG
2808 kernel_type = copy_mount_string(type);
2809 ret = PTR_ERR(kernel_type);
2810 if (IS_ERR(kernel_type))
eca6f534 2811 goto out_type;
1da177e4 2812
b8850d1f
TG
2813 kernel_dev = copy_mount_string(dev_name);
2814 ret = PTR_ERR(kernel_dev);
2815 if (IS_ERR(kernel_dev))
eca6f534 2816 goto out_dev;
1da177e4 2817
eca6f534
VN
2818 ret = copy_mount_options(data, &data_page);
2819 if (ret < 0)
2820 goto out_data;
1da177e4 2821
5e6123f3 2822 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
eca6f534 2823 (void *) data_page);
1da177e4 2824
eca6f534
VN
2825 free_page(data_page);
2826out_data:
2827 kfree(kernel_dev);
2828out_dev:
eca6f534
VN
2829 kfree(kernel_type);
2830out_type:
2831 return ret;
1da177e4
LT
2832}
2833
afac7cba
AV
2834/*
2835 * Return true if path is reachable from root
2836 *
48a066e7 2837 * namespace_sem or mount_lock is held
afac7cba 2838 */
643822b4 2839bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2840 const struct path *root)
2841{
643822b4 2842 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2843 dentry = mnt->mnt_mountpoint;
0714a533 2844 mnt = mnt->mnt_parent;
afac7cba 2845 }
643822b4 2846 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2847}
2848
2849int path_is_under(struct path *path1, struct path *path2)
2850{
2851 int res;
48a066e7 2852 read_seqlock_excl(&mount_lock);
643822b4 2853 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2854 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2855 return res;
2856}
2857EXPORT_SYMBOL(path_is_under);
2858
1da177e4
LT
2859/*
2860 * pivot_root Semantics:
2861 * Moves the root file system of the current process to the directory put_old,
2862 * makes new_root as the new root file system of the current process, and sets
2863 * root/cwd of all processes which had them on the current root to new_root.
2864 *
2865 * Restrictions:
2866 * The new_root and put_old must be directories, and must not be on the
2867 * same file system as the current process root. The put_old must be
2868 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2869 * pointed to by put_old must yield the same directory as new_root. No other
2870 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2871 *
4a0d11fa
NB
2872 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2873 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2874 * in this situation.
2875 *
1da177e4
LT
2876 * Notes:
2877 * - we don't move root/cwd if they are not at the root (reason: if something
2878 * cared enough to change them, it's probably wrong to force them elsewhere)
2879 * - it's okay to pick a root that isn't the root of a file system, e.g.
2880 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2881 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2882 * first.
2883 */
3480b257
HC
2884SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2885 const char __user *, put_old)
1da177e4 2886{
2d8f3038 2887 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2888 struct mount *new_mnt, *root_mnt, *old_mnt;
2889 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2890 int error;
2891
9b40bc90 2892 if (!may_mount())
1da177e4
LT
2893 return -EPERM;
2894
2d8f3038 2895 error = user_path_dir(new_root, &new);
1da177e4
LT
2896 if (error)
2897 goto out0;
1da177e4 2898
2d8f3038 2899 error = user_path_dir(put_old, &old);
1da177e4
LT
2900 if (error)
2901 goto out1;
2902
2d8f3038 2903 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2904 if (error)
2905 goto out2;
1da177e4 2906
f7ad3c6b 2907 get_fs_root(current->fs, &root);
84d17192
AV
2908 old_mp = lock_mount(&old);
2909 error = PTR_ERR(old_mp);
2910 if (IS_ERR(old_mp))
b12cea91
AV
2911 goto out3;
2912
1da177e4 2913 error = -EINVAL;
419148da
AV
2914 new_mnt = real_mount(new.mnt);
2915 root_mnt = real_mount(root.mnt);
84d17192
AV
2916 old_mnt = real_mount(old.mnt);
2917 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2918 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2919 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2920 goto out4;
143c8c91 2921 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2922 goto out4;
5ff9d8a6
EB
2923 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2924 goto out4;
1da177e4 2925 error = -ENOENT;
f3da392e 2926 if (d_unlinked(new.dentry))
b12cea91 2927 goto out4;
1da177e4 2928 error = -EBUSY;
84d17192 2929 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2930 goto out4; /* loop, on the same file system */
1da177e4 2931 error = -EINVAL;
8c3ee42e 2932 if (root.mnt->mnt_root != root.dentry)
b12cea91 2933 goto out4; /* not a mountpoint */
676da58d 2934 if (!mnt_has_parent(root_mnt))
b12cea91 2935 goto out4; /* not attached */
84d17192 2936 root_mp = root_mnt->mnt_mp;
2d8f3038 2937 if (new.mnt->mnt_root != new.dentry)
b12cea91 2938 goto out4; /* not a mountpoint */
676da58d 2939 if (!mnt_has_parent(new_mnt))
b12cea91 2940 goto out4; /* not attached */
4ac91378 2941 /* make sure we can reach put_old from new_root */
84d17192 2942 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2943 goto out4;
0d082601
EB
2944 /* make certain new is below the root */
2945 if (!is_path_reachable(new_mnt, new.dentry, &root))
2946 goto out4;
84d17192 2947 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2948 lock_mount_hash();
419148da
AV
2949 detach_mnt(new_mnt, &parent_path);
2950 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2951 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2952 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2953 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2954 }
4ac91378 2955 /* mount old root on put_old */
84d17192 2956 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2957 /* mount new_root on / */
84d17192 2958 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2959 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
2960 /* A moved mount should not expire automatically */
2961 list_del_init(&new_mnt->mnt_expire);
719ea2fb 2962 unlock_mount_hash();
2d8f3038 2963 chroot_fs_refs(&root, &new);
84d17192 2964 put_mountpoint(root_mp);
1da177e4 2965 error = 0;
b12cea91 2966out4:
84d17192 2967 unlock_mount(old_mp);
b12cea91
AV
2968 if (!error) {
2969 path_put(&root_parent);
2970 path_put(&parent_path);
2971 }
2972out3:
8c3ee42e 2973 path_put(&root);
b12cea91 2974out2:
2d8f3038 2975 path_put(&old);
1da177e4 2976out1:
2d8f3038 2977 path_put(&new);
1da177e4 2978out0:
1da177e4 2979 return error;
1da177e4
LT
2980}
2981
2982static void __init init_mount_tree(void)
2983{
2984 struct vfsmount *mnt;
6b3286ed 2985 struct mnt_namespace *ns;
ac748a09 2986 struct path root;
0c55cfc4 2987 struct file_system_type *type;
1da177e4 2988
0c55cfc4
EB
2989 type = get_fs_type("rootfs");
2990 if (!type)
2991 panic("Can't find rootfs type");
2992 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2993 put_filesystem(type);
1da177e4
LT
2994 if (IS_ERR(mnt))
2995 panic("Can't create rootfs");
b3e19d92 2996
3b22edc5
TM
2997 ns = create_mnt_ns(mnt);
2998 if (IS_ERR(ns))
1da177e4 2999 panic("Can't allocate initial namespace");
6b3286ed
KK
3000
3001 init_task.nsproxy->mnt_ns = ns;
3002 get_mnt_ns(ns);
3003
be08d6d2
AV
3004 root.mnt = mnt;
3005 root.dentry = mnt->mnt_root;
da362b09 3006 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3007
3008 set_fs_pwd(current->fs, &root);
3009 set_fs_root(current->fs, &root);
1da177e4
LT
3010}
3011
74bf17cf 3012void __init mnt_init(void)
1da177e4 3013{
13f14b4d 3014 unsigned u;
15a67dd8 3015 int err;
1da177e4 3016
7d6fec45 3017 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3018 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3019
0818bf27 3020 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3021 sizeof(struct hlist_head),
0818bf27
AV
3022 mhash_entries, 19,
3023 0,
3024 &m_hash_shift, &m_hash_mask, 0, 0);
3025 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3026 sizeof(struct hlist_head),
3027 mphash_entries, 19,
3028 0,
3029 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3030
84d17192 3031 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3032 panic("Failed to allocate mount hash table\n");
3033
0818bf27 3034 for (u = 0; u <= m_hash_mask; u++)
38129a13 3035 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3036 for (u = 0; u <= mp_hash_mask; u++)
3037 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3038
4b93dc9b
TH
3039 kernfs_init();
3040
15a67dd8
RD
3041 err = sysfs_init();
3042 if (err)
3043 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3044 __func__, err);
00d26666
GKH
3045 fs_kobj = kobject_create_and_add("fs", NULL);
3046 if (!fs_kobj)
8e24eea7 3047 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3048 init_rootfs();
3049 init_mount_tree();
3050}
3051
616511d0 3052void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3053{
d498b25a 3054 if (!atomic_dec_and_test(&ns->count))
616511d0 3055 return;
7b00ed6f 3056 drop_collected_mounts(&ns->root->mnt);
771b1371 3057 free_mnt_ns(ns);
1da177e4 3058}
9d412a43
AV
3059
3060struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3061{
423e0ab0
TC
3062 struct vfsmount *mnt;
3063 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3064 if (!IS_ERR(mnt)) {
3065 /*
3066 * it is a longterm mount, don't release mnt until
3067 * we unmount before file sys is unregistered
3068 */
f7a99c5b 3069 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3070 }
3071 return mnt;
9d412a43
AV
3072}
3073EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3074
3075void kern_unmount(struct vfsmount *mnt)
3076{
3077 /* release long term mount so mount point can be released */
3078 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3079 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3080 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3081 mntput(mnt);
3082 }
3083}
3084EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3085
3086bool our_mnt(struct vfsmount *mnt)
3087{
143c8c91 3088 return check_mnt(real_mount(mnt));
02125a82 3089}
8823c079 3090
3151527e
EB
3091bool current_chrooted(void)
3092{
3093 /* Does the current process have a non-standard root */
3094 struct path ns_root;
3095 struct path fs_root;
3096 bool chrooted;
3097
3098 /* Find the namespace root */
3099 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3100 ns_root.dentry = ns_root.mnt->mnt_root;
3101 path_get(&ns_root);
3102 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3103 ;
3104
3105 get_fs_root(current->fs, &fs_root);
3106
3107 chrooted = !path_equal(&fs_root, &ns_root);
3108
3109 path_put(&fs_root);
3110 path_put(&ns_root);
3111
3112 return chrooted;
3113}
3114
e51db735 3115bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3116{
3117 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3118 struct mount *mnt;
e51db735 3119 bool visible = false;
87a8ebd6 3120
e51db735
EB
3121 if (unlikely(!ns))
3122 return false;
3123
44bb4385 3124 down_read(&namespace_sem);
87a8ebd6 3125 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3126 struct mount *child;
3127 if (mnt->mnt.mnt_sb->s_type != type)
3128 continue;
3129
3130 /* This mount is not fully visible if there are any child mounts
3131 * that cover anything except for empty directories.
3132 */
3133 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3134 struct inode *inode = child->mnt_mountpoint->d_inode;
3135 if (!S_ISDIR(inode->i_mode))
3136 goto next;
41301ae7 3137 if (inode->i_nlink > 2)
e51db735 3138 goto next;
87a8ebd6 3139 }
e51db735
EB
3140 visible = true;
3141 goto found;
3142 next: ;
87a8ebd6 3143 }
e51db735 3144found:
44bb4385 3145 up_read(&namespace_sem);
e51db735 3146 return visible;
87a8ebd6
EB
3147}
3148
64964528 3149static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3150{
58be2825 3151 struct ns_common *ns = NULL;
8823c079
EB
3152 struct nsproxy *nsproxy;
3153
728dba3a
EB
3154 task_lock(task);
3155 nsproxy = task->nsproxy;
8823c079 3156 if (nsproxy) {
58be2825
AV
3157 ns = &nsproxy->mnt_ns->ns;
3158 get_mnt_ns(to_mnt_ns(ns));
8823c079 3159 }
728dba3a 3160 task_unlock(task);
8823c079
EB
3161
3162 return ns;
3163}
3164
64964528 3165static void mntns_put(struct ns_common *ns)
8823c079 3166{
58be2825 3167 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3168}
3169
64964528 3170static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3171{
3172 struct fs_struct *fs = current->fs;
58be2825 3173 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3174 struct path root;
3175
0c55cfc4 3176 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3177 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3178 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3179 return -EPERM;
8823c079
EB
3180
3181 if (fs->users != 1)
3182 return -EINVAL;
3183
3184 get_mnt_ns(mnt_ns);
3185 put_mnt_ns(nsproxy->mnt_ns);
3186 nsproxy->mnt_ns = mnt_ns;
3187
3188 /* Find the root */
3189 root.mnt = &mnt_ns->root->mnt;
3190 root.dentry = mnt_ns->root->mnt.mnt_root;
3191 path_get(&root);
3192 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3193 ;
3194
3195 /* Update the pwd and root */
3196 set_fs_pwd(fs, &root);
3197 set_fs_root(fs, &root);
3198
3199 path_put(&root);
3200 return 0;
3201}
3202
3203const struct proc_ns_operations mntns_operations = {
3204 .name = "mnt",
3205 .type = CLONE_NEWNS,
3206 .get = mntns_get,
3207 .put = mntns_put,
3208 .install = mntns_install,
3209};