make fs/{namespace,super}.c forget about acct.h
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
0818bf27
AV
29static unsigned int m_hash_mask __read_mostly;
30static unsigned int m_hash_shift __read_mostly;
31static unsigned int mp_hash_mask __read_mostly;
32static unsigned int mp_hash_shift __read_mostly;
33
34static __initdata unsigned long mhash_entries;
35static int __init set_mhash_entries(char *str)
36{
37 if (!str)
38 return 0;
39 mhash_entries = simple_strtoul(str, &str, 0);
40 return 1;
41}
42__setup("mhash_entries=", set_mhash_entries);
43
44static __initdata unsigned long mphash_entries;
45static int __init set_mphash_entries(char *str)
46{
47 if (!str)
48 return 0;
49 mphash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51}
52__setup("mphash_entries=", set_mphash_entries);
13f14b4d 53
c7999c36 54static u64 event;
73cd49ec 55static DEFINE_IDA(mnt_id_ida);
719f5d7f 56static DEFINE_IDA(mnt_group_ida);
99b7db7b 57static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
58static int mnt_id_start = 0;
59static int mnt_group_start = 1;
1da177e4 60
38129a13 61static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 62static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 63static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 64static DECLARE_RWSEM(namespace_sem);
1da177e4 65
f87fd4c2 66/* /sys/fs */
00d26666
GKH
67struct kobject *fs_kobj;
68EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 69
99b7db7b
NP
70/*
71 * vfsmount lock may be taken for read to prevent changes to the
72 * vfsmount hash, ie. during mountpoint lookups or walking back
73 * up the tree.
74 *
75 * It should be taken for write in all cases where the vfsmount
76 * tree or hash is modified or when a vfsmount structure is modified.
77 */
48a066e7 78__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 79
38129a13 80static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 81{
b58fed8b
RP
82 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
83 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
84 tmp = tmp + (tmp >> m_hash_shift);
85 return &mount_hashtable[tmp & m_hash_mask];
86}
87
88static inline struct hlist_head *mp_hash(struct dentry *dentry)
89{
90 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> mp_hash_shift);
92 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
93}
94
99b7db7b
NP
95/*
96 * allocation is serialized by namespace_sem, but we need the spinlock to
97 * serialize with freeing.
98 */
b105e270 99static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
100{
101 int res;
102
103retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 105 spin_lock(&mnt_id_lock);
15169fe7 106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 107 if (!res)
15169fe7 108 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 109 spin_unlock(&mnt_id_lock);
73cd49ec
MS
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114}
115
b105e270 116static void mnt_free_id(struct mount *mnt)
73cd49ec 117{
15169fe7 118 int id = mnt->mnt_id;
99b7db7b 119 spin_lock(&mnt_id_lock);
f21f6220
AV
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
99b7db7b 123 spin_unlock(&mnt_id_lock);
73cd49ec
MS
124}
125
719f5d7f
MS
126/*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
4b8b21f4 131static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 132{
f21f6220
AV
133 int res;
134
719f5d7f
MS
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
f21f6220
AV
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
15169fe7 140 &mnt->mnt_group_id);
f21f6220 141 if (!res)
15169fe7 142 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
143
144 return res;
719f5d7f
MS
145}
146
147/*
148 * Release a peer group ID
149 */
4b8b21f4 150void mnt_release_group_id(struct mount *mnt)
719f5d7f 151{
15169fe7 152 int id = mnt->mnt_group_id;
f21f6220
AV
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
15169fe7 156 mnt->mnt_group_id = 0;
719f5d7f
MS
157}
158
b3e19d92
NP
159/*
160 * vfsmount lock must be held for read
161 */
83adc753 162static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
163{
164#ifdef CONFIG_SMP
68e8a9fe 165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
166#else
167 preempt_disable();
68e8a9fe 168 mnt->mnt_count += n;
b3e19d92
NP
169 preempt_enable();
170#endif
171}
172
b3e19d92
NP
173/*
174 * vfsmount lock must be held for write
175 */
83adc753 176unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
177{
178#ifdef CONFIG_SMP
f03c6599 179 unsigned int count = 0;
b3e19d92
NP
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
68e8a9fe 183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
184 }
185
186 return count;
187#else
68e8a9fe 188 return mnt->mnt_count;
b3e19d92
NP
189#endif
190}
191
b105e270 192static struct mount *alloc_vfsmnt(const char *name)
1da177e4 193{
c63181e6
AV
194 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
195 if (mnt) {
73cd49ec
MS
196 int err;
197
c63181e6 198 err = mnt_alloc_id(mnt);
88b38782
LZ
199 if (err)
200 goto out_free_cache;
201
202 if (name) {
c63181e6
AV
203 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
204 if (!mnt->mnt_devname)
88b38782 205 goto out_free_id;
73cd49ec
MS
206 }
207
b3e19d92 208#ifdef CONFIG_SMP
c63181e6
AV
209 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
210 if (!mnt->mnt_pcp)
b3e19d92
NP
211 goto out_free_devname;
212
c63181e6 213 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 214#else
c63181e6
AV
215 mnt->mnt_count = 1;
216 mnt->mnt_writers = 0;
b3e19d92
NP
217#endif
218
38129a13 219 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
220 INIT_LIST_HEAD(&mnt->mnt_child);
221 INIT_LIST_HEAD(&mnt->mnt_mounts);
222 INIT_LIST_HEAD(&mnt->mnt_list);
223 INIT_LIST_HEAD(&mnt->mnt_expire);
224 INIT_LIST_HEAD(&mnt->mnt_share);
225 INIT_LIST_HEAD(&mnt->mnt_slave_list);
226 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
227#ifdef CONFIG_FSNOTIFY
228 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 229#endif
1da177e4 230 }
c63181e6 231 return mnt;
88b38782 232
d3ef3d73 233#ifdef CONFIG_SMP
234out_free_devname:
c63181e6 235 kfree(mnt->mnt_devname);
d3ef3d73 236#endif
88b38782 237out_free_id:
c63181e6 238 mnt_free_id(mnt);
88b38782 239out_free_cache:
c63181e6 240 kmem_cache_free(mnt_cache, mnt);
88b38782 241 return NULL;
1da177e4
LT
242}
243
3d733633
DH
244/*
245 * Most r/o checks on a fs are for operations that take
246 * discrete amounts of time, like a write() or unlink().
247 * We must keep track of when those operations start
248 * (for permission checks) and when they end, so that
249 * we can determine when writes are able to occur to
250 * a filesystem.
251 */
252/*
253 * __mnt_is_readonly: check whether a mount is read-only
254 * @mnt: the mount to check for its write status
255 *
256 * This shouldn't be used directly ouside of the VFS.
257 * It does not guarantee that the filesystem will stay
258 * r/w, just that it is right *now*. This can not and
259 * should not be used in place of IS_RDONLY(inode).
260 * mnt_want/drop_write() will _keep_ the filesystem
261 * r/w.
262 */
263int __mnt_is_readonly(struct vfsmount *mnt)
264{
2e4b7fcd
DH
265 if (mnt->mnt_flags & MNT_READONLY)
266 return 1;
267 if (mnt->mnt_sb->s_flags & MS_RDONLY)
268 return 1;
269 return 0;
3d733633
DH
270}
271EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272
83adc753 273static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 274{
275#ifdef CONFIG_SMP
68e8a9fe 276 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 277#else
68e8a9fe 278 mnt->mnt_writers++;
d3ef3d73 279#endif
280}
3d733633 281
83adc753 282static inline void mnt_dec_writers(struct mount *mnt)
3d733633 283{
d3ef3d73 284#ifdef CONFIG_SMP
68e8a9fe 285 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 286#else
68e8a9fe 287 mnt->mnt_writers--;
d3ef3d73 288#endif
3d733633 289}
3d733633 290
83adc753 291static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 292{
d3ef3d73 293#ifdef CONFIG_SMP
294 unsigned int count = 0;
3d733633 295 int cpu;
3d733633
DH
296
297 for_each_possible_cpu(cpu) {
68e8a9fe 298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 299 }
3d733633 300
d3ef3d73 301 return count;
302#else
303 return mnt->mnt_writers;
304#endif
3d733633
DH
305}
306
4ed5e82f
MS
307static int mnt_is_readonly(struct vfsmount *mnt)
308{
309 if (mnt->mnt_sb->s_readonly_remount)
310 return 1;
311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 smp_rmb();
313 return __mnt_is_readonly(mnt);
314}
315
8366025e 316/*
eb04c282
JK
317 * Most r/o & frozen checks on a fs are for operations that take discrete
318 * amounts of time, like a write() or unlink(). We must keep track of when
319 * those operations start (for permission checks) and when they end, so that we
320 * can determine when writes are able to occur to a filesystem.
8366025e
DH
321 */
322/**
eb04c282 323 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 324 * @m: the mount on which to take a write
8366025e 325 *
eb04c282
JK
326 * This tells the low-level filesystem that a write is about to be performed to
327 * it, and makes sure that writes are allowed (mnt it read-write) before
328 * returning success. This operation does not protect against filesystem being
329 * frozen. When the write operation is finished, __mnt_drop_write() must be
330 * called. This is effectively a refcount.
8366025e 331 */
eb04c282 332int __mnt_want_write(struct vfsmount *m)
8366025e 333{
83adc753 334 struct mount *mnt = real_mount(m);
3d733633 335 int ret = 0;
3d733633 336
d3ef3d73 337 preempt_disable();
c6653a83 338 mnt_inc_writers(mnt);
d3ef3d73 339 /*
c6653a83 340 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 * incremented count after it has set MNT_WRITE_HOLD.
343 */
344 smp_mb();
1e75529e 345 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 346 cpu_relax();
347 /*
348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 * be set to match its requirements. So we must not load that until
350 * MNT_WRITE_HOLD is cleared.
351 */
352 smp_rmb();
4ed5e82f 353 if (mnt_is_readonly(m)) {
c6653a83 354 mnt_dec_writers(mnt);
3d733633 355 ret = -EROFS;
3d733633 356 }
d3ef3d73 357 preempt_enable();
eb04c282
JK
358
359 return ret;
360}
361
362/**
363 * mnt_want_write - get write access to a mount
364 * @m: the mount on which to take a write
365 *
366 * This tells the low-level filesystem that a write is about to be performed to
367 * it, and makes sure that writes are allowed (mount is read-write, filesystem
368 * is not frozen) before returning success. When the write operation is
369 * finished, mnt_drop_write() must be called. This is effectively a refcount.
370 */
371int mnt_want_write(struct vfsmount *m)
372{
373 int ret;
374
375 sb_start_write(m->mnt_sb);
376 ret = __mnt_want_write(m);
377 if (ret)
378 sb_end_write(m->mnt_sb);
3d733633 379 return ret;
8366025e
DH
380}
381EXPORT_SYMBOL_GPL(mnt_want_write);
382
96029c4e 383/**
384 * mnt_clone_write - get write access to a mount
385 * @mnt: the mount on which to take a write
386 *
387 * This is effectively like mnt_want_write, except
388 * it must only be used to take an extra write reference
389 * on a mountpoint that we already know has a write reference
390 * on it. This allows some optimisation.
391 *
392 * After finished, mnt_drop_write must be called as usual to
393 * drop the reference.
394 */
395int mnt_clone_write(struct vfsmount *mnt)
396{
397 /* superblock may be r/o */
398 if (__mnt_is_readonly(mnt))
399 return -EROFS;
400 preempt_disable();
83adc753 401 mnt_inc_writers(real_mount(mnt));
96029c4e 402 preempt_enable();
403 return 0;
404}
405EXPORT_SYMBOL_GPL(mnt_clone_write);
406
407/**
eb04c282 408 * __mnt_want_write_file - get write access to a file's mount
96029c4e 409 * @file: the file who's mount on which to take a write
410 *
eb04c282 411 * This is like __mnt_want_write, but it takes a file and can
96029c4e 412 * do some optimisations if the file is open for write already
413 */
eb04c282 414int __mnt_want_write_file(struct file *file)
96029c4e 415{
83f936c7 416 if (!(file->f_mode & FMODE_WRITER))
eb04c282 417 return __mnt_want_write(file->f_path.mnt);
96029c4e 418 else
419 return mnt_clone_write(file->f_path.mnt);
420}
eb04c282
JK
421
422/**
423 * mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
425 *
426 * This is like mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
428 */
429int mnt_want_write_file(struct file *file)
430{
431 int ret;
432
433 sb_start_write(file->f_path.mnt->mnt_sb);
434 ret = __mnt_want_write_file(file);
435 if (ret)
436 sb_end_write(file->f_path.mnt->mnt_sb);
437 return ret;
438}
96029c4e 439EXPORT_SYMBOL_GPL(mnt_want_write_file);
440
8366025e 441/**
eb04c282 442 * __mnt_drop_write - give up write access to a mount
8366025e
DH
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done
446 * performing writes to it. Must be matched with
eb04c282 447 * __mnt_want_write() call above.
8366025e 448 */
eb04c282 449void __mnt_drop_write(struct vfsmount *mnt)
8366025e 450{
d3ef3d73 451 preempt_disable();
83adc753 452 mnt_dec_writers(real_mount(mnt));
d3ef3d73 453 preempt_enable();
8366025e 454}
eb04c282
JK
455
456/**
457 * mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
459 *
460 * Tells the low-level filesystem that we are done performing writes to it and
461 * also allows filesystem to be frozen again. Must be matched with
462 * mnt_want_write() call above.
463 */
464void mnt_drop_write(struct vfsmount *mnt)
465{
466 __mnt_drop_write(mnt);
467 sb_end_write(mnt->mnt_sb);
468}
8366025e
DH
469EXPORT_SYMBOL_GPL(mnt_drop_write);
470
eb04c282
JK
471void __mnt_drop_write_file(struct file *file)
472{
473 __mnt_drop_write(file->f_path.mnt);
474}
475
2a79f17e
AV
476void mnt_drop_write_file(struct file *file)
477{
478 mnt_drop_write(file->f_path.mnt);
479}
480EXPORT_SYMBOL(mnt_drop_write_file);
481
83adc753 482static int mnt_make_readonly(struct mount *mnt)
8366025e 483{
3d733633
DH
484 int ret = 0;
485
719ea2fb 486 lock_mount_hash();
83adc753 487 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 488 /*
d3ef3d73 489 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
490 * should be visible before we do.
3d733633 491 */
d3ef3d73 492 smp_mb();
493
3d733633 494 /*
d3ef3d73 495 * With writers on hold, if this value is zero, then there are
496 * definitely no active writers (although held writers may subsequently
497 * increment the count, they'll have to wait, and decrement it after
498 * seeing MNT_READONLY).
499 *
500 * It is OK to have counter incremented on one CPU and decremented on
501 * another: the sum will add up correctly. The danger would be when we
502 * sum up each counter, if we read a counter before it is incremented,
503 * but then read another CPU's count which it has been subsequently
504 * decremented from -- we would see more decrements than we should.
505 * MNT_WRITE_HOLD protects against this scenario, because
506 * mnt_want_write first increments count, then smp_mb, then spins on
507 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
508 * we're counting up here.
3d733633 509 */
c6653a83 510 if (mnt_get_writers(mnt) > 0)
d3ef3d73 511 ret = -EBUSY;
512 else
83adc753 513 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 514 /*
515 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
516 * that become unheld will see MNT_READONLY.
517 */
518 smp_wmb();
83adc753 519 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 520 unlock_mount_hash();
3d733633 521 return ret;
8366025e 522}
8366025e 523
83adc753 524static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 525{
719ea2fb 526 lock_mount_hash();
83adc753 527 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 528 unlock_mount_hash();
2e4b7fcd
DH
529}
530
4ed5e82f
MS
531int sb_prepare_remount_readonly(struct super_block *sb)
532{
533 struct mount *mnt;
534 int err = 0;
535
8e8b8796
MS
536 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
537 if (atomic_long_read(&sb->s_remove_count))
538 return -EBUSY;
539
719ea2fb 540 lock_mount_hash();
4ed5e82f
MS
541 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
542 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
543 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
544 smp_mb();
545 if (mnt_get_writers(mnt) > 0) {
546 err = -EBUSY;
547 break;
548 }
549 }
550 }
8e8b8796
MS
551 if (!err && atomic_long_read(&sb->s_remove_count))
552 err = -EBUSY;
553
4ed5e82f
MS
554 if (!err) {
555 sb->s_readonly_remount = 1;
556 smp_wmb();
557 }
558 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
559 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
560 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
561 }
719ea2fb 562 unlock_mount_hash();
4ed5e82f
MS
563
564 return err;
565}
566
b105e270 567static void free_vfsmnt(struct mount *mnt)
1da177e4 568{
52ba1621 569 kfree(mnt->mnt_devname);
d3ef3d73 570#ifdef CONFIG_SMP
68e8a9fe 571 free_percpu(mnt->mnt_pcp);
d3ef3d73 572#endif
b105e270 573 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
574}
575
8ffcb32e
DH
576static void delayed_free_vfsmnt(struct rcu_head *head)
577{
578 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
579}
580
48a066e7
AV
581/* call under rcu_read_lock */
582bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
583{
584 struct mount *mnt;
585 if (read_seqretry(&mount_lock, seq))
586 return false;
587 if (bastard == NULL)
588 return true;
589 mnt = real_mount(bastard);
590 mnt_add_count(mnt, 1);
591 if (likely(!read_seqretry(&mount_lock, seq)))
592 return true;
593 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
594 mnt_add_count(mnt, -1);
595 return false;
596 }
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 return false;
601}
602
1da177e4 603/*
474279dc 604 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 605 * call under rcu_read_lock()
1da177e4 606 */
474279dc 607struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 608{
38129a13 609 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
610 struct mount *p;
611
38129a13 612 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
613 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
614 return p;
615 return NULL;
616}
617
618/*
619 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 620 * mount_lock must be held.
474279dc
AV
621 */
622struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
623{
38129a13
AV
624 struct mount *p, *res;
625 res = p = __lookup_mnt(mnt, dentry);
626 if (!p)
627 goto out;
628 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
629 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
630 break;
631 res = p;
632 }
38129a13 633out:
1d6a32ac 634 return res;
1da177e4
LT
635}
636
a05964f3 637/*
f015f126
DH
638 * lookup_mnt - Return the first child mount mounted at path
639 *
640 * "First" means first mounted chronologically. If you create the
641 * following mounts:
642 *
643 * mount /dev/sda1 /mnt
644 * mount /dev/sda2 /mnt
645 * mount /dev/sda3 /mnt
646 *
647 * Then lookup_mnt() on the base /mnt dentry in the root mount will
648 * return successively the root dentry and vfsmount of /dev/sda1, then
649 * /dev/sda2, then /dev/sda3, then NULL.
650 *
651 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 652 */
1c755af4 653struct vfsmount *lookup_mnt(struct path *path)
a05964f3 654{
c7105365 655 struct mount *child_mnt;
48a066e7
AV
656 struct vfsmount *m;
657 unsigned seq;
99b7db7b 658
48a066e7
AV
659 rcu_read_lock();
660 do {
661 seq = read_seqbegin(&mount_lock);
662 child_mnt = __lookup_mnt(path->mnt, path->dentry);
663 m = child_mnt ? &child_mnt->mnt : NULL;
664 } while (!legitimize_mnt(m, seq));
665 rcu_read_unlock();
666 return m;
a05964f3
RP
667}
668
84d17192
AV
669static struct mountpoint *new_mountpoint(struct dentry *dentry)
670{
0818bf27 671 struct hlist_head *chain = mp_hash(dentry);
84d17192 672 struct mountpoint *mp;
eed81007 673 int ret;
84d17192 674
0818bf27 675 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
676 if (mp->m_dentry == dentry) {
677 /* might be worth a WARN_ON() */
678 if (d_unlinked(dentry))
679 return ERR_PTR(-ENOENT);
680 mp->m_count++;
681 return mp;
682 }
683 }
684
685 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
686 if (!mp)
687 return ERR_PTR(-ENOMEM);
688
eed81007
MS
689 ret = d_set_mounted(dentry);
690 if (ret) {
84d17192 691 kfree(mp);
eed81007 692 return ERR_PTR(ret);
84d17192 693 }
eed81007 694
84d17192
AV
695 mp->m_dentry = dentry;
696 mp->m_count = 1;
0818bf27 697 hlist_add_head(&mp->m_hash, chain);
84d17192
AV
698 return mp;
699}
700
701static void put_mountpoint(struct mountpoint *mp)
702{
703 if (!--mp->m_count) {
704 struct dentry *dentry = mp->m_dentry;
705 spin_lock(&dentry->d_lock);
706 dentry->d_flags &= ~DCACHE_MOUNTED;
707 spin_unlock(&dentry->d_lock);
0818bf27 708 hlist_del(&mp->m_hash);
84d17192
AV
709 kfree(mp);
710 }
711}
712
143c8c91 713static inline int check_mnt(struct mount *mnt)
1da177e4 714{
6b3286ed 715 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
716}
717
99b7db7b
NP
718/*
719 * vfsmount lock must be held for write
720 */
6b3286ed 721static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
722{
723 if (ns) {
724 ns->event = ++event;
725 wake_up_interruptible(&ns->poll);
726 }
727}
728
99b7db7b
NP
729/*
730 * vfsmount lock must be held for write
731 */
6b3286ed 732static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
733{
734 if (ns && ns->event != event) {
735 ns->event = event;
736 wake_up_interruptible(&ns->poll);
737 }
738}
739
99b7db7b
NP
740/*
741 * vfsmount lock must be held for write
742 */
419148da
AV
743static void detach_mnt(struct mount *mnt, struct path *old_path)
744{
a73324da 745 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
746 old_path->mnt = &mnt->mnt_parent->mnt;
747 mnt->mnt_parent = mnt;
a73324da 748 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 749 list_del_init(&mnt->mnt_child);
38129a13 750 hlist_del_init_rcu(&mnt->mnt_hash);
84d17192
AV
751 put_mountpoint(mnt->mnt_mp);
752 mnt->mnt_mp = NULL;
1da177e4
LT
753}
754
99b7db7b
NP
755/*
756 * vfsmount lock must be held for write
757 */
84d17192
AV
758void mnt_set_mountpoint(struct mount *mnt,
759 struct mountpoint *mp,
44d964d6 760 struct mount *child_mnt)
b90fa9ae 761{
84d17192 762 mp->m_count++;
3a2393d7 763 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 764 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 765 child_mnt->mnt_parent = mnt;
84d17192 766 child_mnt->mnt_mp = mp;
b90fa9ae
RP
767}
768
99b7db7b
NP
769/*
770 * vfsmount lock must be held for write
771 */
84d17192
AV
772static void attach_mnt(struct mount *mnt,
773 struct mount *parent,
774 struct mountpoint *mp)
1da177e4 775{
84d17192 776 mnt_set_mountpoint(parent, mp, mnt);
38129a13 777 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 778 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
779}
780
781/*
99b7db7b 782 * vfsmount lock must be held for write
b90fa9ae 783 */
1d6a32ac 784static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 785{
0714a533 786 struct mount *parent = mnt->mnt_parent;
83adc753 787 struct mount *m;
b90fa9ae 788 LIST_HEAD(head);
143c8c91 789 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 790
0714a533 791 BUG_ON(parent == mnt);
b90fa9ae 792
1a4eeaf2 793 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 794 list_for_each_entry(m, &head, mnt_list)
143c8c91 795 m->mnt_ns = n;
f03c6599 796
b90fa9ae
RP
797 list_splice(&head, n->list.prev);
798
1d6a32ac 799 if (shadows)
38129a13 800 hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
1d6a32ac 801 else
38129a13 802 hlist_add_head_rcu(&mnt->mnt_hash,
0818bf27 803 m_hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 804 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 805 touch_mnt_namespace(n);
1da177e4
LT
806}
807
909b0a88 808static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 809{
6b41d536
AV
810 struct list_head *next = p->mnt_mounts.next;
811 if (next == &p->mnt_mounts) {
1da177e4 812 while (1) {
909b0a88 813 if (p == root)
1da177e4 814 return NULL;
6b41d536
AV
815 next = p->mnt_child.next;
816 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 817 break;
0714a533 818 p = p->mnt_parent;
1da177e4
LT
819 }
820 }
6b41d536 821 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
822}
823
315fc83e 824static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 825{
6b41d536
AV
826 struct list_head *prev = p->mnt_mounts.prev;
827 while (prev != &p->mnt_mounts) {
828 p = list_entry(prev, struct mount, mnt_child);
829 prev = p->mnt_mounts.prev;
9676f0c6
RP
830 }
831 return p;
832}
833
9d412a43
AV
834struct vfsmount *
835vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
836{
b105e270 837 struct mount *mnt;
9d412a43
AV
838 struct dentry *root;
839
840 if (!type)
841 return ERR_PTR(-ENODEV);
842
843 mnt = alloc_vfsmnt(name);
844 if (!mnt)
845 return ERR_PTR(-ENOMEM);
846
847 if (flags & MS_KERNMOUNT)
b105e270 848 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
849
850 root = mount_fs(type, flags, name, data);
851 if (IS_ERR(root)) {
8ffcb32e 852 mnt_free_id(mnt);
9d412a43
AV
853 free_vfsmnt(mnt);
854 return ERR_CAST(root);
855 }
856
b105e270
AV
857 mnt->mnt.mnt_root = root;
858 mnt->mnt.mnt_sb = root->d_sb;
a73324da 859 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 860 mnt->mnt_parent = mnt;
719ea2fb 861 lock_mount_hash();
39f7c4db 862 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 863 unlock_mount_hash();
b105e270 864 return &mnt->mnt;
9d412a43
AV
865}
866EXPORT_SYMBOL_GPL(vfs_kern_mount);
867
87129cc0 868static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 869 int flag)
1da177e4 870{
87129cc0 871 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
872 struct mount *mnt;
873 int err;
1da177e4 874
be34d1a3
DH
875 mnt = alloc_vfsmnt(old->mnt_devname);
876 if (!mnt)
877 return ERR_PTR(-ENOMEM);
719f5d7f 878
7a472ef4 879 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
880 mnt->mnt_group_id = 0; /* not a peer of original */
881 else
882 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 883
be34d1a3
DH
884 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
885 err = mnt_alloc_group_id(mnt);
886 if (err)
887 goto out_free;
1da177e4 888 }
be34d1a3 889
f2ebb3a9 890 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3
EB
891 /* Don't allow unprivileged users to change mount flags */
892 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
893 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
894
5ff9d8a6
EB
895 /* Don't allow unprivileged users to reveal what is under a mount */
896 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
897 mnt->mnt.mnt_flags |= MNT_LOCKED;
898
be34d1a3
DH
899 atomic_inc(&sb->s_active);
900 mnt->mnt.mnt_sb = sb;
901 mnt->mnt.mnt_root = dget(root);
902 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
903 mnt->mnt_parent = mnt;
719ea2fb 904 lock_mount_hash();
be34d1a3 905 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 906 unlock_mount_hash();
be34d1a3 907
7a472ef4
EB
908 if ((flag & CL_SLAVE) ||
909 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
910 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
911 mnt->mnt_master = old;
912 CLEAR_MNT_SHARED(mnt);
913 } else if (!(flag & CL_PRIVATE)) {
914 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
915 list_add(&mnt->mnt_share, &old->mnt_share);
916 if (IS_MNT_SLAVE(old))
917 list_add(&mnt->mnt_slave, &old->mnt_slave);
918 mnt->mnt_master = old->mnt_master;
919 }
920 if (flag & CL_MAKE_SHARED)
921 set_mnt_shared(mnt);
922
923 /* stick the duplicate mount on the same expiry list
924 * as the original if that was on one */
925 if (flag & CL_EXPIRE) {
926 if (!list_empty(&old->mnt_expire))
927 list_add(&mnt->mnt_expire, &old->mnt_expire);
928 }
929
cb338d06 930 return mnt;
719f5d7f
MS
931
932 out_free:
8ffcb32e 933 mnt_free_id(mnt);
719f5d7f 934 free_vfsmnt(mnt);
be34d1a3 935 return ERR_PTR(err);
1da177e4
LT
936}
937
900148dc 938static void mntput_no_expire(struct mount *mnt)
b3e19d92 939{
b3e19d92 940put_again:
48a066e7
AV
941 rcu_read_lock();
942 mnt_add_count(mnt, -1);
943 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
944 rcu_read_unlock();
f03c6599 945 return;
b3e19d92 946 }
719ea2fb 947 lock_mount_hash();
b3e19d92 948 if (mnt_get_count(mnt)) {
48a066e7 949 rcu_read_unlock();
719ea2fb 950 unlock_mount_hash();
99b7db7b
NP
951 return;
952 }
863d684f
AV
953 if (unlikely(mnt->mnt_pinned)) {
954 mnt_add_count(mnt, mnt->mnt_pinned + 1);
955 mnt->mnt_pinned = 0;
48a066e7 956 rcu_read_unlock();
719ea2fb 957 unlock_mount_hash();
8fa1f1c2 958 mnt_pin_kill(mnt);
b3e19d92 959 goto put_again;
7b7b1ace 960 }
48a066e7
AV
961 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
962 rcu_read_unlock();
963 unlock_mount_hash();
964 return;
965 }
966 mnt->mnt.mnt_flags |= MNT_DOOMED;
967 rcu_read_unlock();
962830df 968
39f7c4db 969 list_del(&mnt->mnt_instance);
719ea2fb 970 unlock_mount_hash();
649a795a
AV
971
972 /*
973 * This probably indicates that somebody messed
974 * up a mnt_want/drop_write() pair. If this
975 * happens, the filesystem was probably unable
976 * to make r/w->r/o transitions.
977 */
978 /*
979 * The locking used to deal with mnt_count decrement provides barriers,
980 * so mnt_get_writers() below is safe.
981 */
982 WARN_ON(mnt_get_writers(mnt));
983 fsnotify_vfsmount_delete(&mnt->mnt);
984 dput(mnt->mnt.mnt_root);
985 deactivate_super(mnt->mnt.mnt_sb);
48a066e7 986 mnt_free_id(mnt);
8ffcb32e 987 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
b3e19d92 988}
b3e19d92
NP
989
990void mntput(struct vfsmount *mnt)
991{
992 if (mnt) {
863d684f 993 struct mount *m = real_mount(mnt);
b3e19d92 994 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
995 if (unlikely(m->mnt_expiry_mark))
996 m->mnt_expiry_mark = 0;
997 mntput_no_expire(m);
b3e19d92
NP
998 }
999}
1000EXPORT_SYMBOL(mntput);
1001
1002struct vfsmount *mntget(struct vfsmount *mnt)
1003{
1004 if (mnt)
83adc753 1005 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1006 return mnt;
1007}
1008EXPORT_SYMBOL(mntget);
1009
7b7b1ace
AV
1010void mnt_pin(struct vfsmount *mnt)
1011{
719ea2fb 1012 lock_mount_hash();
863d684f 1013 real_mount(mnt)->mnt_pinned++;
719ea2fb 1014 unlock_mount_hash();
7b7b1ace 1015}
7b7b1ace
AV
1016EXPORT_SYMBOL(mnt_pin);
1017
863d684f 1018void mnt_unpin(struct vfsmount *m)
7b7b1ace 1019{
863d684f 1020 struct mount *mnt = real_mount(m);
719ea2fb 1021 lock_mount_hash();
7b7b1ace 1022 if (mnt->mnt_pinned) {
863d684f 1023 mnt_add_count(mnt, 1);
7b7b1ace
AV
1024 mnt->mnt_pinned--;
1025 }
719ea2fb 1026 unlock_mount_hash();
7b7b1ace 1027}
7b7b1ace 1028EXPORT_SYMBOL(mnt_unpin);
1da177e4 1029
b3b304a2
MS
1030static inline void mangle(struct seq_file *m, const char *s)
1031{
1032 seq_escape(m, s, " \t\n\\");
1033}
1034
1035/*
1036 * Simple .show_options callback for filesystems which don't want to
1037 * implement more complex mount option showing.
1038 *
1039 * See also save_mount_options().
1040 */
34c80b1d 1041int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1042{
2a32cebd
AV
1043 const char *options;
1044
1045 rcu_read_lock();
34c80b1d 1046 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1047
1048 if (options != NULL && options[0]) {
1049 seq_putc(m, ',');
1050 mangle(m, options);
1051 }
2a32cebd 1052 rcu_read_unlock();
b3b304a2
MS
1053
1054 return 0;
1055}
1056EXPORT_SYMBOL(generic_show_options);
1057
1058/*
1059 * If filesystem uses generic_show_options(), this function should be
1060 * called from the fill_super() callback.
1061 *
1062 * The .remount_fs callback usually needs to be handled in a special
1063 * way, to make sure, that previous options are not overwritten if the
1064 * remount fails.
1065 *
1066 * Also note, that if the filesystem's .remount_fs function doesn't
1067 * reset all options to their default value, but changes only newly
1068 * given options, then the displayed options will not reflect reality
1069 * any more.
1070 */
1071void save_mount_options(struct super_block *sb, char *options)
1072{
2a32cebd
AV
1073 BUG_ON(sb->s_options);
1074 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1075}
1076EXPORT_SYMBOL(save_mount_options);
1077
2a32cebd
AV
1078void replace_mount_options(struct super_block *sb, char *options)
1079{
1080 char *old = sb->s_options;
1081 rcu_assign_pointer(sb->s_options, options);
1082 if (old) {
1083 synchronize_rcu();
1084 kfree(old);
1085 }
1086}
1087EXPORT_SYMBOL(replace_mount_options);
1088
a1a2c409 1089#ifdef CONFIG_PROC_FS
0226f492 1090/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1091static void *m_start(struct seq_file *m, loff_t *pos)
1092{
6ce6e24e 1093 struct proc_mounts *p = proc_mounts(m);
1da177e4 1094
390c6843 1095 down_read(&namespace_sem);
c7999c36
AV
1096 if (p->cached_event == p->ns->event) {
1097 void *v = p->cached_mount;
1098 if (*pos == p->cached_index)
1099 return v;
1100 if (*pos == p->cached_index + 1) {
1101 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1102 return p->cached_mount = v;
1103 }
1104 }
1105
1106 p->cached_event = p->ns->event;
1107 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1108 p->cached_index = *pos;
1109 return p->cached_mount;
1da177e4
LT
1110}
1111
1112static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1113{
6ce6e24e 1114 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1115
c7999c36
AV
1116 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1117 p->cached_index = *pos;
1118 return p->cached_mount;
1da177e4
LT
1119}
1120
1121static void m_stop(struct seq_file *m, void *v)
1122{
390c6843 1123 up_read(&namespace_sem);
1da177e4
LT
1124}
1125
0226f492 1126static int m_show(struct seq_file *m, void *v)
2d4d4864 1127{
6ce6e24e 1128 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1129 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1130 return p->show(m, &r->mnt);
1da177e4
LT
1131}
1132
a1a2c409 1133const struct seq_operations mounts_op = {
1da177e4
LT
1134 .start = m_start,
1135 .next = m_next,
1136 .stop = m_stop,
0226f492 1137 .show = m_show,
b4629fe2 1138};
a1a2c409 1139#endif /* CONFIG_PROC_FS */
b4629fe2 1140
1da177e4
LT
1141/**
1142 * may_umount_tree - check if a mount tree is busy
1143 * @mnt: root of mount tree
1144 *
1145 * This is called to check if a tree of mounts has any
1146 * open files, pwds, chroots or sub mounts that are
1147 * busy.
1148 */
909b0a88 1149int may_umount_tree(struct vfsmount *m)
1da177e4 1150{
909b0a88 1151 struct mount *mnt = real_mount(m);
36341f64
RP
1152 int actual_refs = 0;
1153 int minimum_refs = 0;
315fc83e 1154 struct mount *p;
909b0a88 1155 BUG_ON(!m);
1da177e4 1156
b3e19d92 1157 /* write lock needed for mnt_get_count */
719ea2fb 1158 lock_mount_hash();
909b0a88 1159 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1160 actual_refs += mnt_get_count(p);
1da177e4 1161 minimum_refs += 2;
1da177e4 1162 }
719ea2fb 1163 unlock_mount_hash();
1da177e4
LT
1164
1165 if (actual_refs > minimum_refs)
e3474a8e 1166 return 0;
1da177e4 1167
e3474a8e 1168 return 1;
1da177e4
LT
1169}
1170
1171EXPORT_SYMBOL(may_umount_tree);
1172
1173/**
1174 * may_umount - check if a mount point is busy
1175 * @mnt: root of mount
1176 *
1177 * This is called to check if a mount point has any
1178 * open files, pwds, chroots or sub mounts. If the
1179 * mount has sub mounts this will return busy
1180 * regardless of whether the sub mounts are busy.
1181 *
1182 * Doesn't take quota and stuff into account. IOW, in some cases it will
1183 * give false negatives. The main reason why it's here is that we need
1184 * a non-destructive way to look for easily umountable filesystems.
1185 */
1186int may_umount(struct vfsmount *mnt)
1187{
e3474a8e 1188 int ret = 1;
8ad08d8a 1189 down_read(&namespace_sem);
719ea2fb 1190 lock_mount_hash();
1ab59738 1191 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1192 ret = 0;
719ea2fb 1193 unlock_mount_hash();
8ad08d8a 1194 up_read(&namespace_sem);
a05964f3 1195 return ret;
1da177e4
LT
1196}
1197
1198EXPORT_SYMBOL(may_umount);
1199
38129a13 1200static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1201
97216be0 1202static void namespace_unlock(void)
70fbcdf4 1203{
d5e50f74 1204 struct mount *mnt;
38129a13 1205 struct hlist_head head = unmounted;
97216be0 1206
38129a13 1207 if (likely(hlist_empty(&head))) {
97216be0
AV
1208 up_write(&namespace_sem);
1209 return;
1210 }
1211
38129a13
AV
1212 head.first->pprev = &head.first;
1213 INIT_HLIST_HEAD(&unmounted);
1214
97216be0
AV
1215 up_write(&namespace_sem);
1216
48a066e7
AV
1217 synchronize_rcu();
1218
38129a13
AV
1219 while (!hlist_empty(&head)) {
1220 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1221 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1222 if (mnt->mnt_ex_mountpoint.mnt)
1223 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1224 mntput(&mnt->mnt);
70fbcdf4
RP
1225 }
1226}
1227
97216be0 1228static inline void namespace_lock(void)
e3197d83 1229{
97216be0 1230 down_write(&namespace_sem);
e3197d83
AV
1231}
1232
99b7db7b 1233/*
48a066e7 1234 * mount_lock must be held
99b7db7b 1235 * namespace_sem must be held for write
48a066e7
AV
1236 * how = 0 => just this tree, don't propagate
1237 * how = 1 => propagate; we know that nobody else has reference to any victims
1238 * how = 2 => lazy umount
99b7db7b 1239 */
48a066e7 1240void umount_tree(struct mount *mnt, int how)
1da177e4 1241{
38129a13 1242 HLIST_HEAD(tmp_list);
315fc83e 1243 struct mount *p;
38129a13 1244 struct mount *last = NULL;
1da177e4 1245
38129a13
AV
1246 for (p = mnt; p; p = next_mnt(p, mnt)) {
1247 hlist_del_init_rcu(&p->mnt_hash);
1248 hlist_add_head(&p->mnt_hash, &tmp_list);
1249 }
1da177e4 1250
48a066e7 1251 if (how)
7b8a53fd 1252 propagate_umount(&tmp_list);
a05964f3 1253
38129a13 1254 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1255 list_del_init(&p->mnt_expire);
1a4eeaf2 1256 list_del_init(&p->mnt_list);
143c8c91
AV
1257 __touch_mnt_namespace(p->mnt_ns);
1258 p->mnt_ns = NULL;
48a066e7
AV
1259 if (how < 2)
1260 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
6b41d536 1261 list_del_init(&p->mnt_child);
676da58d 1262 if (mnt_has_parent(p)) {
84d17192 1263 put_mountpoint(p->mnt_mp);
aba809cf
AV
1264 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1265 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1266 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1267 p->mnt_mountpoint = p->mnt.mnt_root;
1268 p->mnt_parent = p;
84d17192 1269 p->mnt_mp = NULL;
7c4b93d8 1270 }
0f0afb1d 1271 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1272 last = p;
1273 }
1274 if (last) {
1275 last->mnt_hash.next = unmounted.first;
1276 unmounted.first = tmp_list.first;
1277 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1278 }
1279}
1280
b54b9be7 1281static void shrink_submounts(struct mount *mnt);
c35038be 1282
1ab59738 1283static int do_umount(struct mount *mnt, int flags)
1da177e4 1284{
1ab59738 1285 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1286 int retval;
1287
1ab59738 1288 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1289 if (retval)
1290 return retval;
1291
1292 /*
1293 * Allow userspace to request a mountpoint be expired rather than
1294 * unmounting unconditionally. Unmount only happens if:
1295 * (1) the mark is already set (the mark is cleared by mntput())
1296 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1297 */
1298 if (flags & MNT_EXPIRE) {
1ab59738 1299 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1300 flags & (MNT_FORCE | MNT_DETACH))
1301 return -EINVAL;
1302
b3e19d92
NP
1303 /*
1304 * probably don't strictly need the lock here if we examined
1305 * all race cases, but it's a slowpath.
1306 */
719ea2fb 1307 lock_mount_hash();
83adc753 1308 if (mnt_get_count(mnt) != 2) {
719ea2fb 1309 unlock_mount_hash();
1da177e4 1310 return -EBUSY;
b3e19d92 1311 }
719ea2fb 1312 unlock_mount_hash();
1da177e4 1313
863d684f 1314 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1315 return -EAGAIN;
1316 }
1317
1318 /*
1319 * If we may have to abort operations to get out of this
1320 * mount, and they will themselves hold resources we must
1321 * allow the fs to do things. In the Unix tradition of
1322 * 'Gee thats tricky lets do it in userspace' the umount_begin
1323 * might fail to complete on the first run through as other tasks
1324 * must return, and the like. Thats for the mount program to worry
1325 * about for the moment.
1326 */
1327
42faad99 1328 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1329 sb->s_op->umount_begin(sb);
42faad99 1330 }
1da177e4
LT
1331
1332 /*
1333 * No sense to grab the lock for this test, but test itself looks
1334 * somewhat bogus. Suggestions for better replacement?
1335 * Ho-hum... In principle, we might treat that as umount + switch
1336 * to rootfs. GC would eventually take care of the old vfsmount.
1337 * Actually it makes sense, especially if rootfs would contain a
1338 * /reboot - static binary that would close all descriptors and
1339 * call reboot(9). Then init(8) could umount root and exec /reboot.
1340 */
1ab59738 1341 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1342 /*
1343 * Special case for "unmounting" root ...
1344 * we just try to remount it readonly.
1345 */
1346 down_write(&sb->s_umount);
4aa98cf7 1347 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1348 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1349 up_write(&sb->s_umount);
1350 return retval;
1351 }
1352
97216be0 1353 namespace_lock();
719ea2fb 1354 lock_mount_hash();
5addc5dd 1355 event++;
1da177e4 1356
48a066e7 1357 if (flags & MNT_DETACH) {
1a4eeaf2 1358 if (!list_empty(&mnt->mnt_list))
48a066e7 1359 umount_tree(mnt, 2);
1da177e4 1360 retval = 0;
48a066e7
AV
1361 } else {
1362 shrink_submounts(mnt);
1363 retval = -EBUSY;
1364 if (!propagate_mount_busy(mnt, 2)) {
1365 if (!list_empty(&mnt->mnt_list))
1366 umount_tree(mnt, 1);
1367 retval = 0;
1368 }
1da177e4 1369 }
719ea2fb 1370 unlock_mount_hash();
e3197d83 1371 namespace_unlock();
1da177e4
LT
1372 return retval;
1373}
1374
9b40bc90
AV
1375/*
1376 * Is the caller allowed to modify his namespace?
1377 */
1378static inline bool may_mount(void)
1379{
1380 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1381}
1382
1da177e4
LT
1383/*
1384 * Now umount can handle mount points as well as block devices.
1385 * This is important for filesystems which use unnamed block devices.
1386 *
1387 * We now support a flag for forced unmount like the other 'big iron'
1388 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1389 */
1390
bdc480e3 1391SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1392{
2d8f3038 1393 struct path path;
900148dc 1394 struct mount *mnt;
1da177e4 1395 int retval;
db1f05bb 1396 int lookup_flags = 0;
1da177e4 1397
db1f05bb
MS
1398 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1399 return -EINVAL;
1400
9b40bc90
AV
1401 if (!may_mount())
1402 return -EPERM;
1403
db1f05bb
MS
1404 if (!(flags & UMOUNT_NOFOLLOW))
1405 lookup_flags |= LOOKUP_FOLLOW;
1406
197df04c 1407 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1408 if (retval)
1409 goto out;
900148dc 1410 mnt = real_mount(path.mnt);
1da177e4 1411 retval = -EINVAL;
2d8f3038 1412 if (path.dentry != path.mnt->mnt_root)
1da177e4 1413 goto dput_and_out;
143c8c91 1414 if (!check_mnt(mnt))
1da177e4 1415 goto dput_and_out;
5ff9d8a6
EB
1416 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1417 goto dput_and_out;
1da177e4 1418
900148dc 1419 retval = do_umount(mnt, flags);
1da177e4 1420dput_and_out:
429731b1 1421 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1422 dput(path.dentry);
900148dc 1423 mntput_no_expire(mnt);
1da177e4
LT
1424out:
1425 return retval;
1426}
1427
1428#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1429
1430/*
b58fed8b 1431 * The 2.0 compatible umount. No flags.
1da177e4 1432 */
bdc480e3 1433SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1434{
b58fed8b 1435 return sys_umount(name, 0);
1da177e4
LT
1436}
1437
1438#endif
1439
4ce5d2b1 1440static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1441{
4ce5d2b1
EB
1442 /* Is this a proxy for a mount namespace? */
1443 struct inode *inode = dentry->d_inode;
0bb80f24 1444 struct proc_ns *ei;
8823c079
EB
1445
1446 if (!proc_ns_inode(inode))
1447 return false;
1448
0bb80f24 1449 ei = get_proc_ns(inode);
8823c079
EB
1450 if (ei->ns_ops != &mntns_operations)
1451 return false;
1452
4ce5d2b1
EB
1453 return true;
1454}
1455
1456static bool mnt_ns_loop(struct dentry *dentry)
1457{
1458 /* Could bind mounting the mount namespace inode cause a
1459 * mount namespace loop?
1460 */
1461 struct mnt_namespace *mnt_ns;
1462 if (!is_mnt_ns_file(dentry))
1463 return false;
1464
1465 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1466 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1467}
1468
87129cc0 1469struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1470 int flag)
1da177e4 1471{
84d17192 1472 struct mount *res, *p, *q, *r, *parent;
1da177e4 1473
4ce5d2b1
EB
1474 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1475 return ERR_PTR(-EINVAL);
1476
1477 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1478 return ERR_PTR(-EINVAL);
9676f0c6 1479
36341f64 1480 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1481 if (IS_ERR(q))
1482 return q;
1483
5ff9d8a6 1484 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1485 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1486
1487 p = mnt;
6b41d536 1488 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1489 struct mount *s;
7ec02ef1 1490 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1491 continue;
1492
909b0a88 1493 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1494 if (!(flag & CL_COPY_UNBINDABLE) &&
1495 IS_MNT_UNBINDABLE(s)) {
1496 s = skip_mnt_tree(s);
1497 continue;
1498 }
1499 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1500 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1501 s = skip_mnt_tree(s);
1502 continue;
1503 }
0714a533
AV
1504 while (p != s->mnt_parent) {
1505 p = p->mnt_parent;
1506 q = q->mnt_parent;
1da177e4 1507 }
87129cc0 1508 p = s;
84d17192 1509 parent = q;
87129cc0 1510 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1511 if (IS_ERR(q))
1512 goto out;
719ea2fb 1513 lock_mount_hash();
1a4eeaf2 1514 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1515 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1516 unlock_mount_hash();
1da177e4
LT
1517 }
1518 }
1519 return res;
be34d1a3 1520out:
1da177e4 1521 if (res) {
719ea2fb 1522 lock_mount_hash();
328e6d90 1523 umount_tree(res, 0);
719ea2fb 1524 unlock_mount_hash();
1da177e4 1525 }
be34d1a3 1526 return q;
1da177e4
LT
1527}
1528
be34d1a3
DH
1529/* Caller should check returned pointer for errors */
1530
589ff870 1531struct vfsmount *collect_mounts(struct path *path)
8aec0809 1532{
cb338d06 1533 struct mount *tree;
97216be0 1534 namespace_lock();
87129cc0
AV
1535 tree = copy_tree(real_mount(path->mnt), path->dentry,
1536 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1537 namespace_unlock();
be34d1a3 1538 if (IS_ERR(tree))
52e220d3 1539 return ERR_CAST(tree);
be34d1a3 1540 return &tree->mnt;
8aec0809
AV
1541}
1542
1543void drop_collected_mounts(struct vfsmount *mnt)
1544{
97216be0 1545 namespace_lock();
719ea2fb 1546 lock_mount_hash();
328e6d90 1547 umount_tree(real_mount(mnt), 0);
719ea2fb 1548 unlock_mount_hash();
3ab6abee 1549 namespace_unlock();
8aec0809
AV
1550}
1551
1f707137
AV
1552int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1553 struct vfsmount *root)
1554{
1a4eeaf2 1555 struct mount *mnt;
1f707137
AV
1556 int res = f(root, arg);
1557 if (res)
1558 return res;
1a4eeaf2
AV
1559 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1560 res = f(&mnt->mnt, arg);
1f707137
AV
1561 if (res)
1562 return res;
1563 }
1564 return 0;
1565}
1566
4b8b21f4 1567static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1568{
315fc83e 1569 struct mount *p;
719f5d7f 1570
909b0a88 1571 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1572 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1573 mnt_release_group_id(p);
719f5d7f
MS
1574 }
1575}
1576
4b8b21f4 1577static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1578{
315fc83e 1579 struct mount *p;
719f5d7f 1580
909b0a88 1581 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1582 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1583 int err = mnt_alloc_group_id(p);
719f5d7f 1584 if (err) {
4b8b21f4 1585 cleanup_group_ids(mnt, p);
719f5d7f
MS
1586 return err;
1587 }
1588 }
1589 }
1590
1591 return 0;
1592}
1593
b90fa9ae
RP
1594/*
1595 * @source_mnt : mount tree to be attached
21444403
RP
1596 * @nd : place the mount tree @source_mnt is attached
1597 * @parent_nd : if non-null, detach the source_mnt from its parent and
1598 * store the parent mount and mountpoint dentry.
1599 * (done when source_mnt is moved)
b90fa9ae
RP
1600 *
1601 * NOTE: in the table below explains the semantics when a source mount
1602 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1603 * ---------------------------------------------------------------------------
1604 * | BIND MOUNT OPERATION |
1605 * |**************************************************************************
1606 * | source-->| shared | private | slave | unbindable |
1607 * | dest | | | | |
1608 * | | | | | | |
1609 * | v | | | | |
1610 * |**************************************************************************
1611 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1612 * | | | | | |
1613 * |non-shared| shared (+) | private | slave (*) | invalid |
1614 * ***************************************************************************
b90fa9ae
RP
1615 * A bind operation clones the source mount and mounts the clone on the
1616 * destination mount.
1617 *
1618 * (++) the cloned mount is propagated to all the mounts in the propagation
1619 * tree of the destination mount and the cloned mount is added to
1620 * the peer group of the source mount.
1621 * (+) the cloned mount is created under the destination mount and is marked
1622 * as shared. The cloned mount is added to the peer group of the source
1623 * mount.
5afe0022
RP
1624 * (+++) the mount is propagated to all the mounts in the propagation tree
1625 * of the destination mount and the cloned mount is made slave
1626 * of the same master as that of the source mount. The cloned mount
1627 * is marked as 'shared and slave'.
1628 * (*) the cloned mount is made a slave of the same master as that of the
1629 * source mount.
1630 *
9676f0c6
RP
1631 * ---------------------------------------------------------------------------
1632 * | MOVE MOUNT OPERATION |
1633 * |**************************************************************************
1634 * | source-->| shared | private | slave | unbindable |
1635 * | dest | | | | |
1636 * | | | | | | |
1637 * | v | | | | |
1638 * |**************************************************************************
1639 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1640 * | | | | | |
1641 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1642 * ***************************************************************************
5afe0022
RP
1643 *
1644 * (+) the mount is moved to the destination. And is then propagated to
1645 * all the mounts in the propagation tree of the destination mount.
21444403 1646 * (+*) the mount is moved to the destination.
5afe0022
RP
1647 * (+++) the mount is moved to the destination and is then propagated to
1648 * all the mounts belonging to the destination mount's propagation tree.
1649 * the mount is marked as 'shared and slave'.
1650 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1651 *
1652 * if the source mount is a tree, the operations explained above is
1653 * applied to each mount in the tree.
1654 * Must be called without spinlocks held, since this function can sleep
1655 * in allocations.
1656 */
0fb54e50 1657static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1658 struct mount *dest_mnt,
1659 struct mountpoint *dest_mp,
1660 struct path *parent_path)
b90fa9ae 1661{
38129a13 1662 HLIST_HEAD(tree_list);
315fc83e 1663 struct mount *child, *p;
38129a13 1664 struct hlist_node *n;
719f5d7f 1665 int err;
b90fa9ae 1666
fc7be130 1667 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1668 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1669 if (err)
1670 goto out;
0b1b901b 1671 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1672 lock_mount_hash();
0b1b901b
AV
1673 if (err)
1674 goto out_cleanup_ids;
909b0a88 1675 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1676 set_mnt_shared(p);
0b1b901b
AV
1677 } else {
1678 lock_mount_hash();
b90fa9ae 1679 }
1a390689 1680 if (parent_path) {
0fb54e50 1681 detach_mnt(source_mnt, parent_path);
84d17192 1682 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1683 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1684 } else {
84d17192 1685 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1686 commit_tree(source_mnt, NULL);
21444403 1687 }
b90fa9ae 1688
38129a13 1689 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1690 struct mount *q;
38129a13 1691 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1692 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1693 child->mnt_mountpoint);
1694 commit_tree(child, q);
b90fa9ae 1695 }
719ea2fb 1696 unlock_mount_hash();
99b7db7b 1697
b90fa9ae 1698 return 0;
719f5d7f
MS
1699
1700 out_cleanup_ids:
f2ebb3a9
AV
1701 while (!hlist_empty(&tree_list)) {
1702 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1703 umount_tree(child, 0);
1704 }
1705 unlock_mount_hash();
0b1b901b 1706 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1707 out:
1708 return err;
b90fa9ae
RP
1709}
1710
84d17192 1711static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1712{
1713 struct vfsmount *mnt;
84d17192 1714 struct dentry *dentry = path->dentry;
b12cea91 1715retry:
84d17192
AV
1716 mutex_lock(&dentry->d_inode->i_mutex);
1717 if (unlikely(cant_mount(dentry))) {
1718 mutex_unlock(&dentry->d_inode->i_mutex);
1719 return ERR_PTR(-ENOENT);
b12cea91 1720 }
97216be0 1721 namespace_lock();
b12cea91 1722 mnt = lookup_mnt(path);
84d17192
AV
1723 if (likely(!mnt)) {
1724 struct mountpoint *mp = new_mountpoint(dentry);
1725 if (IS_ERR(mp)) {
97216be0 1726 namespace_unlock();
84d17192
AV
1727 mutex_unlock(&dentry->d_inode->i_mutex);
1728 return mp;
1729 }
1730 return mp;
1731 }
97216be0 1732 namespace_unlock();
b12cea91
AV
1733 mutex_unlock(&path->dentry->d_inode->i_mutex);
1734 path_put(path);
1735 path->mnt = mnt;
84d17192 1736 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1737 goto retry;
1738}
1739
84d17192 1740static void unlock_mount(struct mountpoint *where)
b12cea91 1741{
84d17192
AV
1742 struct dentry *dentry = where->m_dentry;
1743 put_mountpoint(where);
328e6d90 1744 namespace_unlock();
84d17192 1745 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1746}
1747
84d17192 1748static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1749{
95bc5f25 1750 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1751 return -EINVAL;
1752
84d17192 1753 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1754 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1755 return -ENOTDIR;
1756
84d17192 1757 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1758}
1759
7a2e8a8f
VA
1760/*
1761 * Sanity check the flags to change_mnt_propagation.
1762 */
1763
1764static int flags_to_propagation_type(int flags)
1765{
7c6e984d 1766 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1767
1768 /* Fail if any non-propagation flags are set */
1769 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1770 return 0;
1771 /* Only one propagation flag should be set */
1772 if (!is_power_of_2(type))
1773 return 0;
1774 return type;
1775}
1776
07b20889
RP
1777/*
1778 * recursively change the type of the mountpoint.
1779 */
0a0d8a46 1780static int do_change_type(struct path *path, int flag)
07b20889 1781{
315fc83e 1782 struct mount *m;
4b8b21f4 1783 struct mount *mnt = real_mount(path->mnt);
07b20889 1784 int recurse = flag & MS_REC;
7a2e8a8f 1785 int type;
719f5d7f 1786 int err = 0;
07b20889 1787
2d92ab3c 1788 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1789 return -EINVAL;
1790
7a2e8a8f
VA
1791 type = flags_to_propagation_type(flag);
1792 if (!type)
1793 return -EINVAL;
1794
97216be0 1795 namespace_lock();
719f5d7f
MS
1796 if (type == MS_SHARED) {
1797 err = invent_group_ids(mnt, recurse);
1798 if (err)
1799 goto out_unlock;
1800 }
1801
719ea2fb 1802 lock_mount_hash();
909b0a88 1803 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1804 change_mnt_propagation(m, type);
719ea2fb 1805 unlock_mount_hash();
719f5d7f
MS
1806
1807 out_unlock:
97216be0 1808 namespace_unlock();
719f5d7f 1809 return err;
07b20889
RP
1810}
1811
5ff9d8a6
EB
1812static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1813{
1814 struct mount *child;
1815 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1816 if (!is_subdir(child->mnt_mountpoint, dentry))
1817 continue;
1818
1819 if (child->mnt.mnt_flags & MNT_LOCKED)
1820 return true;
1821 }
1822 return false;
1823}
1824
1da177e4
LT
1825/*
1826 * do loopback mount.
1827 */
808d4e3c 1828static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1829 int recurse)
1da177e4 1830{
2d92ab3c 1831 struct path old_path;
84d17192
AV
1832 struct mount *mnt = NULL, *old, *parent;
1833 struct mountpoint *mp;
57eccb83 1834 int err;
1da177e4
LT
1835 if (!old_name || !*old_name)
1836 return -EINVAL;
815d405c 1837 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1838 if (err)
1839 return err;
1840
8823c079 1841 err = -EINVAL;
4ce5d2b1 1842 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1843 goto out;
1844
84d17192
AV
1845 mp = lock_mount(path);
1846 err = PTR_ERR(mp);
1847 if (IS_ERR(mp))
b12cea91
AV
1848 goto out;
1849
87129cc0 1850 old = real_mount(old_path.mnt);
84d17192 1851 parent = real_mount(path->mnt);
87129cc0 1852
1da177e4 1853 err = -EINVAL;
fc7be130 1854 if (IS_MNT_UNBINDABLE(old))
b12cea91 1855 goto out2;
9676f0c6 1856
84d17192 1857 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1858 goto out2;
1da177e4 1859
5ff9d8a6
EB
1860 if (!recurse && has_locked_children(old, old_path.dentry))
1861 goto out2;
1862
ccd48bc7 1863 if (recurse)
4ce5d2b1 1864 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1865 else
87129cc0 1866 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1867
be34d1a3
DH
1868 if (IS_ERR(mnt)) {
1869 err = PTR_ERR(mnt);
e9c5d8a5 1870 goto out2;
be34d1a3 1871 }
ccd48bc7 1872
5ff9d8a6
EB
1873 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1874
84d17192 1875 err = graft_tree(mnt, parent, mp);
ccd48bc7 1876 if (err) {
719ea2fb 1877 lock_mount_hash();
328e6d90 1878 umount_tree(mnt, 0);
719ea2fb 1879 unlock_mount_hash();
5b83d2c5 1880 }
b12cea91 1881out2:
84d17192 1882 unlock_mount(mp);
ccd48bc7 1883out:
2d92ab3c 1884 path_put(&old_path);
1da177e4
LT
1885 return err;
1886}
1887
2e4b7fcd
DH
1888static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1889{
1890 int error = 0;
1891 int readonly_request = 0;
1892
1893 if (ms_flags & MS_RDONLY)
1894 readonly_request = 1;
1895 if (readonly_request == __mnt_is_readonly(mnt))
1896 return 0;
1897
90563b19
EB
1898 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1899 return -EPERM;
1900
2e4b7fcd 1901 if (readonly_request)
83adc753 1902 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1903 else
83adc753 1904 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1905 return error;
1906}
1907
1da177e4
LT
1908/*
1909 * change filesystem flags. dir should be a physical root of filesystem.
1910 * If you've mounted a non-root directory somewhere and want to do remount
1911 * on it - tough luck.
1912 */
0a0d8a46 1913static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1914 void *data)
1915{
1916 int err;
2d92ab3c 1917 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1918 struct mount *mnt = real_mount(path->mnt);
1da177e4 1919
143c8c91 1920 if (!check_mnt(mnt))
1da177e4
LT
1921 return -EINVAL;
1922
2d92ab3c 1923 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1924 return -EINVAL;
1925
ff36fe2c
EP
1926 err = security_sb_remount(sb, data);
1927 if (err)
1928 return err;
1929
1da177e4 1930 down_write(&sb->s_umount);
2e4b7fcd 1931 if (flags & MS_BIND)
2d92ab3c 1932 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1933 else if (!capable(CAP_SYS_ADMIN))
1934 err = -EPERM;
4aa98cf7 1935 else
2e4b7fcd 1936 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1937 if (!err) {
719ea2fb 1938 lock_mount_hash();
143c8c91
AV
1939 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1940 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 1941 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 1942 unlock_mount_hash();
0e55a7cc 1943 }
6339dab8 1944 up_write(&sb->s_umount);
1da177e4
LT
1945 return err;
1946}
1947
cbbe362c 1948static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1949{
315fc83e 1950 struct mount *p;
909b0a88 1951 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1952 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1953 return 1;
1954 }
1955 return 0;
1956}
1957
808d4e3c 1958static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1959{
2d92ab3c 1960 struct path old_path, parent_path;
676da58d 1961 struct mount *p;
0fb54e50 1962 struct mount *old;
84d17192 1963 struct mountpoint *mp;
57eccb83 1964 int err;
1da177e4
LT
1965 if (!old_name || !*old_name)
1966 return -EINVAL;
2d92ab3c 1967 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1968 if (err)
1969 return err;
1970
84d17192
AV
1971 mp = lock_mount(path);
1972 err = PTR_ERR(mp);
1973 if (IS_ERR(mp))
cc53ce53
DH
1974 goto out;
1975
143c8c91 1976 old = real_mount(old_path.mnt);
fc7be130 1977 p = real_mount(path->mnt);
143c8c91 1978
1da177e4 1979 err = -EINVAL;
fc7be130 1980 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1981 goto out1;
1982
5ff9d8a6
EB
1983 if (old->mnt.mnt_flags & MNT_LOCKED)
1984 goto out1;
1985
1da177e4 1986 err = -EINVAL;
2d92ab3c 1987 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1988 goto out1;
1da177e4 1989
676da58d 1990 if (!mnt_has_parent(old))
21444403 1991 goto out1;
1da177e4 1992
2d92ab3c
AV
1993 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1994 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1995 goto out1;
1996 /*
1997 * Don't move a mount residing in a shared parent.
1998 */
fc7be130 1999 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2000 goto out1;
9676f0c6
RP
2001 /*
2002 * Don't move a mount tree containing unbindable mounts to a destination
2003 * mount which is shared.
2004 */
fc7be130 2005 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2006 goto out1;
1da177e4 2007 err = -ELOOP;
fc7be130 2008 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2009 if (p == old)
21444403 2010 goto out1;
1da177e4 2011
84d17192 2012 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2013 if (err)
21444403 2014 goto out1;
1da177e4
LT
2015
2016 /* if the mount is moved, it should no longer be expire
2017 * automatically */
6776db3d 2018 list_del_init(&old->mnt_expire);
1da177e4 2019out1:
84d17192 2020 unlock_mount(mp);
1da177e4 2021out:
1da177e4 2022 if (!err)
1a390689 2023 path_put(&parent_path);
2d92ab3c 2024 path_put(&old_path);
1da177e4
LT
2025 return err;
2026}
2027
9d412a43
AV
2028static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2029{
2030 int err;
2031 const char *subtype = strchr(fstype, '.');
2032 if (subtype) {
2033 subtype++;
2034 err = -EINVAL;
2035 if (!subtype[0])
2036 goto err;
2037 } else
2038 subtype = "";
2039
2040 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2041 err = -ENOMEM;
2042 if (!mnt->mnt_sb->s_subtype)
2043 goto err;
2044 return mnt;
2045
2046 err:
2047 mntput(mnt);
2048 return ERR_PTR(err);
2049}
2050
9d412a43
AV
2051/*
2052 * add a mount into a namespace's mount tree
2053 */
95bc5f25 2054static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2055{
84d17192
AV
2056 struct mountpoint *mp;
2057 struct mount *parent;
9d412a43
AV
2058 int err;
2059
f2ebb3a9 2060 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2061
84d17192
AV
2062 mp = lock_mount(path);
2063 if (IS_ERR(mp))
2064 return PTR_ERR(mp);
9d412a43 2065
84d17192 2066 parent = real_mount(path->mnt);
9d412a43 2067 err = -EINVAL;
84d17192 2068 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2069 /* that's acceptable only for automounts done in private ns */
2070 if (!(mnt_flags & MNT_SHRINKABLE))
2071 goto unlock;
2072 /* ... and for those we'd better have mountpoint still alive */
84d17192 2073 if (!parent->mnt_ns)
156cacb1
AV
2074 goto unlock;
2075 }
9d412a43
AV
2076
2077 /* Refuse the same filesystem on the same mount point */
2078 err = -EBUSY;
95bc5f25 2079 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2080 path->mnt->mnt_root == path->dentry)
2081 goto unlock;
2082
2083 err = -EINVAL;
95bc5f25 2084 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2085 goto unlock;
2086
95bc5f25 2087 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2088 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2089
2090unlock:
84d17192 2091 unlock_mount(mp);
9d412a43
AV
2092 return err;
2093}
b1e75df4 2094
1da177e4
LT
2095/*
2096 * create a new mount for userspace and request it to be added into the
2097 * namespace's tree
2098 */
0c55cfc4 2099static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2100 int mnt_flags, const char *name, void *data)
1da177e4 2101{
0c55cfc4 2102 struct file_system_type *type;
9b40bc90 2103 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2104 struct vfsmount *mnt;
15f9a3f3 2105 int err;
1da177e4 2106
0c55cfc4 2107 if (!fstype)
1da177e4
LT
2108 return -EINVAL;
2109
0c55cfc4
EB
2110 type = get_fs_type(fstype);
2111 if (!type)
2112 return -ENODEV;
2113
2114 if (user_ns != &init_user_ns) {
2115 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2116 put_filesystem(type);
2117 return -EPERM;
2118 }
2119 /* Only in special cases allow devices from mounts
2120 * created outside the initial user namespace.
2121 */
2122 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2123 flags |= MS_NODEV;
2124 mnt_flags |= MNT_NODEV;
2125 }
2126 }
2127
2128 mnt = vfs_kern_mount(type, flags, name, data);
2129 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2130 !mnt->mnt_sb->s_subtype)
2131 mnt = fs_set_subtype(mnt, fstype);
2132
2133 put_filesystem(type);
1da177e4
LT
2134 if (IS_ERR(mnt))
2135 return PTR_ERR(mnt);
2136
95bc5f25 2137 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2138 if (err)
2139 mntput(mnt);
2140 return err;
1da177e4
LT
2141}
2142
19a167af
AV
2143int finish_automount(struct vfsmount *m, struct path *path)
2144{
6776db3d 2145 struct mount *mnt = real_mount(m);
19a167af
AV
2146 int err;
2147 /* The new mount record should have at least 2 refs to prevent it being
2148 * expired before we get a chance to add it
2149 */
6776db3d 2150 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2151
2152 if (m->mnt_sb == path->mnt->mnt_sb &&
2153 m->mnt_root == path->dentry) {
b1e75df4
AV
2154 err = -ELOOP;
2155 goto fail;
19a167af
AV
2156 }
2157
95bc5f25 2158 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2159 if (!err)
2160 return 0;
2161fail:
2162 /* remove m from any expiration list it may be on */
6776db3d 2163 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2164 namespace_lock();
6776db3d 2165 list_del_init(&mnt->mnt_expire);
97216be0 2166 namespace_unlock();
19a167af 2167 }
b1e75df4
AV
2168 mntput(m);
2169 mntput(m);
19a167af
AV
2170 return err;
2171}
2172
ea5b778a
DH
2173/**
2174 * mnt_set_expiry - Put a mount on an expiration list
2175 * @mnt: The mount to list.
2176 * @expiry_list: The list to add the mount to.
2177 */
2178void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2179{
97216be0 2180 namespace_lock();
ea5b778a 2181
6776db3d 2182 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2183
97216be0 2184 namespace_unlock();
ea5b778a
DH
2185}
2186EXPORT_SYMBOL(mnt_set_expiry);
2187
1da177e4
LT
2188/*
2189 * process a list of expirable mountpoints with the intent of discarding any
2190 * mountpoints that aren't in use and haven't been touched since last we came
2191 * here
2192 */
2193void mark_mounts_for_expiry(struct list_head *mounts)
2194{
761d5c38 2195 struct mount *mnt, *next;
1da177e4
LT
2196 LIST_HEAD(graveyard);
2197
2198 if (list_empty(mounts))
2199 return;
2200
97216be0 2201 namespace_lock();
719ea2fb 2202 lock_mount_hash();
1da177e4
LT
2203
2204 /* extract from the expiration list every vfsmount that matches the
2205 * following criteria:
2206 * - only referenced by its parent vfsmount
2207 * - still marked for expiry (marked on the last call here; marks are
2208 * cleared by mntput())
2209 */
6776db3d 2210 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2211 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2212 propagate_mount_busy(mnt, 1))
1da177e4 2213 continue;
6776db3d 2214 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2215 }
bcc5c7d2 2216 while (!list_empty(&graveyard)) {
6776db3d 2217 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2218 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2219 umount_tree(mnt, 1);
bcc5c7d2 2220 }
719ea2fb 2221 unlock_mount_hash();
3ab6abee 2222 namespace_unlock();
5528f911
TM
2223}
2224
2225EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2226
2227/*
2228 * Ripoff of 'select_parent()'
2229 *
2230 * search the list of submounts for a given mountpoint, and move any
2231 * shrinkable submounts to the 'graveyard' list.
2232 */
692afc31 2233static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2234{
692afc31 2235 struct mount *this_parent = parent;
5528f911
TM
2236 struct list_head *next;
2237 int found = 0;
2238
2239repeat:
6b41d536 2240 next = this_parent->mnt_mounts.next;
5528f911 2241resume:
6b41d536 2242 while (next != &this_parent->mnt_mounts) {
5528f911 2243 struct list_head *tmp = next;
6b41d536 2244 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2245
2246 next = tmp->next;
692afc31 2247 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2248 continue;
5528f911
TM
2249 /*
2250 * Descend a level if the d_mounts list is non-empty.
2251 */
6b41d536 2252 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2253 this_parent = mnt;
2254 goto repeat;
2255 }
1da177e4 2256
1ab59738 2257 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2258 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2259 found++;
2260 }
1da177e4 2261 }
5528f911
TM
2262 /*
2263 * All done at this level ... ascend and resume the search
2264 */
2265 if (this_parent != parent) {
6b41d536 2266 next = this_parent->mnt_child.next;
0714a533 2267 this_parent = this_parent->mnt_parent;
5528f911
TM
2268 goto resume;
2269 }
2270 return found;
2271}
2272
2273/*
2274 * process a list of expirable mountpoints with the intent of discarding any
2275 * submounts of a specific parent mountpoint
99b7db7b 2276 *
48a066e7 2277 * mount_lock must be held for write
5528f911 2278 */
b54b9be7 2279static void shrink_submounts(struct mount *mnt)
5528f911
TM
2280{
2281 LIST_HEAD(graveyard);
761d5c38 2282 struct mount *m;
5528f911 2283
5528f911 2284 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2285 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2286 while (!list_empty(&graveyard)) {
761d5c38 2287 m = list_first_entry(&graveyard, struct mount,
6776db3d 2288 mnt_expire);
143c8c91 2289 touch_mnt_namespace(m->mnt_ns);
328e6d90 2290 umount_tree(m, 1);
bcc5c7d2
AV
2291 }
2292 }
1da177e4
LT
2293}
2294
1da177e4
LT
2295/*
2296 * Some copy_from_user() implementations do not return the exact number of
2297 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2298 * Note that this function differs from copy_from_user() in that it will oops
2299 * on bad values of `to', rather than returning a short copy.
2300 */
b58fed8b
RP
2301static long exact_copy_from_user(void *to, const void __user * from,
2302 unsigned long n)
1da177e4
LT
2303{
2304 char *t = to;
2305 const char __user *f = from;
2306 char c;
2307
2308 if (!access_ok(VERIFY_READ, from, n))
2309 return n;
2310
2311 while (n) {
2312 if (__get_user(c, f)) {
2313 memset(t, 0, n);
2314 break;
2315 }
2316 *t++ = c;
2317 f++;
2318 n--;
2319 }
2320 return n;
2321}
2322
b58fed8b 2323int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2324{
2325 int i;
2326 unsigned long page;
2327 unsigned long size;
b58fed8b 2328
1da177e4
LT
2329 *where = 0;
2330 if (!data)
2331 return 0;
2332
2333 if (!(page = __get_free_page(GFP_KERNEL)))
2334 return -ENOMEM;
2335
2336 /* We only care that *some* data at the address the user
2337 * gave us is valid. Just in case, we'll zero
2338 * the remainder of the page.
2339 */
2340 /* copy_from_user cannot cross TASK_SIZE ! */
2341 size = TASK_SIZE - (unsigned long)data;
2342 if (size > PAGE_SIZE)
2343 size = PAGE_SIZE;
2344
2345 i = size - exact_copy_from_user((void *)page, data, size);
2346 if (!i) {
b58fed8b 2347 free_page(page);
1da177e4
LT
2348 return -EFAULT;
2349 }
2350 if (i != PAGE_SIZE)
2351 memset((char *)page + i, 0, PAGE_SIZE - i);
2352 *where = page;
2353 return 0;
2354}
2355
eca6f534
VN
2356int copy_mount_string(const void __user *data, char **where)
2357{
2358 char *tmp;
2359
2360 if (!data) {
2361 *where = NULL;
2362 return 0;
2363 }
2364
2365 tmp = strndup_user(data, PAGE_SIZE);
2366 if (IS_ERR(tmp))
2367 return PTR_ERR(tmp);
2368
2369 *where = tmp;
2370 return 0;
2371}
2372
1da177e4
LT
2373/*
2374 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2375 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2376 *
2377 * data is a (void *) that can point to any structure up to
2378 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2379 * information (or be NULL).
2380 *
2381 * Pre-0.97 versions of mount() didn't have a flags word.
2382 * When the flags word was introduced its top half was required
2383 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2384 * Therefore, if this magic number is present, it carries no information
2385 * and must be discarded.
2386 */
808d4e3c
AV
2387long do_mount(const char *dev_name, const char *dir_name,
2388 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2389{
2d92ab3c 2390 struct path path;
1da177e4
LT
2391 int retval = 0;
2392 int mnt_flags = 0;
2393
2394 /* Discard magic */
2395 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2396 flags &= ~MS_MGC_MSK;
2397
2398 /* Basic sanity checks */
2399
2400 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2401 return -EINVAL;
1da177e4
LT
2402
2403 if (data_page)
2404 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2405
a27ab9f2
TH
2406 /* ... and get the mountpoint */
2407 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2408 if (retval)
2409 return retval;
2410
2411 retval = security_sb_mount(dev_name, &path,
2412 type_page, flags, data_page);
0d5cadb8
AV
2413 if (!retval && !may_mount())
2414 retval = -EPERM;
a27ab9f2
TH
2415 if (retval)
2416 goto dput_out;
2417
613cbe3d
AK
2418 /* Default to relatime unless overriden */
2419 if (!(flags & MS_NOATIME))
2420 mnt_flags |= MNT_RELATIME;
0a1c01c9 2421
1da177e4
LT
2422 /* Separate the per-mountpoint flags */
2423 if (flags & MS_NOSUID)
2424 mnt_flags |= MNT_NOSUID;
2425 if (flags & MS_NODEV)
2426 mnt_flags |= MNT_NODEV;
2427 if (flags & MS_NOEXEC)
2428 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2429 if (flags & MS_NOATIME)
2430 mnt_flags |= MNT_NOATIME;
2431 if (flags & MS_NODIRATIME)
2432 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2433 if (flags & MS_STRICTATIME)
2434 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2435 if (flags & MS_RDONLY)
2436 mnt_flags |= MNT_READONLY;
fc33a7bb 2437
7a4dec53 2438 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2439 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2440 MS_STRICTATIME);
1da177e4 2441
1da177e4 2442 if (flags & MS_REMOUNT)
2d92ab3c 2443 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2444 data_page);
2445 else if (flags & MS_BIND)
2d92ab3c 2446 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2447 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2448 retval = do_change_type(&path, flags);
1da177e4 2449 else if (flags & MS_MOVE)
2d92ab3c 2450 retval = do_move_mount(&path, dev_name);
1da177e4 2451 else
2d92ab3c 2452 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2453 dev_name, data_page);
2454dput_out:
2d92ab3c 2455 path_put(&path);
1da177e4
LT
2456 return retval;
2457}
2458
771b1371
EB
2459static void free_mnt_ns(struct mnt_namespace *ns)
2460{
98f842e6 2461 proc_free_inum(ns->proc_inum);
771b1371
EB
2462 put_user_ns(ns->user_ns);
2463 kfree(ns);
2464}
2465
8823c079
EB
2466/*
2467 * Assign a sequence number so we can detect when we attempt to bind
2468 * mount a reference to an older mount namespace into the current
2469 * mount namespace, preventing reference counting loops. A 64bit
2470 * number incrementing at 10Ghz will take 12,427 years to wrap which
2471 * is effectively never, so we can ignore the possibility.
2472 */
2473static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2474
771b1371 2475static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2476{
2477 struct mnt_namespace *new_ns;
98f842e6 2478 int ret;
cf8d2c11
TM
2479
2480 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2481 if (!new_ns)
2482 return ERR_PTR(-ENOMEM);
98f842e6
EB
2483 ret = proc_alloc_inum(&new_ns->proc_inum);
2484 if (ret) {
2485 kfree(new_ns);
2486 return ERR_PTR(ret);
2487 }
8823c079 2488 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2489 atomic_set(&new_ns->count, 1);
2490 new_ns->root = NULL;
2491 INIT_LIST_HEAD(&new_ns->list);
2492 init_waitqueue_head(&new_ns->poll);
2493 new_ns->event = 0;
771b1371 2494 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2495 return new_ns;
2496}
2497
9559f689
AV
2498struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2499 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2500{
6b3286ed 2501 struct mnt_namespace *new_ns;
7f2da1e7 2502 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2503 struct mount *p, *q;
9559f689 2504 struct mount *old;
cb338d06 2505 struct mount *new;
7a472ef4 2506 int copy_flags;
1da177e4 2507
9559f689
AV
2508 BUG_ON(!ns);
2509
2510 if (likely(!(flags & CLONE_NEWNS))) {
2511 get_mnt_ns(ns);
2512 return ns;
2513 }
2514
2515 old = ns->root;
2516
771b1371 2517 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2518 if (IS_ERR(new_ns))
2519 return new_ns;
1da177e4 2520
97216be0 2521 namespace_lock();
1da177e4 2522 /* First pass: copy the tree topology */
4ce5d2b1 2523 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2524 if (user_ns != ns->user_ns)
132c94e3 2525 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2526 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2527 if (IS_ERR(new)) {
328e6d90 2528 namespace_unlock();
771b1371 2529 free_mnt_ns(new_ns);
be34d1a3 2530 return ERR_CAST(new);
1da177e4 2531 }
be08d6d2 2532 new_ns->root = new;
1a4eeaf2 2533 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2534
2535 /*
2536 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2537 * as belonging to new namespace. We have already acquired a private
2538 * fs_struct, so tsk->fs->lock is not needed.
2539 */
909b0a88 2540 p = old;
cb338d06 2541 q = new;
1da177e4 2542 while (p) {
143c8c91 2543 q->mnt_ns = new_ns;
9559f689
AV
2544 if (new_fs) {
2545 if (&p->mnt == new_fs->root.mnt) {
2546 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2547 rootmnt = &p->mnt;
1da177e4 2548 }
9559f689
AV
2549 if (&p->mnt == new_fs->pwd.mnt) {
2550 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2551 pwdmnt = &p->mnt;
1da177e4 2552 }
1da177e4 2553 }
909b0a88
AV
2554 p = next_mnt(p, old);
2555 q = next_mnt(q, new);
4ce5d2b1
EB
2556 if (!q)
2557 break;
2558 while (p->mnt.mnt_root != q->mnt.mnt_root)
2559 p = next_mnt(p, old);
1da177e4 2560 }
328e6d90 2561 namespace_unlock();
1da177e4 2562
1da177e4 2563 if (rootmnt)
f03c6599 2564 mntput(rootmnt);
1da177e4 2565 if (pwdmnt)
f03c6599 2566 mntput(pwdmnt);
1da177e4 2567
741a2951 2568 return new_ns;
1da177e4
LT
2569}
2570
cf8d2c11
TM
2571/**
2572 * create_mnt_ns - creates a private namespace and adds a root filesystem
2573 * @mnt: pointer to the new root filesystem mountpoint
2574 */
1a4eeaf2 2575static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2576{
771b1371 2577 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2578 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2579 struct mount *mnt = real_mount(m);
2580 mnt->mnt_ns = new_ns;
be08d6d2 2581 new_ns->root = mnt;
b1983cd8 2582 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2583 } else {
1a4eeaf2 2584 mntput(m);
cf8d2c11
TM
2585 }
2586 return new_ns;
2587}
cf8d2c11 2588
ea441d11
AV
2589struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2590{
2591 struct mnt_namespace *ns;
d31da0f0 2592 struct super_block *s;
ea441d11
AV
2593 struct path path;
2594 int err;
2595
2596 ns = create_mnt_ns(mnt);
2597 if (IS_ERR(ns))
2598 return ERR_CAST(ns);
2599
2600 err = vfs_path_lookup(mnt->mnt_root, mnt,
2601 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2602
2603 put_mnt_ns(ns);
2604
2605 if (err)
2606 return ERR_PTR(err);
2607
2608 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2609 s = path.mnt->mnt_sb;
2610 atomic_inc(&s->s_active);
ea441d11
AV
2611 mntput(path.mnt);
2612 /* lock the sucker */
d31da0f0 2613 down_write(&s->s_umount);
ea441d11
AV
2614 /* ... and return the root of (sub)tree on it */
2615 return path.dentry;
2616}
2617EXPORT_SYMBOL(mount_subtree);
2618
bdc480e3
HC
2619SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2620 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2621{
eca6f534
VN
2622 int ret;
2623 char *kernel_type;
91a27b2a 2624 struct filename *kernel_dir;
eca6f534 2625 char *kernel_dev;
1da177e4 2626 unsigned long data_page;
1da177e4 2627
eca6f534
VN
2628 ret = copy_mount_string(type, &kernel_type);
2629 if (ret < 0)
2630 goto out_type;
1da177e4 2631
eca6f534
VN
2632 kernel_dir = getname(dir_name);
2633 if (IS_ERR(kernel_dir)) {
2634 ret = PTR_ERR(kernel_dir);
2635 goto out_dir;
2636 }
1da177e4 2637
eca6f534
VN
2638 ret = copy_mount_string(dev_name, &kernel_dev);
2639 if (ret < 0)
2640 goto out_dev;
1da177e4 2641
eca6f534
VN
2642 ret = copy_mount_options(data, &data_page);
2643 if (ret < 0)
2644 goto out_data;
1da177e4 2645
91a27b2a 2646 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2647 (void *) data_page);
1da177e4 2648
eca6f534
VN
2649 free_page(data_page);
2650out_data:
2651 kfree(kernel_dev);
2652out_dev:
2653 putname(kernel_dir);
2654out_dir:
2655 kfree(kernel_type);
2656out_type:
2657 return ret;
1da177e4
LT
2658}
2659
afac7cba
AV
2660/*
2661 * Return true if path is reachable from root
2662 *
48a066e7 2663 * namespace_sem or mount_lock is held
afac7cba 2664 */
643822b4 2665bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2666 const struct path *root)
2667{
643822b4 2668 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2669 dentry = mnt->mnt_mountpoint;
0714a533 2670 mnt = mnt->mnt_parent;
afac7cba 2671 }
643822b4 2672 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2673}
2674
2675int path_is_under(struct path *path1, struct path *path2)
2676{
2677 int res;
48a066e7 2678 read_seqlock_excl(&mount_lock);
643822b4 2679 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2680 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2681 return res;
2682}
2683EXPORT_SYMBOL(path_is_under);
2684
1da177e4
LT
2685/*
2686 * pivot_root Semantics:
2687 * Moves the root file system of the current process to the directory put_old,
2688 * makes new_root as the new root file system of the current process, and sets
2689 * root/cwd of all processes which had them on the current root to new_root.
2690 *
2691 * Restrictions:
2692 * The new_root and put_old must be directories, and must not be on the
2693 * same file system as the current process root. The put_old must be
2694 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2695 * pointed to by put_old must yield the same directory as new_root. No other
2696 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2697 *
4a0d11fa
NB
2698 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2699 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2700 * in this situation.
2701 *
1da177e4
LT
2702 * Notes:
2703 * - we don't move root/cwd if they are not at the root (reason: if something
2704 * cared enough to change them, it's probably wrong to force them elsewhere)
2705 * - it's okay to pick a root that isn't the root of a file system, e.g.
2706 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2707 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2708 * first.
2709 */
3480b257
HC
2710SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2711 const char __user *, put_old)
1da177e4 2712{
2d8f3038 2713 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2714 struct mount *new_mnt, *root_mnt, *old_mnt;
2715 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2716 int error;
2717
9b40bc90 2718 if (!may_mount())
1da177e4
LT
2719 return -EPERM;
2720
2d8f3038 2721 error = user_path_dir(new_root, &new);
1da177e4
LT
2722 if (error)
2723 goto out0;
1da177e4 2724
2d8f3038 2725 error = user_path_dir(put_old, &old);
1da177e4
LT
2726 if (error)
2727 goto out1;
2728
2d8f3038 2729 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2730 if (error)
2731 goto out2;
1da177e4 2732
f7ad3c6b 2733 get_fs_root(current->fs, &root);
84d17192
AV
2734 old_mp = lock_mount(&old);
2735 error = PTR_ERR(old_mp);
2736 if (IS_ERR(old_mp))
b12cea91
AV
2737 goto out3;
2738
1da177e4 2739 error = -EINVAL;
419148da
AV
2740 new_mnt = real_mount(new.mnt);
2741 root_mnt = real_mount(root.mnt);
84d17192
AV
2742 old_mnt = real_mount(old.mnt);
2743 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2744 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2745 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2746 goto out4;
143c8c91 2747 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2748 goto out4;
5ff9d8a6
EB
2749 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2750 goto out4;
1da177e4 2751 error = -ENOENT;
f3da392e 2752 if (d_unlinked(new.dentry))
b12cea91 2753 goto out4;
1da177e4 2754 error = -EBUSY;
84d17192 2755 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2756 goto out4; /* loop, on the same file system */
1da177e4 2757 error = -EINVAL;
8c3ee42e 2758 if (root.mnt->mnt_root != root.dentry)
b12cea91 2759 goto out4; /* not a mountpoint */
676da58d 2760 if (!mnt_has_parent(root_mnt))
b12cea91 2761 goto out4; /* not attached */
84d17192 2762 root_mp = root_mnt->mnt_mp;
2d8f3038 2763 if (new.mnt->mnt_root != new.dentry)
b12cea91 2764 goto out4; /* not a mountpoint */
676da58d 2765 if (!mnt_has_parent(new_mnt))
b12cea91 2766 goto out4; /* not attached */
4ac91378 2767 /* make sure we can reach put_old from new_root */
84d17192 2768 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2769 goto out4;
84d17192 2770 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2771 lock_mount_hash();
419148da
AV
2772 detach_mnt(new_mnt, &parent_path);
2773 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2774 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2775 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2776 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2777 }
4ac91378 2778 /* mount old root on put_old */
84d17192 2779 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2780 /* mount new_root on / */
84d17192 2781 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2782 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2783 unlock_mount_hash();
2d8f3038 2784 chroot_fs_refs(&root, &new);
84d17192 2785 put_mountpoint(root_mp);
1da177e4 2786 error = 0;
b12cea91 2787out4:
84d17192 2788 unlock_mount(old_mp);
b12cea91
AV
2789 if (!error) {
2790 path_put(&root_parent);
2791 path_put(&parent_path);
2792 }
2793out3:
8c3ee42e 2794 path_put(&root);
b12cea91 2795out2:
2d8f3038 2796 path_put(&old);
1da177e4 2797out1:
2d8f3038 2798 path_put(&new);
1da177e4 2799out0:
1da177e4 2800 return error;
1da177e4
LT
2801}
2802
2803static void __init init_mount_tree(void)
2804{
2805 struct vfsmount *mnt;
6b3286ed 2806 struct mnt_namespace *ns;
ac748a09 2807 struct path root;
0c55cfc4 2808 struct file_system_type *type;
1da177e4 2809
0c55cfc4
EB
2810 type = get_fs_type("rootfs");
2811 if (!type)
2812 panic("Can't find rootfs type");
2813 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2814 put_filesystem(type);
1da177e4
LT
2815 if (IS_ERR(mnt))
2816 panic("Can't create rootfs");
b3e19d92 2817
3b22edc5
TM
2818 ns = create_mnt_ns(mnt);
2819 if (IS_ERR(ns))
1da177e4 2820 panic("Can't allocate initial namespace");
6b3286ed
KK
2821
2822 init_task.nsproxy->mnt_ns = ns;
2823 get_mnt_ns(ns);
2824
be08d6d2
AV
2825 root.mnt = mnt;
2826 root.dentry = mnt->mnt_root;
ac748a09
JB
2827
2828 set_fs_pwd(current->fs, &root);
2829 set_fs_root(current->fs, &root);
1da177e4
LT
2830}
2831
74bf17cf 2832void __init mnt_init(void)
1da177e4 2833{
13f14b4d 2834 unsigned u;
15a67dd8 2835 int err;
1da177e4 2836
7d6fec45 2837 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2838 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2839
0818bf27 2840 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 2841 sizeof(struct hlist_head),
0818bf27
AV
2842 mhash_entries, 19,
2843 0,
2844 &m_hash_shift, &m_hash_mask, 0, 0);
2845 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2846 sizeof(struct hlist_head),
2847 mphash_entries, 19,
2848 0,
2849 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 2850
84d17192 2851 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2852 panic("Failed to allocate mount hash table\n");
2853
0818bf27 2854 for (u = 0; u <= m_hash_mask; u++)
38129a13 2855 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
2856 for (u = 0; u <= mp_hash_mask; u++)
2857 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2858
4b93dc9b
TH
2859 kernfs_init();
2860
15a67dd8
RD
2861 err = sysfs_init();
2862 if (err)
2863 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2864 __func__, err);
00d26666
GKH
2865 fs_kobj = kobject_create_and_add("fs", NULL);
2866 if (!fs_kobj)
8e24eea7 2867 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2868 init_rootfs();
2869 init_mount_tree();
2870}
2871
616511d0 2872void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2873{
d498b25a 2874 if (!atomic_dec_and_test(&ns->count))
616511d0 2875 return;
7b00ed6f 2876 drop_collected_mounts(&ns->root->mnt);
771b1371 2877 free_mnt_ns(ns);
1da177e4 2878}
9d412a43
AV
2879
2880struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2881{
423e0ab0
TC
2882 struct vfsmount *mnt;
2883 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2884 if (!IS_ERR(mnt)) {
2885 /*
2886 * it is a longterm mount, don't release mnt until
2887 * we unmount before file sys is unregistered
2888 */
f7a99c5b 2889 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2890 }
2891 return mnt;
9d412a43
AV
2892}
2893EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2894
2895void kern_unmount(struct vfsmount *mnt)
2896{
2897 /* release long term mount so mount point can be released */
2898 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 2899 real_mount(mnt)->mnt_ns = NULL;
48a066e7 2900 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
2901 mntput(mnt);
2902 }
2903}
2904EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2905
2906bool our_mnt(struct vfsmount *mnt)
2907{
143c8c91 2908 return check_mnt(real_mount(mnt));
02125a82 2909}
8823c079 2910
3151527e
EB
2911bool current_chrooted(void)
2912{
2913 /* Does the current process have a non-standard root */
2914 struct path ns_root;
2915 struct path fs_root;
2916 bool chrooted;
2917
2918 /* Find the namespace root */
2919 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2920 ns_root.dentry = ns_root.mnt->mnt_root;
2921 path_get(&ns_root);
2922 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2923 ;
2924
2925 get_fs_root(current->fs, &fs_root);
2926
2927 chrooted = !path_equal(&fs_root, &ns_root);
2928
2929 path_put(&fs_root);
2930 path_put(&ns_root);
2931
2932 return chrooted;
2933}
2934
e51db735 2935bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2936{
2937 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2938 struct mount *mnt;
e51db735 2939 bool visible = false;
87a8ebd6 2940
e51db735
EB
2941 if (unlikely(!ns))
2942 return false;
2943
44bb4385 2944 down_read(&namespace_sem);
87a8ebd6 2945 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2946 struct mount *child;
2947 if (mnt->mnt.mnt_sb->s_type != type)
2948 continue;
2949
2950 /* This mount is not fully visible if there are any child mounts
2951 * that cover anything except for empty directories.
2952 */
2953 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2954 struct inode *inode = child->mnt_mountpoint->d_inode;
2955 if (!S_ISDIR(inode->i_mode))
2956 goto next;
41301ae7 2957 if (inode->i_nlink > 2)
e51db735 2958 goto next;
87a8ebd6 2959 }
e51db735
EB
2960 visible = true;
2961 goto found;
2962 next: ;
87a8ebd6 2963 }
e51db735 2964found:
44bb4385 2965 up_read(&namespace_sem);
e51db735 2966 return visible;
87a8ebd6
EB
2967}
2968
8823c079
EB
2969static void *mntns_get(struct task_struct *task)
2970{
2971 struct mnt_namespace *ns = NULL;
2972 struct nsproxy *nsproxy;
2973
2974 rcu_read_lock();
2975 nsproxy = task_nsproxy(task);
2976 if (nsproxy) {
2977 ns = nsproxy->mnt_ns;
2978 get_mnt_ns(ns);
2979 }
2980 rcu_read_unlock();
2981
2982 return ns;
2983}
2984
2985static void mntns_put(void *ns)
2986{
2987 put_mnt_ns(ns);
2988}
2989
2990static int mntns_install(struct nsproxy *nsproxy, void *ns)
2991{
2992 struct fs_struct *fs = current->fs;
2993 struct mnt_namespace *mnt_ns = ns;
2994 struct path root;
2995
0c55cfc4 2996 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
2997 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2998 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 2999 return -EPERM;
8823c079
EB
3000
3001 if (fs->users != 1)
3002 return -EINVAL;
3003
3004 get_mnt_ns(mnt_ns);
3005 put_mnt_ns(nsproxy->mnt_ns);
3006 nsproxy->mnt_ns = mnt_ns;
3007
3008 /* Find the root */
3009 root.mnt = &mnt_ns->root->mnt;
3010 root.dentry = mnt_ns->root->mnt.mnt_root;
3011 path_get(&root);
3012 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3013 ;
3014
3015 /* Update the pwd and root */
3016 set_fs_pwd(fs, &root);
3017 set_fs_root(fs, &root);
3018
3019 path_put(&root);
3020 return 0;
3021}
3022
98f842e6
EB
3023static unsigned int mntns_inum(void *ns)
3024{
3025 struct mnt_namespace *mnt_ns = ns;
3026 return mnt_ns->proc_inum;
3027}
3028
8823c079
EB
3029const struct proc_ns_operations mntns_operations = {
3030 .name = "mnt",
3031 .type = CLONE_NEWNS,
3032 .get = mntns_get,
3033 .put = mntns_put,
3034 .install = mntns_install,
98f842e6 3035 .inum = mntns_inum,
8823c079 3036};