get rid of full-hash scan on detaching vfsmounts
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
8823c079 24#include <linux/proc_fs.h>
07b20889 25#include "pnode.h"
948730b0 26#include "internal.h"
1da177e4 27
13f14b4d
ED
28#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29#define HASH_SIZE (1UL << HASH_SHIFT)
30
5addc5dd 31static int event;
73cd49ec 32static DEFINE_IDA(mnt_id_ida);
719f5d7f 33static DEFINE_IDA(mnt_group_ida);
99b7db7b 34static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
35static int mnt_id_start = 0;
36static int mnt_group_start = 1;
1da177e4 37
fa3536cc 38static struct list_head *mount_hashtable __read_mostly;
84d17192 39static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 40static struct kmem_cache *mnt_cache __read_mostly;
390c6843 41static struct rw_semaphore namespace_sem;
1da177e4 42
f87fd4c2 43/* /sys/fs */
00d26666
GKH
44struct kobject *fs_kobj;
45EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 46
99b7db7b
NP
47/*
48 * vfsmount lock may be taken for read to prevent changes to the
49 * vfsmount hash, ie. during mountpoint lookups or walking back
50 * up the tree.
51 *
52 * It should be taken for write in all cases where the vfsmount
53 * tree or hash is modified or when a vfsmount structure is modified.
54 */
55DEFINE_BRLOCK(vfsmount_lock);
56
1da177e4
LT
57static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58{
b58fed8b
RP
59 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
61 tmp = tmp + (tmp >> HASH_SHIFT);
62 return tmp & (HASH_SIZE - 1);
1da177e4
LT
63}
64
3d733633
DH
65#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66
99b7db7b
NP
67/*
68 * allocation is serialized by namespace_sem, but we need the spinlock to
69 * serialize with freeing.
70 */
b105e270 71static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
72{
73 int res;
74
75retry:
76 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 77 spin_lock(&mnt_id_lock);
15169fe7 78 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 79 if (!res)
15169fe7 80 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 81 spin_unlock(&mnt_id_lock);
73cd49ec
MS
82 if (res == -EAGAIN)
83 goto retry;
84
85 return res;
86}
87
b105e270 88static void mnt_free_id(struct mount *mnt)
73cd49ec 89{
15169fe7 90 int id = mnt->mnt_id;
99b7db7b 91 spin_lock(&mnt_id_lock);
f21f6220
AV
92 ida_remove(&mnt_id_ida, id);
93 if (mnt_id_start > id)
94 mnt_id_start = id;
99b7db7b 95 spin_unlock(&mnt_id_lock);
73cd49ec
MS
96}
97
719f5d7f
MS
98/*
99 * Allocate a new peer group ID
100 *
101 * mnt_group_ida is protected by namespace_sem
102 */
4b8b21f4 103static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 104{
f21f6220
AV
105 int res;
106
719f5d7f
MS
107 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
108 return -ENOMEM;
109
f21f6220
AV
110 res = ida_get_new_above(&mnt_group_ida,
111 mnt_group_start,
15169fe7 112 &mnt->mnt_group_id);
f21f6220 113 if (!res)
15169fe7 114 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
115
116 return res;
719f5d7f
MS
117}
118
119/*
120 * Release a peer group ID
121 */
4b8b21f4 122void mnt_release_group_id(struct mount *mnt)
719f5d7f 123{
15169fe7 124 int id = mnt->mnt_group_id;
f21f6220
AV
125 ida_remove(&mnt_group_ida, id);
126 if (mnt_group_start > id)
127 mnt_group_start = id;
15169fe7 128 mnt->mnt_group_id = 0;
719f5d7f
MS
129}
130
b3e19d92
NP
131/*
132 * vfsmount lock must be held for read
133 */
83adc753 134static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
135{
136#ifdef CONFIG_SMP
68e8a9fe 137 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
138#else
139 preempt_disable();
68e8a9fe 140 mnt->mnt_count += n;
b3e19d92
NP
141 preempt_enable();
142#endif
143}
144
b3e19d92
NP
145/*
146 * vfsmount lock must be held for write
147 */
83adc753 148unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
149{
150#ifdef CONFIG_SMP
f03c6599 151 unsigned int count = 0;
b3e19d92
NP
152 int cpu;
153
154 for_each_possible_cpu(cpu) {
68e8a9fe 155 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
156 }
157
158 return count;
159#else
68e8a9fe 160 return mnt->mnt_count;
b3e19d92
NP
161#endif
162}
163
b105e270 164static struct mount *alloc_vfsmnt(const char *name)
1da177e4 165{
c63181e6
AV
166 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
167 if (mnt) {
73cd49ec
MS
168 int err;
169
c63181e6 170 err = mnt_alloc_id(mnt);
88b38782
LZ
171 if (err)
172 goto out_free_cache;
173
174 if (name) {
c63181e6
AV
175 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
176 if (!mnt->mnt_devname)
88b38782 177 goto out_free_id;
73cd49ec
MS
178 }
179
b3e19d92 180#ifdef CONFIG_SMP
c63181e6
AV
181 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
182 if (!mnt->mnt_pcp)
b3e19d92
NP
183 goto out_free_devname;
184
c63181e6 185 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 186#else
c63181e6
AV
187 mnt->mnt_count = 1;
188 mnt->mnt_writers = 0;
b3e19d92
NP
189#endif
190
c63181e6
AV
191 INIT_LIST_HEAD(&mnt->mnt_hash);
192 INIT_LIST_HEAD(&mnt->mnt_child);
193 INIT_LIST_HEAD(&mnt->mnt_mounts);
194 INIT_LIST_HEAD(&mnt->mnt_list);
195 INIT_LIST_HEAD(&mnt->mnt_expire);
196 INIT_LIST_HEAD(&mnt->mnt_share);
197 INIT_LIST_HEAD(&mnt->mnt_slave_list);
198 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
199#ifdef CONFIG_FSNOTIFY
200 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 201#endif
1da177e4 202 }
c63181e6 203 return mnt;
88b38782 204
d3ef3d73 205#ifdef CONFIG_SMP
206out_free_devname:
c63181e6 207 kfree(mnt->mnt_devname);
d3ef3d73 208#endif
88b38782 209out_free_id:
c63181e6 210 mnt_free_id(mnt);
88b38782 211out_free_cache:
c63181e6 212 kmem_cache_free(mnt_cache, mnt);
88b38782 213 return NULL;
1da177e4
LT
214}
215
3d733633
DH
216/*
217 * Most r/o checks on a fs are for operations that take
218 * discrete amounts of time, like a write() or unlink().
219 * We must keep track of when those operations start
220 * (for permission checks) and when they end, so that
221 * we can determine when writes are able to occur to
222 * a filesystem.
223 */
224/*
225 * __mnt_is_readonly: check whether a mount is read-only
226 * @mnt: the mount to check for its write status
227 *
228 * This shouldn't be used directly ouside of the VFS.
229 * It does not guarantee that the filesystem will stay
230 * r/w, just that it is right *now*. This can not and
231 * should not be used in place of IS_RDONLY(inode).
232 * mnt_want/drop_write() will _keep_ the filesystem
233 * r/w.
234 */
235int __mnt_is_readonly(struct vfsmount *mnt)
236{
2e4b7fcd
DH
237 if (mnt->mnt_flags & MNT_READONLY)
238 return 1;
239 if (mnt->mnt_sb->s_flags & MS_RDONLY)
240 return 1;
241 return 0;
3d733633
DH
242}
243EXPORT_SYMBOL_GPL(__mnt_is_readonly);
244
83adc753 245static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 246{
247#ifdef CONFIG_SMP
68e8a9fe 248 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 249#else
68e8a9fe 250 mnt->mnt_writers++;
d3ef3d73 251#endif
252}
3d733633 253
83adc753 254static inline void mnt_dec_writers(struct mount *mnt)
3d733633 255{
d3ef3d73 256#ifdef CONFIG_SMP
68e8a9fe 257 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 258#else
68e8a9fe 259 mnt->mnt_writers--;
d3ef3d73 260#endif
3d733633 261}
3d733633 262
83adc753 263static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 264{
d3ef3d73 265#ifdef CONFIG_SMP
266 unsigned int count = 0;
3d733633 267 int cpu;
3d733633
DH
268
269 for_each_possible_cpu(cpu) {
68e8a9fe 270 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 271 }
3d733633 272
d3ef3d73 273 return count;
274#else
275 return mnt->mnt_writers;
276#endif
3d733633
DH
277}
278
4ed5e82f
MS
279static int mnt_is_readonly(struct vfsmount *mnt)
280{
281 if (mnt->mnt_sb->s_readonly_remount)
282 return 1;
283 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
284 smp_rmb();
285 return __mnt_is_readonly(mnt);
286}
287
8366025e 288/*
eb04c282
JK
289 * Most r/o & frozen checks on a fs are for operations that take discrete
290 * amounts of time, like a write() or unlink(). We must keep track of when
291 * those operations start (for permission checks) and when they end, so that we
292 * can determine when writes are able to occur to a filesystem.
8366025e
DH
293 */
294/**
eb04c282 295 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 296 * @m: the mount on which to take a write
8366025e 297 *
eb04c282
JK
298 * This tells the low-level filesystem that a write is about to be performed to
299 * it, and makes sure that writes are allowed (mnt it read-write) before
300 * returning success. This operation does not protect against filesystem being
301 * frozen. When the write operation is finished, __mnt_drop_write() must be
302 * called. This is effectively a refcount.
8366025e 303 */
eb04c282 304int __mnt_want_write(struct vfsmount *m)
8366025e 305{
83adc753 306 struct mount *mnt = real_mount(m);
3d733633 307 int ret = 0;
3d733633 308
d3ef3d73 309 preempt_disable();
c6653a83 310 mnt_inc_writers(mnt);
d3ef3d73 311 /*
c6653a83 312 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 313 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
314 * incremented count after it has set MNT_WRITE_HOLD.
315 */
316 smp_mb();
1e75529e 317 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 318 cpu_relax();
319 /*
320 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
321 * be set to match its requirements. So we must not load that until
322 * MNT_WRITE_HOLD is cleared.
323 */
324 smp_rmb();
4ed5e82f 325 if (mnt_is_readonly(m)) {
c6653a83 326 mnt_dec_writers(mnt);
3d733633 327 ret = -EROFS;
3d733633 328 }
d3ef3d73 329 preempt_enable();
eb04c282
JK
330
331 return ret;
332}
333
334/**
335 * mnt_want_write - get write access to a mount
336 * @m: the mount on which to take a write
337 *
338 * This tells the low-level filesystem that a write is about to be performed to
339 * it, and makes sure that writes are allowed (mount is read-write, filesystem
340 * is not frozen) before returning success. When the write operation is
341 * finished, mnt_drop_write() must be called. This is effectively a refcount.
342 */
343int mnt_want_write(struct vfsmount *m)
344{
345 int ret;
346
347 sb_start_write(m->mnt_sb);
348 ret = __mnt_want_write(m);
349 if (ret)
350 sb_end_write(m->mnt_sb);
3d733633 351 return ret;
8366025e
DH
352}
353EXPORT_SYMBOL_GPL(mnt_want_write);
354
96029c4e 355/**
356 * mnt_clone_write - get write access to a mount
357 * @mnt: the mount on which to take a write
358 *
359 * This is effectively like mnt_want_write, except
360 * it must only be used to take an extra write reference
361 * on a mountpoint that we already know has a write reference
362 * on it. This allows some optimisation.
363 *
364 * After finished, mnt_drop_write must be called as usual to
365 * drop the reference.
366 */
367int mnt_clone_write(struct vfsmount *mnt)
368{
369 /* superblock may be r/o */
370 if (__mnt_is_readonly(mnt))
371 return -EROFS;
372 preempt_disable();
83adc753 373 mnt_inc_writers(real_mount(mnt));
96029c4e 374 preempt_enable();
375 return 0;
376}
377EXPORT_SYMBOL_GPL(mnt_clone_write);
378
379/**
eb04c282 380 * __mnt_want_write_file - get write access to a file's mount
96029c4e 381 * @file: the file who's mount on which to take a write
382 *
eb04c282 383 * This is like __mnt_want_write, but it takes a file and can
96029c4e 384 * do some optimisations if the file is open for write already
385 */
eb04c282 386int __mnt_want_write_file(struct file *file)
96029c4e 387{
496ad9aa 388 struct inode *inode = file_inode(file);
eb04c282 389
2d8dd38a 390 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 391 return __mnt_want_write(file->f_path.mnt);
96029c4e 392 else
393 return mnt_clone_write(file->f_path.mnt);
394}
eb04c282
JK
395
396/**
397 * mnt_want_write_file - get write access to a file's mount
398 * @file: the file who's mount on which to take a write
399 *
400 * This is like mnt_want_write, but it takes a file and can
401 * do some optimisations if the file is open for write already
402 */
403int mnt_want_write_file(struct file *file)
404{
405 int ret;
406
407 sb_start_write(file->f_path.mnt->mnt_sb);
408 ret = __mnt_want_write_file(file);
409 if (ret)
410 sb_end_write(file->f_path.mnt->mnt_sb);
411 return ret;
412}
96029c4e 413EXPORT_SYMBOL_GPL(mnt_want_write_file);
414
8366025e 415/**
eb04c282 416 * __mnt_drop_write - give up write access to a mount
8366025e
DH
417 * @mnt: the mount on which to give up write access
418 *
419 * Tells the low-level filesystem that we are done
420 * performing writes to it. Must be matched with
eb04c282 421 * __mnt_want_write() call above.
8366025e 422 */
eb04c282 423void __mnt_drop_write(struct vfsmount *mnt)
8366025e 424{
d3ef3d73 425 preempt_disable();
83adc753 426 mnt_dec_writers(real_mount(mnt));
d3ef3d73 427 preempt_enable();
8366025e 428}
eb04c282
JK
429
430/**
431 * mnt_drop_write - give up write access to a mount
432 * @mnt: the mount on which to give up write access
433 *
434 * Tells the low-level filesystem that we are done performing writes to it and
435 * also allows filesystem to be frozen again. Must be matched with
436 * mnt_want_write() call above.
437 */
438void mnt_drop_write(struct vfsmount *mnt)
439{
440 __mnt_drop_write(mnt);
441 sb_end_write(mnt->mnt_sb);
442}
8366025e
DH
443EXPORT_SYMBOL_GPL(mnt_drop_write);
444
eb04c282
JK
445void __mnt_drop_write_file(struct file *file)
446{
447 __mnt_drop_write(file->f_path.mnt);
448}
449
2a79f17e
AV
450void mnt_drop_write_file(struct file *file)
451{
452 mnt_drop_write(file->f_path.mnt);
453}
454EXPORT_SYMBOL(mnt_drop_write_file);
455
83adc753 456static int mnt_make_readonly(struct mount *mnt)
8366025e 457{
3d733633
DH
458 int ret = 0;
459
962830df 460 br_write_lock(&vfsmount_lock);
83adc753 461 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 462 /*
d3ef3d73 463 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
464 * should be visible before we do.
3d733633 465 */
d3ef3d73 466 smp_mb();
467
3d733633 468 /*
d3ef3d73 469 * With writers on hold, if this value is zero, then there are
470 * definitely no active writers (although held writers may subsequently
471 * increment the count, they'll have to wait, and decrement it after
472 * seeing MNT_READONLY).
473 *
474 * It is OK to have counter incremented on one CPU and decremented on
475 * another: the sum will add up correctly. The danger would be when we
476 * sum up each counter, if we read a counter before it is incremented,
477 * but then read another CPU's count which it has been subsequently
478 * decremented from -- we would see more decrements than we should.
479 * MNT_WRITE_HOLD protects against this scenario, because
480 * mnt_want_write first increments count, then smp_mb, then spins on
481 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
482 * we're counting up here.
3d733633 483 */
c6653a83 484 if (mnt_get_writers(mnt) > 0)
d3ef3d73 485 ret = -EBUSY;
486 else
83adc753 487 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 488 /*
489 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
490 * that become unheld will see MNT_READONLY.
491 */
492 smp_wmb();
83adc753 493 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 494 br_write_unlock(&vfsmount_lock);
3d733633 495 return ret;
8366025e 496}
8366025e 497
83adc753 498static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 499{
962830df 500 br_write_lock(&vfsmount_lock);
83adc753 501 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 502 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
503}
504
4ed5e82f
MS
505int sb_prepare_remount_readonly(struct super_block *sb)
506{
507 struct mount *mnt;
508 int err = 0;
509
8e8b8796
MS
510 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
511 if (atomic_long_read(&sb->s_remove_count))
512 return -EBUSY;
513
962830df 514 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
515 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
516 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
517 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
518 smp_mb();
519 if (mnt_get_writers(mnt) > 0) {
520 err = -EBUSY;
521 break;
522 }
523 }
524 }
8e8b8796
MS
525 if (!err && atomic_long_read(&sb->s_remove_count))
526 err = -EBUSY;
527
4ed5e82f
MS
528 if (!err) {
529 sb->s_readonly_remount = 1;
530 smp_wmb();
531 }
532 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 }
962830df 536 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
537
538 return err;
539}
540
b105e270 541static void free_vfsmnt(struct mount *mnt)
1da177e4 542{
52ba1621 543 kfree(mnt->mnt_devname);
73cd49ec 544 mnt_free_id(mnt);
d3ef3d73 545#ifdef CONFIG_SMP
68e8a9fe 546 free_percpu(mnt->mnt_pcp);
d3ef3d73 547#endif
b105e270 548 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
549}
550
551/*
a05964f3
RP
552 * find the first or last mount at @dentry on vfsmount @mnt depending on
553 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 554 * vfsmount_lock must be held for read or write.
1da177e4 555 */
c7105365 556struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 557 int dir)
1da177e4 558{
b58fed8b
RP
559 struct list_head *head = mount_hashtable + hash(mnt, dentry);
560 struct list_head *tmp = head;
c7105365 561 struct mount *p, *found = NULL;
1da177e4 562
1da177e4 563 for (;;) {
a05964f3 564 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
565 p = NULL;
566 if (tmp == head)
567 break;
1b8e5564 568 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 569 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 570 found = p;
1da177e4
LT
571 break;
572 }
573 }
1da177e4
LT
574 return found;
575}
576
a05964f3 577/*
f015f126
DH
578 * lookup_mnt - Return the first child mount mounted at path
579 *
580 * "First" means first mounted chronologically. If you create the
581 * following mounts:
582 *
583 * mount /dev/sda1 /mnt
584 * mount /dev/sda2 /mnt
585 * mount /dev/sda3 /mnt
586 *
587 * Then lookup_mnt() on the base /mnt dentry in the root mount will
588 * return successively the root dentry and vfsmount of /dev/sda1, then
589 * /dev/sda2, then /dev/sda3, then NULL.
590 *
591 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 592 */
1c755af4 593struct vfsmount *lookup_mnt(struct path *path)
a05964f3 594{
c7105365 595 struct mount *child_mnt;
99b7db7b 596
962830df 597 br_read_lock(&vfsmount_lock);
c7105365
AV
598 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
599 if (child_mnt) {
600 mnt_add_count(child_mnt, 1);
962830df 601 br_read_unlock(&vfsmount_lock);
c7105365
AV
602 return &child_mnt->mnt;
603 } else {
962830df 604 br_read_unlock(&vfsmount_lock);
c7105365
AV
605 return NULL;
606 }
a05964f3
RP
607}
608
84d17192
AV
609static struct mountpoint *new_mountpoint(struct dentry *dentry)
610{
611 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
612 struct mountpoint *mp;
613
614 list_for_each_entry(mp, chain, m_hash) {
615 if (mp->m_dentry == dentry) {
616 /* might be worth a WARN_ON() */
617 if (d_unlinked(dentry))
618 return ERR_PTR(-ENOENT);
619 mp->m_count++;
620 return mp;
621 }
622 }
623
624 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
625 if (!mp)
626 return ERR_PTR(-ENOMEM);
627
628 spin_lock(&dentry->d_lock);
629 if (d_unlinked(dentry)) {
630 spin_unlock(&dentry->d_lock);
631 kfree(mp);
632 return ERR_PTR(-ENOENT);
633 }
634 dentry->d_flags |= DCACHE_MOUNTED;
635 spin_unlock(&dentry->d_lock);
636 mp->m_dentry = dentry;
637 mp->m_count = 1;
638 list_add(&mp->m_hash, chain);
639 return mp;
640}
641
642static void put_mountpoint(struct mountpoint *mp)
643{
644 if (!--mp->m_count) {
645 struct dentry *dentry = mp->m_dentry;
646 spin_lock(&dentry->d_lock);
647 dentry->d_flags &= ~DCACHE_MOUNTED;
648 spin_unlock(&dentry->d_lock);
649 list_del(&mp->m_hash);
650 kfree(mp);
651 }
652}
653
143c8c91 654static inline int check_mnt(struct mount *mnt)
1da177e4 655{
6b3286ed 656 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
657}
658
99b7db7b
NP
659/*
660 * vfsmount lock must be held for write
661 */
6b3286ed 662static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
663{
664 if (ns) {
665 ns->event = ++event;
666 wake_up_interruptible(&ns->poll);
667 }
668}
669
99b7db7b
NP
670/*
671 * vfsmount lock must be held for write
672 */
6b3286ed 673static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
674{
675 if (ns && ns->event != event) {
676 ns->event = event;
677 wake_up_interruptible(&ns->poll);
678 }
679}
680
99b7db7b
NP
681/*
682 * vfsmount lock must be held for write
683 */
419148da
AV
684static void detach_mnt(struct mount *mnt, struct path *old_path)
685{
a73324da 686 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
687 old_path->mnt = &mnt->mnt_parent->mnt;
688 mnt->mnt_parent = mnt;
a73324da 689 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 690 list_del_init(&mnt->mnt_child);
1b8e5564 691 list_del_init(&mnt->mnt_hash);
84d17192
AV
692 put_mountpoint(mnt->mnt_mp);
693 mnt->mnt_mp = NULL;
1da177e4
LT
694}
695
99b7db7b
NP
696/*
697 * vfsmount lock must be held for write
698 */
84d17192
AV
699void mnt_set_mountpoint(struct mount *mnt,
700 struct mountpoint *mp,
44d964d6 701 struct mount *child_mnt)
b90fa9ae 702{
84d17192 703 mp->m_count++;
3a2393d7 704 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 705 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 706 child_mnt->mnt_parent = mnt;
84d17192 707 child_mnt->mnt_mp = mp;
b90fa9ae
RP
708}
709
99b7db7b
NP
710/*
711 * vfsmount lock must be held for write
712 */
84d17192
AV
713static void attach_mnt(struct mount *mnt,
714 struct mount *parent,
715 struct mountpoint *mp)
1da177e4 716{
84d17192 717 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 718 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
719 hash(&parent->mnt, mp->m_dentry));
720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
721}
722
723/*
99b7db7b 724 * vfsmount lock must be held for write
b90fa9ae 725 */
4b2619a5 726static void commit_tree(struct mount *mnt)
b90fa9ae 727{
0714a533 728 struct mount *parent = mnt->mnt_parent;
83adc753 729 struct mount *m;
b90fa9ae 730 LIST_HEAD(head);
143c8c91 731 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 732
0714a533 733 BUG_ON(parent == mnt);
b90fa9ae 734
1a4eeaf2 735 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 736 list_for_each_entry(m, &head, mnt_list)
143c8c91 737 m->mnt_ns = n;
f03c6599 738
b90fa9ae
RP
739 list_splice(&head, n->list.prev);
740
1b8e5564 741 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 742 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 744 touch_mnt_namespace(n);
1da177e4
LT
745}
746
909b0a88 747static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 748{
6b41d536
AV
749 struct list_head *next = p->mnt_mounts.next;
750 if (next == &p->mnt_mounts) {
1da177e4 751 while (1) {
909b0a88 752 if (p == root)
1da177e4 753 return NULL;
6b41d536
AV
754 next = p->mnt_child.next;
755 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 756 break;
0714a533 757 p = p->mnt_parent;
1da177e4
LT
758 }
759 }
6b41d536 760 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
761}
762
315fc83e 763static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 764{
6b41d536
AV
765 struct list_head *prev = p->mnt_mounts.prev;
766 while (prev != &p->mnt_mounts) {
767 p = list_entry(prev, struct mount, mnt_child);
768 prev = p->mnt_mounts.prev;
9676f0c6
RP
769 }
770 return p;
771}
772
9d412a43
AV
773struct vfsmount *
774vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
775{
b105e270 776 struct mount *mnt;
9d412a43
AV
777 struct dentry *root;
778
779 if (!type)
780 return ERR_PTR(-ENODEV);
781
782 mnt = alloc_vfsmnt(name);
783 if (!mnt)
784 return ERR_PTR(-ENOMEM);
785
786 if (flags & MS_KERNMOUNT)
b105e270 787 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
788
789 root = mount_fs(type, flags, name, data);
790 if (IS_ERR(root)) {
791 free_vfsmnt(mnt);
792 return ERR_CAST(root);
793 }
794
b105e270
AV
795 mnt->mnt.mnt_root = root;
796 mnt->mnt.mnt_sb = root->d_sb;
a73324da 797 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 798 mnt->mnt_parent = mnt;
962830df 799 br_write_lock(&vfsmount_lock);
39f7c4db 800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 801 br_write_unlock(&vfsmount_lock);
b105e270 802 return &mnt->mnt;
9d412a43
AV
803}
804EXPORT_SYMBOL_GPL(vfs_kern_mount);
805
87129cc0 806static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 807 int flag)
1da177e4 808{
87129cc0 809 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
810 struct mount *mnt;
811 int err;
1da177e4 812
be34d1a3
DH
813 mnt = alloc_vfsmnt(old->mnt_devname);
814 if (!mnt)
815 return ERR_PTR(-ENOMEM);
719f5d7f 816
7a472ef4 817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
818 mnt->mnt_group_id = 0; /* not a peer of original */
819 else
820 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 821
be34d1a3
DH
822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
823 err = mnt_alloc_group_id(mnt);
824 if (err)
825 goto out_free;
1da177e4 826 }
be34d1a3
DH
827
828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
829 atomic_inc(&sb->s_active);
830 mnt->mnt.mnt_sb = sb;
831 mnt->mnt.mnt_root = dget(root);
832 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 mnt->mnt_parent = mnt;
834 br_write_lock(&vfsmount_lock);
835 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
836 br_write_unlock(&vfsmount_lock);
837
7a472ef4
EB
838 if ((flag & CL_SLAVE) ||
839 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
840 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
841 mnt->mnt_master = old;
842 CLEAR_MNT_SHARED(mnt);
843 } else if (!(flag & CL_PRIVATE)) {
844 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
845 list_add(&mnt->mnt_share, &old->mnt_share);
846 if (IS_MNT_SLAVE(old))
847 list_add(&mnt->mnt_slave, &old->mnt_slave);
848 mnt->mnt_master = old->mnt_master;
849 }
850 if (flag & CL_MAKE_SHARED)
851 set_mnt_shared(mnt);
852
853 /* stick the duplicate mount on the same expiry list
854 * as the original if that was on one */
855 if (flag & CL_EXPIRE) {
856 if (!list_empty(&old->mnt_expire))
857 list_add(&mnt->mnt_expire, &old->mnt_expire);
858 }
859
cb338d06 860 return mnt;
719f5d7f
MS
861
862 out_free:
863 free_vfsmnt(mnt);
be34d1a3 864 return ERR_PTR(err);
1da177e4
LT
865}
866
83adc753 867static inline void mntfree(struct mount *mnt)
1da177e4 868{
83adc753
AV
869 struct vfsmount *m = &mnt->mnt;
870 struct super_block *sb = m->mnt_sb;
b3e19d92 871
3d733633
DH
872 /*
873 * This probably indicates that somebody messed
874 * up a mnt_want/drop_write() pair. If this
875 * happens, the filesystem was probably unable
876 * to make r/w->r/o transitions.
877 */
d3ef3d73 878 /*
b3e19d92
NP
879 * The locking used to deal with mnt_count decrement provides barriers,
880 * so mnt_get_writers() below is safe.
d3ef3d73 881 */
c6653a83 882 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
883 fsnotify_vfsmount_delete(m);
884 dput(m->mnt_root);
885 free_vfsmnt(mnt);
1da177e4
LT
886 deactivate_super(sb);
887}
888
900148dc 889static void mntput_no_expire(struct mount *mnt)
b3e19d92 890{
b3e19d92 891put_again:
f03c6599 892#ifdef CONFIG_SMP
962830df 893 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
894 if (likely(mnt->mnt_ns)) {
895 /* shouldn't be the last one */
aa9c0e07 896 mnt_add_count(mnt, -1);
962830df 897 br_read_unlock(&vfsmount_lock);
f03c6599 898 return;
b3e19d92 899 }
962830df 900 br_read_unlock(&vfsmount_lock);
b3e19d92 901
962830df 902 br_write_lock(&vfsmount_lock);
aa9c0e07 903 mnt_add_count(mnt, -1);
b3e19d92 904 if (mnt_get_count(mnt)) {
962830df 905 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
906 return;
907 }
b3e19d92 908#else
aa9c0e07 909 mnt_add_count(mnt, -1);
b3e19d92 910 if (likely(mnt_get_count(mnt)))
99b7db7b 911 return;
962830df 912 br_write_lock(&vfsmount_lock);
f03c6599 913#endif
863d684f
AV
914 if (unlikely(mnt->mnt_pinned)) {
915 mnt_add_count(mnt, mnt->mnt_pinned + 1);
916 mnt->mnt_pinned = 0;
962830df 917 br_write_unlock(&vfsmount_lock);
900148dc 918 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 919 goto put_again;
7b7b1ace 920 }
962830df 921
39f7c4db 922 list_del(&mnt->mnt_instance);
962830df 923 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
924 mntfree(mnt);
925}
b3e19d92
NP
926
927void mntput(struct vfsmount *mnt)
928{
929 if (mnt) {
863d684f 930 struct mount *m = real_mount(mnt);
b3e19d92 931 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
932 if (unlikely(m->mnt_expiry_mark))
933 m->mnt_expiry_mark = 0;
934 mntput_no_expire(m);
b3e19d92
NP
935 }
936}
937EXPORT_SYMBOL(mntput);
938
939struct vfsmount *mntget(struct vfsmount *mnt)
940{
941 if (mnt)
83adc753 942 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
943 return mnt;
944}
945EXPORT_SYMBOL(mntget);
946
7b7b1ace
AV
947void mnt_pin(struct vfsmount *mnt)
948{
962830df 949 br_write_lock(&vfsmount_lock);
863d684f 950 real_mount(mnt)->mnt_pinned++;
962830df 951 br_write_unlock(&vfsmount_lock);
7b7b1ace 952}
7b7b1ace
AV
953EXPORT_SYMBOL(mnt_pin);
954
863d684f 955void mnt_unpin(struct vfsmount *m)
7b7b1ace 956{
863d684f 957 struct mount *mnt = real_mount(m);
962830df 958 br_write_lock(&vfsmount_lock);
7b7b1ace 959 if (mnt->mnt_pinned) {
863d684f 960 mnt_add_count(mnt, 1);
7b7b1ace
AV
961 mnt->mnt_pinned--;
962 }
962830df 963 br_write_unlock(&vfsmount_lock);
7b7b1ace 964}
7b7b1ace 965EXPORT_SYMBOL(mnt_unpin);
1da177e4 966
b3b304a2
MS
967static inline void mangle(struct seq_file *m, const char *s)
968{
969 seq_escape(m, s, " \t\n\\");
970}
971
972/*
973 * Simple .show_options callback for filesystems which don't want to
974 * implement more complex mount option showing.
975 *
976 * See also save_mount_options().
977 */
34c80b1d 978int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 979{
2a32cebd
AV
980 const char *options;
981
982 rcu_read_lock();
34c80b1d 983 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
984
985 if (options != NULL && options[0]) {
986 seq_putc(m, ',');
987 mangle(m, options);
988 }
2a32cebd 989 rcu_read_unlock();
b3b304a2
MS
990
991 return 0;
992}
993EXPORT_SYMBOL(generic_show_options);
994
995/*
996 * If filesystem uses generic_show_options(), this function should be
997 * called from the fill_super() callback.
998 *
999 * The .remount_fs callback usually needs to be handled in a special
1000 * way, to make sure, that previous options are not overwritten if the
1001 * remount fails.
1002 *
1003 * Also note, that if the filesystem's .remount_fs function doesn't
1004 * reset all options to their default value, but changes only newly
1005 * given options, then the displayed options will not reflect reality
1006 * any more.
1007 */
1008void save_mount_options(struct super_block *sb, char *options)
1009{
2a32cebd
AV
1010 BUG_ON(sb->s_options);
1011 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1012}
1013EXPORT_SYMBOL(save_mount_options);
1014
2a32cebd
AV
1015void replace_mount_options(struct super_block *sb, char *options)
1016{
1017 char *old = sb->s_options;
1018 rcu_assign_pointer(sb->s_options, options);
1019 if (old) {
1020 synchronize_rcu();
1021 kfree(old);
1022 }
1023}
1024EXPORT_SYMBOL(replace_mount_options);
1025
a1a2c409 1026#ifdef CONFIG_PROC_FS
0226f492 1027/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1028static void *m_start(struct seq_file *m, loff_t *pos)
1029{
6ce6e24e 1030 struct proc_mounts *p = proc_mounts(m);
1da177e4 1031
390c6843 1032 down_read(&namespace_sem);
a1a2c409 1033 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1034}
1035
1036static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1037{
6ce6e24e 1038 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1039
a1a2c409 1040 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1041}
1042
1043static void m_stop(struct seq_file *m, void *v)
1044{
390c6843 1045 up_read(&namespace_sem);
1da177e4
LT
1046}
1047
0226f492 1048static int m_show(struct seq_file *m, void *v)
2d4d4864 1049{
6ce6e24e 1050 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1051 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1052 return p->show(m, &r->mnt);
1da177e4
LT
1053}
1054
a1a2c409 1055const struct seq_operations mounts_op = {
1da177e4
LT
1056 .start = m_start,
1057 .next = m_next,
1058 .stop = m_stop,
0226f492 1059 .show = m_show,
b4629fe2 1060};
a1a2c409 1061#endif /* CONFIG_PROC_FS */
b4629fe2 1062
1da177e4
LT
1063/**
1064 * may_umount_tree - check if a mount tree is busy
1065 * @mnt: root of mount tree
1066 *
1067 * This is called to check if a tree of mounts has any
1068 * open files, pwds, chroots or sub mounts that are
1069 * busy.
1070 */
909b0a88 1071int may_umount_tree(struct vfsmount *m)
1da177e4 1072{
909b0a88 1073 struct mount *mnt = real_mount(m);
36341f64
RP
1074 int actual_refs = 0;
1075 int minimum_refs = 0;
315fc83e 1076 struct mount *p;
909b0a88 1077 BUG_ON(!m);
1da177e4 1078
b3e19d92 1079 /* write lock needed for mnt_get_count */
962830df 1080 br_write_lock(&vfsmount_lock);
909b0a88 1081 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1082 actual_refs += mnt_get_count(p);
1da177e4 1083 minimum_refs += 2;
1da177e4 1084 }
962830df 1085 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1086
1087 if (actual_refs > minimum_refs)
e3474a8e 1088 return 0;
1da177e4 1089
e3474a8e 1090 return 1;
1da177e4
LT
1091}
1092
1093EXPORT_SYMBOL(may_umount_tree);
1094
1095/**
1096 * may_umount - check if a mount point is busy
1097 * @mnt: root of mount
1098 *
1099 * This is called to check if a mount point has any
1100 * open files, pwds, chroots or sub mounts. If the
1101 * mount has sub mounts this will return busy
1102 * regardless of whether the sub mounts are busy.
1103 *
1104 * Doesn't take quota and stuff into account. IOW, in some cases it will
1105 * give false negatives. The main reason why it's here is that we need
1106 * a non-destructive way to look for easily umountable filesystems.
1107 */
1108int may_umount(struct vfsmount *mnt)
1109{
e3474a8e 1110 int ret = 1;
8ad08d8a 1111 down_read(&namespace_sem);
962830df 1112 br_write_lock(&vfsmount_lock);
1ab59738 1113 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1114 ret = 0;
962830df 1115 br_write_unlock(&vfsmount_lock);
8ad08d8a 1116 up_read(&namespace_sem);
a05964f3 1117 return ret;
1da177e4
LT
1118}
1119
1120EXPORT_SYMBOL(may_umount);
1121
b90fa9ae 1122void release_mounts(struct list_head *head)
70fbcdf4 1123{
d5e50f74 1124 struct mount *mnt;
bf066c7d 1125 while (!list_empty(head)) {
1b8e5564
AV
1126 mnt = list_first_entry(head, struct mount, mnt_hash);
1127 list_del_init(&mnt->mnt_hash);
676da58d 1128 if (mnt_has_parent(mnt)) {
70fbcdf4 1129 struct dentry *dentry;
863d684f 1130 struct mount *m;
99b7db7b 1131
962830df 1132 br_write_lock(&vfsmount_lock);
a73324da 1133 dentry = mnt->mnt_mountpoint;
863d684f 1134 m = mnt->mnt_parent;
a73324da 1135 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1136 mnt->mnt_parent = mnt;
7c4b93d8 1137 m->mnt_ghosts--;
962830df 1138 br_write_unlock(&vfsmount_lock);
70fbcdf4 1139 dput(dentry);
863d684f 1140 mntput(&m->mnt);
70fbcdf4 1141 }
d5e50f74 1142 mntput(&mnt->mnt);
70fbcdf4
RP
1143 }
1144}
1145
99b7db7b
NP
1146/*
1147 * vfsmount lock must be held for write
1148 * namespace_sem must be held for write
1149 */
761d5c38 1150void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1151{
7b8a53fd 1152 LIST_HEAD(tmp_list);
315fc83e 1153 struct mount *p;
1da177e4 1154
909b0a88 1155 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1156 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1157
a05964f3 1158 if (propagate)
7b8a53fd 1159 propagate_umount(&tmp_list);
a05964f3 1160
1b8e5564 1161 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1162 list_del_init(&p->mnt_expire);
1a4eeaf2 1163 list_del_init(&p->mnt_list);
143c8c91
AV
1164 __touch_mnt_namespace(p->mnt_ns);
1165 p->mnt_ns = NULL;
6b41d536 1166 list_del_init(&p->mnt_child);
676da58d 1167 if (mnt_has_parent(p)) {
863d684f 1168 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1169 put_mountpoint(p->mnt_mp);
1170 p->mnt_mp = NULL;
7c4b93d8 1171 }
0f0afb1d 1172 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1173 }
7b8a53fd 1174 list_splice(&tmp_list, kill);
1da177e4
LT
1175}
1176
692afc31 1177static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1178
1ab59738 1179static int do_umount(struct mount *mnt, int flags)
1da177e4 1180{
1ab59738 1181 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1182 int retval;
70fbcdf4 1183 LIST_HEAD(umount_list);
1da177e4 1184
1ab59738 1185 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1186 if (retval)
1187 return retval;
1188
1189 /*
1190 * Allow userspace to request a mountpoint be expired rather than
1191 * unmounting unconditionally. Unmount only happens if:
1192 * (1) the mark is already set (the mark is cleared by mntput())
1193 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1194 */
1195 if (flags & MNT_EXPIRE) {
1ab59738 1196 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1197 flags & (MNT_FORCE | MNT_DETACH))
1198 return -EINVAL;
1199
b3e19d92
NP
1200 /*
1201 * probably don't strictly need the lock here if we examined
1202 * all race cases, but it's a slowpath.
1203 */
962830df 1204 br_write_lock(&vfsmount_lock);
83adc753 1205 if (mnt_get_count(mnt) != 2) {
962830df 1206 br_write_unlock(&vfsmount_lock);
1da177e4 1207 return -EBUSY;
b3e19d92 1208 }
962830df 1209 br_write_unlock(&vfsmount_lock);
1da177e4 1210
863d684f 1211 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1212 return -EAGAIN;
1213 }
1214
1215 /*
1216 * If we may have to abort operations to get out of this
1217 * mount, and they will themselves hold resources we must
1218 * allow the fs to do things. In the Unix tradition of
1219 * 'Gee thats tricky lets do it in userspace' the umount_begin
1220 * might fail to complete on the first run through as other tasks
1221 * must return, and the like. Thats for the mount program to worry
1222 * about for the moment.
1223 */
1224
42faad99 1225 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1226 sb->s_op->umount_begin(sb);
42faad99 1227 }
1da177e4
LT
1228
1229 /*
1230 * No sense to grab the lock for this test, but test itself looks
1231 * somewhat bogus. Suggestions for better replacement?
1232 * Ho-hum... In principle, we might treat that as umount + switch
1233 * to rootfs. GC would eventually take care of the old vfsmount.
1234 * Actually it makes sense, especially if rootfs would contain a
1235 * /reboot - static binary that would close all descriptors and
1236 * call reboot(9). Then init(8) could umount root and exec /reboot.
1237 */
1ab59738 1238 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1239 /*
1240 * Special case for "unmounting" root ...
1241 * we just try to remount it readonly.
1242 */
1243 down_write(&sb->s_umount);
4aa98cf7 1244 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1245 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1246 up_write(&sb->s_umount);
1247 return retval;
1248 }
1249
390c6843 1250 down_write(&namespace_sem);
962830df 1251 br_write_lock(&vfsmount_lock);
5addc5dd 1252 event++;
1da177e4 1253
c35038be 1254 if (!(flags & MNT_DETACH))
1ab59738 1255 shrink_submounts(mnt, &umount_list);
c35038be 1256
1da177e4 1257 retval = -EBUSY;
a05964f3 1258 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1259 if (!list_empty(&mnt->mnt_list))
1ab59738 1260 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1261 retval = 0;
1262 }
962830df 1263 br_write_unlock(&vfsmount_lock);
390c6843 1264 up_write(&namespace_sem);
70fbcdf4 1265 release_mounts(&umount_list);
1da177e4
LT
1266 return retval;
1267}
1268
9b40bc90
AV
1269/*
1270 * Is the caller allowed to modify his namespace?
1271 */
1272static inline bool may_mount(void)
1273{
1274 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1275}
1276
1da177e4
LT
1277/*
1278 * Now umount can handle mount points as well as block devices.
1279 * This is important for filesystems which use unnamed block devices.
1280 *
1281 * We now support a flag for forced unmount like the other 'big iron'
1282 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1283 */
1284
bdc480e3 1285SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1286{
2d8f3038 1287 struct path path;
900148dc 1288 struct mount *mnt;
1da177e4 1289 int retval;
db1f05bb 1290 int lookup_flags = 0;
1da177e4 1291
db1f05bb
MS
1292 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1293 return -EINVAL;
1294
9b40bc90
AV
1295 if (!may_mount())
1296 return -EPERM;
1297
db1f05bb
MS
1298 if (!(flags & UMOUNT_NOFOLLOW))
1299 lookup_flags |= LOOKUP_FOLLOW;
1300
1301 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1302 if (retval)
1303 goto out;
900148dc 1304 mnt = real_mount(path.mnt);
1da177e4 1305 retval = -EINVAL;
2d8f3038 1306 if (path.dentry != path.mnt->mnt_root)
1da177e4 1307 goto dput_and_out;
143c8c91 1308 if (!check_mnt(mnt))
1da177e4
LT
1309 goto dput_and_out;
1310
900148dc 1311 retval = do_umount(mnt, flags);
1da177e4 1312dput_and_out:
429731b1 1313 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1314 dput(path.dentry);
900148dc 1315 mntput_no_expire(mnt);
1da177e4
LT
1316out:
1317 return retval;
1318}
1319
1320#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1321
1322/*
b58fed8b 1323 * The 2.0 compatible umount. No flags.
1da177e4 1324 */
bdc480e3 1325SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1326{
b58fed8b 1327 return sys_umount(name, 0);
1da177e4
LT
1328}
1329
1330#endif
1331
8823c079
EB
1332static bool mnt_ns_loop(struct path *path)
1333{
1334 /* Could bind mounting the mount namespace inode cause a
1335 * mount namespace loop?
1336 */
1337 struct inode *inode = path->dentry->d_inode;
1338 struct proc_inode *ei;
1339 struct mnt_namespace *mnt_ns;
1340
1341 if (!proc_ns_inode(inode))
1342 return false;
1343
1344 ei = PROC_I(inode);
1345 if (ei->ns_ops != &mntns_operations)
1346 return false;
1347
1348 mnt_ns = ei->ns;
1349 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1350}
1351
87129cc0 1352struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1353 int flag)
1da177e4 1354{
84d17192 1355 struct mount *res, *p, *q, *r, *parent;
1da177e4 1356
fc7be130 1357 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1358 return ERR_PTR(-EINVAL);
9676f0c6 1359
36341f64 1360 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1361 if (IS_ERR(q))
1362 return q;
1363
a73324da 1364 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1365
1366 p = mnt;
6b41d536 1367 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1368 struct mount *s;
7ec02ef1 1369 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1370 continue;
1371
909b0a88 1372 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1373 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1374 s = skip_mnt_tree(s);
1375 continue;
1376 }
0714a533
AV
1377 while (p != s->mnt_parent) {
1378 p = p->mnt_parent;
1379 q = q->mnt_parent;
1da177e4 1380 }
87129cc0 1381 p = s;
84d17192 1382 parent = q;
87129cc0 1383 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1384 if (IS_ERR(q))
1385 goto out;
962830df 1386 br_write_lock(&vfsmount_lock);
1a4eeaf2 1387 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1388 attach_mnt(q, parent, p->mnt_mp);
962830df 1389 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1390 }
1391 }
1392 return res;
be34d1a3 1393out:
1da177e4 1394 if (res) {
70fbcdf4 1395 LIST_HEAD(umount_list);
962830df 1396 br_write_lock(&vfsmount_lock);
761d5c38 1397 umount_tree(res, 0, &umount_list);
962830df 1398 br_write_unlock(&vfsmount_lock);
70fbcdf4 1399 release_mounts(&umount_list);
1da177e4 1400 }
be34d1a3 1401 return q;
1da177e4
LT
1402}
1403
be34d1a3
DH
1404/* Caller should check returned pointer for errors */
1405
589ff870 1406struct vfsmount *collect_mounts(struct path *path)
8aec0809 1407{
cb338d06 1408 struct mount *tree;
1a60a280 1409 down_write(&namespace_sem);
87129cc0
AV
1410 tree = copy_tree(real_mount(path->mnt), path->dentry,
1411 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1412 up_write(&namespace_sem);
be34d1a3
DH
1413 if (IS_ERR(tree))
1414 return NULL;
1415 return &tree->mnt;
8aec0809
AV
1416}
1417
1418void drop_collected_mounts(struct vfsmount *mnt)
1419{
1420 LIST_HEAD(umount_list);
1a60a280 1421 down_write(&namespace_sem);
962830df 1422 br_write_lock(&vfsmount_lock);
761d5c38 1423 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1424 br_write_unlock(&vfsmount_lock);
1a60a280 1425 up_write(&namespace_sem);
8aec0809
AV
1426 release_mounts(&umount_list);
1427}
1428
1f707137
AV
1429int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1430 struct vfsmount *root)
1431{
1a4eeaf2 1432 struct mount *mnt;
1f707137
AV
1433 int res = f(root, arg);
1434 if (res)
1435 return res;
1a4eeaf2
AV
1436 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1437 res = f(&mnt->mnt, arg);
1f707137
AV
1438 if (res)
1439 return res;
1440 }
1441 return 0;
1442}
1443
4b8b21f4 1444static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1445{
315fc83e 1446 struct mount *p;
719f5d7f 1447
909b0a88 1448 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1449 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1450 mnt_release_group_id(p);
719f5d7f
MS
1451 }
1452}
1453
4b8b21f4 1454static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1455{
315fc83e 1456 struct mount *p;
719f5d7f 1457
909b0a88 1458 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1459 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1460 int err = mnt_alloc_group_id(p);
719f5d7f 1461 if (err) {
4b8b21f4 1462 cleanup_group_ids(mnt, p);
719f5d7f
MS
1463 return err;
1464 }
1465 }
1466 }
1467
1468 return 0;
1469}
1470
b90fa9ae
RP
1471/*
1472 * @source_mnt : mount tree to be attached
21444403
RP
1473 * @nd : place the mount tree @source_mnt is attached
1474 * @parent_nd : if non-null, detach the source_mnt from its parent and
1475 * store the parent mount and mountpoint dentry.
1476 * (done when source_mnt is moved)
b90fa9ae
RP
1477 *
1478 * NOTE: in the table below explains the semantics when a source mount
1479 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1480 * ---------------------------------------------------------------------------
1481 * | BIND MOUNT OPERATION |
1482 * |**************************************************************************
1483 * | source-->| shared | private | slave | unbindable |
1484 * | dest | | | | |
1485 * | | | | | | |
1486 * | v | | | | |
1487 * |**************************************************************************
1488 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1489 * | | | | | |
1490 * |non-shared| shared (+) | private | slave (*) | invalid |
1491 * ***************************************************************************
b90fa9ae
RP
1492 * A bind operation clones the source mount and mounts the clone on the
1493 * destination mount.
1494 *
1495 * (++) the cloned mount is propagated to all the mounts in the propagation
1496 * tree of the destination mount and the cloned mount is added to
1497 * the peer group of the source mount.
1498 * (+) the cloned mount is created under the destination mount and is marked
1499 * as shared. The cloned mount is added to the peer group of the source
1500 * mount.
5afe0022
RP
1501 * (+++) the mount is propagated to all the mounts in the propagation tree
1502 * of the destination mount and the cloned mount is made slave
1503 * of the same master as that of the source mount. The cloned mount
1504 * is marked as 'shared and slave'.
1505 * (*) the cloned mount is made a slave of the same master as that of the
1506 * source mount.
1507 *
9676f0c6
RP
1508 * ---------------------------------------------------------------------------
1509 * | MOVE MOUNT OPERATION |
1510 * |**************************************************************************
1511 * | source-->| shared | private | slave | unbindable |
1512 * | dest | | | | |
1513 * | | | | | | |
1514 * | v | | | | |
1515 * |**************************************************************************
1516 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1517 * | | | | | |
1518 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1519 * ***************************************************************************
5afe0022
RP
1520 *
1521 * (+) the mount is moved to the destination. And is then propagated to
1522 * all the mounts in the propagation tree of the destination mount.
21444403 1523 * (+*) the mount is moved to the destination.
5afe0022
RP
1524 * (+++) the mount is moved to the destination and is then propagated to
1525 * all the mounts belonging to the destination mount's propagation tree.
1526 * the mount is marked as 'shared and slave'.
1527 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1528 *
1529 * if the source mount is a tree, the operations explained above is
1530 * applied to each mount in the tree.
1531 * Must be called without spinlocks held, since this function can sleep
1532 * in allocations.
1533 */
0fb54e50 1534static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1535 struct mount *dest_mnt,
1536 struct mountpoint *dest_mp,
1537 struct path *parent_path)
b90fa9ae
RP
1538{
1539 LIST_HEAD(tree_list);
315fc83e 1540 struct mount *child, *p;
719f5d7f 1541 int err;
b90fa9ae 1542
fc7be130 1543 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1544 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1545 if (err)
1546 goto out;
1547 }
84d17192 1548 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1549 if (err)
1550 goto out_cleanup_ids;
b90fa9ae 1551
962830df 1552 br_write_lock(&vfsmount_lock);
df1a1ad2 1553
fc7be130 1554 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1555 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1556 set_mnt_shared(p);
b90fa9ae 1557 }
1a390689 1558 if (parent_path) {
0fb54e50 1559 detach_mnt(source_mnt, parent_path);
84d17192 1560 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1561 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1562 } else {
84d17192 1563 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1564 commit_tree(source_mnt);
21444403 1565 }
b90fa9ae 1566
1b8e5564
AV
1567 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1568 list_del_init(&child->mnt_hash);
4b2619a5 1569 commit_tree(child);
b90fa9ae 1570 }
962830df 1571 br_write_unlock(&vfsmount_lock);
99b7db7b 1572
b90fa9ae 1573 return 0;
719f5d7f
MS
1574
1575 out_cleanup_ids:
fc7be130 1576 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1577 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1578 out:
1579 return err;
b90fa9ae
RP
1580}
1581
84d17192 1582static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1583{
1584 struct vfsmount *mnt;
84d17192 1585 struct dentry *dentry = path->dentry;
b12cea91 1586retry:
84d17192
AV
1587 mutex_lock(&dentry->d_inode->i_mutex);
1588 if (unlikely(cant_mount(dentry))) {
1589 mutex_unlock(&dentry->d_inode->i_mutex);
1590 return ERR_PTR(-ENOENT);
b12cea91
AV
1591 }
1592 down_write(&namespace_sem);
1593 mnt = lookup_mnt(path);
84d17192
AV
1594 if (likely(!mnt)) {
1595 struct mountpoint *mp = new_mountpoint(dentry);
1596 if (IS_ERR(mp)) {
1597 up_write(&namespace_sem);
1598 mutex_unlock(&dentry->d_inode->i_mutex);
1599 return mp;
1600 }
1601 return mp;
1602 }
b12cea91
AV
1603 up_write(&namespace_sem);
1604 mutex_unlock(&path->dentry->d_inode->i_mutex);
1605 path_put(path);
1606 path->mnt = mnt;
84d17192 1607 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1608 goto retry;
1609}
1610
84d17192 1611static void unlock_mount(struct mountpoint *where)
b12cea91 1612{
84d17192
AV
1613 struct dentry *dentry = where->m_dentry;
1614 put_mountpoint(where);
b12cea91 1615 up_write(&namespace_sem);
84d17192 1616 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1617}
1618
84d17192 1619static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1620{
95bc5f25 1621 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1622 return -EINVAL;
1623
84d17192 1624 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1625 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1626 return -ENOTDIR;
1627
84d17192 1628 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1629}
1630
7a2e8a8f
VA
1631/*
1632 * Sanity check the flags to change_mnt_propagation.
1633 */
1634
1635static int flags_to_propagation_type(int flags)
1636{
7c6e984d 1637 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1638
1639 /* Fail if any non-propagation flags are set */
1640 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1641 return 0;
1642 /* Only one propagation flag should be set */
1643 if (!is_power_of_2(type))
1644 return 0;
1645 return type;
1646}
1647
07b20889
RP
1648/*
1649 * recursively change the type of the mountpoint.
1650 */
0a0d8a46 1651static int do_change_type(struct path *path, int flag)
07b20889 1652{
315fc83e 1653 struct mount *m;
4b8b21f4 1654 struct mount *mnt = real_mount(path->mnt);
07b20889 1655 int recurse = flag & MS_REC;
7a2e8a8f 1656 int type;
719f5d7f 1657 int err = 0;
07b20889 1658
2d92ab3c 1659 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1660 return -EINVAL;
1661
7a2e8a8f
VA
1662 type = flags_to_propagation_type(flag);
1663 if (!type)
1664 return -EINVAL;
1665
07b20889 1666 down_write(&namespace_sem);
719f5d7f
MS
1667 if (type == MS_SHARED) {
1668 err = invent_group_ids(mnt, recurse);
1669 if (err)
1670 goto out_unlock;
1671 }
1672
962830df 1673 br_write_lock(&vfsmount_lock);
909b0a88 1674 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1675 change_mnt_propagation(m, type);
962830df 1676 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1677
1678 out_unlock:
07b20889 1679 up_write(&namespace_sem);
719f5d7f 1680 return err;
07b20889
RP
1681}
1682
1da177e4
LT
1683/*
1684 * do loopback mount.
1685 */
808d4e3c 1686static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1687 int recurse)
1da177e4 1688{
b12cea91 1689 LIST_HEAD(umount_list);
2d92ab3c 1690 struct path old_path;
84d17192
AV
1691 struct mount *mnt = NULL, *old, *parent;
1692 struct mountpoint *mp;
57eccb83 1693 int err;
1da177e4
LT
1694 if (!old_name || !*old_name)
1695 return -EINVAL;
815d405c 1696 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1697 if (err)
1698 return err;
1699
8823c079
EB
1700 err = -EINVAL;
1701 if (mnt_ns_loop(&old_path))
1702 goto out;
1703
84d17192
AV
1704 mp = lock_mount(path);
1705 err = PTR_ERR(mp);
1706 if (IS_ERR(mp))
b12cea91
AV
1707 goto out;
1708
87129cc0 1709 old = real_mount(old_path.mnt);
84d17192 1710 parent = real_mount(path->mnt);
87129cc0 1711
1da177e4 1712 err = -EINVAL;
fc7be130 1713 if (IS_MNT_UNBINDABLE(old))
b12cea91 1714 goto out2;
9676f0c6 1715
84d17192 1716 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1717 goto out2;
1da177e4 1718
ccd48bc7 1719 if (recurse)
87129cc0 1720 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1721 else
87129cc0 1722 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1723
be34d1a3
DH
1724 if (IS_ERR(mnt)) {
1725 err = PTR_ERR(mnt);
e9c5d8a5 1726 goto out2;
be34d1a3 1727 }
ccd48bc7 1728
84d17192 1729 err = graft_tree(mnt, parent, mp);
ccd48bc7 1730 if (err) {
962830df 1731 br_write_lock(&vfsmount_lock);
761d5c38 1732 umount_tree(mnt, 0, &umount_list);
962830df 1733 br_write_unlock(&vfsmount_lock);
5b83d2c5 1734 }
b12cea91 1735out2:
84d17192 1736 unlock_mount(mp);
b12cea91 1737 release_mounts(&umount_list);
ccd48bc7 1738out:
2d92ab3c 1739 path_put(&old_path);
1da177e4
LT
1740 return err;
1741}
1742
2e4b7fcd
DH
1743static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1744{
1745 int error = 0;
1746 int readonly_request = 0;
1747
1748 if (ms_flags & MS_RDONLY)
1749 readonly_request = 1;
1750 if (readonly_request == __mnt_is_readonly(mnt))
1751 return 0;
1752
1753 if (readonly_request)
83adc753 1754 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1755 else
83adc753 1756 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1757 return error;
1758}
1759
1da177e4
LT
1760/*
1761 * change filesystem flags. dir should be a physical root of filesystem.
1762 * If you've mounted a non-root directory somewhere and want to do remount
1763 * on it - tough luck.
1764 */
0a0d8a46 1765static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1766 void *data)
1767{
1768 int err;
2d92ab3c 1769 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1770 struct mount *mnt = real_mount(path->mnt);
1da177e4 1771
143c8c91 1772 if (!check_mnt(mnt))
1da177e4
LT
1773 return -EINVAL;
1774
2d92ab3c 1775 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1776 return -EINVAL;
1777
ff36fe2c
EP
1778 err = security_sb_remount(sb, data);
1779 if (err)
1780 return err;
1781
1da177e4 1782 down_write(&sb->s_umount);
2e4b7fcd 1783 if (flags & MS_BIND)
2d92ab3c 1784 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1785 else if (!capable(CAP_SYS_ADMIN))
1786 err = -EPERM;
4aa98cf7 1787 else
2e4b7fcd 1788 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1789 if (!err) {
962830df 1790 br_write_lock(&vfsmount_lock);
143c8c91
AV
1791 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1792 mnt->mnt.mnt_flags = mnt_flags;
962830df 1793 br_write_unlock(&vfsmount_lock);
7b43a79f 1794 }
1da177e4 1795 up_write(&sb->s_umount);
0e55a7cc 1796 if (!err) {
962830df 1797 br_write_lock(&vfsmount_lock);
143c8c91 1798 touch_mnt_namespace(mnt->mnt_ns);
962830df 1799 br_write_unlock(&vfsmount_lock);
0e55a7cc 1800 }
1da177e4
LT
1801 return err;
1802}
1803
cbbe362c 1804static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1805{
315fc83e 1806 struct mount *p;
909b0a88 1807 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1808 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1809 return 1;
1810 }
1811 return 0;
1812}
1813
808d4e3c 1814static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1815{
2d92ab3c 1816 struct path old_path, parent_path;
676da58d 1817 struct mount *p;
0fb54e50 1818 struct mount *old;
84d17192 1819 struct mountpoint *mp;
57eccb83 1820 int err;
1da177e4
LT
1821 if (!old_name || !*old_name)
1822 return -EINVAL;
2d92ab3c 1823 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1824 if (err)
1825 return err;
1826
84d17192
AV
1827 mp = lock_mount(path);
1828 err = PTR_ERR(mp);
1829 if (IS_ERR(mp))
cc53ce53
DH
1830 goto out;
1831
143c8c91 1832 old = real_mount(old_path.mnt);
fc7be130 1833 p = real_mount(path->mnt);
143c8c91 1834
1da177e4 1835 err = -EINVAL;
fc7be130 1836 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1837 goto out1;
1838
1da177e4 1839 err = -EINVAL;
2d92ab3c 1840 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1841 goto out1;
1da177e4 1842
676da58d 1843 if (!mnt_has_parent(old))
21444403 1844 goto out1;
1da177e4 1845
2d92ab3c
AV
1846 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1847 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1848 goto out1;
1849 /*
1850 * Don't move a mount residing in a shared parent.
1851 */
fc7be130 1852 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1853 goto out1;
9676f0c6
RP
1854 /*
1855 * Don't move a mount tree containing unbindable mounts to a destination
1856 * mount which is shared.
1857 */
fc7be130 1858 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1859 goto out1;
1da177e4 1860 err = -ELOOP;
fc7be130 1861 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1862 if (p == old)
21444403 1863 goto out1;
1da177e4 1864
84d17192 1865 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1866 if (err)
21444403 1867 goto out1;
1da177e4
LT
1868
1869 /* if the mount is moved, it should no longer be expire
1870 * automatically */
6776db3d 1871 list_del_init(&old->mnt_expire);
1da177e4 1872out1:
84d17192 1873 unlock_mount(mp);
1da177e4 1874out:
1da177e4 1875 if (!err)
1a390689 1876 path_put(&parent_path);
2d92ab3c 1877 path_put(&old_path);
1da177e4
LT
1878 return err;
1879}
1880
9d412a43
AV
1881static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1882{
1883 int err;
1884 const char *subtype = strchr(fstype, '.');
1885 if (subtype) {
1886 subtype++;
1887 err = -EINVAL;
1888 if (!subtype[0])
1889 goto err;
1890 } else
1891 subtype = "";
1892
1893 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1894 err = -ENOMEM;
1895 if (!mnt->mnt_sb->s_subtype)
1896 goto err;
1897 return mnt;
1898
1899 err:
1900 mntput(mnt);
1901 return ERR_PTR(err);
1902}
1903
9d412a43
AV
1904/*
1905 * add a mount into a namespace's mount tree
1906 */
95bc5f25 1907static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1908{
84d17192
AV
1909 struct mountpoint *mp;
1910 struct mount *parent;
9d412a43
AV
1911 int err;
1912
1913 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1914
84d17192
AV
1915 mp = lock_mount(path);
1916 if (IS_ERR(mp))
1917 return PTR_ERR(mp);
9d412a43 1918
84d17192 1919 parent = real_mount(path->mnt);
9d412a43 1920 err = -EINVAL;
84d17192 1921 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1922 /* that's acceptable only for automounts done in private ns */
1923 if (!(mnt_flags & MNT_SHRINKABLE))
1924 goto unlock;
1925 /* ... and for those we'd better have mountpoint still alive */
84d17192 1926 if (!parent->mnt_ns)
156cacb1
AV
1927 goto unlock;
1928 }
9d412a43
AV
1929
1930 /* Refuse the same filesystem on the same mount point */
1931 err = -EBUSY;
95bc5f25 1932 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1933 path->mnt->mnt_root == path->dentry)
1934 goto unlock;
1935
1936 err = -EINVAL;
95bc5f25 1937 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1938 goto unlock;
1939
95bc5f25 1940 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 1941 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
1942
1943unlock:
84d17192 1944 unlock_mount(mp);
9d412a43
AV
1945 return err;
1946}
b1e75df4 1947
1da177e4
LT
1948/*
1949 * create a new mount for userspace and request it to be added into the
1950 * namespace's tree
1951 */
0c55cfc4 1952static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 1953 int mnt_flags, const char *name, void *data)
1da177e4 1954{
0c55cfc4 1955 struct file_system_type *type;
9b40bc90 1956 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 1957 struct vfsmount *mnt;
15f9a3f3 1958 int err;
1da177e4 1959
0c55cfc4 1960 if (!fstype)
1da177e4
LT
1961 return -EINVAL;
1962
0c55cfc4
EB
1963 type = get_fs_type(fstype);
1964 if (!type)
1965 return -ENODEV;
1966
1967 if (user_ns != &init_user_ns) {
1968 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1969 put_filesystem(type);
1970 return -EPERM;
1971 }
1972 /* Only in special cases allow devices from mounts
1973 * created outside the initial user namespace.
1974 */
1975 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1976 flags |= MS_NODEV;
1977 mnt_flags |= MNT_NODEV;
1978 }
1979 }
1980
1981 mnt = vfs_kern_mount(type, flags, name, data);
1982 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1983 !mnt->mnt_sb->s_subtype)
1984 mnt = fs_set_subtype(mnt, fstype);
1985
1986 put_filesystem(type);
1da177e4
LT
1987 if (IS_ERR(mnt))
1988 return PTR_ERR(mnt);
1989
95bc5f25 1990 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1991 if (err)
1992 mntput(mnt);
1993 return err;
1da177e4
LT
1994}
1995
19a167af
AV
1996int finish_automount(struct vfsmount *m, struct path *path)
1997{
6776db3d 1998 struct mount *mnt = real_mount(m);
19a167af
AV
1999 int err;
2000 /* The new mount record should have at least 2 refs to prevent it being
2001 * expired before we get a chance to add it
2002 */
6776db3d 2003 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2004
2005 if (m->mnt_sb == path->mnt->mnt_sb &&
2006 m->mnt_root == path->dentry) {
b1e75df4
AV
2007 err = -ELOOP;
2008 goto fail;
19a167af
AV
2009 }
2010
95bc5f25 2011 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2012 if (!err)
2013 return 0;
2014fail:
2015 /* remove m from any expiration list it may be on */
6776db3d 2016 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 2017 down_write(&namespace_sem);
962830df 2018 br_write_lock(&vfsmount_lock);
6776db3d 2019 list_del_init(&mnt->mnt_expire);
962830df 2020 br_write_unlock(&vfsmount_lock);
b1e75df4 2021 up_write(&namespace_sem);
19a167af 2022 }
b1e75df4
AV
2023 mntput(m);
2024 mntput(m);
19a167af
AV
2025 return err;
2026}
2027
ea5b778a
DH
2028/**
2029 * mnt_set_expiry - Put a mount on an expiration list
2030 * @mnt: The mount to list.
2031 * @expiry_list: The list to add the mount to.
2032 */
2033void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2034{
2035 down_write(&namespace_sem);
962830df 2036 br_write_lock(&vfsmount_lock);
ea5b778a 2037
6776db3d 2038 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2039
962830df 2040 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
2041 up_write(&namespace_sem);
2042}
2043EXPORT_SYMBOL(mnt_set_expiry);
2044
1da177e4
LT
2045/*
2046 * process a list of expirable mountpoints with the intent of discarding any
2047 * mountpoints that aren't in use and haven't been touched since last we came
2048 * here
2049 */
2050void mark_mounts_for_expiry(struct list_head *mounts)
2051{
761d5c38 2052 struct mount *mnt, *next;
1da177e4 2053 LIST_HEAD(graveyard);
bcc5c7d2 2054 LIST_HEAD(umounts);
1da177e4
LT
2055
2056 if (list_empty(mounts))
2057 return;
2058
bcc5c7d2 2059 down_write(&namespace_sem);
962830df 2060 br_write_lock(&vfsmount_lock);
1da177e4
LT
2061
2062 /* extract from the expiration list every vfsmount that matches the
2063 * following criteria:
2064 * - only referenced by its parent vfsmount
2065 * - still marked for expiry (marked on the last call here; marks are
2066 * cleared by mntput())
2067 */
6776db3d 2068 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2069 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2070 propagate_mount_busy(mnt, 1))
1da177e4 2071 continue;
6776db3d 2072 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2073 }
bcc5c7d2 2074 while (!list_empty(&graveyard)) {
6776db3d 2075 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2076 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
2077 umount_tree(mnt, 1, &umounts);
2078 }
962830df 2079 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
2080 up_write(&namespace_sem);
2081
2082 release_mounts(&umounts);
5528f911
TM
2083}
2084
2085EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2086
2087/*
2088 * Ripoff of 'select_parent()'
2089 *
2090 * search the list of submounts for a given mountpoint, and move any
2091 * shrinkable submounts to the 'graveyard' list.
2092 */
692afc31 2093static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2094{
692afc31 2095 struct mount *this_parent = parent;
5528f911
TM
2096 struct list_head *next;
2097 int found = 0;
2098
2099repeat:
6b41d536 2100 next = this_parent->mnt_mounts.next;
5528f911 2101resume:
6b41d536 2102 while (next != &this_parent->mnt_mounts) {
5528f911 2103 struct list_head *tmp = next;
6b41d536 2104 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2105
2106 next = tmp->next;
692afc31 2107 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2108 continue;
5528f911
TM
2109 /*
2110 * Descend a level if the d_mounts list is non-empty.
2111 */
6b41d536 2112 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2113 this_parent = mnt;
2114 goto repeat;
2115 }
1da177e4 2116
1ab59738 2117 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2118 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2119 found++;
2120 }
1da177e4 2121 }
5528f911
TM
2122 /*
2123 * All done at this level ... ascend and resume the search
2124 */
2125 if (this_parent != parent) {
6b41d536 2126 next = this_parent->mnt_child.next;
0714a533 2127 this_parent = this_parent->mnt_parent;
5528f911
TM
2128 goto resume;
2129 }
2130 return found;
2131}
2132
2133/*
2134 * process a list of expirable mountpoints with the intent of discarding any
2135 * submounts of a specific parent mountpoint
99b7db7b
NP
2136 *
2137 * vfsmount_lock must be held for write
5528f911 2138 */
692afc31 2139static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2140{
2141 LIST_HEAD(graveyard);
761d5c38 2142 struct mount *m;
5528f911 2143
5528f911 2144 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2145 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2146 while (!list_empty(&graveyard)) {
761d5c38 2147 m = list_first_entry(&graveyard, struct mount,
6776db3d 2148 mnt_expire);
143c8c91 2149 touch_mnt_namespace(m->mnt_ns);
afef80b3 2150 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2151 }
2152 }
1da177e4
LT
2153}
2154
1da177e4
LT
2155/*
2156 * Some copy_from_user() implementations do not return the exact number of
2157 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2158 * Note that this function differs from copy_from_user() in that it will oops
2159 * on bad values of `to', rather than returning a short copy.
2160 */
b58fed8b
RP
2161static long exact_copy_from_user(void *to, const void __user * from,
2162 unsigned long n)
1da177e4
LT
2163{
2164 char *t = to;
2165 const char __user *f = from;
2166 char c;
2167
2168 if (!access_ok(VERIFY_READ, from, n))
2169 return n;
2170
2171 while (n) {
2172 if (__get_user(c, f)) {
2173 memset(t, 0, n);
2174 break;
2175 }
2176 *t++ = c;
2177 f++;
2178 n--;
2179 }
2180 return n;
2181}
2182
b58fed8b 2183int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2184{
2185 int i;
2186 unsigned long page;
2187 unsigned long size;
b58fed8b 2188
1da177e4
LT
2189 *where = 0;
2190 if (!data)
2191 return 0;
2192
2193 if (!(page = __get_free_page(GFP_KERNEL)))
2194 return -ENOMEM;
2195
2196 /* We only care that *some* data at the address the user
2197 * gave us is valid. Just in case, we'll zero
2198 * the remainder of the page.
2199 */
2200 /* copy_from_user cannot cross TASK_SIZE ! */
2201 size = TASK_SIZE - (unsigned long)data;
2202 if (size > PAGE_SIZE)
2203 size = PAGE_SIZE;
2204
2205 i = size - exact_copy_from_user((void *)page, data, size);
2206 if (!i) {
b58fed8b 2207 free_page(page);
1da177e4
LT
2208 return -EFAULT;
2209 }
2210 if (i != PAGE_SIZE)
2211 memset((char *)page + i, 0, PAGE_SIZE - i);
2212 *where = page;
2213 return 0;
2214}
2215
eca6f534
VN
2216int copy_mount_string(const void __user *data, char **where)
2217{
2218 char *tmp;
2219
2220 if (!data) {
2221 *where = NULL;
2222 return 0;
2223 }
2224
2225 tmp = strndup_user(data, PAGE_SIZE);
2226 if (IS_ERR(tmp))
2227 return PTR_ERR(tmp);
2228
2229 *where = tmp;
2230 return 0;
2231}
2232
1da177e4
LT
2233/*
2234 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2235 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2236 *
2237 * data is a (void *) that can point to any structure up to
2238 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2239 * information (or be NULL).
2240 *
2241 * Pre-0.97 versions of mount() didn't have a flags word.
2242 * When the flags word was introduced its top half was required
2243 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2244 * Therefore, if this magic number is present, it carries no information
2245 * and must be discarded.
2246 */
808d4e3c
AV
2247long do_mount(const char *dev_name, const char *dir_name,
2248 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2249{
2d92ab3c 2250 struct path path;
1da177e4
LT
2251 int retval = 0;
2252 int mnt_flags = 0;
2253
2254 /* Discard magic */
2255 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2256 flags &= ~MS_MGC_MSK;
2257
2258 /* Basic sanity checks */
2259
2260 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2261 return -EINVAL;
1da177e4
LT
2262
2263 if (data_page)
2264 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2265
a27ab9f2
TH
2266 /* ... and get the mountpoint */
2267 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2268 if (retval)
2269 return retval;
2270
2271 retval = security_sb_mount(dev_name, &path,
2272 type_page, flags, data_page);
2273 if (retval)
2274 goto dput_out;
2275
57eccb83
AV
2276 if (!may_mount())
2277 return -EPERM;
2278
613cbe3d
AK
2279 /* Default to relatime unless overriden */
2280 if (!(flags & MS_NOATIME))
2281 mnt_flags |= MNT_RELATIME;
0a1c01c9 2282
1da177e4
LT
2283 /* Separate the per-mountpoint flags */
2284 if (flags & MS_NOSUID)
2285 mnt_flags |= MNT_NOSUID;
2286 if (flags & MS_NODEV)
2287 mnt_flags |= MNT_NODEV;
2288 if (flags & MS_NOEXEC)
2289 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2290 if (flags & MS_NOATIME)
2291 mnt_flags |= MNT_NOATIME;
2292 if (flags & MS_NODIRATIME)
2293 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2294 if (flags & MS_STRICTATIME)
2295 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2296 if (flags & MS_RDONLY)
2297 mnt_flags |= MNT_READONLY;
fc33a7bb 2298
7a4dec53 2299 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2300 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2301 MS_STRICTATIME);
1da177e4 2302
1da177e4 2303 if (flags & MS_REMOUNT)
2d92ab3c 2304 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2305 data_page);
2306 else if (flags & MS_BIND)
2d92ab3c 2307 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2308 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2309 retval = do_change_type(&path, flags);
1da177e4 2310 else if (flags & MS_MOVE)
2d92ab3c 2311 retval = do_move_mount(&path, dev_name);
1da177e4 2312 else
2d92ab3c 2313 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2314 dev_name, data_page);
2315dput_out:
2d92ab3c 2316 path_put(&path);
1da177e4
LT
2317 return retval;
2318}
2319
771b1371
EB
2320static void free_mnt_ns(struct mnt_namespace *ns)
2321{
98f842e6 2322 proc_free_inum(ns->proc_inum);
771b1371
EB
2323 put_user_ns(ns->user_ns);
2324 kfree(ns);
2325}
2326
8823c079
EB
2327/*
2328 * Assign a sequence number so we can detect when we attempt to bind
2329 * mount a reference to an older mount namespace into the current
2330 * mount namespace, preventing reference counting loops. A 64bit
2331 * number incrementing at 10Ghz will take 12,427 years to wrap which
2332 * is effectively never, so we can ignore the possibility.
2333 */
2334static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2335
771b1371 2336static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2337{
2338 struct mnt_namespace *new_ns;
98f842e6 2339 int ret;
cf8d2c11
TM
2340
2341 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2342 if (!new_ns)
2343 return ERR_PTR(-ENOMEM);
98f842e6
EB
2344 ret = proc_alloc_inum(&new_ns->proc_inum);
2345 if (ret) {
2346 kfree(new_ns);
2347 return ERR_PTR(ret);
2348 }
8823c079 2349 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2350 atomic_set(&new_ns->count, 1);
2351 new_ns->root = NULL;
2352 INIT_LIST_HEAD(&new_ns->list);
2353 init_waitqueue_head(&new_ns->poll);
2354 new_ns->event = 0;
771b1371 2355 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2356 return new_ns;
2357}
2358
741a2951
JD
2359/*
2360 * Allocate a new namespace structure and populate it with contents
2361 * copied from the namespace of the passed in task structure.
2362 */
e3222c4e 2363static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2364 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2365{
6b3286ed 2366 struct mnt_namespace *new_ns;
7f2da1e7 2367 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2368 struct mount *p, *q;
be08d6d2 2369 struct mount *old = mnt_ns->root;
cb338d06 2370 struct mount *new;
7a472ef4 2371 int copy_flags;
1da177e4 2372
771b1371 2373 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2374 if (IS_ERR(new_ns))
2375 return new_ns;
1da177e4 2376
390c6843 2377 down_write(&namespace_sem);
1da177e4 2378 /* First pass: copy the tree topology */
7a472ef4
EB
2379 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2380 if (user_ns != mnt_ns->user_ns)
2381 copy_flags |= CL_SHARED_TO_SLAVE;
2382 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2383 if (IS_ERR(new)) {
390c6843 2384 up_write(&namespace_sem);
771b1371 2385 free_mnt_ns(new_ns);
be34d1a3 2386 return ERR_CAST(new);
1da177e4 2387 }
be08d6d2 2388 new_ns->root = new;
962830df 2389 br_write_lock(&vfsmount_lock);
1a4eeaf2 2390 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2391 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2392
2393 /*
2394 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2395 * as belonging to new namespace. We have already acquired a private
2396 * fs_struct, so tsk->fs->lock is not needed.
2397 */
909b0a88 2398 p = old;
cb338d06 2399 q = new;
1da177e4 2400 while (p) {
143c8c91 2401 q->mnt_ns = new_ns;
1da177e4 2402 if (fs) {
315fc83e
AV
2403 if (&p->mnt == fs->root.mnt) {
2404 fs->root.mnt = mntget(&q->mnt);
315fc83e 2405 rootmnt = &p->mnt;
1da177e4 2406 }
315fc83e
AV
2407 if (&p->mnt == fs->pwd.mnt) {
2408 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2409 pwdmnt = &p->mnt;
1da177e4 2410 }
1da177e4 2411 }
909b0a88
AV
2412 p = next_mnt(p, old);
2413 q = next_mnt(q, new);
1da177e4 2414 }
390c6843 2415 up_write(&namespace_sem);
1da177e4 2416
1da177e4 2417 if (rootmnt)
f03c6599 2418 mntput(rootmnt);
1da177e4 2419 if (pwdmnt)
f03c6599 2420 mntput(pwdmnt);
1da177e4 2421
741a2951
JD
2422 return new_ns;
2423}
2424
213dd266 2425struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2426 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2427{
6b3286ed 2428 struct mnt_namespace *new_ns;
741a2951 2429
e3222c4e 2430 BUG_ON(!ns);
6b3286ed 2431 get_mnt_ns(ns);
741a2951
JD
2432
2433 if (!(flags & CLONE_NEWNS))
e3222c4e 2434 return ns;
741a2951 2435
771b1371 2436 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2437
6b3286ed 2438 put_mnt_ns(ns);
e3222c4e 2439 return new_ns;
1da177e4
LT
2440}
2441
cf8d2c11
TM
2442/**
2443 * create_mnt_ns - creates a private namespace and adds a root filesystem
2444 * @mnt: pointer to the new root filesystem mountpoint
2445 */
1a4eeaf2 2446static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2447{
771b1371 2448 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2449 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2450 struct mount *mnt = real_mount(m);
2451 mnt->mnt_ns = new_ns;
be08d6d2 2452 new_ns->root = mnt;
1a4eeaf2 2453 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2454 } else {
1a4eeaf2 2455 mntput(m);
cf8d2c11
TM
2456 }
2457 return new_ns;
2458}
cf8d2c11 2459
ea441d11
AV
2460struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2461{
2462 struct mnt_namespace *ns;
d31da0f0 2463 struct super_block *s;
ea441d11
AV
2464 struct path path;
2465 int err;
2466
2467 ns = create_mnt_ns(mnt);
2468 if (IS_ERR(ns))
2469 return ERR_CAST(ns);
2470
2471 err = vfs_path_lookup(mnt->mnt_root, mnt,
2472 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2473
2474 put_mnt_ns(ns);
2475
2476 if (err)
2477 return ERR_PTR(err);
2478
2479 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2480 s = path.mnt->mnt_sb;
2481 atomic_inc(&s->s_active);
ea441d11
AV
2482 mntput(path.mnt);
2483 /* lock the sucker */
d31da0f0 2484 down_write(&s->s_umount);
ea441d11
AV
2485 /* ... and return the root of (sub)tree on it */
2486 return path.dentry;
2487}
2488EXPORT_SYMBOL(mount_subtree);
2489
bdc480e3
HC
2490SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2491 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2492{
eca6f534
VN
2493 int ret;
2494 char *kernel_type;
91a27b2a 2495 struct filename *kernel_dir;
eca6f534 2496 char *kernel_dev;
1da177e4 2497 unsigned long data_page;
1da177e4 2498
eca6f534
VN
2499 ret = copy_mount_string(type, &kernel_type);
2500 if (ret < 0)
2501 goto out_type;
1da177e4 2502
eca6f534
VN
2503 kernel_dir = getname(dir_name);
2504 if (IS_ERR(kernel_dir)) {
2505 ret = PTR_ERR(kernel_dir);
2506 goto out_dir;
2507 }
1da177e4 2508
eca6f534
VN
2509 ret = copy_mount_string(dev_name, &kernel_dev);
2510 if (ret < 0)
2511 goto out_dev;
1da177e4 2512
eca6f534
VN
2513 ret = copy_mount_options(data, &data_page);
2514 if (ret < 0)
2515 goto out_data;
1da177e4 2516
91a27b2a 2517 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2518 (void *) data_page);
1da177e4 2519
eca6f534
VN
2520 free_page(data_page);
2521out_data:
2522 kfree(kernel_dev);
2523out_dev:
2524 putname(kernel_dir);
2525out_dir:
2526 kfree(kernel_type);
2527out_type:
2528 return ret;
1da177e4
LT
2529}
2530
afac7cba
AV
2531/*
2532 * Return true if path is reachable from root
2533 *
2534 * namespace_sem or vfsmount_lock is held
2535 */
643822b4 2536bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2537 const struct path *root)
2538{
643822b4 2539 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2540 dentry = mnt->mnt_mountpoint;
0714a533 2541 mnt = mnt->mnt_parent;
afac7cba 2542 }
643822b4 2543 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2544}
2545
2546int path_is_under(struct path *path1, struct path *path2)
2547{
2548 int res;
962830df 2549 br_read_lock(&vfsmount_lock);
643822b4 2550 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2551 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2552 return res;
2553}
2554EXPORT_SYMBOL(path_is_under);
2555
1da177e4
LT
2556/*
2557 * pivot_root Semantics:
2558 * Moves the root file system of the current process to the directory put_old,
2559 * makes new_root as the new root file system of the current process, and sets
2560 * root/cwd of all processes which had them on the current root to new_root.
2561 *
2562 * Restrictions:
2563 * The new_root and put_old must be directories, and must not be on the
2564 * same file system as the current process root. The put_old must be
2565 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2566 * pointed to by put_old must yield the same directory as new_root. No other
2567 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2568 *
4a0d11fa
NB
2569 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2570 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2571 * in this situation.
2572 *
1da177e4
LT
2573 * Notes:
2574 * - we don't move root/cwd if they are not at the root (reason: if something
2575 * cared enough to change them, it's probably wrong to force them elsewhere)
2576 * - it's okay to pick a root that isn't the root of a file system, e.g.
2577 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2578 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2579 * first.
2580 */
3480b257
HC
2581SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2582 const char __user *, put_old)
1da177e4 2583{
2d8f3038 2584 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2585 struct mount *new_mnt, *root_mnt, *old_mnt;
2586 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2587 int error;
2588
9b40bc90 2589 if (!may_mount())
1da177e4
LT
2590 return -EPERM;
2591
2d8f3038 2592 error = user_path_dir(new_root, &new);
1da177e4
LT
2593 if (error)
2594 goto out0;
1da177e4 2595
2d8f3038 2596 error = user_path_dir(put_old, &old);
1da177e4
LT
2597 if (error)
2598 goto out1;
2599
2d8f3038 2600 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2601 if (error)
2602 goto out2;
1da177e4 2603
f7ad3c6b 2604 get_fs_root(current->fs, &root);
84d17192
AV
2605 old_mp = lock_mount(&old);
2606 error = PTR_ERR(old_mp);
2607 if (IS_ERR(old_mp))
b12cea91
AV
2608 goto out3;
2609
1da177e4 2610 error = -EINVAL;
419148da
AV
2611 new_mnt = real_mount(new.mnt);
2612 root_mnt = real_mount(root.mnt);
84d17192
AV
2613 old_mnt = real_mount(old.mnt);
2614 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2615 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2616 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2617 goto out4;
143c8c91 2618 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2619 goto out4;
1da177e4 2620 error = -ENOENT;
f3da392e 2621 if (d_unlinked(new.dentry))
b12cea91 2622 goto out4;
1da177e4 2623 error = -EBUSY;
84d17192 2624 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2625 goto out4; /* loop, on the same file system */
1da177e4 2626 error = -EINVAL;
8c3ee42e 2627 if (root.mnt->mnt_root != root.dentry)
b12cea91 2628 goto out4; /* not a mountpoint */
676da58d 2629 if (!mnt_has_parent(root_mnt))
b12cea91 2630 goto out4; /* not attached */
84d17192 2631 root_mp = root_mnt->mnt_mp;
2d8f3038 2632 if (new.mnt->mnt_root != new.dentry)
b12cea91 2633 goto out4; /* not a mountpoint */
676da58d 2634 if (!mnt_has_parent(new_mnt))
b12cea91 2635 goto out4; /* not attached */
4ac91378 2636 /* make sure we can reach put_old from new_root */
84d17192 2637 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2638 goto out4;
84d17192 2639 root_mp->m_count++; /* pin it so it won't go away */
962830df 2640 br_write_lock(&vfsmount_lock);
419148da
AV
2641 detach_mnt(new_mnt, &parent_path);
2642 detach_mnt(root_mnt, &root_parent);
4ac91378 2643 /* mount old root on put_old */
84d17192 2644 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2645 /* mount new_root on / */
84d17192 2646 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2647 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2648 br_write_unlock(&vfsmount_lock);
2d8f3038 2649 chroot_fs_refs(&root, &new);
84d17192 2650 put_mountpoint(root_mp);
1da177e4 2651 error = 0;
b12cea91 2652out4:
84d17192 2653 unlock_mount(old_mp);
b12cea91
AV
2654 if (!error) {
2655 path_put(&root_parent);
2656 path_put(&parent_path);
2657 }
2658out3:
8c3ee42e 2659 path_put(&root);
b12cea91 2660out2:
2d8f3038 2661 path_put(&old);
1da177e4 2662out1:
2d8f3038 2663 path_put(&new);
1da177e4 2664out0:
1da177e4 2665 return error;
1da177e4
LT
2666}
2667
2668static void __init init_mount_tree(void)
2669{
2670 struct vfsmount *mnt;
6b3286ed 2671 struct mnt_namespace *ns;
ac748a09 2672 struct path root;
0c55cfc4 2673 struct file_system_type *type;
1da177e4 2674
0c55cfc4
EB
2675 type = get_fs_type("rootfs");
2676 if (!type)
2677 panic("Can't find rootfs type");
2678 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2679 put_filesystem(type);
1da177e4
LT
2680 if (IS_ERR(mnt))
2681 panic("Can't create rootfs");
b3e19d92 2682
3b22edc5
TM
2683 ns = create_mnt_ns(mnt);
2684 if (IS_ERR(ns))
1da177e4 2685 panic("Can't allocate initial namespace");
6b3286ed
KK
2686
2687 init_task.nsproxy->mnt_ns = ns;
2688 get_mnt_ns(ns);
2689
be08d6d2
AV
2690 root.mnt = mnt;
2691 root.dentry = mnt->mnt_root;
ac748a09
JB
2692
2693 set_fs_pwd(current->fs, &root);
2694 set_fs_root(current->fs, &root);
1da177e4
LT
2695}
2696
74bf17cf 2697void __init mnt_init(void)
1da177e4 2698{
13f14b4d 2699 unsigned u;
15a67dd8 2700 int err;
1da177e4 2701
390c6843
RP
2702 init_rwsem(&namespace_sem);
2703
7d6fec45 2704 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2705 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2706
b58fed8b 2707 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2708 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2709
84d17192 2710 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2711 panic("Failed to allocate mount hash table\n");
2712
80cdc6da 2713 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2714
2715 for (u = 0; u < HASH_SIZE; u++)
2716 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2717 for (u = 0; u < HASH_SIZE; u++)
2718 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2719
962830df 2720 br_lock_init(&vfsmount_lock);
99b7db7b 2721
15a67dd8
RD
2722 err = sysfs_init();
2723 if (err)
2724 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2725 __func__, err);
00d26666
GKH
2726 fs_kobj = kobject_create_and_add("fs", NULL);
2727 if (!fs_kobj)
8e24eea7 2728 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2729 init_rootfs();
2730 init_mount_tree();
2731}
2732
616511d0 2733void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2734{
70fbcdf4 2735 LIST_HEAD(umount_list);
616511d0 2736
d498b25a 2737 if (!atomic_dec_and_test(&ns->count))
616511d0 2738 return;
390c6843 2739 down_write(&namespace_sem);
962830df 2740 br_write_lock(&vfsmount_lock);
be08d6d2 2741 umount_tree(ns->root, 0, &umount_list);
962830df 2742 br_write_unlock(&vfsmount_lock);
390c6843 2743 up_write(&namespace_sem);
70fbcdf4 2744 release_mounts(&umount_list);
771b1371 2745 free_mnt_ns(ns);
1da177e4 2746}
9d412a43
AV
2747
2748struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2749{
423e0ab0
TC
2750 struct vfsmount *mnt;
2751 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2752 if (!IS_ERR(mnt)) {
2753 /*
2754 * it is a longterm mount, don't release mnt until
2755 * we unmount before file sys is unregistered
2756 */
f7a99c5b 2757 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2758 }
2759 return mnt;
9d412a43
AV
2760}
2761EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2762
2763void kern_unmount(struct vfsmount *mnt)
2764{
2765 /* release long term mount so mount point can be released */
2766 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2767 br_write_lock(&vfsmount_lock);
2768 real_mount(mnt)->mnt_ns = NULL;
2769 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2770 mntput(mnt);
2771 }
2772}
2773EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2774
2775bool our_mnt(struct vfsmount *mnt)
2776{
143c8c91 2777 return check_mnt(real_mount(mnt));
02125a82 2778}
8823c079
EB
2779
2780static void *mntns_get(struct task_struct *task)
2781{
2782 struct mnt_namespace *ns = NULL;
2783 struct nsproxy *nsproxy;
2784
2785 rcu_read_lock();
2786 nsproxy = task_nsproxy(task);
2787 if (nsproxy) {
2788 ns = nsproxy->mnt_ns;
2789 get_mnt_ns(ns);
2790 }
2791 rcu_read_unlock();
2792
2793 return ns;
2794}
2795
2796static void mntns_put(void *ns)
2797{
2798 put_mnt_ns(ns);
2799}
2800
2801static int mntns_install(struct nsproxy *nsproxy, void *ns)
2802{
2803 struct fs_struct *fs = current->fs;
2804 struct mnt_namespace *mnt_ns = ns;
2805 struct path root;
2806
0c55cfc4 2807 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2808 !nsown_capable(CAP_SYS_CHROOT) ||
2809 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2810 return -EPERM;
8823c079
EB
2811
2812 if (fs->users != 1)
2813 return -EINVAL;
2814
2815 get_mnt_ns(mnt_ns);
2816 put_mnt_ns(nsproxy->mnt_ns);
2817 nsproxy->mnt_ns = mnt_ns;
2818
2819 /* Find the root */
2820 root.mnt = &mnt_ns->root->mnt;
2821 root.dentry = mnt_ns->root->mnt.mnt_root;
2822 path_get(&root);
2823 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2824 ;
2825
2826 /* Update the pwd and root */
2827 set_fs_pwd(fs, &root);
2828 set_fs_root(fs, &root);
2829
2830 path_put(&root);
2831 return 0;
2832}
2833
98f842e6
EB
2834static unsigned int mntns_inum(void *ns)
2835{
2836 struct mnt_namespace *mnt_ns = ns;
2837 return mnt_ns->proc_inum;
2838}
2839
8823c079
EB
2840const struct proc_ns_operations mntns_operations = {
2841 .name = "mnt",
2842 .type = CLONE_NEWNS,
2843 .get = mntns_get,
2844 .put = mntns_put,
2845 .install = mntns_install,
98f842e6 2846 .inum = mntns_inum,
8823c079 2847};