vfs: Add a user namespace reference from struct mnt_namespace
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
8823c079 24#include <linux/proc_fs.h>
07b20889 25#include "pnode.h"
948730b0 26#include "internal.h"
1da177e4 27
13f14b4d
ED
28#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29#define HASH_SIZE (1UL << HASH_SHIFT)
30
5addc5dd 31static int event;
73cd49ec 32static DEFINE_IDA(mnt_id_ida);
719f5d7f 33static DEFINE_IDA(mnt_group_ida);
99b7db7b 34static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
35static int mnt_id_start = 0;
36static int mnt_group_start = 1;
1da177e4 37
fa3536cc 38static struct list_head *mount_hashtable __read_mostly;
e18b890b 39static struct kmem_cache *mnt_cache __read_mostly;
390c6843 40static struct rw_semaphore namespace_sem;
1da177e4 41
f87fd4c2 42/* /sys/fs */
00d26666
GKH
43struct kobject *fs_kobj;
44EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 45
99b7db7b
NP
46/*
47 * vfsmount lock may be taken for read to prevent changes to the
48 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * up the tree.
50 *
51 * It should be taken for write in all cases where the vfsmount
52 * tree or hash is modified or when a vfsmount structure is modified.
53 */
54DEFINE_BRLOCK(vfsmount_lock);
55
1da177e4
LT
56static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57{
b58fed8b
RP
58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
60 tmp = tmp + (tmp >> HASH_SHIFT);
61 return tmp & (HASH_SIZE - 1);
1da177e4
LT
62}
63
3d733633
DH
64#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65
99b7db7b
NP
66/*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
b105e270 70static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
71{
72 int res;
73
74retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 76 spin_lock(&mnt_id_lock);
15169fe7 77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 78 if (!res)
15169fe7 79 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 80 spin_unlock(&mnt_id_lock);
73cd49ec
MS
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85}
86
b105e270 87static void mnt_free_id(struct mount *mnt)
73cd49ec 88{
15169fe7 89 int id = mnt->mnt_id;
99b7db7b 90 spin_lock(&mnt_id_lock);
f21f6220
AV
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
99b7db7b 94 spin_unlock(&mnt_id_lock);
73cd49ec
MS
95}
96
719f5d7f
MS
97/*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
4b8b21f4 102static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 103{
f21f6220
AV
104 int res;
105
719f5d7f
MS
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
f21f6220
AV
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
15169fe7 111 &mnt->mnt_group_id);
f21f6220 112 if (!res)
15169fe7 113 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
114
115 return res;
719f5d7f
MS
116}
117
118/*
119 * Release a peer group ID
120 */
4b8b21f4 121void mnt_release_group_id(struct mount *mnt)
719f5d7f 122{
15169fe7 123 int id = mnt->mnt_group_id;
f21f6220
AV
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
15169fe7 127 mnt->mnt_group_id = 0;
719f5d7f
MS
128}
129
b3e19d92
NP
130/*
131 * vfsmount lock must be held for read
132 */
83adc753 133static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
134{
135#ifdef CONFIG_SMP
68e8a9fe 136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
137#else
138 preempt_disable();
68e8a9fe 139 mnt->mnt_count += n;
b3e19d92
NP
140 preempt_enable();
141#endif
142}
143
b3e19d92
NP
144/*
145 * vfsmount lock must be held for write
146 */
83adc753 147unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
148{
149#ifdef CONFIG_SMP
f03c6599 150 unsigned int count = 0;
b3e19d92
NP
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
68e8a9fe 154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
155 }
156
157 return count;
158#else
68e8a9fe 159 return mnt->mnt_count;
b3e19d92
NP
160#endif
161}
162
b105e270 163static struct mount *alloc_vfsmnt(const char *name)
1da177e4 164{
c63181e6
AV
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
73cd49ec
MS
167 int err;
168
c63181e6 169 err = mnt_alloc_id(mnt);
88b38782
LZ
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
c63181e6
AV
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
88b38782 176 goto out_free_id;
73cd49ec
MS
177 }
178
b3e19d92 179#ifdef CONFIG_SMP
c63181e6
AV
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
b3e19d92
NP
182 goto out_free_devname;
183
c63181e6 184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 185#else
c63181e6
AV
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
b3e19d92
NP
188#endif
189
c63181e6
AV
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
198#ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 200#endif
1da177e4 201 }
c63181e6 202 return mnt;
88b38782 203
d3ef3d73 204#ifdef CONFIG_SMP
205out_free_devname:
c63181e6 206 kfree(mnt->mnt_devname);
d3ef3d73 207#endif
88b38782 208out_free_id:
c63181e6 209 mnt_free_id(mnt);
88b38782 210out_free_cache:
c63181e6 211 kmem_cache_free(mnt_cache, mnt);
88b38782 212 return NULL;
1da177e4
LT
213}
214
3d733633
DH
215/*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223/*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
234int __mnt_is_readonly(struct vfsmount *mnt)
235{
2e4b7fcd
DH
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
3d733633
DH
241}
242EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
83adc753 244static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 245{
246#ifdef CONFIG_SMP
68e8a9fe 247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 248#else
68e8a9fe 249 mnt->mnt_writers++;
d3ef3d73 250#endif
251}
3d733633 252
83adc753 253static inline void mnt_dec_writers(struct mount *mnt)
3d733633 254{
d3ef3d73 255#ifdef CONFIG_SMP
68e8a9fe 256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 257#else
68e8a9fe 258 mnt->mnt_writers--;
d3ef3d73 259#endif
3d733633 260}
3d733633 261
83adc753 262static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 263{
d3ef3d73 264#ifdef CONFIG_SMP
265 unsigned int count = 0;
3d733633 266 int cpu;
3d733633
DH
267
268 for_each_possible_cpu(cpu) {
68e8a9fe 269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 270 }
3d733633 271
d3ef3d73 272 return count;
273#else
274 return mnt->mnt_writers;
275#endif
3d733633
DH
276}
277
4ed5e82f
MS
278static int mnt_is_readonly(struct vfsmount *mnt)
279{
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285}
286
8366025e 287/*
eb04c282
JK
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
8366025e
DH
292 */
293/**
eb04c282 294 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 295 * @m: the mount on which to take a write
8366025e 296 *
eb04c282
JK
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
8366025e 302 */
eb04c282 303int __mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
83adc753 316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
eb04c282
JK
329
330 return ret;
331}
332
333/**
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
341 */
342int mnt_want_write(struct vfsmount *m)
343{
344 int ret;
345
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
3d733633 350 return ret;
8366025e
DH
351}
352EXPORT_SYMBOL_GPL(mnt_want_write);
353
96029c4e 354/**
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
357 *
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
362 *
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
365 */
366int mnt_clone_write(struct vfsmount *mnt)
367{
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
83adc753 372 mnt_inc_writers(real_mount(mnt));
96029c4e 373 preempt_enable();
374 return 0;
375}
376EXPORT_SYMBOL_GPL(mnt_clone_write);
377
378/**
eb04c282 379 * __mnt_want_write_file - get write access to a file's mount
96029c4e 380 * @file: the file who's mount on which to take a write
381 *
eb04c282 382 * This is like __mnt_want_write, but it takes a file and can
96029c4e 383 * do some optimisations if the file is open for write already
384 */
eb04c282 385int __mnt_want_write_file(struct file *file)
96029c4e 386{
2d8dd38a 387 struct inode *inode = file->f_dentry->d_inode;
eb04c282 388
2d8dd38a 389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 390 return __mnt_want_write(file->f_path.mnt);
96029c4e 391 else
392 return mnt_clone_write(file->f_path.mnt);
393}
eb04c282
JK
394
395/**
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
398 *
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
401 */
402int mnt_want_write_file(struct file *file)
403{
404 int ret;
405
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
411}
96029c4e 412EXPORT_SYMBOL_GPL(mnt_want_write_file);
413
8366025e 414/**
eb04c282 415 * __mnt_drop_write - give up write access to a mount
8366025e
DH
416 * @mnt: the mount on which to give up write access
417 *
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
eb04c282 420 * __mnt_want_write() call above.
8366025e 421 */
eb04c282 422void __mnt_drop_write(struct vfsmount *mnt)
8366025e 423{
d3ef3d73 424 preempt_disable();
83adc753 425 mnt_dec_writers(real_mount(mnt));
d3ef3d73 426 preempt_enable();
8366025e 427}
eb04c282
JK
428
429/**
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
436 */
437void mnt_drop_write(struct vfsmount *mnt)
438{
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
441}
8366025e
DH
442EXPORT_SYMBOL_GPL(mnt_drop_write);
443
eb04c282
JK
444void __mnt_drop_write_file(struct file *file)
445{
446 __mnt_drop_write(file->f_path.mnt);
447}
448
2a79f17e
AV
449void mnt_drop_write_file(struct file *file)
450{
451 mnt_drop_write(file->f_path.mnt);
452}
453EXPORT_SYMBOL(mnt_drop_write_file);
454
83adc753 455static int mnt_make_readonly(struct mount *mnt)
8366025e 456{
3d733633
DH
457 int ret = 0;
458
962830df 459 br_write_lock(&vfsmount_lock);
83adc753 460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 461 /*
d3ef3d73 462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
3d733633 464 */
d3ef3d73 465 smp_mb();
466
3d733633 467 /*
d3ef3d73 468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
472 *
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
3d733633 482 */
c6653a83 483 if (mnt_get_writers(mnt) > 0)
d3ef3d73 484 ret = -EBUSY;
485 else
83adc753 486 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 487 /*
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
490 */
491 smp_wmb();
83adc753 492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 493 br_write_unlock(&vfsmount_lock);
3d733633 494 return ret;
8366025e 495}
8366025e 496
83adc753 497static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 498{
962830df 499 br_write_lock(&vfsmount_lock);
83adc753 500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 501 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
502}
503
4ed5e82f
MS
504int sb_prepare_remount_readonly(struct super_block *sb)
505{
506 struct mount *mnt;
507 int err = 0;
508
8e8b8796
MS
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
512
962830df 513 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
521 }
522 }
523 }
8e8b8796
MS
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
526
4ed5e82f
MS
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
530 }
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 }
962830df 535 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
536
537 return err;
538}
539
b105e270 540static void free_vfsmnt(struct mount *mnt)
1da177e4 541{
52ba1621 542 kfree(mnt->mnt_devname);
73cd49ec 543 mnt_free_id(mnt);
d3ef3d73 544#ifdef CONFIG_SMP
68e8a9fe 545 free_percpu(mnt->mnt_pcp);
d3ef3d73 546#endif
b105e270 547 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
548}
549
550/*
a05964f3
RP
551 * find the first or last mount at @dentry on vfsmount @mnt depending on
552 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 553 * vfsmount_lock must be held for read or write.
1da177e4 554 */
c7105365 555struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 556 int dir)
1da177e4 557{
b58fed8b
RP
558 struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 struct list_head *tmp = head;
c7105365 560 struct mount *p, *found = NULL;
1da177e4 561
1da177e4 562 for (;;) {
a05964f3 563 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
564 p = NULL;
565 if (tmp == head)
566 break;
1b8e5564 567 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 569 found = p;
1da177e4
LT
570 break;
571 }
572 }
1da177e4
LT
573 return found;
574}
575
a05964f3 576/*
f015f126
DH
577 * lookup_mnt - Return the first child mount mounted at path
578 *
579 * "First" means first mounted chronologically. If you create the
580 * following mounts:
581 *
582 * mount /dev/sda1 /mnt
583 * mount /dev/sda2 /mnt
584 * mount /dev/sda3 /mnt
585 *
586 * Then lookup_mnt() on the base /mnt dentry in the root mount will
587 * return successively the root dentry and vfsmount of /dev/sda1, then
588 * /dev/sda2, then /dev/sda3, then NULL.
589 *
590 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 591 */
1c755af4 592struct vfsmount *lookup_mnt(struct path *path)
a05964f3 593{
c7105365 594 struct mount *child_mnt;
99b7db7b 595
962830df 596 br_read_lock(&vfsmount_lock);
c7105365
AV
597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 if (child_mnt) {
599 mnt_add_count(child_mnt, 1);
962830df 600 br_read_unlock(&vfsmount_lock);
c7105365
AV
601 return &child_mnt->mnt;
602 } else {
962830df 603 br_read_unlock(&vfsmount_lock);
c7105365
AV
604 return NULL;
605 }
a05964f3
RP
606}
607
143c8c91 608static inline int check_mnt(struct mount *mnt)
1da177e4 609{
6b3286ed 610 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
611}
612
99b7db7b
NP
613/*
614 * vfsmount lock must be held for write
615 */
6b3286ed 616static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
617{
618 if (ns) {
619 ns->event = ++event;
620 wake_up_interruptible(&ns->poll);
621 }
622}
623
99b7db7b
NP
624/*
625 * vfsmount lock must be held for write
626 */
6b3286ed 627static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
628{
629 if (ns && ns->event != event) {
630 ns->event = event;
631 wake_up_interruptible(&ns->poll);
632 }
633}
634
5f57cbcc
NP
635/*
636 * Clear dentry's mounted state if it has no remaining mounts.
637 * vfsmount_lock must be held for write.
638 */
aa0a4cf0 639static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
640{
641 unsigned u;
642
643 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 644 struct mount *p;
5f57cbcc 645
1b8e5564 646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 647 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
648 return;
649 }
650 }
651 spin_lock(&dentry->d_lock);
652 dentry->d_flags &= ~DCACHE_MOUNTED;
653 spin_unlock(&dentry->d_lock);
654}
655
99b7db7b
NP
656/*
657 * vfsmount lock must be held for write
658 */
419148da
AV
659static void detach_mnt(struct mount *mnt, struct path *old_path)
660{
a73324da 661 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
662 old_path->mnt = &mnt->mnt_parent->mnt;
663 mnt->mnt_parent = mnt;
a73324da 664 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 665 list_del_init(&mnt->mnt_child);
1b8e5564 666 list_del_init(&mnt->mnt_hash);
aa0a4cf0 667 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
668}
669
99b7db7b
NP
670/*
671 * vfsmount lock must be held for write
672 */
14cf1fa8 673void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 674 struct mount *child_mnt)
b90fa9ae 675{
3a2393d7 676 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 677 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 678 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
679 spin_lock(&dentry->d_lock);
680 dentry->d_flags |= DCACHE_MOUNTED;
681 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
682}
683
99b7db7b
NP
684/*
685 * vfsmount lock must be held for write
686 */
419148da 687static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 688{
14cf1fa8 689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 690 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 691 hash(path->mnt, path->dentry));
6b41d536 692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
693}
694
695/*
99b7db7b 696 * vfsmount lock must be held for write
b90fa9ae 697 */
4b2619a5 698static void commit_tree(struct mount *mnt)
b90fa9ae 699{
0714a533 700 struct mount *parent = mnt->mnt_parent;
83adc753 701 struct mount *m;
b90fa9ae 702 LIST_HEAD(head);
143c8c91 703 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 704
0714a533 705 BUG_ON(parent == mnt);
b90fa9ae 706
1a4eeaf2 707 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 708 list_for_each_entry(m, &head, mnt_list)
143c8c91 709 m->mnt_ns = n;
f03c6599 710
b90fa9ae
RP
711 list_splice(&head, n->list.prev);
712
1b8e5564 713 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 714 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 716 touch_mnt_namespace(n);
1da177e4
LT
717}
718
909b0a88 719static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 720{
6b41d536
AV
721 struct list_head *next = p->mnt_mounts.next;
722 if (next == &p->mnt_mounts) {
1da177e4 723 while (1) {
909b0a88 724 if (p == root)
1da177e4 725 return NULL;
6b41d536
AV
726 next = p->mnt_child.next;
727 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 728 break;
0714a533 729 p = p->mnt_parent;
1da177e4
LT
730 }
731 }
6b41d536 732 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
733}
734
315fc83e 735static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 736{
6b41d536
AV
737 struct list_head *prev = p->mnt_mounts.prev;
738 while (prev != &p->mnt_mounts) {
739 p = list_entry(prev, struct mount, mnt_child);
740 prev = p->mnt_mounts.prev;
9676f0c6
RP
741 }
742 return p;
743}
744
9d412a43
AV
745struct vfsmount *
746vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
747{
b105e270 748 struct mount *mnt;
9d412a43
AV
749 struct dentry *root;
750
751 if (!type)
752 return ERR_PTR(-ENODEV);
753
754 mnt = alloc_vfsmnt(name);
755 if (!mnt)
756 return ERR_PTR(-ENOMEM);
757
758 if (flags & MS_KERNMOUNT)
b105e270 759 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
760
761 root = mount_fs(type, flags, name, data);
762 if (IS_ERR(root)) {
763 free_vfsmnt(mnt);
764 return ERR_CAST(root);
765 }
766
b105e270
AV
767 mnt->mnt.mnt_root = root;
768 mnt->mnt.mnt_sb = root->d_sb;
a73324da 769 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 770 mnt->mnt_parent = mnt;
962830df 771 br_write_lock(&vfsmount_lock);
39f7c4db 772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 773 br_write_unlock(&vfsmount_lock);
b105e270 774 return &mnt->mnt;
9d412a43
AV
775}
776EXPORT_SYMBOL_GPL(vfs_kern_mount);
777
87129cc0 778static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 779 int flag)
1da177e4 780{
87129cc0 781 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
782 struct mount *mnt;
783 int err;
1da177e4 784
be34d1a3
DH
785 mnt = alloc_vfsmnt(old->mnt_devname);
786 if (!mnt)
787 return ERR_PTR(-ENOMEM);
719f5d7f 788
be34d1a3
DH
789 if (flag & (CL_SLAVE | CL_PRIVATE))
790 mnt->mnt_group_id = 0; /* not a peer of original */
791 else
792 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 793
be34d1a3
DH
794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 err = mnt_alloc_group_id(mnt);
796 if (err)
797 goto out_free;
1da177e4 798 }
be34d1a3
DH
799
800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 atomic_inc(&sb->s_active);
802 mnt->mnt.mnt_sb = sb;
803 mnt->mnt.mnt_root = dget(root);
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 mnt->mnt_parent = mnt;
806 br_write_lock(&vfsmount_lock);
807 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
808 br_write_unlock(&vfsmount_lock);
809
810 if (flag & CL_SLAVE) {
811 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
812 mnt->mnt_master = old;
813 CLEAR_MNT_SHARED(mnt);
814 } else if (!(flag & CL_PRIVATE)) {
815 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
816 list_add(&mnt->mnt_share, &old->mnt_share);
817 if (IS_MNT_SLAVE(old))
818 list_add(&mnt->mnt_slave, &old->mnt_slave);
819 mnt->mnt_master = old->mnt_master;
820 }
821 if (flag & CL_MAKE_SHARED)
822 set_mnt_shared(mnt);
823
824 /* stick the duplicate mount on the same expiry list
825 * as the original if that was on one */
826 if (flag & CL_EXPIRE) {
827 if (!list_empty(&old->mnt_expire))
828 list_add(&mnt->mnt_expire, &old->mnt_expire);
829 }
830
cb338d06 831 return mnt;
719f5d7f
MS
832
833 out_free:
834 free_vfsmnt(mnt);
be34d1a3 835 return ERR_PTR(err);
1da177e4
LT
836}
837
83adc753 838static inline void mntfree(struct mount *mnt)
1da177e4 839{
83adc753
AV
840 struct vfsmount *m = &mnt->mnt;
841 struct super_block *sb = m->mnt_sb;
b3e19d92 842
3d733633
DH
843 /*
844 * This probably indicates that somebody messed
845 * up a mnt_want/drop_write() pair. If this
846 * happens, the filesystem was probably unable
847 * to make r/w->r/o transitions.
848 */
d3ef3d73 849 /*
b3e19d92
NP
850 * The locking used to deal with mnt_count decrement provides barriers,
851 * so mnt_get_writers() below is safe.
d3ef3d73 852 */
c6653a83 853 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
854 fsnotify_vfsmount_delete(m);
855 dput(m->mnt_root);
856 free_vfsmnt(mnt);
1da177e4
LT
857 deactivate_super(sb);
858}
859
900148dc 860static void mntput_no_expire(struct mount *mnt)
b3e19d92 861{
b3e19d92 862put_again:
f03c6599 863#ifdef CONFIG_SMP
962830df 864 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
865 if (likely(mnt->mnt_ns)) {
866 /* shouldn't be the last one */
aa9c0e07 867 mnt_add_count(mnt, -1);
962830df 868 br_read_unlock(&vfsmount_lock);
f03c6599 869 return;
b3e19d92 870 }
962830df 871 br_read_unlock(&vfsmount_lock);
b3e19d92 872
962830df 873 br_write_lock(&vfsmount_lock);
aa9c0e07 874 mnt_add_count(mnt, -1);
b3e19d92 875 if (mnt_get_count(mnt)) {
962830df 876 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
877 return;
878 }
b3e19d92 879#else
aa9c0e07 880 mnt_add_count(mnt, -1);
b3e19d92 881 if (likely(mnt_get_count(mnt)))
99b7db7b 882 return;
962830df 883 br_write_lock(&vfsmount_lock);
f03c6599 884#endif
863d684f
AV
885 if (unlikely(mnt->mnt_pinned)) {
886 mnt_add_count(mnt, mnt->mnt_pinned + 1);
887 mnt->mnt_pinned = 0;
962830df 888 br_write_unlock(&vfsmount_lock);
900148dc 889 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 890 goto put_again;
7b7b1ace 891 }
962830df 892
39f7c4db 893 list_del(&mnt->mnt_instance);
962830df 894 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
895 mntfree(mnt);
896}
b3e19d92
NP
897
898void mntput(struct vfsmount *mnt)
899{
900 if (mnt) {
863d684f 901 struct mount *m = real_mount(mnt);
b3e19d92 902 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
903 if (unlikely(m->mnt_expiry_mark))
904 m->mnt_expiry_mark = 0;
905 mntput_no_expire(m);
b3e19d92
NP
906 }
907}
908EXPORT_SYMBOL(mntput);
909
910struct vfsmount *mntget(struct vfsmount *mnt)
911{
912 if (mnt)
83adc753 913 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
914 return mnt;
915}
916EXPORT_SYMBOL(mntget);
917
7b7b1ace
AV
918void mnt_pin(struct vfsmount *mnt)
919{
962830df 920 br_write_lock(&vfsmount_lock);
863d684f 921 real_mount(mnt)->mnt_pinned++;
962830df 922 br_write_unlock(&vfsmount_lock);
7b7b1ace 923}
7b7b1ace
AV
924EXPORT_SYMBOL(mnt_pin);
925
863d684f 926void mnt_unpin(struct vfsmount *m)
7b7b1ace 927{
863d684f 928 struct mount *mnt = real_mount(m);
962830df 929 br_write_lock(&vfsmount_lock);
7b7b1ace 930 if (mnt->mnt_pinned) {
863d684f 931 mnt_add_count(mnt, 1);
7b7b1ace
AV
932 mnt->mnt_pinned--;
933 }
962830df 934 br_write_unlock(&vfsmount_lock);
7b7b1ace 935}
7b7b1ace 936EXPORT_SYMBOL(mnt_unpin);
1da177e4 937
b3b304a2
MS
938static inline void mangle(struct seq_file *m, const char *s)
939{
940 seq_escape(m, s, " \t\n\\");
941}
942
943/*
944 * Simple .show_options callback for filesystems which don't want to
945 * implement more complex mount option showing.
946 *
947 * See also save_mount_options().
948 */
34c80b1d 949int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 950{
2a32cebd
AV
951 const char *options;
952
953 rcu_read_lock();
34c80b1d 954 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
955
956 if (options != NULL && options[0]) {
957 seq_putc(m, ',');
958 mangle(m, options);
959 }
2a32cebd 960 rcu_read_unlock();
b3b304a2
MS
961
962 return 0;
963}
964EXPORT_SYMBOL(generic_show_options);
965
966/*
967 * If filesystem uses generic_show_options(), this function should be
968 * called from the fill_super() callback.
969 *
970 * The .remount_fs callback usually needs to be handled in a special
971 * way, to make sure, that previous options are not overwritten if the
972 * remount fails.
973 *
974 * Also note, that if the filesystem's .remount_fs function doesn't
975 * reset all options to their default value, but changes only newly
976 * given options, then the displayed options will not reflect reality
977 * any more.
978 */
979void save_mount_options(struct super_block *sb, char *options)
980{
2a32cebd
AV
981 BUG_ON(sb->s_options);
982 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
983}
984EXPORT_SYMBOL(save_mount_options);
985
2a32cebd
AV
986void replace_mount_options(struct super_block *sb, char *options)
987{
988 char *old = sb->s_options;
989 rcu_assign_pointer(sb->s_options, options);
990 if (old) {
991 synchronize_rcu();
992 kfree(old);
993 }
994}
995EXPORT_SYMBOL(replace_mount_options);
996
a1a2c409 997#ifdef CONFIG_PROC_FS
0226f492 998/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
999static void *m_start(struct seq_file *m, loff_t *pos)
1000{
6ce6e24e 1001 struct proc_mounts *p = proc_mounts(m);
1da177e4 1002
390c6843 1003 down_read(&namespace_sem);
a1a2c409 1004 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1005}
1006
1007static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1008{
6ce6e24e 1009 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1010
a1a2c409 1011 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1012}
1013
1014static void m_stop(struct seq_file *m, void *v)
1015{
390c6843 1016 up_read(&namespace_sem);
1da177e4
LT
1017}
1018
0226f492 1019static int m_show(struct seq_file *m, void *v)
2d4d4864 1020{
6ce6e24e 1021 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1022 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1023 return p->show(m, &r->mnt);
1da177e4
LT
1024}
1025
a1a2c409 1026const struct seq_operations mounts_op = {
1da177e4
LT
1027 .start = m_start,
1028 .next = m_next,
1029 .stop = m_stop,
0226f492 1030 .show = m_show,
b4629fe2 1031};
a1a2c409 1032#endif /* CONFIG_PROC_FS */
b4629fe2 1033
1da177e4
LT
1034/**
1035 * may_umount_tree - check if a mount tree is busy
1036 * @mnt: root of mount tree
1037 *
1038 * This is called to check if a tree of mounts has any
1039 * open files, pwds, chroots or sub mounts that are
1040 * busy.
1041 */
909b0a88 1042int may_umount_tree(struct vfsmount *m)
1da177e4 1043{
909b0a88 1044 struct mount *mnt = real_mount(m);
36341f64
RP
1045 int actual_refs = 0;
1046 int minimum_refs = 0;
315fc83e 1047 struct mount *p;
909b0a88 1048 BUG_ON(!m);
1da177e4 1049
b3e19d92 1050 /* write lock needed for mnt_get_count */
962830df 1051 br_write_lock(&vfsmount_lock);
909b0a88 1052 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1053 actual_refs += mnt_get_count(p);
1da177e4 1054 minimum_refs += 2;
1da177e4 1055 }
962830df 1056 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1057
1058 if (actual_refs > minimum_refs)
e3474a8e 1059 return 0;
1da177e4 1060
e3474a8e 1061 return 1;
1da177e4
LT
1062}
1063
1064EXPORT_SYMBOL(may_umount_tree);
1065
1066/**
1067 * may_umount - check if a mount point is busy
1068 * @mnt: root of mount
1069 *
1070 * This is called to check if a mount point has any
1071 * open files, pwds, chroots or sub mounts. If the
1072 * mount has sub mounts this will return busy
1073 * regardless of whether the sub mounts are busy.
1074 *
1075 * Doesn't take quota and stuff into account. IOW, in some cases it will
1076 * give false negatives. The main reason why it's here is that we need
1077 * a non-destructive way to look for easily umountable filesystems.
1078 */
1079int may_umount(struct vfsmount *mnt)
1080{
e3474a8e 1081 int ret = 1;
8ad08d8a 1082 down_read(&namespace_sem);
962830df 1083 br_write_lock(&vfsmount_lock);
1ab59738 1084 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1085 ret = 0;
962830df 1086 br_write_unlock(&vfsmount_lock);
8ad08d8a 1087 up_read(&namespace_sem);
a05964f3 1088 return ret;
1da177e4
LT
1089}
1090
1091EXPORT_SYMBOL(may_umount);
1092
b90fa9ae 1093void release_mounts(struct list_head *head)
70fbcdf4 1094{
d5e50f74 1095 struct mount *mnt;
bf066c7d 1096 while (!list_empty(head)) {
1b8e5564
AV
1097 mnt = list_first_entry(head, struct mount, mnt_hash);
1098 list_del_init(&mnt->mnt_hash);
676da58d 1099 if (mnt_has_parent(mnt)) {
70fbcdf4 1100 struct dentry *dentry;
863d684f 1101 struct mount *m;
99b7db7b 1102
962830df 1103 br_write_lock(&vfsmount_lock);
a73324da 1104 dentry = mnt->mnt_mountpoint;
863d684f 1105 m = mnt->mnt_parent;
a73324da 1106 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1107 mnt->mnt_parent = mnt;
7c4b93d8 1108 m->mnt_ghosts--;
962830df 1109 br_write_unlock(&vfsmount_lock);
70fbcdf4 1110 dput(dentry);
863d684f 1111 mntput(&m->mnt);
70fbcdf4 1112 }
d5e50f74 1113 mntput(&mnt->mnt);
70fbcdf4
RP
1114 }
1115}
1116
99b7db7b
NP
1117/*
1118 * vfsmount lock must be held for write
1119 * namespace_sem must be held for write
1120 */
761d5c38 1121void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1122{
7b8a53fd 1123 LIST_HEAD(tmp_list);
315fc83e 1124 struct mount *p;
1da177e4 1125
909b0a88 1126 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1127 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1128
a05964f3 1129 if (propagate)
7b8a53fd 1130 propagate_umount(&tmp_list);
a05964f3 1131
1b8e5564 1132 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1133 list_del_init(&p->mnt_expire);
1a4eeaf2 1134 list_del_init(&p->mnt_list);
143c8c91
AV
1135 __touch_mnt_namespace(p->mnt_ns);
1136 p->mnt_ns = NULL;
6b41d536 1137 list_del_init(&p->mnt_child);
676da58d 1138 if (mnt_has_parent(p)) {
863d684f 1139 p->mnt_parent->mnt_ghosts++;
a73324da 1140 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1141 }
0f0afb1d 1142 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1143 }
7b8a53fd 1144 list_splice(&tmp_list, kill);
1da177e4
LT
1145}
1146
692afc31 1147static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1148
1ab59738 1149static int do_umount(struct mount *mnt, int flags)
1da177e4 1150{
1ab59738 1151 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1152 int retval;
70fbcdf4 1153 LIST_HEAD(umount_list);
1da177e4 1154
1ab59738 1155 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1156 if (retval)
1157 return retval;
1158
1159 /*
1160 * Allow userspace to request a mountpoint be expired rather than
1161 * unmounting unconditionally. Unmount only happens if:
1162 * (1) the mark is already set (the mark is cleared by mntput())
1163 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1164 */
1165 if (flags & MNT_EXPIRE) {
1ab59738 1166 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1167 flags & (MNT_FORCE | MNT_DETACH))
1168 return -EINVAL;
1169
b3e19d92
NP
1170 /*
1171 * probably don't strictly need the lock here if we examined
1172 * all race cases, but it's a slowpath.
1173 */
962830df 1174 br_write_lock(&vfsmount_lock);
83adc753 1175 if (mnt_get_count(mnt) != 2) {
962830df 1176 br_write_unlock(&vfsmount_lock);
1da177e4 1177 return -EBUSY;
b3e19d92 1178 }
962830df 1179 br_write_unlock(&vfsmount_lock);
1da177e4 1180
863d684f 1181 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1182 return -EAGAIN;
1183 }
1184
1185 /*
1186 * If we may have to abort operations to get out of this
1187 * mount, and they will themselves hold resources we must
1188 * allow the fs to do things. In the Unix tradition of
1189 * 'Gee thats tricky lets do it in userspace' the umount_begin
1190 * might fail to complete on the first run through as other tasks
1191 * must return, and the like. Thats for the mount program to worry
1192 * about for the moment.
1193 */
1194
42faad99 1195 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1196 sb->s_op->umount_begin(sb);
42faad99 1197 }
1da177e4
LT
1198
1199 /*
1200 * No sense to grab the lock for this test, but test itself looks
1201 * somewhat bogus. Suggestions for better replacement?
1202 * Ho-hum... In principle, we might treat that as umount + switch
1203 * to rootfs. GC would eventually take care of the old vfsmount.
1204 * Actually it makes sense, especially if rootfs would contain a
1205 * /reboot - static binary that would close all descriptors and
1206 * call reboot(9). Then init(8) could umount root and exec /reboot.
1207 */
1ab59738 1208 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1209 /*
1210 * Special case for "unmounting" root ...
1211 * we just try to remount it readonly.
1212 */
1213 down_write(&sb->s_umount);
4aa98cf7 1214 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1215 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1216 up_write(&sb->s_umount);
1217 return retval;
1218 }
1219
390c6843 1220 down_write(&namespace_sem);
962830df 1221 br_write_lock(&vfsmount_lock);
5addc5dd 1222 event++;
1da177e4 1223
c35038be 1224 if (!(flags & MNT_DETACH))
1ab59738 1225 shrink_submounts(mnt, &umount_list);
c35038be 1226
1da177e4 1227 retval = -EBUSY;
a05964f3 1228 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1229 if (!list_empty(&mnt->mnt_list))
1ab59738 1230 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1231 retval = 0;
1232 }
962830df 1233 br_write_unlock(&vfsmount_lock);
390c6843 1234 up_write(&namespace_sem);
70fbcdf4 1235 release_mounts(&umount_list);
1da177e4
LT
1236 return retval;
1237}
1238
1239/*
1240 * Now umount can handle mount points as well as block devices.
1241 * This is important for filesystems which use unnamed block devices.
1242 *
1243 * We now support a flag for forced unmount like the other 'big iron'
1244 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1245 */
1246
bdc480e3 1247SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1248{
2d8f3038 1249 struct path path;
900148dc 1250 struct mount *mnt;
1da177e4 1251 int retval;
db1f05bb 1252 int lookup_flags = 0;
1da177e4 1253
db1f05bb
MS
1254 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1255 return -EINVAL;
1256
1257 if (!(flags & UMOUNT_NOFOLLOW))
1258 lookup_flags |= LOOKUP_FOLLOW;
1259
1260 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1261 if (retval)
1262 goto out;
900148dc 1263 mnt = real_mount(path.mnt);
1da177e4 1264 retval = -EINVAL;
2d8f3038 1265 if (path.dentry != path.mnt->mnt_root)
1da177e4 1266 goto dput_and_out;
143c8c91 1267 if (!check_mnt(mnt))
1da177e4
LT
1268 goto dput_and_out;
1269
1270 retval = -EPERM;
1271 if (!capable(CAP_SYS_ADMIN))
1272 goto dput_and_out;
1273
900148dc 1274 retval = do_umount(mnt, flags);
1da177e4 1275dput_and_out:
429731b1 1276 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1277 dput(path.dentry);
900148dc 1278 mntput_no_expire(mnt);
1da177e4
LT
1279out:
1280 return retval;
1281}
1282
1283#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1284
1285/*
b58fed8b 1286 * The 2.0 compatible umount. No flags.
1da177e4 1287 */
bdc480e3 1288SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1289{
b58fed8b 1290 return sys_umount(name, 0);
1da177e4
LT
1291}
1292
1293#endif
1294
2d92ab3c 1295static int mount_is_safe(struct path *path)
1da177e4
LT
1296{
1297 if (capable(CAP_SYS_ADMIN))
1298 return 0;
1299 return -EPERM;
1300#ifdef notyet
2d92ab3c 1301 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1302 return -EPERM;
2d92ab3c 1303 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1304 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1305 return -EPERM;
1306 }
2d92ab3c 1307 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1308 return -EPERM;
1309 return 0;
1310#endif
1311}
1312
8823c079
EB
1313static bool mnt_ns_loop(struct path *path)
1314{
1315 /* Could bind mounting the mount namespace inode cause a
1316 * mount namespace loop?
1317 */
1318 struct inode *inode = path->dentry->d_inode;
1319 struct proc_inode *ei;
1320 struct mnt_namespace *mnt_ns;
1321
1322 if (!proc_ns_inode(inode))
1323 return false;
1324
1325 ei = PROC_I(inode);
1326 if (ei->ns_ops != &mntns_operations)
1327 return false;
1328
1329 mnt_ns = ei->ns;
1330 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1331}
1332
87129cc0 1333struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1334 int flag)
1da177e4 1335{
a73324da 1336 struct mount *res, *p, *q, *r;
1a390689 1337 struct path path;
1da177e4 1338
fc7be130 1339 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1340 return ERR_PTR(-EINVAL);
9676f0c6 1341
36341f64 1342 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1343 if (IS_ERR(q))
1344 return q;
1345
a73324da 1346 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1347
1348 p = mnt;
6b41d536 1349 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1350 struct mount *s;
7ec02ef1 1351 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1352 continue;
1353
909b0a88 1354 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1355 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1356 s = skip_mnt_tree(s);
1357 continue;
1358 }
0714a533
AV
1359 while (p != s->mnt_parent) {
1360 p = p->mnt_parent;
1361 q = q->mnt_parent;
1da177e4 1362 }
87129cc0 1363 p = s;
cb338d06 1364 path.mnt = &q->mnt;
a73324da 1365 path.dentry = p->mnt_mountpoint;
87129cc0 1366 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1367 if (IS_ERR(q))
1368 goto out;
962830df 1369 br_write_lock(&vfsmount_lock);
1a4eeaf2 1370 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1371 attach_mnt(q, &path);
962830df 1372 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1373 }
1374 }
1375 return res;
be34d1a3 1376out:
1da177e4 1377 if (res) {
70fbcdf4 1378 LIST_HEAD(umount_list);
962830df 1379 br_write_lock(&vfsmount_lock);
761d5c38 1380 umount_tree(res, 0, &umount_list);
962830df 1381 br_write_unlock(&vfsmount_lock);
70fbcdf4 1382 release_mounts(&umount_list);
1da177e4 1383 }
be34d1a3 1384 return q;
1da177e4
LT
1385}
1386
be34d1a3
DH
1387/* Caller should check returned pointer for errors */
1388
589ff870 1389struct vfsmount *collect_mounts(struct path *path)
8aec0809 1390{
cb338d06 1391 struct mount *tree;
1a60a280 1392 down_write(&namespace_sem);
87129cc0
AV
1393 tree = copy_tree(real_mount(path->mnt), path->dentry,
1394 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1395 up_write(&namespace_sem);
be34d1a3
DH
1396 if (IS_ERR(tree))
1397 return NULL;
1398 return &tree->mnt;
8aec0809
AV
1399}
1400
1401void drop_collected_mounts(struct vfsmount *mnt)
1402{
1403 LIST_HEAD(umount_list);
1a60a280 1404 down_write(&namespace_sem);
962830df 1405 br_write_lock(&vfsmount_lock);
761d5c38 1406 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1407 br_write_unlock(&vfsmount_lock);
1a60a280 1408 up_write(&namespace_sem);
8aec0809
AV
1409 release_mounts(&umount_list);
1410}
1411
1f707137
AV
1412int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1413 struct vfsmount *root)
1414{
1a4eeaf2 1415 struct mount *mnt;
1f707137
AV
1416 int res = f(root, arg);
1417 if (res)
1418 return res;
1a4eeaf2
AV
1419 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1420 res = f(&mnt->mnt, arg);
1f707137
AV
1421 if (res)
1422 return res;
1423 }
1424 return 0;
1425}
1426
4b8b21f4 1427static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1428{
315fc83e 1429 struct mount *p;
719f5d7f 1430
909b0a88 1431 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1432 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1433 mnt_release_group_id(p);
719f5d7f
MS
1434 }
1435}
1436
4b8b21f4 1437static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1438{
315fc83e 1439 struct mount *p;
719f5d7f 1440
909b0a88 1441 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1442 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1443 int err = mnt_alloc_group_id(p);
719f5d7f 1444 if (err) {
4b8b21f4 1445 cleanup_group_ids(mnt, p);
719f5d7f
MS
1446 return err;
1447 }
1448 }
1449 }
1450
1451 return 0;
1452}
1453
b90fa9ae
RP
1454/*
1455 * @source_mnt : mount tree to be attached
21444403
RP
1456 * @nd : place the mount tree @source_mnt is attached
1457 * @parent_nd : if non-null, detach the source_mnt from its parent and
1458 * store the parent mount and mountpoint dentry.
1459 * (done when source_mnt is moved)
b90fa9ae
RP
1460 *
1461 * NOTE: in the table below explains the semantics when a source mount
1462 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1463 * ---------------------------------------------------------------------------
1464 * | BIND MOUNT OPERATION |
1465 * |**************************************************************************
1466 * | source-->| shared | private | slave | unbindable |
1467 * | dest | | | | |
1468 * | | | | | | |
1469 * | v | | | | |
1470 * |**************************************************************************
1471 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1472 * | | | | | |
1473 * |non-shared| shared (+) | private | slave (*) | invalid |
1474 * ***************************************************************************
b90fa9ae
RP
1475 * A bind operation clones the source mount and mounts the clone on the
1476 * destination mount.
1477 *
1478 * (++) the cloned mount is propagated to all the mounts in the propagation
1479 * tree of the destination mount and the cloned mount is added to
1480 * the peer group of the source mount.
1481 * (+) the cloned mount is created under the destination mount and is marked
1482 * as shared. The cloned mount is added to the peer group of the source
1483 * mount.
5afe0022
RP
1484 * (+++) the mount is propagated to all the mounts in the propagation tree
1485 * of the destination mount and the cloned mount is made slave
1486 * of the same master as that of the source mount. The cloned mount
1487 * is marked as 'shared and slave'.
1488 * (*) the cloned mount is made a slave of the same master as that of the
1489 * source mount.
1490 *
9676f0c6
RP
1491 * ---------------------------------------------------------------------------
1492 * | MOVE MOUNT OPERATION |
1493 * |**************************************************************************
1494 * | source-->| shared | private | slave | unbindable |
1495 * | dest | | | | |
1496 * | | | | | | |
1497 * | v | | | | |
1498 * |**************************************************************************
1499 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1500 * | | | | | |
1501 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1502 * ***************************************************************************
5afe0022
RP
1503 *
1504 * (+) the mount is moved to the destination. And is then propagated to
1505 * all the mounts in the propagation tree of the destination mount.
21444403 1506 * (+*) the mount is moved to the destination.
5afe0022
RP
1507 * (+++) the mount is moved to the destination and is then propagated to
1508 * all the mounts belonging to the destination mount's propagation tree.
1509 * the mount is marked as 'shared and slave'.
1510 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1511 *
1512 * if the source mount is a tree, the operations explained above is
1513 * applied to each mount in the tree.
1514 * Must be called without spinlocks held, since this function can sleep
1515 * in allocations.
1516 */
0fb54e50 1517static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1518 struct path *path, struct path *parent_path)
b90fa9ae
RP
1519{
1520 LIST_HEAD(tree_list);
a8d56d8e 1521 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1522 struct dentry *dest_dentry = path->dentry;
315fc83e 1523 struct mount *child, *p;
719f5d7f 1524 int err;
b90fa9ae 1525
fc7be130 1526 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1527 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1528 if (err)
1529 goto out;
1530 }
a8d56d8e 1531 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1532 if (err)
1533 goto out_cleanup_ids;
b90fa9ae 1534
962830df 1535 br_write_lock(&vfsmount_lock);
df1a1ad2 1536
fc7be130 1537 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1538 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1539 set_mnt_shared(p);
b90fa9ae 1540 }
1a390689 1541 if (parent_path) {
0fb54e50
AV
1542 detach_mnt(source_mnt, parent_path);
1543 attach_mnt(source_mnt, path);
143c8c91 1544 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1545 } else {
14cf1fa8 1546 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1547 commit_tree(source_mnt);
21444403 1548 }
b90fa9ae 1549
1b8e5564
AV
1550 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1551 list_del_init(&child->mnt_hash);
4b2619a5 1552 commit_tree(child);
b90fa9ae 1553 }
962830df 1554 br_write_unlock(&vfsmount_lock);
99b7db7b 1555
b90fa9ae 1556 return 0;
719f5d7f
MS
1557
1558 out_cleanup_ids:
fc7be130 1559 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1560 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1561 out:
1562 return err;
b90fa9ae
RP
1563}
1564
b12cea91
AV
1565static int lock_mount(struct path *path)
1566{
1567 struct vfsmount *mnt;
1568retry:
1569 mutex_lock(&path->dentry->d_inode->i_mutex);
1570 if (unlikely(cant_mount(path->dentry))) {
1571 mutex_unlock(&path->dentry->d_inode->i_mutex);
1572 return -ENOENT;
1573 }
1574 down_write(&namespace_sem);
1575 mnt = lookup_mnt(path);
1576 if (likely(!mnt))
1577 return 0;
1578 up_write(&namespace_sem);
1579 mutex_unlock(&path->dentry->d_inode->i_mutex);
1580 path_put(path);
1581 path->mnt = mnt;
1582 path->dentry = dget(mnt->mnt_root);
1583 goto retry;
1584}
1585
1586static void unlock_mount(struct path *path)
1587{
1588 up_write(&namespace_sem);
1589 mutex_unlock(&path->dentry->d_inode->i_mutex);
1590}
1591
95bc5f25 1592static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1593{
95bc5f25 1594 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1595 return -EINVAL;
1596
8c3ee42e 1597 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1598 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1599 return -ENOTDIR;
1600
b12cea91
AV
1601 if (d_unlinked(path->dentry))
1602 return -ENOENT;
1da177e4 1603
95bc5f25 1604 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1605}
1606
7a2e8a8f
VA
1607/*
1608 * Sanity check the flags to change_mnt_propagation.
1609 */
1610
1611static int flags_to_propagation_type(int flags)
1612{
7c6e984d 1613 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1614
1615 /* Fail if any non-propagation flags are set */
1616 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1617 return 0;
1618 /* Only one propagation flag should be set */
1619 if (!is_power_of_2(type))
1620 return 0;
1621 return type;
1622}
1623
07b20889
RP
1624/*
1625 * recursively change the type of the mountpoint.
1626 */
0a0d8a46 1627static int do_change_type(struct path *path, int flag)
07b20889 1628{
315fc83e 1629 struct mount *m;
4b8b21f4 1630 struct mount *mnt = real_mount(path->mnt);
07b20889 1631 int recurse = flag & MS_REC;
7a2e8a8f 1632 int type;
719f5d7f 1633 int err = 0;
07b20889 1634
ee6f9582
MS
1635 if (!capable(CAP_SYS_ADMIN))
1636 return -EPERM;
1637
2d92ab3c 1638 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1639 return -EINVAL;
1640
7a2e8a8f
VA
1641 type = flags_to_propagation_type(flag);
1642 if (!type)
1643 return -EINVAL;
1644
07b20889 1645 down_write(&namespace_sem);
719f5d7f
MS
1646 if (type == MS_SHARED) {
1647 err = invent_group_ids(mnt, recurse);
1648 if (err)
1649 goto out_unlock;
1650 }
1651
962830df 1652 br_write_lock(&vfsmount_lock);
909b0a88 1653 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1654 change_mnt_propagation(m, type);
962830df 1655 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1656
1657 out_unlock:
07b20889 1658 up_write(&namespace_sem);
719f5d7f 1659 return err;
07b20889
RP
1660}
1661
1da177e4
LT
1662/*
1663 * do loopback mount.
1664 */
808d4e3c 1665static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1666 int recurse)
1da177e4 1667{
b12cea91 1668 LIST_HEAD(umount_list);
2d92ab3c 1669 struct path old_path;
87129cc0 1670 struct mount *mnt = NULL, *old;
2d92ab3c 1671 int err = mount_is_safe(path);
1da177e4
LT
1672 if (err)
1673 return err;
1674 if (!old_name || !*old_name)
1675 return -EINVAL;
815d405c 1676 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1677 if (err)
1678 return err;
1679
8823c079
EB
1680 err = -EINVAL;
1681 if (mnt_ns_loop(&old_path))
1682 goto out;
1683
b12cea91
AV
1684 err = lock_mount(path);
1685 if (err)
1686 goto out;
1687
87129cc0
AV
1688 old = real_mount(old_path.mnt);
1689
1da177e4 1690 err = -EINVAL;
fc7be130 1691 if (IS_MNT_UNBINDABLE(old))
b12cea91 1692 goto out2;
9676f0c6 1693
143c8c91 1694 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1695 goto out2;
1da177e4 1696
ccd48bc7 1697 if (recurse)
87129cc0 1698 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1699 else
87129cc0 1700 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1701
be34d1a3
DH
1702 if (IS_ERR(mnt)) {
1703 err = PTR_ERR(mnt);
1704 goto out;
1705 }
ccd48bc7 1706
95bc5f25 1707 err = graft_tree(mnt, path);
ccd48bc7 1708 if (err) {
962830df 1709 br_write_lock(&vfsmount_lock);
761d5c38 1710 umount_tree(mnt, 0, &umount_list);
962830df 1711 br_write_unlock(&vfsmount_lock);
5b83d2c5 1712 }
b12cea91
AV
1713out2:
1714 unlock_mount(path);
1715 release_mounts(&umount_list);
ccd48bc7 1716out:
2d92ab3c 1717 path_put(&old_path);
1da177e4
LT
1718 return err;
1719}
1720
2e4b7fcd
DH
1721static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1722{
1723 int error = 0;
1724 int readonly_request = 0;
1725
1726 if (ms_flags & MS_RDONLY)
1727 readonly_request = 1;
1728 if (readonly_request == __mnt_is_readonly(mnt))
1729 return 0;
1730
1731 if (readonly_request)
83adc753 1732 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1733 else
83adc753 1734 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1735 return error;
1736}
1737
1da177e4
LT
1738/*
1739 * change filesystem flags. dir should be a physical root of filesystem.
1740 * If you've mounted a non-root directory somewhere and want to do remount
1741 * on it - tough luck.
1742 */
0a0d8a46 1743static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1744 void *data)
1745{
1746 int err;
2d92ab3c 1747 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1748 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1749
1750 if (!capable(CAP_SYS_ADMIN))
1751 return -EPERM;
1752
143c8c91 1753 if (!check_mnt(mnt))
1da177e4
LT
1754 return -EINVAL;
1755
2d92ab3c 1756 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1757 return -EINVAL;
1758
ff36fe2c
EP
1759 err = security_sb_remount(sb, data);
1760 if (err)
1761 return err;
1762
1da177e4 1763 down_write(&sb->s_umount);
2e4b7fcd 1764 if (flags & MS_BIND)
2d92ab3c 1765 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1766 else
2e4b7fcd 1767 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1768 if (!err) {
962830df 1769 br_write_lock(&vfsmount_lock);
143c8c91
AV
1770 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1771 mnt->mnt.mnt_flags = mnt_flags;
962830df 1772 br_write_unlock(&vfsmount_lock);
7b43a79f 1773 }
1da177e4 1774 up_write(&sb->s_umount);
0e55a7cc 1775 if (!err) {
962830df 1776 br_write_lock(&vfsmount_lock);
143c8c91 1777 touch_mnt_namespace(mnt->mnt_ns);
962830df 1778 br_write_unlock(&vfsmount_lock);
0e55a7cc 1779 }
1da177e4
LT
1780 return err;
1781}
1782
cbbe362c 1783static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1784{
315fc83e 1785 struct mount *p;
909b0a88 1786 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1787 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1788 return 1;
1789 }
1790 return 0;
1791}
1792
808d4e3c 1793static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1794{
2d92ab3c 1795 struct path old_path, parent_path;
676da58d 1796 struct mount *p;
0fb54e50 1797 struct mount *old;
1da177e4
LT
1798 int err = 0;
1799 if (!capable(CAP_SYS_ADMIN))
1800 return -EPERM;
1801 if (!old_name || !*old_name)
1802 return -EINVAL;
2d92ab3c 1803 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1804 if (err)
1805 return err;
1806
b12cea91 1807 err = lock_mount(path);
cc53ce53
DH
1808 if (err < 0)
1809 goto out;
1810
143c8c91 1811 old = real_mount(old_path.mnt);
fc7be130 1812 p = real_mount(path->mnt);
143c8c91 1813
1da177e4 1814 err = -EINVAL;
fc7be130 1815 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1816 goto out1;
1817
f3da392e 1818 if (d_unlinked(path->dentry))
21444403 1819 goto out1;
1da177e4
LT
1820
1821 err = -EINVAL;
2d92ab3c 1822 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1823 goto out1;
1da177e4 1824
676da58d 1825 if (!mnt_has_parent(old))
21444403 1826 goto out1;
1da177e4 1827
2d92ab3c
AV
1828 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1829 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1830 goto out1;
1831 /*
1832 * Don't move a mount residing in a shared parent.
1833 */
fc7be130 1834 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1835 goto out1;
9676f0c6
RP
1836 /*
1837 * Don't move a mount tree containing unbindable mounts to a destination
1838 * mount which is shared.
1839 */
fc7be130 1840 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1841 goto out1;
1da177e4 1842 err = -ELOOP;
fc7be130 1843 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1844 if (p == old)
21444403 1845 goto out1;
1da177e4 1846
0fb54e50 1847 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1848 if (err)
21444403 1849 goto out1;
1da177e4
LT
1850
1851 /* if the mount is moved, it should no longer be expire
1852 * automatically */
6776db3d 1853 list_del_init(&old->mnt_expire);
1da177e4 1854out1:
b12cea91 1855 unlock_mount(path);
1da177e4 1856out:
1da177e4 1857 if (!err)
1a390689 1858 path_put(&parent_path);
2d92ab3c 1859 path_put(&old_path);
1da177e4
LT
1860 return err;
1861}
1862
9d412a43
AV
1863static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1864{
1865 int err;
1866 const char *subtype = strchr(fstype, '.');
1867 if (subtype) {
1868 subtype++;
1869 err = -EINVAL;
1870 if (!subtype[0])
1871 goto err;
1872 } else
1873 subtype = "";
1874
1875 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1876 err = -ENOMEM;
1877 if (!mnt->mnt_sb->s_subtype)
1878 goto err;
1879 return mnt;
1880
1881 err:
1882 mntput(mnt);
1883 return ERR_PTR(err);
1884}
1885
79e801a9 1886static struct vfsmount *
9d412a43
AV
1887do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1888{
1889 struct file_system_type *type = get_fs_type(fstype);
1890 struct vfsmount *mnt;
1891 if (!type)
1892 return ERR_PTR(-ENODEV);
1893 mnt = vfs_kern_mount(type, flags, name, data);
1894 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1895 !mnt->mnt_sb->s_subtype)
1896 mnt = fs_set_subtype(mnt, fstype);
1897 put_filesystem(type);
1898 return mnt;
1899}
9d412a43
AV
1900
1901/*
1902 * add a mount into a namespace's mount tree
1903 */
95bc5f25 1904static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1905{
1906 int err;
1907
1908 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1909
b12cea91
AV
1910 err = lock_mount(path);
1911 if (err)
1912 return err;
9d412a43
AV
1913
1914 err = -EINVAL;
156cacb1
AV
1915 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1916 /* that's acceptable only for automounts done in private ns */
1917 if (!(mnt_flags & MNT_SHRINKABLE))
1918 goto unlock;
1919 /* ... and for those we'd better have mountpoint still alive */
1920 if (!real_mount(path->mnt)->mnt_ns)
1921 goto unlock;
1922 }
9d412a43
AV
1923
1924 /* Refuse the same filesystem on the same mount point */
1925 err = -EBUSY;
95bc5f25 1926 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1927 path->mnt->mnt_root == path->dentry)
1928 goto unlock;
1929
1930 err = -EINVAL;
95bc5f25 1931 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1932 goto unlock;
1933
95bc5f25 1934 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1935 err = graft_tree(newmnt, path);
1936
1937unlock:
b12cea91 1938 unlock_mount(path);
9d412a43
AV
1939 return err;
1940}
b1e75df4 1941
1da177e4
LT
1942/*
1943 * create a new mount for userspace and request it to be added into the
1944 * namespace's tree
1945 */
808d4e3c
AV
1946static int do_new_mount(struct path *path, const char *type, int flags,
1947 int mnt_flags, const char *name, void *data)
1da177e4
LT
1948{
1949 struct vfsmount *mnt;
15f9a3f3 1950 int err;
1da177e4 1951
eca6f534 1952 if (!type)
1da177e4
LT
1953 return -EINVAL;
1954
1955 /* we need capabilities... */
1956 if (!capable(CAP_SYS_ADMIN))
1957 return -EPERM;
1958
1959 mnt = do_kern_mount(type, flags, name, data);
1960 if (IS_ERR(mnt))
1961 return PTR_ERR(mnt);
1962
95bc5f25 1963 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1964 if (err)
1965 mntput(mnt);
1966 return err;
1da177e4
LT
1967}
1968
19a167af
AV
1969int finish_automount(struct vfsmount *m, struct path *path)
1970{
6776db3d 1971 struct mount *mnt = real_mount(m);
19a167af
AV
1972 int err;
1973 /* The new mount record should have at least 2 refs to prevent it being
1974 * expired before we get a chance to add it
1975 */
6776db3d 1976 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1977
1978 if (m->mnt_sb == path->mnt->mnt_sb &&
1979 m->mnt_root == path->dentry) {
b1e75df4
AV
1980 err = -ELOOP;
1981 goto fail;
19a167af
AV
1982 }
1983
95bc5f25 1984 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1985 if (!err)
1986 return 0;
1987fail:
1988 /* remove m from any expiration list it may be on */
6776db3d 1989 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 1990 down_write(&namespace_sem);
962830df 1991 br_write_lock(&vfsmount_lock);
6776db3d 1992 list_del_init(&mnt->mnt_expire);
962830df 1993 br_write_unlock(&vfsmount_lock);
b1e75df4 1994 up_write(&namespace_sem);
19a167af 1995 }
b1e75df4
AV
1996 mntput(m);
1997 mntput(m);
19a167af
AV
1998 return err;
1999}
2000
ea5b778a
DH
2001/**
2002 * mnt_set_expiry - Put a mount on an expiration list
2003 * @mnt: The mount to list.
2004 * @expiry_list: The list to add the mount to.
2005 */
2006void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2007{
2008 down_write(&namespace_sem);
962830df 2009 br_write_lock(&vfsmount_lock);
ea5b778a 2010
6776db3d 2011 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2012
962830df 2013 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
2014 up_write(&namespace_sem);
2015}
2016EXPORT_SYMBOL(mnt_set_expiry);
2017
1da177e4
LT
2018/*
2019 * process a list of expirable mountpoints with the intent of discarding any
2020 * mountpoints that aren't in use and haven't been touched since last we came
2021 * here
2022 */
2023void mark_mounts_for_expiry(struct list_head *mounts)
2024{
761d5c38 2025 struct mount *mnt, *next;
1da177e4 2026 LIST_HEAD(graveyard);
bcc5c7d2 2027 LIST_HEAD(umounts);
1da177e4
LT
2028
2029 if (list_empty(mounts))
2030 return;
2031
bcc5c7d2 2032 down_write(&namespace_sem);
962830df 2033 br_write_lock(&vfsmount_lock);
1da177e4
LT
2034
2035 /* extract from the expiration list every vfsmount that matches the
2036 * following criteria:
2037 * - only referenced by its parent vfsmount
2038 * - still marked for expiry (marked on the last call here; marks are
2039 * cleared by mntput())
2040 */
6776db3d 2041 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2042 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2043 propagate_mount_busy(mnt, 1))
1da177e4 2044 continue;
6776db3d 2045 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2046 }
bcc5c7d2 2047 while (!list_empty(&graveyard)) {
6776db3d 2048 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2049 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
2050 umount_tree(mnt, 1, &umounts);
2051 }
962830df 2052 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
2053 up_write(&namespace_sem);
2054
2055 release_mounts(&umounts);
5528f911
TM
2056}
2057
2058EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2059
2060/*
2061 * Ripoff of 'select_parent()'
2062 *
2063 * search the list of submounts for a given mountpoint, and move any
2064 * shrinkable submounts to the 'graveyard' list.
2065 */
692afc31 2066static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2067{
692afc31 2068 struct mount *this_parent = parent;
5528f911
TM
2069 struct list_head *next;
2070 int found = 0;
2071
2072repeat:
6b41d536 2073 next = this_parent->mnt_mounts.next;
5528f911 2074resume:
6b41d536 2075 while (next != &this_parent->mnt_mounts) {
5528f911 2076 struct list_head *tmp = next;
6b41d536 2077 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2078
2079 next = tmp->next;
692afc31 2080 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2081 continue;
5528f911
TM
2082 /*
2083 * Descend a level if the d_mounts list is non-empty.
2084 */
6b41d536 2085 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2086 this_parent = mnt;
2087 goto repeat;
2088 }
1da177e4 2089
1ab59738 2090 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2091 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2092 found++;
2093 }
1da177e4 2094 }
5528f911
TM
2095 /*
2096 * All done at this level ... ascend and resume the search
2097 */
2098 if (this_parent != parent) {
6b41d536 2099 next = this_parent->mnt_child.next;
0714a533 2100 this_parent = this_parent->mnt_parent;
5528f911
TM
2101 goto resume;
2102 }
2103 return found;
2104}
2105
2106/*
2107 * process a list of expirable mountpoints with the intent of discarding any
2108 * submounts of a specific parent mountpoint
99b7db7b
NP
2109 *
2110 * vfsmount_lock must be held for write
5528f911 2111 */
692afc31 2112static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2113{
2114 LIST_HEAD(graveyard);
761d5c38 2115 struct mount *m;
5528f911 2116
5528f911 2117 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2118 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2119 while (!list_empty(&graveyard)) {
761d5c38 2120 m = list_first_entry(&graveyard, struct mount,
6776db3d 2121 mnt_expire);
143c8c91 2122 touch_mnt_namespace(m->mnt_ns);
afef80b3 2123 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2124 }
2125 }
1da177e4
LT
2126}
2127
1da177e4
LT
2128/*
2129 * Some copy_from_user() implementations do not return the exact number of
2130 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2131 * Note that this function differs from copy_from_user() in that it will oops
2132 * on bad values of `to', rather than returning a short copy.
2133 */
b58fed8b
RP
2134static long exact_copy_from_user(void *to, const void __user * from,
2135 unsigned long n)
1da177e4
LT
2136{
2137 char *t = to;
2138 const char __user *f = from;
2139 char c;
2140
2141 if (!access_ok(VERIFY_READ, from, n))
2142 return n;
2143
2144 while (n) {
2145 if (__get_user(c, f)) {
2146 memset(t, 0, n);
2147 break;
2148 }
2149 *t++ = c;
2150 f++;
2151 n--;
2152 }
2153 return n;
2154}
2155
b58fed8b 2156int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2157{
2158 int i;
2159 unsigned long page;
2160 unsigned long size;
b58fed8b 2161
1da177e4
LT
2162 *where = 0;
2163 if (!data)
2164 return 0;
2165
2166 if (!(page = __get_free_page(GFP_KERNEL)))
2167 return -ENOMEM;
2168
2169 /* We only care that *some* data at the address the user
2170 * gave us is valid. Just in case, we'll zero
2171 * the remainder of the page.
2172 */
2173 /* copy_from_user cannot cross TASK_SIZE ! */
2174 size = TASK_SIZE - (unsigned long)data;
2175 if (size > PAGE_SIZE)
2176 size = PAGE_SIZE;
2177
2178 i = size - exact_copy_from_user((void *)page, data, size);
2179 if (!i) {
b58fed8b 2180 free_page(page);
1da177e4
LT
2181 return -EFAULT;
2182 }
2183 if (i != PAGE_SIZE)
2184 memset((char *)page + i, 0, PAGE_SIZE - i);
2185 *where = page;
2186 return 0;
2187}
2188
eca6f534
VN
2189int copy_mount_string(const void __user *data, char **where)
2190{
2191 char *tmp;
2192
2193 if (!data) {
2194 *where = NULL;
2195 return 0;
2196 }
2197
2198 tmp = strndup_user(data, PAGE_SIZE);
2199 if (IS_ERR(tmp))
2200 return PTR_ERR(tmp);
2201
2202 *where = tmp;
2203 return 0;
2204}
2205
1da177e4
LT
2206/*
2207 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2208 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2209 *
2210 * data is a (void *) that can point to any structure up to
2211 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2212 * information (or be NULL).
2213 *
2214 * Pre-0.97 versions of mount() didn't have a flags word.
2215 * When the flags word was introduced its top half was required
2216 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2217 * Therefore, if this magic number is present, it carries no information
2218 * and must be discarded.
2219 */
808d4e3c
AV
2220long do_mount(const char *dev_name, const char *dir_name,
2221 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2222{
2d92ab3c 2223 struct path path;
1da177e4
LT
2224 int retval = 0;
2225 int mnt_flags = 0;
2226
2227 /* Discard magic */
2228 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2229 flags &= ~MS_MGC_MSK;
2230
2231 /* Basic sanity checks */
2232
2233 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2234 return -EINVAL;
1da177e4
LT
2235
2236 if (data_page)
2237 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2238
a27ab9f2
TH
2239 /* ... and get the mountpoint */
2240 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2241 if (retval)
2242 return retval;
2243
2244 retval = security_sb_mount(dev_name, &path,
2245 type_page, flags, data_page);
2246 if (retval)
2247 goto dput_out;
2248
613cbe3d
AK
2249 /* Default to relatime unless overriden */
2250 if (!(flags & MS_NOATIME))
2251 mnt_flags |= MNT_RELATIME;
0a1c01c9 2252
1da177e4
LT
2253 /* Separate the per-mountpoint flags */
2254 if (flags & MS_NOSUID)
2255 mnt_flags |= MNT_NOSUID;
2256 if (flags & MS_NODEV)
2257 mnt_flags |= MNT_NODEV;
2258 if (flags & MS_NOEXEC)
2259 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2260 if (flags & MS_NOATIME)
2261 mnt_flags |= MNT_NOATIME;
2262 if (flags & MS_NODIRATIME)
2263 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2264 if (flags & MS_STRICTATIME)
2265 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2266 if (flags & MS_RDONLY)
2267 mnt_flags |= MNT_READONLY;
fc33a7bb 2268
7a4dec53 2269 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2270 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2271 MS_STRICTATIME);
1da177e4 2272
1da177e4 2273 if (flags & MS_REMOUNT)
2d92ab3c 2274 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2275 data_page);
2276 else if (flags & MS_BIND)
2d92ab3c 2277 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2278 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2279 retval = do_change_type(&path, flags);
1da177e4 2280 else if (flags & MS_MOVE)
2d92ab3c 2281 retval = do_move_mount(&path, dev_name);
1da177e4 2282 else
2d92ab3c 2283 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2284 dev_name, data_page);
2285dput_out:
2d92ab3c 2286 path_put(&path);
1da177e4
LT
2287 return retval;
2288}
2289
771b1371
EB
2290static void free_mnt_ns(struct mnt_namespace *ns)
2291{
2292 put_user_ns(ns->user_ns);
2293 kfree(ns);
2294}
2295
8823c079
EB
2296/*
2297 * Assign a sequence number so we can detect when we attempt to bind
2298 * mount a reference to an older mount namespace into the current
2299 * mount namespace, preventing reference counting loops. A 64bit
2300 * number incrementing at 10Ghz will take 12,427 years to wrap which
2301 * is effectively never, so we can ignore the possibility.
2302 */
2303static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2304
771b1371 2305static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2306{
2307 struct mnt_namespace *new_ns;
2308
2309 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2310 if (!new_ns)
2311 return ERR_PTR(-ENOMEM);
8823c079 2312 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2313 atomic_set(&new_ns->count, 1);
2314 new_ns->root = NULL;
2315 INIT_LIST_HEAD(&new_ns->list);
2316 init_waitqueue_head(&new_ns->poll);
2317 new_ns->event = 0;
771b1371 2318 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2319 return new_ns;
2320}
2321
741a2951
JD
2322/*
2323 * Allocate a new namespace structure and populate it with contents
2324 * copied from the namespace of the passed in task structure.
2325 */
e3222c4e 2326static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2327 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2328{
6b3286ed 2329 struct mnt_namespace *new_ns;
7f2da1e7 2330 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2331 struct mount *p, *q;
be08d6d2 2332 struct mount *old = mnt_ns->root;
cb338d06 2333 struct mount *new;
1da177e4 2334
771b1371 2335 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2336 if (IS_ERR(new_ns))
2337 return new_ns;
1da177e4 2338
390c6843 2339 down_write(&namespace_sem);
1da177e4 2340 /* First pass: copy the tree topology */
909b0a88 2341 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
be34d1a3 2342 if (IS_ERR(new)) {
390c6843 2343 up_write(&namespace_sem);
771b1371 2344 free_mnt_ns(new_ns);
be34d1a3 2345 return ERR_CAST(new);
1da177e4 2346 }
be08d6d2 2347 new_ns->root = new;
962830df 2348 br_write_lock(&vfsmount_lock);
1a4eeaf2 2349 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2350 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2351
2352 /*
2353 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2354 * as belonging to new namespace. We have already acquired a private
2355 * fs_struct, so tsk->fs->lock is not needed.
2356 */
909b0a88 2357 p = old;
cb338d06 2358 q = new;
1da177e4 2359 while (p) {
143c8c91 2360 q->mnt_ns = new_ns;
1da177e4 2361 if (fs) {
315fc83e
AV
2362 if (&p->mnt == fs->root.mnt) {
2363 fs->root.mnt = mntget(&q->mnt);
315fc83e 2364 rootmnt = &p->mnt;
1da177e4 2365 }
315fc83e
AV
2366 if (&p->mnt == fs->pwd.mnt) {
2367 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2368 pwdmnt = &p->mnt;
1da177e4 2369 }
1da177e4 2370 }
909b0a88
AV
2371 p = next_mnt(p, old);
2372 q = next_mnt(q, new);
1da177e4 2373 }
390c6843 2374 up_write(&namespace_sem);
1da177e4 2375
1da177e4 2376 if (rootmnt)
f03c6599 2377 mntput(rootmnt);
1da177e4 2378 if (pwdmnt)
f03c6599 2379 mntput(pwdmnt);
1da177e4 2380
741a2951
JD
2381 return new_ns;
2382}
2383
213dd266 2384struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2385 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2386{
6b3286ed 2387 struct mnt_namespace *new_ns;
741a2951 2388
e3222c4e 2389 BUG_ON(!ns);
6b3286ed 2390 get_mnt_ns(ns);
741a2951
JD
2391
2392 if (!(flags & CLONE_NEWNS))
e3222c4e 2393 return ns;
741a2951 2394
771b1371 2395 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2396
6b3286ed 2397 put_mnt_ns(ns);
e3222c4e 2398 return new_ns;
1da177e4
LT
2399}
2400
cf8d2c11
TM
2401/**
2402 * create_mnt_ns - creates a private namespace and adds a root filesystem
2403 * @mnt: pointer to the new root filesystem mountpoint
2404 */
1a4eeaf2 2405static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2406{
771b1371 2407 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2408 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2409 struct mount *mnt = real_mount(m);
2410 mnt->mnt_ns = new_ns;
be08d6d2 2411 new_ns->root = mnt;
1a4eeaf2 2412 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2413 } else {
1a4eeaf2 2414 mntput(m);
cf8d2c11
TM
2415 }
2416 return new_ns;
2417}
cf8d2c11 2418
ea441d11
AV
2419struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2420{
2421 struct mnt_namespace *ns;
d31da0f0 2422 struct super_block *s;
ea441d11
AV
2423 struct path path;
2424 int err;
2425
2426 ns = create_mnt_ns(mnt);
2427 if (IS_ERR(ns))
2428 return ERR_CAST(ns);
2429
2430 err = vfs_path_lookup(mnt->mnt_root, mnt,
2431 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2432
2433 put_mnt_ns(ns);
2434
2435 if (err)
2436 return ERR_PTR(err);
2437
2438 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2439 s = path.mnt->mnt_sb;
2440 atomic_inc(&s->s_active);
ea441d11
AV
2441 mntput(path.mnt);
2442 /* lock the sucker */
d31da0f0 2443 down_write(&s->s_umount);
ea441d11
AV
2444 /* ... and return the root of (sub)tree on it */
2445 return path.dentry;
2446}
2447EXPORT_SYMBOL(mount_subtree);
2448
bdc480e3
HC
2449SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2450 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2451{
eca6f534
VN
2452 int ret;
2453 char *kernel_type;
91a27b2a 2454 struct filename *kernel_dir;
eca6f534 2455 char *kernel_dev;
1da177e4 2456 unsigned long data_page;
1da177e4 2457
eca6f534
VN
2458 ret = copy_mount_string(type, &kernel_type);
2459 if (ret < 0)
2460 goto out_type;
1da177e4 2461
eca6f534
VN
2462 kernel_dir = getname(dir_name);
2463 if (IS_ERR(kernel_dir)) {
2464 ret = PTR_ERR(kernel_dir);
2465 goto out_dir;
2466 }
1da177e4 2467
eca6f534
VN
2468 ret = copy_mount_string(dev_name, &kernel_dev);
2469 if (ret < 0)
2470 goto out_dev;
1da177e4 2471
eca6f534
VN
2472 ret = copy_mount_options(data, &data_page);
2473 if (ret < 0)
2474 goto out_data;
1da177e4 2475
91a27b2a 2476 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2477 (void *) data_page);
1da177e4 2478
eca6f534
VN
2479 free_page(data_page);
2480out_data:
2481 kfree(kernel_dev);
2482out_dev:
2483 putname(kernel_dir);
2484out_dir:
2485 kfree(kernel_type);
2486out_type:
2487 return ret;
1da177e4
LT
2488}
2489
afac7cba
AV
2490/*
2491 * Return true if path is reachable from root
2492 *
2493 * namespace_sem or vfsmount_lock is held
2494 */
643822b4 2495bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2496 const struct path *root)
2497{
643822b4 2498 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2499 dentry = mnt->mnt_mountpoint;
0714a533 2500 mnt = mnt->mnt_parent;
afac7cba 2501 }
643822b4 2502 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2503}
2504
2505int path_is_under(struct path *path1, struct path *path2)
2506{
2507 int res;
962830df 2508 br_read_lock(&vfsmount_lock);
643822b4 2509 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2510 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2511 return res;
2512}
2513EXPORT_SYMBOL(path_is_under);
2514
1da177e4
LT
2515/*
2516 * pivot_root Semantics:
2517 * Moves the root file system of the current process to the directory put_old,
2518 * makes new_root as the new root file system of the current process, and sets
2519 * root/cwd of all processes which had them on the current root to new_root.
2520 *
2521 * Restrictions:
2522 * The new_root and put_old must be directories, and must not be on the
2523 * same file system as the current process root. The put_old must be
2524 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2525 * pointed to by put_old must yield the same directory as new_root. No other
2526 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2527 *
4a0d11fa
NB
2528 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2529 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2530 * in this situation.
2531 *
1da177e4
LT
2532 * Notes:
2533 * - we don't move root/cwd if they are not at the root (reason: if something
2534 * cared enough to change them, it's probably wrong to force them elsewhere)
2535 * - it's okay to pick a root that isn't the root of a file system, e.g.
2536 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2537 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2538 * first.
2539 */
3480b257
HC
2540SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2541 const char __user *, put_old)
1da177e4 2542{
2d8f3038 2543 struct path new, old, parent_path, root_parent, root;
419148da 2544 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2545 int error;
2546
2547 if (!capable(CAP_SYS_ADMIN))
2548 return -EPERM;
2549
2d8f3038 2550 error = user_path_dir(new_root, &new);
1da177e4
LT
2551 if (error)
2552 goto out0;
1da177e4 2553
2d8f3038 2554 error = user_path_dir(put_old, &old);
1da177e4
LT
2555 if (error)
2556 goto out1;
2557
2d8f3038 2558 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2559 if (error)
2560 goto out2;
1da177e4 2561
f7ad3c6b 2562 get_fs_root(current->fs, &root);
b12cea91
AV
2563 error = lock_mount(&old);
2564 if (error)
2565 goto out3;
2566
1da177e4 2567 error = -EINVAL;
419148da
AV
2568 new_mnt = real_mount(new.mnt);
2569 root_mnt = real_mount(root.mnt);
fc7be130
AV
2570 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2571 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2572 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2573 goto out4;
143c8c91 2574 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2575 goto out4;
1da177e4 2576 error = -ENOENT;
f3da392e 2577 if (d_unlinked(new.dentry))
b12cea91 2578 goto out4;
f3da392e 2579 if (d_unlinked(old.dentry))
b12cea91 2580 goto out4;
1da177e4 2581 error = -EBUSY;
2d8f3038
AV
2582 if (new.mnt == root.mnt ||
2583 old.mnt == root.mnt)
b12cea91 2584 goto out4; /* loop, on the same file system */
1da177e4 2585 error = -EINVAL;
8c3ee42e 2586 if (root.mnt->mnt_root != root.dentry)
b12cea91 2587 goto out4; /* not a mountpoint */
676da58d 2588 if (!mnt_has_parent(root_mnt))
b12cea91 2589 goto out4; /* not attached */
2d8f3038 2590 if (new.mnt->mnt_root != new.dentry)
b12cea91 2591 goto out4; /* not a mountpoint */
676da58d 2592 if (!mnt_has_parent(new_mnt))
b12cea91 2593 goto out4; /* not attached */
4ac91378 2594 /* make sure we can reach put_old from new_root */
643822b4 2595 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2596 goto out4;
962830df 2597 br_write_lock(&vfsmount_lock);
419148da
AV
2598 detach_mnt(new_mnt, &parent_path);
2599 detach_mnt(root_mnt, &root_parent);
4ac91378 2600 /* mount old root on put_old */
419148da 2601 attach_mnt(root_mnt, &old);
4ac91378 2602 /* mount new_root on / */
419148da 2603 attach_mnt(new_mnt, &root_parent);
6b3286ed 2604 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2605 br_write_unlock(&vfsmount_lock);
2d8f3038 2606 chroot_fs_refs(&root, &new);
1da177e4 2607 error = 0;
b12cea91
AV
2608out4:
2609 unlock_mount(&old);
2610 if (!error) {
2611 path_put(&root_parent);
2612 path_put(&parent_path);
2613 }
2614out3:
8c3ee42e 2615 path_put(&root);
b12cea91 2616out2:
2d8f3038 2617 path_put(&old);
1da177e4 2618out1:
2d8f3038 2619 path_put(&new);
1da177e4 2620out0:
1da177e4 2621 return error;
1da177e4
LT
2622}
2623
2624static void __init init_mount_tree(void)
2625{
2626 struct vfsmount *mnt;
6b3286ed 2627 struct mnt_namespace *ns;
ac748a09 2628 struct path root;
1da177e4
LT
2629
2630 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2631 if (IS_ERR(mnt))
2632 panic("Can't create rootfs");
b3e19d92 2633
3b22edc5
TM
2634 ns = create_mnt_ns(mnt);
2635 if (IS_ERR(ns))
1da177e4 2636 panic("Can't allocate initial namespace");
6b3286ed
KK
2637
2638 init_task.nsproxy->mnt_ns = ns;
2639 get_mnt_ns(ns);
2640
be08d6d2
AV
2641 root.mnt = mnt;
2642 root.dentry = mnt->mnt_root;
ac748a09
JB
2643
2644 set_fs_pwd(current->fs, &root);
2645 set_fs_root(current->fs, &root);
1da177e4
LT
2646}
2647
74bf17cf 2648void __init mnt_init(void)
1da177e4 2649{
13f14b4d 2650 unsigned u;
15a67dd8 2651 int err;
1da177e4 2652
390c6843
RP
2653 init_rwsem(&namespace_sem);
2654
7d6fec45 2655 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2656 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2657
b58fed8b 2658 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2659
2660 if (!mount_hashtable)
2661 panic("Failed to allocate mount hash table\n");
2662
80cdc6da 2663 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2664
2665 for (u = 0; u < HASH_SIZE; u++)
2666 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2667
962830df 2668 br_lock_init(&vfsmount_lock);
99b7db7b 2669
15a67dd8
RD
2670 err = sysfs_init();
2671 if (err)
2672 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2673 __func__, err);
00d26666
GKH
2674 fs_kobj = kobject_create_and_add("fs", NULL);
2675 if (!fs_kobj)
8e24eea7 2676 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2677 init_rootfs();
2678 init_mount_tree();
2679}
2680
616511d0 2681void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2682{
70fbcdf4 2683 LIST_HEAD(umount_list);
616511d0 2684
d498b25a 2685 if (!atomic_dec_and_test(&ns->count))
616511d0 2686 return;
390c6843 2687 down_write(&namespace_sem);
962830df 2688 br_write_lock(&vfsmount_lock);
be08d6d2 2689 umount_tree(ns->root, 0, &umount_list);
962830df 2690 br_write_unlock(&vfsmount_lock);
390c6843 2691 up_write(&namespace_sem);
70fbcdf4 2692 release_mounts(&umount_list);
771b1371 2693 free_mnt_ns(ns);
1da177e4 2694}
9d412a43
AV
2695
2696struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2697{
423e0ab0
TC
2698 struct vfsmount *mnt;
2699 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2700 if (!IS_ERR(mnt)) {
2701 /*
2702 * it is a longterm mount, don't release mnt until
2703 * we unmount before file sys is unregistered
2704 */
f7a99c5b 2705 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2706 }
2707 return mnt;
9d412a43
AV
2708}
2709EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2710
2711void kern_unmount(struct vfsmount *mnt)
2712{
2713 /* release long term mount so mount point can be released */
2714 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2715 br_write_lock(&vfsmount_lock);
2716 real_mount(mnt)->mnt_ns = NULL;
2717 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2718 mntput(mnt);
2719 }
2720}
2721EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2722
2723bool our_mnt(struct vfsmount *mnt)
2724{
143c8c91 2725 return check_mnt(real_mount(mnt));
02125a82 2726}
8823c079
EB
2727
2728static void *mntns_get(struct task_struct *task)
2729{
2730 struct mnt_namespace *ns = NULL;
2731 struct nsproxy *nsproxy;
2732
2733 rcu_read_lock();
2734 nsproxy = task_nsproxy(task);
2735 if (nsproxy) {
2736 ns = nsproxy->mnt_ns;
2737 get_mnt_ns(ns);
2738 }
2739 rcu_read_unlock();
2740
2741 return ns;
2742}
2743
2744static void mntns_put(void *ns)
2745{
2746 put_mnt_ns(ns);
2747}
2748
2749static int mntns_install(struct nsproxy *nsproxy, void *ns)
2750{
2751 struct fs_struct *fs = current->fs;
2752 struct mnt_namespace *mnt_ns = ns;
2753 struct path root;
2754
2755 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_CHROOT))
2756 return -EINVAL;
2757
2758 if (fs->users != 1)
2759 return -EINVAL;
2760
2761 get_mnt_ns(mnt_ns);
2762 put_mnt_ns(nsproxy->mnt_ns);
2763 nsproxy->mnt_ns = mnt_ns;
2764
2765 /* Find the root */
2766 root.mnt = &mnt_ns->root->mnt;
2767 root.dentry = mnt_ns->root->mnt.mnt_root;
2768 path_get(&root);
2769 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2770 ;
2771
2772 /* Update the pwd and root */
2773 set_fs_pwd(fs, &root);
2774 set_fs_root(fs, &root);
2775
2776 path_put(&root);
2777 return 0;
2778}
2779
2780const struct proc_ns_operations mntns_operations = {
2781 .name = "mnt",
2782 .type = CLONE_NEWNS,
2783 .get = mntns_get,
2784 .put = mntns_put,
2785 .install = mntns_install,
2786};