__generic_file_write_iter(): fix handling of sync error after DIO
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
0818bf27
AV
29static unsigned int m_hash_mask __read_mostly;
30static unsigned int m_hash_shift __read_mostly;
31static unsigned int mp_hash_mask __read_mostly;
32static unsigned int mp_hash_shift __read_mostly;
33
34static __initdata unsigned long mhash_entries;
35static int __init set_mhash_entries(char *str)
36{
37 if (!str)
38 return 0;
39 mhash_entries = simple_strtoul(str, &str, 0);
40 return 1;
41}
42__setup("mhash_entries=", set_mhash_entries);
43
44static __initdata unsigned long mphash_entries;
45static int __init set_mphash_entries(char *str)
46{
47 if (!str)
48 return 0;
49 mphash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51}
52__setup("mphash_entries=", set_mphash_entries);
13f14b4d 53
c7999c36 54static u64 event;
73cd49ec 55static DEFINE_IDA(mnt_id_ida);
719f5d7f 56static DEFINE_IDA(mnt_group_ida);
99b7db7b 57static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
58static int mnt_id_start = 0;
59static int mnt_group_start = 1;
1da177e4 60
38129a13 61static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 62static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 63static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 64static DECLARE_RWSEM(namespace_sem);
1da177e4 65
f87fd4c2 66/* /sys/fs */
00d26666
GKH
67struct kobject *fs_kobj;
68EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 69
99b7db7b
NP
70/*
71 * vfsmount lock may be taken for read to prevent changes to the
72 * vfsmount hash, ie. during mountpoint lookups or walking back
73 * up the tree.
74 *
75 * It should be taken for write in all cases where the vfsmount
76 * tree or hash is modified or when a vfsmount structure is modified.
77 */
48a066e7 78__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 79
38129a13 80static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 81{
b58fed8b
RP
82 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
83 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
84 tmp = tmp + (tmp >> m_hash_shift);
85 return &mount_hashtable[tmp & m_hash_mask];
86}
87
88static inline struct hlist_head *mp_hash(struct dentry *dentry)
89{
90 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> mp_hash_shift);
92 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
93}
94
99b7db7b
NP
95/*
96 * allocation is serialized by namespace_sem, but we need the spinlock to
97 * serialize with freeing.
98 */
b105e270 99static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
100{
101 int res;
102
103retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 105 spin_lock(&mnt_id_lock);
15169fe7 106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 107 if (!res)
15169fe7 108 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 109 spin_unlock(&mnt_id_lock);
73cd49ec
MS
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114}
115
b105e270 116static void mnt_free_id(struct mount *mnt)
73cd49ec 117{
15169fe7 118 int id = mnt->mnt_id;
99b7db7b 119 spin_lock(&mnt_id_lock);
f21f6220
AV
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
99b7db7b 123 spin_unlock(&mnt_id_lock);
73cd49ec
MS
124}
125
719f5d7f
MS
126/*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
4b8b21f4 131static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 132{
f21f6220
AV
133 int res;
134
719f5d7f
MS
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
f21f6220
AV
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
15169fe7 140 &mnt->mnt_group_id);
f21f6220 141 if (!res)
15169fe7 142 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
143
144 return res;
719f5d7f
MS
145}
146
147/*
148 * Release a peer group ID
149 */
4b8b21f4 150void mnt_release_group_id(struct mount *mnt)
719f5d7f 151{
15169fe7 152 int id = mnt->mnt_group_id;
f21f6220
AV
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
15169fe7 156 mnt->mnt_group_id = 0;
719f5d7f
MS
157}
158
b3e19d92
NP
159/*
160 * vfsmount lock must be held for read
161 */
83adc753 162static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
163{
164#ifdef CONFIG_SMP
68e8a9fe 165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
166#else
167 preempt_disable();
68e8a9fe 168 mnt->mnt_count += n;
b3e19d92
NP
169 preempt_enable();
170#endif
171}
172
b3e19d92
NP
173/*
174 * vfsmount lock must be held for write
175 */
83adc753 176unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
177{
178#ifdef CONFIG_SMP
f03c6599 179 unsigned int count = 0;
b3e19d92
NP
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
68e8a9fe 183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
184 }
185
186 return count;
187#else
68e8a9fe 188 return mnt->mnt_count;
b3e19d92
NP
189#endif
190}
191
b105e270 192static struct mount *alloc_vfsmnt(const char *name)
1da177e4 193{
c63181e6
AV
194 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
195 if (mnt) {
73cd49ec
MS
196 int err;
197
c63181e6 198 err = mnt_alloc_id(mnt);
88b38782
LZ
199 if (err)
200 goto out_free_cache;
201
202 if (name) {
c63181e6
AV
203 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
204 if (!mnt->mnt_devname)
88b38782 205 goto out_free_id;
73cd49ec
MS
206 }
207
b3e19d92 208#ifdef CONFIG_SMP
c63181e6
AV
209 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
210 if (!mnt->mnt_pcp)
b3e19d92
NP
211 goto out_free_devname;
212
c63181e6 213 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 214#else
c63181e6
AV
215 mnt->mnt_count = 1;
216 mnt->mnt_writers = 0;
b3e19d92
NP
217#endif
218
38129a13 219 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
220 INIT_LIST_HEAD(&mnt->mnt_child);
221 INIT_LIST_HEAD(&mnt->mnt_mounts);
222 INIT_LIST_HEAD(&mnt->mnt_list);
223 INIT_LIST_HEAD(&mnt->mnt_expire);
224 INIT_LIST_HEAD(&mnt->mnt_share);
225 INIT_LIST_HEAD(&mnt->mnt_slave_list);
226 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
227#ifdef CONFIG_FSNOTIFY
228 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 229#endif
1da177e4 230 }
c63181e6 231 return mnt;
88b38782 232
d3ef3d73 233#ifdef CONFIG_SMP
234out_free_devname:
c63181e6 235 kfree(mnt->mnt_devname);
d3ef3d73 236#endif
88b38782 237out_free_id:
c63181e6 238 mnt_free_id(mnt);
88b38782 239out_free_cache:
c63181e6 240 kmem_cache_free(mnt_cache, mnt);
88b38782 241 return NULL;
1da177e4
LT
242}
243
3d733633
DH
244/*
245 * Most r/o checks on a fs are for operations that take
246 * discrete amounts of time, like a write() or unlink().
247 * We must keep track of when those operations start
248 * (for permission checks) and when they end, so that
249 * we can determine when writes are able to occur to
250 * a filesystem.
251 */
252/*
253 * __mnt_is_readonly: check whether a mount is read-only
254 * @mnt: the mount to check for its write status
255 *
256 * This shouldn't be used directly ouside of the VFS.
257 * It does not guarantee that the filesystem will stay
258 * r/w, just that it is right *now*. This can not and
259 * should not be used in place of IS_RDONLY(inode).
260 * mnt_want/drop_write() will _keep_ the filesystem
261 * r/w.
262 */
263int __mnt_is_readonly(struct vfsmount *mnt)
264{
2e4b7fcd
DH
265 if (mnt->mnt_flags & MNT_READONLY)
266 return 1;
267 if (mnt->mnt_sb->s_flags & MS_RDONLY)
268 return 1;
269 return 0;
3d733633
DH
270}
271EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272
83adc753 273static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 274{
275#ifdef CONFIG_SMP
68e8a9fe 276 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 277#else
68e8a9fe 278 mnt->mnt_writers++;
d3ef3d73 279#endif
280}
3d733633 281
83adc753 282static inline void mnt_dec_writers(struct mount *mnt)
3d733633 283{
d3ef3d73 284#ifdef CONFIG_SMP
68e8a9fe 285 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 286#else
68e8a9fe 287 mnt->mnt_writers--;
d3ef3d73 288#endif
3d733633 289}
3d733633 290
83adc753 291static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 292{
d3ef3d73 293#ifdef CONFIG_SMP
294 unsigned int count = 0;
3d733633 295 int cpu;
3d733633
DH
296
297 for_each_possible_cpu(cpu) {
68e8a9fe 298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 299 }
3d733633 300
d3ef3d73 301 return count;
302#else
303 return mnt->mnt_writers;
304#endif
3d733633
DH
305}
306
4ed5e82f
MS
307static int mnt_is_readonly(struct vfsmount *mnt)
308{
309 if (mnt->mnt_sb->s_readonly_remount)
310 return 1;
311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 smp_rmb();
313 return __mnt_is_readonly(mnt);
314}
315
8366025e 316/*
eb04c282
JK
317 * Most r/o & frozen checks on a fs are for operations that take discrete
318 * amounts of time, like a write() or unlink(). We must keep track of when
319 * those operations start (for permission checks) and when they end, so that we
320 * can determine when writes are able to occur to a filesystem.
8366025e
DH
321 */
322/**
eb04c282 323 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 324 * @m: the mount on which to take a write
8366025e 325 *
eb04c282
JK
326 * This tells the low-level filesystem that a write is about to be performed to
327 * it, and makes sure that writes are allowed (mnt it read-write) before
328 * returning success. This operation does not protect against filesystem being
329 * frozen. When the write operation is finished, __mnt_drop_write() must be
330 * called. This is effectively a refcount.
8366025e 331 */
eb04c282 332int __mnt_want_write(struct vfsmount *m)
8366025e 333{
83adc753 334 struct mount *mnt = real_mount(m);
3d733633 335 int ret = 0;
3d733633 336
d3ef3d73 337 preempt_disable();
c6653a83 338 mnt_inc_writers(mnt);
d3ef3d73 339 /*
c6653a83 340 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 * incremented count after it has set MNT_WRITE_HOLD.
343 */
344 smp_mb();
1e75529e 345 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 346 cpu_relax();
347 /*
348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 * be set to match its requirements. So we must not load that until
350 * MNT_WRITE_HOLD is cleared.
351 */
352 smp_rmb();
4ed5e82f 353 if (mnt_is_readonly(m)) {
c6653a83 354 mnt_dec_writers(mnt);
3d733633 355 ret = -EROFS;
3d733633 356 }
d3ef3d73 357 preempt_enable();
eb04c282
JK
358
359 return ret;
360}
361
362/**
363 * mnt_want_write - get write access to a mount
364 * @m: the mount on which to take a write
365 *
366 * This tells the low-level filesystem that a write is about to be performed to
367 * it, and makes sure that writes are allowed (mount is read-write, filesystem
368 * is not frozen) before returning success. When the write operation is
369 * finished, mnt_drop_write() must be called. This is effectively a refcount.
370 */
371int mnt_want_write(struct vfsmount *m)
372{
373 int ret;
374
375 sb_start_write(m->mnt_sb);
376 ret = __mnt_want_write(m);
377 if (ret)
378 sb_end_write(m->mnt_sb);
3d733633 379 return ret;
8366025e
DH
380}
381EXPORT_SYMBOL_GPL(mnt_want_write);
382
96029c4e 383/**
384 * mnt_clone_write - get write access to a mount
385 * @mnt: the mount on which to take a write
386 *
387 * This is effectively like mnt_want_write, except
388 * it must only be used to take an extra write reference
389 * on a mountpoint that we already know has a write reference
390 * on it. This allows some optimisation.
391 *
392 * After finished, mnt_drop_write must be called as usual to
393 * drop the reference.
394 */
395int mnt_clone_write(struct vfsmount *mnt)
396{
397 /* superblock may be r/o */
398 if (__mnt_is_readonly(mnt))
399 return -EROFS;
400 preempt_disable();
83adc753 401 mnt_inc_writers(real_mount(mnt));
96029c4e 402 preempt_enable();
403 return 0;
404}
405EXPORT_SYMBOL_GPL(mnt_clone_write);
406
407/**
eb04c282 408 * __mnt_want_write_file - get write access to a file's mount
96029c4e 409 * @file: the file who's mount on which to take a write
410 *
eb04c282 411 * This is like __mnt_want_write, but it takes a file and can
96029c4e 412 * do some optimisations if the file is open for write already
413 */
eb04c282 414int __mnt_want_write_file(struct file *file)
96029c4e 415{
83f936c7 416 if (!(file->f_mode & FMODE_WRITER))
eb04c282 417 return __mnt_want_write(file->f_path.mnt);
96029c4e 418 else
419 return mnt_clone_write(file->f_path.mnt);
420}
eb04c282
JK
421
422/**
423 * mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
425 *
426 * This is like mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
428 */
429int mnt_want_write_file(struct file *file)
430{
431 int ret;
432
433 sb_start_write(file->f_path.mnt->mnt_sb);
434 ret = __mnt_want_write_file(file);
435 if (ret)
436 sb_end_write(file->f_path.mnt->mnt_sb);
437 return ret;
438}
96029c4e 439EXPORT_SYMBOL_GPL(mnt_want_write_file);
440
8366025e 441/**
eb04c282 442 * __mnt_drop_write - give up write access to a mount
8366025e
DH
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done
446 * performing writes to it. Must be matched with
eb04c282 447 * __mnt_want_write() call above.
8366025e 448 */
eb04c282 449void __mnt_drop_write(struct vfsmount *mnt)
8366025e 450{
d3ef3d73 451 preempt_disable();
83adc753 452 mnt_dec_writers(real_mount(mnt));
d3ef3d73 453 preempt_enable();
8366025e 454}
eb04c282
JK
455
456/**
457 * mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
459 *
460 * Tells the low-level filesystem that we are done performing writes to it and
461 * also allows filesystem to be frozen again. Must be matched with
462 * mnt_want_write() call above.
463 */
464void mnt_drop_write(struct vfsmount *mnt)
465{
466 __mnt_drop_write(mnt);
467 sb_end_write(mnt->mnt_sb);
468}
8366025e
DH
469EXPORT_SYMBOL_GPL(mnt_drop_write);
470
eb04c282
JK
471void __mnt_drop_write_file(struct file *file)
472{
473 __mnt_drop_write(file->f_path.mnt);
474}
475
2a79f17e
AV
476void mnt_drop_write_file(struct file *file)
477{
478 mnt_drop_write(file->f_path.mnt);
479}
480EXPORT_SYMBOL(mnt_drop_write_file);
481
83adc753 482static int mnt_make_readonly(struct mount *mnt)
8366025e 483{
3d733633
DH
484 int ret = 0;
485
719ea2fb 486 lock_mount_hash();
83adc753 487 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 488 /*
d3ef3d73 489 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
490 * should be visible before we do.
3d733633 491 */
d3ef3d73 492 smp_mb();
493
3d733633 494 /*
d3ef3d73 495 * With writers on hold, if this value is zero, then there are
496 * definitely no active writers (although held writers may subsequently
497 * increment the count, they'll have to wait, and decrement it after
498 * seeing MNT_READONLY).
499 *
500 * It is OK to have counter incremented on one CPU and decremented on
501 * another: the sum will add up correctly. The danger would be when we
502 * sum up each counter, if we read a counter before it is incremented,
503 * but then read another CPU's count which it has been subsequently
504 * decremented from -- we would see more decrements than we should.
505 * MNT_WRITE_HOLD protects against this scenario, because
506 * mnt_want_write first increments count, then smp_mb, then spins on
507 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
508 * we're counting up here.
3d733633 509 */
c6653a83 510 if (mnt_get_writers(mnt) > 0)
d3ef3d73 511 ret = -EBUSY;
512 else
83adc753 513 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 514 /*
515 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
516 * that become unheld will see MNT_READONLY.
517 */
518 smp_wmb();
83adc753 519 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 520 unlock_mount_hash();
3d733633 521 return ret;
8366025e 522}
8366025e 523
83adc753 524static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 525{
719ea2fb 526 lock_mount_hash();
83adc753 527 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 528 unlock_mount_hash();
2e4b7fcd
DH
529}
530
4ed5e82f
MS
531int sb_prepare_remount_readonly(struct super_block *sb)
532{
533 struct mount *mnt;
534 int err = 0;
535
8e8b8796
MS
536 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
537 if (atomic_long_read(&sb->s_remove_count))
538 return -EBUSY;
539
719ea2fb 540 lock_mount_hash();
4ed5e82f
MS
541 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
542 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
543 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
544 smp_mb();
545 if (mnt_get_writers(mnt) > 0) {
546 err = -EBUSY;
547 break;
548 }
549 }
550 }
8e8b8796
MS
551 if (!err && atomic_long_read(&sb->s_remove_count))
552 err = -EBUSY;
553
4ed5e82f
MS
554 if (!err) {
555 sb->s_readonly_remount = 1;
556 smp_wmb();
557 }
558 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
559 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
560 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
561 }
719ea2fb 562 unlock_mount_hash();
4ed5e82f
MS
563
564 return err;
565}
566
b105e270 567static void free_vfsmnt(struct mount *mnt)
1da177e4 568{
52ba1621 569 kfree(mnt->mnt_devname);
d3ef3d73 570#ifdef CONFIG_SMP
68e8a9fe 571 free_percpu(mnt->mnt_pcp);
d3ef3d73 572#endif
b105e270 573 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
574}
575
8ffcb32e
DH
576static void delayed_free_vfsmnt(struct rcu_head *head)
577{
578 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
579}
580
48a066e7
AV
581/* call under rcu_read_lock */
582bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
583{
584 struct mount *mnt;
585 if (read_seqretry(&mount_lock, seq))
586 return false;
587 if (bastard == NULL)
588 return true;
589 mnt = real_mount(bastard);
590 mnt_add_count(mnt, 1);
591 if (likely(!read_seqretry(&mount_lock, seq)))
592 return true;
593 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
594 mnt_add_count(mnt, -1);
595 return false;
596 }
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 return false;
601}
602
1da177e4 603/*
474279dc 604 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 605 * call under rcu_read_lock()
1da177e4 606 */
474279dc 607struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 608{
38129a13 609 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
610 struct mount *p;
611
38129a13 612 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
613 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
614 return p;
615 return NULL;
616}
617
618/*
619 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 620 * mount_lock must be held.
474279dc
AV
621 */
622struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
623{
38129a13
AV
624 struct mount *p, *res;
625 res = p = __lookup_mnt(mnt, dentry);
626 if (!p)
627 goto out;
628 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
629 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
630 break;
631 res = p;
632 }
38129a13 633out:
1d6a32ac 634 return res;
1da177e4
LT
635}
636
a05964f3 637/*
f015f126
DH
638 * lookup_mnt - Return the first child mount mounted at path
639 *
640 * "First" means first mounted chronologically. If you create the
641 * following mounts:
642 *
643 * mount /dev/sda1 /mnt
644 * mount /dev/sda2 /mnt
645 * mount /dev/sda3 /mnt
646 *
647 * Then lookup_mnt() on the base /mnt dentry in the root mount will
648 * return successively the root dentry and vfsmount of /dev/sda1, then
649 * /dev/sda2, then /dev/sda3, then NULL.
650 *
651 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 652 */
1c755af4 653struct vfsmount *lookup_mnt(struct path *path)
a05964f3 654{
c7105365 655 struct mount *child_mnt;
48a066e7
AV
656 struct vfsmount *m;
657 unsigned seq;
99b7db7b 658
48a066e7
AV
659 rcu_read_lock();
660 do {
661 seq = read_seqbegin(&mount_lock);
662 child_mnt = __lookup_mnt(path->mnt, path->dentry);
663 m = child_mnt ? &child_mnt->mnt : NULL;
664 } while (!legitimize_mnt(m, seq));
665 rcu_read_unlock();
666 return m;
a05964f3
RP
667}
668
84d17192
AV
669static struct mountpoint *new_mountpoint(struct dentry *dentry)
670{
0818bf27 671 struct hlist_head *chain = mp_hash(dentry);
84d17192 672 struct mountpoint *mp;
eed81007 673 int ret;
84d17192 674
0818bf27 675 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
676 if (mp->m_dentry == dentry) {
677 /* might be worth a WARN_ON() */
678 if (d_unlinked(dentry))
679 return ERR_PTR(-ENOENT);
680 mp->m_count++;
681 return mp;
682 }
683 }
684
685 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
686 if (!mp)
687 return ERR_PTR(-ENOMEM);
688
eed81007
MS
689 ret = d_set_mounted(dentry);
690 if (ret) {
84d17192 691 kfree(mp);
eed81007 692 return ERR_PTR(ret);
84d17192 693 }
eed81007 694
84d17192
AV
695 mp->m_dentry = dentry;
696 mp->m_count = 1;
0818bf27 697 hlist_add_head(&mp->m_hash, chain);
84d17192
AV
698 return mp;
699}
700
701static void put_mountpoint(struct mountpoint *mp)
702{
703 if (!--mp->m_count) {
704 struct dentry *dentry = mp->m_dentry;
705 spin_lock(&dentry->d_lock);
706 dentry->d_flags &= ~DCACHE_MOUNTED;
707 spin_unlock(&dentry->d_lock);
0818bf27 708 hlist_del(&mp->m_hash);
84d17192
AV
709 kfree(mp);
710 }
711}
712
143c8c91 713static inline int check_mnt(struct mount *mnt)
1da177e4 714{
6b3286ed 715 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
716}
717
99b7db7b
NP
718/*
719 * vfsmount lock must be held for write
720 */
6b3286ed 721static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
722{
723 if (ns) {
724 ns->event = ++event;
725 wake_up_interruptible(&ns->poll);
726 }
727}
728
99b7db7b
NP
729/*
730 * vfsmount lock must be held for write
731 */
6b3286ed 732static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
733{
734 if (ns && ns->event != event) {
735 ns->event = event;
736 wake_up_interruptible(&ns->poll);
737 }
738}
739
99b7db7b
NP
740/*
741 * vfsmount lock must be held for write
742 */
419148da
AV
743static void detach_mnt(struct mount *mnt, struct path *old_path)
744{
a73324da 745 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
746 old_path->mnt = &mnt->mnt_parent->mnt;
747 mnt->mnt_parent = mnt;
a73324da 748 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 749 list_del_init(&mnt->mnt_child);
38129a13 750 hlist_del_init_rcu(&mnt->mnt_hash);
84d17192
AV
751 put_mountpoint(mnt->mnt_mp);
752 mnt->mnt_mp = NULL;
1da177e4
LT
753}
754
99b7db7b
NP
755/*
756 * vfsmount lock must be held for write
757 */
84d17192
AV
758void mnt_set_mountpoint(struct mount *mnt,
759 struct mountpoint *mp,
44d964d6 760 struct mount *child_mnt)
b90fa9ae 761{
84d17192 762 mp->m_count++;
3a2393d7 763 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 764 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 765 child_mnt->mnt_parent = mnt;
84d17192 766 child_mnt->mnt_mp = mp;
b90fa9ae
RP
767}
768
99b7db7b
NP
769/*
770 * vfsmount lock must be held for write
771 */
84d17192
AV
772static void attach_mnt(struct mount *mnt,
773 struct mount *parent,
774 struct mountpoint *mp)
1da177e4 775{
84d17192 776 mnt_set_mountpoint(parent, mp, mnt);
38129a13 777 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 778 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
779}
780
781/*
99b7db7b 782 * vfsmount lock must be held for write
b90fa9ae 783 */
1d6a32ac 784static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 785{
0714a533 786 struct mount *parent = mnt->mnt_parent;
83adc753 787 struct mount *m;
b90fa9ae 788 LIST_HEAD(head);
143c8c91 789 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 790
0714a533 791 BUG_ON(parent == mnt);
b90fa9ae 792
1a4eeaf2 793 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 794 list_for_each_entry(m, &head, mnt_list)
143c8c91 795 m->mnt_ns = n;
f03c6599 796
b90fa9ae
RP
797 list_splice(&head, n->list.prev);
798
1d6a32ac 799 if (shadows)
38129a13 800 hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
1d6a32ac 801 else
38129a13 802 hlist_add_head_rcu(&mnt->mnt_hash,
0818bf27 803 m_hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 804 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 805 touch_mnt_namespace(n);
1da177e4
LT
806}
807
909b0a88 808static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 809{
6b41d536
AV
810 struct list_head *next = p->mnt_mounts.next;
811 if (next == &p->mnt_mounts) {
1da177e4 812 while (1) {
909b0a88 813 if (p == root)
1da177e4 814 return NULL;
6b41d536
AV
815 next = p->mnt_child.next;
816 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 817 break;
0714a533 818 p = p->mnt_parent;
1da177e4
LT
819 }
820 }
6b41d536 821 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
822}
823
315fc83e 824static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 825{
6b41d536
AV
826 struct list_head *prev = p->mnt_mounts.prev;
827 while (prev != &p->mnt_mounts) {
828 p = list_entry(prev, struct mount, mnt_child);
829 prev = p->mnt_mounts.prev;
9676f0c6
RP
830 }
831 return p;
832}
833
9d412a43
AV
834struct vfsmount *
835vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
836{
b105e270 837 struct mount *mnt;
9d412a43
AV
838 struct dentry *root;
839
840 if (!type)
841 return ERR_PTR(-ENODEV);
842
843 mnt = alloc_vfsmnt(name);
844 if (!mnt)
845 return ERR_PTR(-ENOMEM);
846
847 if (flags & MS_KERNMOUNT)
b105e270 848 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
849
850 root = mount_fs(type, flags, name, data);
851 if (IS_ERR(root)) {
8ffcb32e 852 mnt_free_id(mnt);
9d412a43
AV
853 free_vfsmnt(mnt);
854 return ERR_CAST(root);
855 }
856
b105e270
AV
857 mnt->mnt.mnt_root = root;
858 mnt->mnt.mnt_sb = root->d_sb;
a73324da 859 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 860 mnt->mnt_parent = mnt;
719ea2fb 861 lock_mount_hash();
39f7c4db 862 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 863 unlock_mount_hash();
b105e270 864 return &mnt->mnt;
9d412a43
AV
865}
866EXPORT_SYMBOL_GPL(vfs_kern_mount);
867
87129cc0 868static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 869 int flag)
1da177e4 870{
87129cc0 871 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
872 struct mount *mnt;
873 int err;
1da177e4 874
be34d1a3
DH
875 mnt = alloc_vfsmnt(old->mnt_devname);
876 if (!mnt)
877 return ERR_PTR(-ENOMEM);
719f5d7f 878
7a472ef4 879 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
880 mnt->mnt_group_id = 0; /* not a peer of original */
881 else
882 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 883
be34d1a3
DH
884 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
885 err = mnt_alloc_group_id(mnt);
886 if (err)
887 goto out_free;
1da177e4 888 }
be34d1a3 889
f2ebb3a9 890 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3
EB
891 /* Don't allow unprivileged users to change mount flags */
892 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
893 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
894
5ff9d8a6
EB
895 /* Don't allow unprivileged users to reveal what is under a mount */
896 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
897 mnt->mnt.mnt_flags |= MNT_LOCKED;
898
be34d1a3
DH
899 atomic_inc(&sb->s_active);
900 mnt->mnt.mnt_sb = sb;
901 mnt->mnt.mnt_root = dget(root);
902 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
903 mnt->mnt_parent = mnt;
719ea2fb 904 lock_mount_hash();
be34d1a3 905 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 906 unlock_mount_hash();
be34d1a3 907
7a472ef4
EB
908 if ((flag & CL_SLAVE) ||
909 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
910 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
911 mnt->mnt_master = old;
912 CLEAR_MNT_SHARED(mnt);
913 } else if (!(flag & CL_PRIVATE)) {
914 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
915 list_add(&mnt->mnt_share, &old->mnt_share);
916 if (IS_MNT_SLAVE(old))
917 list_add(&mnt->mnt_slave, &old->mnt_slave);
918 mnt->mnt_master = old->mnt_master;
919 }
920 if (flag & CL_MAKE_SHARED)
921 set_mnt_shared(mnt);
922
923 /* stick the duplicate mount on the same expiry list
924 * as the original if that was on one */
925 if (flag & CL_EXPIRE) {
926 if (!list_empty(&old->mnt_expire))
927 list_add(&mnt->mnt_expire, &old->mnt_expire);
928 }
929
cb338d06 930 return mnt;
719f5d7f
MS
931
932 out_free:
8ffcb32e 933 mnt_free_id(mnt);
719f5d7f 934 free_vfsmnt(mnt);
be34d1a3 935 return ERR_PTR(err);
1da177e4
LT
936}
937
900148dc 938static void mntput_no_expire(struct mount *mnt)
b3e19d92 939{
48a066e7
AV
940 rcu_read_lock();
941 mnt_add_count(mnt, -1);
942 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
943 rcu_read_unlock();
f03c6599 944 return;
b3e19d92 945 }
719ea2fb 946 lock_mount_hash();
b3e19d92 947 if (mnt_get_count(mnt)) {
48a066e7 948 rcu_read_unlock();
719ea2fb 949 unlock_mount_hash();
99b7db7b
NP
950 return;
951 }
48a066e7
AV
952 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
953 rcu_read_unlock();
954 unlock_mount_hash();
955 return;
956 }
957 mnt->mnt.mnt_flags |= MNT_DOOMED;
958 rcu_read_unlock();
962830df 959
39f7c4db 960 list_del(&mnt->mnt_instance);
719ea2fb 961 unlock_mount_hash();
649a795a
AV
962
963 /*
964 * This probably indicates that somebody messed
965 * up a mnt_want/drop_write() pair. If this
966 * happens, the filesystem was probably unable
967 * to make r/w->r/o transitions.
968 */
969 /*
970 * The locking used to deal with mnt_count decrement provides barriers,
971 * so mnt_get_writers() below is safe.
972 */
973 WARN_ON(mnt_get_writers(mnt));
3064c356
AV
974 if (unlikely(mnt->mnt_pins.first))
975 mnt_pin_kill(mnt);
649a795a
AV
976 fsnotify_vfsmount_delete(&mnt->mnt);
977 dput(mnt->mnt.mnt_root);
978 deactivate_super(mnt->mnt.mnt_sb);
48a066e7 979 mnt_free_id(mnt);
8ffcb32e 980 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
b3e19d92 981}
b3e19d92
NP
982
983void mntput(struct vfsmount *mnt)
984{
985 if (mnt) {
863d684f 986 struct mount *m = real_mount(mnt);
b3e19d92 987 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
988 if (unlikely(m->mnt_expiry_mark))
989 m->mnt_expiry_mark = 0;
990 mntput_no_expire(m);
b3e19d92
NP
991 }
992}
993EXPORT_SYMBOL(mntput);
994
995struct vfsmount *mntget(struct vfsmount *mnt)
996{
997 if (mnt)
83adc753 998 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
999 return mnt;
1000}
1001EXPORT_SYMBOL(mntget);
1002
3064c356 1003struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1004{
3064c356
AV
1005 struct mount *p;
1006 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1007 if (IS_ERR(p))
1008 return ERR_CAST(p);
1009 p->mnt.mnt_flags |= MNT_INTERNAL;
1010 return &p->mnt;
7b7b1ace 1011}
1da177e4 1012
b3b304a2
MS
1013static inline void mangle(struct seq_file *m, const char *s)
1014{
1015 seq_escape(m, s, " \t\n\\");
1016}
1017
1018/*
1019 * Simple .show_options callback for filesystems which don't want to
1020 * implement more complex mount option showing.
1021 *
1022 * See also save_mount_options().
1023 */
34c80b1d 1024int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1025{
2a32cebd
AV
1026 const char *options;
1027
1028 rcu_read_lock();
34c80b1d 1029 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1030
1031 if (options != NULL && options[0]) {
1032 seq_putc(m, ',');
1033 mangle(m, options);
1034 }
2a32cebd 1035 rcu_read_unlock();
b3b304a2
MS
1036
1037 return 0;
1038}
1039EXPORT_SYMBOL(generic_show_options);
1040
1041/*
1042 * If filesystem uses generic_show_options(), this function should be
1043 * called from the fill_super() callback.
1044 *
1045 * The .remount_fs callback usually needs to be handled in a special
1046 * way, to make sure, that previous options are not overwritten if the
1047 * remount fails.
1048 *
1049 * Also note, that if the filesystem's .remount_fs function doesn't
1050 * reset all options to their default value, but changes only newly
1051 * given options, then the displayed options will not reflect reality
1052 * any more.
1053 */
1054void save_mount_options(struct super_block *sb, char *options)
1055{
2a32cebd
AV
1056 BUG_ON(sb->s_options);
1057 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1058}
1059EXPORT_SYMBOL(save_mount_options);
1060
2a32cebd
AV
1061void replace_mount_options(struct super_block *sb, char *options)
1062{
1063 char *old = sb->s_options;
1064 rcu_assign_pointer(sb->s_options, options);
1065 if (old) {
1066 synchronize_rcu();
1067 kfree(old);
1068 }
1069}
1070EXPORT_SYMBOL(replace_mount_options);
1071
a1a2c409 1072#ifdef CONFIG_PROC_FS
0226f492 1073/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1074static void *m_start(struct seq_file *m, loff_t *pos)
1075{
6ce6e24e 1076 struct proc_mounts *p = proc_mounts(m);
1da177e4 1077
390c6843 1078 down_read(&namespace_sem);
c7999c36
AV
1079 if (p->cached_event == p->ns->event) {
1080 void *v = p->cached_mount;
1081 if (*pos == p->cached_index)
1082 return v;
1083 if (*pos == p->cached_index + 1) {
1084 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1085 return p->cached_mount = v;
1086 }
1087 }
1088
1089 p->cached_event = p->ns->event;
1090 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1091 p->cached_index = *pos;
1092 return p->cached_mount;
1da177e4
LT
1093}
1094
1095static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1096{
6ce6e24e 1097 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1098
c7999c36
AV
1099 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1100 p->cached_index = *pos;
1101 return p->cached_mount;
1da177e4
LT
1102}
1103
1104static void m_stop(struct seq_file *m, void *v)
1105{
390c6843 1106 up_read(&namespace_sem);
1da177e4
LT
1107}
1108
0226f492 1109static int m_show(struct seq_file *m, void *v)
2d4d4864 1110{
6ce6e24e 1111 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1112 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1113 return p->show(m, &r->mnt);
1da177e4
LT
1114}
1115
a1a2c409 1116const struct seq_operations mounts_op = {
1da177e4
LT
1117 .start = m_start,
1118 .next = m_next,
1119 .stop = m_stop,
0226f492 1120 .show = m_show,
b4629fe2 1121};
a1a2c409 1122#endif /* CONFIG_PROC_FS */
b4629fe2 1123
1da177e4
LT
1124/**
1125 * may_umount_tree - check if a mount tree is busy
1126 * @mnt: root of mount tree
1127 *
1128 * This is called to check if a tree of mounts has any
1129 * open files, pwds, chroots or sub mounts that are
1130 * busy.
1131 */
909b0a88 1132int may_umount_tree(struct vfsmount *m)
1da177e4 1133{
909b0a88 1134 struct mount *mnt = real_mount(m);
36341f64
RP
1135 int actual_refs = 0;
1136 int minimum_refs = 0;
315fc83e 1137 struct mount *p;
909b0a88 1138 BUG_ON(!m);
1da177e4 1139
b3e19d92 1140 /* write lock needed for mnt_get_count */
719ea2fb 1141 lock_mount_hash();
909b0a88 1142 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1143 actual_refs += mnt_get_count(p);
1da177e4 1144 minimum_refs += 2;
1da177e4 1145 }
719ea2fb 1146 unlock_mount_hash();
1da177e4
LT
1147
1148 if (actual_refs > minimum_refs)
e3474a8e 1149 return 0;
1da177e4 1150
e3474a8e 1151 return 1;
1da177e4
LT
1152}
1153
1154EXPORT_SYMBOL(may_umount_tree);
1155
1156/**
1157 * may_umount - check if a mount point is busy
1158 * @mnt: root of mount
1159 *
1160 * This is called to check if a mount point has any
1161 * open files, pwds, chroots or sub mounts. If the
1162 * mount has sub mounts this will return busy
1163 * regardless of whether the sub mounts are busy.
1164 *
1165 * Doesn't take quota and stuff into account. IOW, in some cases it will
1166 * give false negatives. The main reason why it's here is that we need
1167 * a non-destructive way to look for easily umountable filesystems.
1168 */
1169int may_umount(struct vfsmount *mnt)
1170{
e3474a8e 1171 int ret = 1;
8ad08d8a 1172 down_read(&namespace_sem);
719ea2fb 1173 lock_mount_hash();
1ab59738 1174 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1175 ret = 0;
719ea2fb 1176 unlock_mount_hash();
8ad08d8a 1177 up_read(&namespace_sem);
a05964f3 1178 return ret;
1da177e4
LT
1179}
1180
1181EXPORT_SYMBOL(may_umount);
1182
38129a13 1183static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1184
97216be0 1185static void namespace_unlock(void)
70fbcdf4 1186{
d5e50f74 1187 struct mount *mnt;
38129a13 1188 struct hlist_head head = unmounted;
97216be0 1189
38129a13 1190 if (likely(hlist_empty(&head))) {
97216be0
AV
1191 up_write(&namespace_sem);
1192 return;
1193 }
1194
38129a13
AV
1195 head.first->pprev = &head.first;
1196 INIT_HLIST_HEAD(&unmounted);
1197
97216be0
AV
1198 up_write(&namespace_sem);
1199
48a066e7
AV
1200 synchronize_rcu();
1201
38129a13
AV
1202 while (!hlist_empty(&head)) {
1203 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1204 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1205 if (mnt->mnt_ex_mountpoint.mnt)
1206 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1207 mntput(&mnt->mnt);
70fbcdf4
RP
1208 }
1209}
1210
97216be0 1211static inline void namespace_lock(void)
e3197d83 1212{
97216be0 1213 down_write(&namespace_sem);
e3197d83
AV
1214}
1215
99b7db7b 1216/*
48a066e7 1217 * mount_lock must be held
99b7db7b 1218 * namespace_sem must be held for write
48a066e7
AV
1219 * how = 0 => just this tree, don't propagate
1220 * how = 1 => propagate; we know that nobody else has reference to any victims
1221 * how = 2 => lazy umount
99b7db7b 1222 */
48a066e7 1223void umount_tree(struct mount *mnt, int how)
1da177e4 1224{
38129a13 1225 HLIST_HEAD(tmp_list);
315fc83e 1226 struct mount *p;
38129a13 1227 struct mount *last = NULL;
1da177e4 1228
38129a13
AV
1229 for (p = mnt; p; p = next_mnt(p, mnt)) {
1230 hlist_del_init_rcu(&p->mnt_hash);
1231 hlist_add_head(&p->mnt_hash, &tmp_list);
1232 }
1da177e4 1233
48a066e7 1234 if (how)
7b8a53fd 1235 propagate_umount(&tmp_list);
a05964f3 1236
38129a13 1237 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1238 list_del_init(&p->mnt_expire);
1a4eeaf2 1239 list_del_init(&p->mnt_list);
143c8c91
AV
1240 __touch_mnt_namespace(p->mnt_ns);
1241 p->mnt_ns = NULL;
48a066e7
AV
1242 if (how < 2)
1243 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
6b41d536 1244 list_del_init(&p->mnt_child);
676da58d 1245 if (mnt_has_parent(p)) {
84d17192 1246 put_mountpoint(p->mnt_mp);
aba809cf
AV
1247 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1248 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1249 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1250 p->mnt_mountpoint = p->mnt.mnt_root;
1251 p->mnt_parent = p;
84d17192 1252 p->mnt_mp = NULL;
7c4b93d8 1253 }
0f0afb1d 1254 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1255 last = p;
1256 }
1257 if (last) {
1258 last->mnt_hash.next = unmounted.first;
1259 unmounted.first = tmp_list.first;
1260 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1261 }
1262}
1263
b54b9be7 1264static void shrink_submounts(struct mount *mnt);
c35038be 1265
1ab59738 1266static int do_umount(struct mount *mnt, int flags)
1da177e4 1267{
1ab59738 1268 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1269 int retval;
1270
1ab59738 1271 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1272 if (retval)
1273 return retval;
1274
1275 /*
1276 * Allow userspace to request a mountpoint be expired rather than
1277 * unmounting unconditionally. Unmount only happens if:
1278 * (1) the mark is already set (the mark is cleared by mntput())
1279 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1280 */
1281 if (flags & MNT_EXPIRE) {
1ab59738 1282 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1283 flags & (MNT_FORCE | MNT_DETACH))
1284 return -EINVAL;
1285
b3e19d92
NP
1286 /*
1287 * probably don't strictly need the lock here if we examined
1288 * all race cases, but it's a slowpath.
1289 */
719ea2fb 1290 lock_mount_hash();
83adc753 1291 if (mnt_get_count(mnt) != 2) {
719ea2fb 1292 unlock_mount_hash();
1da177e4 1293 return -EBUSY;
b3e19d92 1294 }
719ea2fb 1295 unlock_mount_hash();
1da177e4 1296
863d684f 1297 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1298 return -EAGAIN;
1299 }
1300
1301 /*
1302 * If we may have to abort operations to get out of this
1303 * mount, and they will themselves hold resources we must
1304 * allow the fs to do things. In the Unix tradition of
1305 * 'Gee thats tricky lets do it in userspace' the umount_begin
1306 * might fail to complete on the first run through as other tasks
1307 * must return, and the like. Thats for the mount program to worry
1308 * about for the moment.
1309 */
1310
42faad99 1311 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1312 sb->s_op->umount_begin(sb);
42faad99 1313 }
1da177e4
LT
1314
1315 /*
1316 * No sense to grab the lock for this test, but test itself looks
1317 * somewhat bogus. Suggestions for better replacement?
1318 * Ho-hum... In principle, we might treat that as umount + switch
1319 * to rootfs. GC would eventually take care of the old vfsmount.
1320 * Actually it makes sense, especially if rootfs would contain a
1321 * /reboot - static binary that would close all descriptors and
1322 * call reboot(9). Then init(8) could umount root and exec /reboot.
1323 */
1ab59738 1324 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1325 /*
1326 * Special case for "unmounting" root ...
1327 * we just try to remount it readonly.
1328 */
1329 down_write(&sb->s_umount);
4aa98cf7 1330 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1331 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1332 up_write(&sb->s_umount);
1333 return retval;
1334 }
1335
97216be0 1336 namespace_lock();
719ea2fb 1337 lock_mount_hash();
5addc5dd 1338 event++;
1da177e4 1339
48a066e7 1340 if (flags & MNT_DETACH) {
1a4eeaf2 1341 if (!list_empty(&mnt->mnt_list))
48a066e7 1342 umount_tree(mnt, 2);
1da177e4 1343 retval = 0;
48a066e7
AV
1344 } else {
1345 shrink_submounts(mnt);
1346 retval = -EBUSY;
1347 if (!propagate_mount_busy(mnt, 2)) {
1348 if (!list_empty(&mnt->mnt_list))
1349 umount_tree(mnt, 1);
1350 retval = 0;
1351 }
1da177e4 1352 }
719ea2fb 1353 unlock_mount_hash();
e3197d83 1354 namespace_unlock();
1da177e4
LT
1355 return retval;
1356}
1357
9b40bc90
AV
1358/*
1359 * Is the caller allowed to modify his namespace?
1360 */
1361static inline bool may_mount(void)
1362{
1363 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1364}
1365
1da177e4
LT
1366/*
1367 * Now umount can handle mount points as well as block devices.
1368 * This is important for filesystems which use unnamed block devices.
1369 *
1370 * We now support a flag for forced unmount like the other 'big iron'
1371 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1372 */
1373
bdc480e3 1374SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1375{
2d8f3038 1376 struct path path;
900148dc 1377 struct mount *mnt;
1da177e4 1378 int retval;
db1f05bb 1379 int lookup_flags = 0;
1da177e4 1380
db1f05bb
MS
1381 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1382 return -EINVAL;
1383
9b40bc90
AV
1384 if (!may_mount())
1385 return -EPERM;
1386
db1f05bb
MS
1387 if (!(flags & UMOUNT_NOFOLLOW))
1388 lookup_flags |= LOOKUP_FOLLOW;
1389
197df04c 1390 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1391 if (retval)
1392 goto out;
900148dc 1393 mnt = real_mount(path.mnt);
1da177e4 1394 retval = -EINVAL;
2d8f3038 1395 if (path.dentry != path.mnt->mnt_root)
1da177e4 1396 goto dput_and_out;
143c8c91 1397 if (!check_mnt(mnt))
1da177e4 1398 goto dput_and_out;
5ff9d8a6
EB
1399 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1400 goto dput_and_out;
1da177e4 1401
900148dc 1402 retval = do_umount(mnt, flags);
1da177e4 1403dput_and_out:
429731b1 1404 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1405 dput(path.dentry);
900148dc 1406 mntput_no_expire(mnt);
1da177e4
LT
1407out:
1408 return retval;
1409}
1410
1411#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1412
1413/*
b58fed8b 1414 * The 2.0 compatible umount. No flags.
1da177e4 1415 */
bdc480e3 1416SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1417{
b58fed8b 1418 return sys_umount(name, 0);
1da177e4
LT
1419}
1420
1421#endif
1422
4ce5d2b1 1423static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1424{
4ce5d2b1
EB
1425 /* Is this a proxy for a mount namespace? */
1426 struct inode *inode = dentry->d_inode;
0bb80f24 1427 struct proc_ns *ei;
8823c079
EB
1428
1429 if (!proc_ns_inode(inode))
1430 return false;
1431
0bb80f24 1432 ei = get_proc_ns(inode);
8823c079
EB
1433 if (ei->ns_ops != &mntns_operations)
1434 return false;
1435
4ce5d2b1
EB
1436 return true;
1437}
1438
1439static bool mnt_ns_loop(struct dentry *dentry)
1440{
1441 /* Could bind mounting the mount namespace inode cause a
1442 * mount namespace loop?
1443 */
1444 struct mnt_namespace *mnt_ns;
1445 if (!is_mnt_ns_file(dentry))
1446 return false;
1447
1448 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1449 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1450}
1451
87129cc0 1452struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1453 int flag)
1da177e4 1454{
84d17192 1455 struct mount *res, *p, *q, *r, *parent;
1da177e4 1456
4ce5d2b1
EB
1457 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1458 return ERR_PTR(-EINVAL);
1459
1460 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1461 return ERR_PTR(-EINVAL);
9676f0c6 1462
36341f64 1463 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1464 if (IS_ERR(q))
1465 return q;
1466
5ff9d8a6 1467 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1468 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1469
1470 p = mnt;
6b41d536 1471 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1472 struct mount *s;
7ec02ef1 1473 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1474 continue;
1475
909b0a88 1476 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1477 if (!(flag & CL_COPY_UNBINDABLE) &&
1478 IS_MNT_UNBINDABLE(s)) {
1479 s = skip_mnt_tree(s);
1480 continue;
1481 }
1482 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1483 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1484 s = skip_mnt_tree(s);
1485 continue;
1486 }
0714a533
AV
1487 while (p != s->mnt_parent) {
1488 p = p->mnt_parent;
1489 q = q->mnt_parent;
1da177e4 1490 }
87129cc0 1491 p = s;
84d17192 1492 parent = q;
87129cc0 1493 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1494 if (IS_ERR(q))
1495 goto out;
719ea2fb 1496 lock_mount_hash();
1a4eeaf2 1497 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1498 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1499 unlock_mount_hash();
1da177e4
LT
1500 }
1501 }
1502 return res;
be34d1a3 1503out:
1da177e4 1504 if (res) {
719ea2fb 1505 lock_mount_hash();
328e6d90 1506 umount_tree(res, 0);
719ea2fb 1507 unlock_mount_hash();
1da177e4 1508 }
be34d1a3 1509 return q;
1da177e4
LT
1510}
1511
be34d1a3
DH
1512/* Caller should check returned pointer for errors */
1513
589ff870 1514struct vfsmount *collect_mounts(struct path *path)
8aec0809 1515{
cb338d06 1516 struct mount *tree;
97216be0 1517 namespace_lock();
87129cc0
AV
1518 tree = copy_tree(real_mount(path->mnt), path->dentry,
1519 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1520 namespace_unlock();
be34d1a3 1521 if (IS_ERR(tree))
52e220d3 1522 return ERR_CAST(tree);
be34d1a3 1523 return &tree->mnt;
8aec0809
AV
1524}
1525
1526void drop_collected_mounts(struct vfsmount *mnt)
1527{
97216be0 1528 namespace_lock();
719ea2fb 1529 lock_mount_hash();
328e6d90 1530 umount_tree(real_mount(mnt), 0);
719ea2fb 1531 unlock_mount_hash();
3ab6abee 1532 namespace_unlock();
8aec0809
AV
1533}
1534
1f707137
AV
1535int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1536 struct vfsmount *root)
1537{
1a4eeaf2 1538 struct mount *mnt;
1f707137
AV
1539 int res = f(root, arg);
1540 if (res)
1541 return res;
1a4eeaf2
AV
1542 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1543 res = f(&mnt->mnt, arg);
1f707137
AV
1544 if (res)
1545 return res;
1546 }
1547 return 0;
1548}
1549
4b8b21f4 1550static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1551{
315fc83e 1552 struct mount *p;
719f5d7f 1553
909b0a88 1554 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1555 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1556 mnt_release_group_id(p);
719f5d7f
MS
1557 }
1558}
1559
4b8b21f4 1560static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1561{
315fc83e 1562 struct mount *p;
719f5d7f 1563
909b0a88 1564 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1565 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1566 int err = mnt_alloc_group_id(p);
719f5d7f 1567 if (err) {
4b8b21f4 1568 cleanup_group_ids(mnt, p);
719f5d7f
MS
1569 return err;
1570 }
1571 }
1572 }
1573
1574 return 0;
1575}
1576
b90fa9ae
RP
1577/*
1578 * @source_mnt : mount tree to be attached
21444403
RP
1579 * @nd : place the mount tree @source_mnt is attached
1580 * @parent_nd : if non-null, detach the source_mnt from its parent and
1581 * store the parent mount and mountpoint dentry.
1582 * (done when source_mnt is moved)
b90fa9ae
RP
1583 *
1584 * NOTE: in the table below explains the semantics when a source mount
1585 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1586 * ---------------------------------------------------------------------------
1587 * | BIND MOUNT OPERATION |
1588 * |**************************************************************************
1589 * | source-->| shared | private | slave | unbindable |
1590 * | dest | | | | |
1591 * | | | | | | |
1592 * | v | | | | |
1593 * |**************************************************************************
1594 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1595 * | | | | | |
1596 * |non-shared| shared (+) | private | slave (*) | invalid |
1597 * ***************************************************************************
b90fa9ae
RP
1598 * A bind operation clones the source mount and mounts the clone on the
1599 * destination mount.
1600 *
1601 * (++) the cloned mount is propagated to all the mounts in the propagation
1602 * tree of the destination mount and the cloned mount is added to
1603 * the peer group of the source mount.
1604 * (+) the cloned mount is created under the destination mount and is marked
1605 * as shared. The cloned mount is added to the peer group of the source
1606 * mount.
5afe0022
RP
1607 * (+++) the mount is propagated to all the mounts in the propagation tree
1608 * of the destination mount and the cloned mount is made slave
1609 * of the same master as that of the source mount. The cloned mount
1610 * is marked as 'shared and slave'.
1611 * (*) the cloned mount is made a slave of the same master as that of the
1612 * source mount.
1613 *
9676f0c6
RP
1614 * ---------------------------------------------------------------------------
1615 * | MOVE MOUNT OPERATION |
1616 * |**************************************************************************
1617 * | source-->| shared | private | slave | unbindable |
1618 * | dest | | | | |
1619 * | | | | | | |
1620 * | v | | | | |
1621 * |**************************************************************************
1622 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1623 * | | | | | |
1624 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1625 * ***************************************************************************
5afe0022
RP
1626 *
1627 * (+) the mount is moved to the destination. And is then propagated to
1628 * all the mounts in the propagation tree of the destination mount.
21444403 1629 * (+*) the mount is moved to the destination.
5afe0022
RP
1630 * (+++) the mount is moved to the destination and is then propagated to
1631 * all the mounts belonging to the destination mount's propagation tree.
1632 * the mount is marked as 'shared and slave'.
1633 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1634 *
1635 * if the source mount is a tree, the operations explained above is
1636 * applied to each mount in the tree.
1637 * Must be called without spinlocks held, since this function can sleep
1638 * in allocations.
1639 */
0fb54e50 1640static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1641 struct mount *dest_mnt,
1642 struct mountpoint *dest_mp,
1643 struct path *parent_path)
b90fa9ae 1644{
38129a13 1645 HLIST_HEAD(tree_list);
315fc83e 1646 struct mount *child, *p;
38129a13 1647 struct hlist_node *n;
719f5d7f 1648 int err;
b90fa9ae 1649
fc7be130 1650 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1651 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1652 if (err)
1653 goto out;
0b1b901b 1654 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1655 lock_mount_hash();
0b1b901b
AV
1656 if (err)
1657 goto out_cleanup_ids;
909b0a88 1658 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1659 set_mnt_shared(p);
0b1b901b
AV
1660 } else {
1661 lock_mount_hash();
b90fa9ae 1662 }
1a390689 1663 if (parent_path) {
0fb54e50 1664 detach_mnt(source_mnt, parent_path);
84d17192 1665 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1666 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1667 } else {
84d17192 1668 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1669 commit_tree(source_mnt, NULL);
21444403 1670 }
b90fa9ae 1671
38129a13 1672 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1673 struct mount *q;
38129a13 1674 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1675 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1676 child->mnt_mountpoint);
1677 commit_tree(child, q);
b90fa9ae 1678 }
719ea2fb 1679 unlock_mount_hash();
99b7db7b 1680
b90fa9ae 1681 return 0;
719f5d7f
MS
1682
1683 out_cleanup_ids:
f2ebb3a9
AV
1684 while (!hlist_empty(&tree_list)) {
1685 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1686 umount_tree(child, 0);
1687 }
1688 unlock_mount_hash();
0b1b901b 1689 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1690 out:
1691 return err;
b90fa9ae
RP
1692}
1693
84d17192 1694static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1695{
1696 struct vfsmount *mnt;
84d17192 1697 struct dentry *dentry = path->dentry;
b12cea91 1698retry:
84d17192
AV
1699 mutex_lock(&dentry->d_inode->i_mutex);
1700 if (unlikely(cant_mount(dentry))) {
1701 mutex_unlock(&dentry->d_inode->i_mutex);
1702 return ERR_PTR(-ENOENT);
b12cea91 1703 }
97216be0 1704 namespace_lock();
b12cea91 1705 mnt = lookup_mnt(path);
84d17192
AV
1706 if (likely(!mnt)) {
1707 struct mountpoint *mp = new_mountpoint(dentry);
1708 if (IS_ERR(mp)) {
97216be0 1709 namespace_unlock();
84d17192
AV
1710 mutex_unlock(&dentry->d_inode->i_mutex);
1711 return mp;
1712 }
1713 return mp;
1714 }
97216be0 1715 namespace_unlock();
b12cea91
AV
1716 mutex_unlock(&path->dentry->d_inode->i_mutex);
1717 path_put(path);
1718 path->mnt = mnt;
84d17192 1719 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1720 goto retry;
1721}
1722
84d17192 1723static void unlock_mount(struct mountpoint *where)
b12cea91 1724{
84d17192
AV
1725 struct dentry *dentry = where->m_dentry;
1726 put_mountpoint(where);
328e6d90 1727 namespace_unlock();
84d17192 1728 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1729}
1730
84d17192 1731static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1732{
95bc5f25 1733 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1734 return -EINVAL;
1735
84d17192 1736 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1737 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1738 return -ENOTDIR;
1739
84d17192 1740 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1741}
1742
7a2e8a8f
VA
1743/*
1744 * Sanity check the flags to change_mnt_propagation.
1745 */
1746
1747static int flags_to_propagation_type(int flags)
1748{
7c6e984d 1749 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1750
1751 /* Fail if any non-propagation flags are set */
1752 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1753 return 0;
1754 /* Only one propagation flag should be set */
1755 if (!is_power_of_2(type))
1756 return 0;
1757 return type;
1758}
1759
07b20889
RP
1760/*
1761 * recursively change the type of the mountpoint.
1762 */
0a0d8a46 1763static int do_change_type(struct path *path, int flag)
07b20889 1764{
315fc83e 1765 struct mount *m;
4b8b21f4 1766 struct mount *mnt = real_mount(path->mnt);
07b20889 1767 int recurse = flag & MS_REC;
7a2e8a8f 1768 int type;
719f5d7f 1769 int err = 0;
07b20889 1770
2d92ab3c 1771 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1772 return -EINVAL;
1773
7a2e8a8f
VA
1774 type = flags_to_propagation_type(flag);
1775 if (!type)
1776 return -EINVAL;
1777
97216be0 1778 namespace_lock();
719f5d7f
MS
1779 if (type == MS_SHARED) {
1780 err = invent_group_ids(mnt, recurse);
1781 if (err)
1782 goto out_unlock;
1783 }
1784
719ea2fb 1785 lock_mount_hash();
909b0a88 1786 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1787 change_mnt_propagation(m, type);
719ea2fb 1788 unlock_mount_hash();
719f5d7f
MS
1789
1790 out_unlock:
97216be0 1791 namespace_unlock();
719f5d7f 1792 return err;
07b20889
RP
1793}
1794
5ff9d8a6
EB
1795static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1796{
1797 struct mount *child;
1798 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1799 if (!is_subdir(child->mnt_mountpoint, dentry))
1800 continue;
1801
1802 if (child->mnt.mnt_flags & MNT_LOCKED)
1803 return true;
1804 }
1805 return false;
1806}
1807
1da177e4
LT
1808/*
1809 * do loopback mount.
1810 */
808d4e3c 1811static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1812 int recurse)
1da177e4 1813{
2d92ab3c 1814 struct path old_path;
84d17192
AV
1815 struct mount *mnt = NULL, *old, *parent;
1816 struct mountpoint *mp;
57eccb83 1817 int err;
1da177e4
LT
1818 if (!old_name || !*old_name)
1819 return -EINVAL;
815d405c 1820 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1821 if (err)
1822 return err;
1823
8823c079 1824 err = -EINVAL;
4ce5d2b1 1825 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1826 goto out;
1827
84d17192
AV
1828 mp = lock_mount(path);
1829 err = PTR_ERR(mp);
1830 if (IS_ERR(mp))
b12cea91
AV
1831 goto out;
1832
87129cc0 1833 old = real_mount(old_path.mnt);
84d17192 1834 parent = real_mount(path->mnt);
87129cc0 1835
1da177e4 1836 err = -EINVAL;
fc7be130 1837 if (IS_MNT_UNBINDABLE(old))
b12cea91 1838 goto out2;
9676f0c6 1839
84d17192 1840 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1841 goto out2;
1da177e4 1842
5ff9d8a6
EB
1843 if (!recurse && has_locked_children(old, old_path.dentry))
1844 goto out2;
1845
ccd48bc7 1846 if (recurse)
4ce5d2b1 1847 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1848 else
87129cc0 1849 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1850
be34d1a3
DH
1851 if (IS_ERR(mnt)) {
1852 err = PTR_ERR(mnt);
e9c5d8a5 1853 goto out2;
be34d1a3 1854 }
ccd48bc7 1855
5ff9d8a6
EB
1856 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1857
84d17192 1858 err = graft_tree(mnt, parent, mp);
ccd48bc7 1859 if (err) {
719ea2fb 1860 lock_mount_hash();
328e6d90 1861 umount_tree(mnt, 0);
719ea2fb 1862 unlock_mount_hash();
5b83d2c5 1863 }
b12cea91 1864out2:
84d17192 1865 unlock_mount(mp);
ccd48bc7 1866out:
2d92ab3c 1867 path_put(&old_path);
1da177e4
LT
1868 return err;
1869}
1870
2e4b7fcd
DH
1871static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1872{
1873 int error = 0;
1874 int readonly_request = 0;
1875
1876 if (ms_flags & MS_RDONLY)
1877 readonly_request = 1;
1878 if (readonly_request == __mnt_is_readonly(mnt))
1879 return 0;
1880
90563b19
EB
1881 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1882 return -EPERM;
1883
2e4b7fcd 1884 if (readonly_request)
83adc753 1885 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1886 else
83adc753 1887 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1888 return error;
1889}
1890
1da177e4
LT
1891/*
1892 * change filesystem flags. dir should be a physical root of filesystem.
1893 * If you've mounted a non-root directory somewhere and want to do remount
1894 * on it - tough luck.
1895 */
0a0d8a46 1896static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1897 void *data)
1898{
1899 int err;
2d92ab3c 1900 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1901 struct mount *mnt = real_mount(path->mnt);
1da177e4 1902
143c8c91 1903 if (!check_mnt(mnt))
1da177e4
LT
1904 return -EINVAL;
1905
2d92ab3c 1906 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1907 return -EINVAL;
1908
ff36fe2c
EP
1909 err = security_sb_remount(sb, data);
1910 if (err)
1911 return err;
1912
1da177e4 1913 down_write(&sb->s_umount);
2e4b7fcd 1914 if (flags & MS_BIND)
2d92ab3c 1915 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1916 else if (!capable(CAP_SYS_ADMIN))
1917 err = -EPERM;
4aa98cf7 1918 else
2e4b7fcd 1919 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1920 if (!err) {
719ea2fb 1921 lock_mount_hash();
143c8c91
AV
1922 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1923 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 1924 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 1925 unlock_mount_hash();
0e55a7cc 1926 }
6339dab8 1927 up_write(&sb->s_umount);
1da177e4
LT
1928 return err;
1929}
1930
cbbe362c 1931static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1932{
315fc83e 1933 struct mount *p;
909b0a88 1934 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1935 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1936 return 1;
1937 }
1938 return 0;
1939}
1940
808d4e3c 1941static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1942{
2d92ab3c 1943 struct path old_path, parent_path;
676da58d 1944 struct mount *p;
0fb54e50 1945 struct mount *old;
84d17192 1946 struct mountpoint *mp;
57eccb83 1947 int err;
1da177e4
LT
1948 if (!old_name || !*old_name)
1949 return -EINVAL;
2d92ab3c 1950 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1951 if (err)
1952 return err;
1953
84d17192
AV
1954 mp = lock_mount(path);
1955 err = PTR_ERR(mp);
1956 if (IS_ERR(mp))
cc53ce53
DH
1957 goto out;
1958
143c8c91 1959 old = real_mount(old_path.mnt);
fc7be130 1960 p = real_mount(path->mnt);
143c8c91 1961
1da177e4 1962 err = -EINVAL;
fc7be130 1963 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1964 goto out1;
1965
5ff9d8a6
EB
1966 if (old->mnt.mnt_flags & MNT_LOCKED)
1967 goto out1;
1968
1da177e4 1969 err = -EINVAL;
2d92ab3c 1970 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1971 goto out1;
1da177e4 1972
676da58d 1973 if (!mnt_has_parent(old))
21444403 1974 goto out1;
1da177e4 1975
2d92ab3c
AV
1976 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1977 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1978 goto out1;
1979 /*
1980 * Don't move a mount residing in a shared parent.
1981 */
fc7be130 1982 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1983 goto out1;
9676f0c6
RP
1984 /*
1985 * Don't move a mount tree containing unbindable mounts to a destination
1986 * mount which is shared.
1987 */
fc7be130 1988 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1989 goto out1;
1da177e4 1990 err = -ELOOP;
fc7be130 1991 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1992 if (p == old)
21444403 1993 goto out1;
1da177e4 1994
84d17192 1995 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1996 if (err)
21444403 1997 goto out1;
1da177e4
LT
1998
1999 /* if the mount is moved, it should no longer be expire
2000 * automatically */
6776db3d 2001 list_del_init(&old->mnt_expire);
1da177e4 2002out1:
84d17192 2003 unlock_mount(mp);
1da177e4 2004out:
1da177e4 2005 if (!err)
1a390689 2006 path_put(&parent_path);
2d92ab3c 2007 path_put(&old_path);
1da177e4
LT
2008 return err;
2009}
2010
9d412a43
AV
2011static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2012{
2013 int err;
2014 const char *subtype = strchr(fstype, '.');
2015 if (subtype) {
2016 subtype++;
2017 err = -EINVAL;
2018 if (!subtype[0])
2019 goto err;
2020 } else
2021 subtype = "";
2022
2023 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2024 err = -ENOMEM;
2025 if (!mnt->mnt_sb->s_subtype)
2026 goto err;
2027 return mnt;
2028
2029 err:
2030 mntput(mnt);
2031 return ERR_PTR(err);
2032}
2033
9d412a43
AV
2034/*
2035 * add a mount into a namespace's mount tree
2036 */
95bc5f25 2037static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2038{
84d17192
AV
2039 struct mountpoint *mp;
2040 struct mount *parent;
9d412a43
AV
2041 int err;
2042
f2ebb3a9 2043 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2044
84d17192
AV
2045 mp = lock_mount(path);
2046 if (IS_ERR(mp))
2047 return PTR_ERR(mp);
9d412a43 2048
84d17192 2049 parent = real_mount(path->mnt);
9d412a43 2050 err = -EINVAL;
84d17192 2051 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2052 /* that's acceptable only for automounts done in private ns */
2053 if (!(mnt_flags & MNT_SHRINKABLE))
2054 goto unlock;
2055 /* ... and for those we'd better have mountpoint still alive */
84d17192 2056 if (!parent->mnt_ns)
156cacb1
AV
2057 goto unlock;
2058 }
9d412a43
AV
2059
2060 /* Refuse the same filesystem on the same mount point */
2061 err = -EBUSY;
95bc5f25 2062 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2063 path->mnt->mnt_root == path->dentry)
2064 goto unlock;
2065
2066 err = -EINVAL;
95bc5f25 2067 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2068 goto unlock;
2069
95bc5f25 2070 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2071 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2072
2073unlock:
84d17192 2074 unlock_mount(mp);
9d412a43
AV
2075 return err;
2076}
b1e75df4 2077
1da177e4
LT
2078/*
2079 * create a new mount for userspace and request it to be added into the
2080 * namespace's tree
2081 */
0c55cfc4 2082static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2083 int mnt_flags, const char *name, void *data)
1da177e4 2084{
0c55cfc4 2085 struct file_system_type *type;
9b40bc90 2086 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2087 struct vfsmount *mnt;
15f9a3f3 2088 int err;
1da177e4 2089
0c55cfc4 2090 if (!fstype)
1da177e4
LT
2091 return -EINVAL;
2092
0c55cfc4
EB
2093 type = get_fs_type(fstype);
2094 if (!type)
2095 return -ENODEV;
2096
2097 if (user_ns != &init_user_ns) {
2098 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2099 put_filesystem(type);
2100 return -EPERM;
2101 }
2102 /* Only in special cases allow devices from mounts
2103 * created outside the initial user namespace.
2104 */
2105 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2106 flags |= MS_NODEV;
2107 mnt_flags |= MNT_NODEV;
2108 }
2109 }
2110
2111 mnt = vfs_kern_mount(type, flags, name, data);
2112 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2113 !mnt->mnt_sb->s_subtype)
2114 mnt = fs_set_subtype(mnt, fstype);
2115
2116 put_filesystem(type);
1da177e4
LT
2117 if (IS_ERR(mnt))
2118 return PTR_ERR(mnt);
2119
95bc5f25 2120 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2121 if (err)
2122 mntput(mnt);
2123 return err;
1da177e4
LT
2124}
2125
19a167af
AV
2126int finish_automount(struct vfsmount *m, struct path *path)
2127{
6776db3d 2128 struct mount *mnt = real_mount(m);
19a167af
AV
2129 int err;
2130 /* The new mount record should have at least 2 refs to prevent it being
2131 * expired before we get a chance to add it
2132 */
6776db3d 2133 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2134
2135 if (m->mnt_sb == path->mnt->mnt_sb &&
2136 m->mnt_root == path->dentry) {
b1e75df4
AV
2137 err = -ELOOP;
2138 goto fail;
19a167af
AV
2139 }
2140
95bc5f25 2141 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2142 if (!err)
2143 return 0;
2144fail:
2145 /* remove m from any expiration list it may be on */
6776db3d 2146 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2147 namespace_lock();
6776db3d 2148 list_del_init(&mnt->mnt_expire);
97216be0 2149 namespace_unlock();
19a167af 2150 }
b1e75df4
AV
2151 mntput(m);
2152 mntput(m);
19a167af
AV
2153 return err;
2154}
2155
ea5b778a
DH
2156/**
2157 * mnt_set_expiry - Put a mount on an expiration list
2158 * @mnt: The mount to list.
2159 * @expiry_list: The list to add the mount to.
2160 */
2161void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2162{
97216be0 2163 namespace_lock();
ea5b778a 2164
6776db3d 2165 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2166
97216be0 2167 namespace_unlock();
ea5b778a
DH
2168}
2169EXPORT_SYMBOL(mnt_set_expiry);
2170
1da177e4
LT
2171/*
2172 * process a list of expirable mountpoints with the intent of discarding any
2173 * mountpoints that aren't in use and haven't been touched since last we came
2174 * here
2175 */
2176void mark_mounts_for_expiry(struct list_head *mounts)
2177{
761d5c38 2178 struct mount *mnt, *next;
1da177e4
LT
2179 LIST_HEAD(graveyard);
2180
2181 if (list_empty(mounts))
2182 return;
2183
97216be0 2184 namespace_lock();
719ea2fb 2185 lock_mount_hash();
1da177e4
LT
2186
2187 /* extract from the expiration list every vfsmount that matches the
2188 * following criteria:
2189 * - only referenced by its parent vfsmount
2190 * - still marked for expiry (marked on the last call here; marks are
2191 * cleared by mntput())
2192 */
6776db3d 2193 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2194 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2195 propagate_mount_busy(mnt, 1))
1da177e4 2196 continue;
6776db3d 2197 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2198 }
bcc5c7d2 2199 while (!list_empty(&graveyard)) {
6776db3d 2200 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2201 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2202 umount_tree(mnt, 1);
bcc5c7d2 2203 }
719ea2fb 2204 unlock_mount_hash();
3ab6abee 2205 namespace_unlock();
5528f911
TM
2206}
2207
2208EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2209
2210/*
2211 * Ripoff of 'select_parent()'
2212 *
2213 * search the list of submounts for a given mountpoint, and move any
2214 * shrinkable submounts to the 'graveyard' list.
2215 */
692afc31 2216static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2217{
692afc31 2218 struct mount *this_parent = parent;
5528f911
TM
2219 struct list_head *next;
2220 int found = 0;
2221
2222repeat:
6b41d536 2223 next = this_parent->mnt_mounts.next;
5528f911 2224resume:
6b41d536 2225 while (next != &this_parent->mnt_mounts) {
5528f911 2226 struct list_head *tmp = next;
6b41d536 2227 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2228
2229 next = tmp->next;
692afc31 2230 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2231 continue;
5528f911
TM
2232 /*
2233 * Descend a level if the d_mounts list is non-empty.
2234 */
6b41d536 2235 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2236 this_parent = mnt;
2237 goto repeat;
2238 }
1da177e4 2239
1ab59738 2240 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2241 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2242 found++;
2243 }
1da177e4 2244 }
5528f911
TM
2245 /*
2246 * All done at this level ... ascend and resume the search
2247 */
2248 if (this_parent != parent) {
6b41d536 2249 next = this_parent->mnt_child.next;
0714a533 2250 this_parent = this_parent->mnt_parent;
5528f911
TM
2251 goto resume;
2252 }
2253 return found;
2254}
2255
2256/*
2257 * process a list of expirable mountpoints with the intent of discarding any
2258 * submounts of a specific parent mountpoint
99b7db7b 2259 *
48a066e7 2260 * mount_lock must be held for write
5528f911 2261 */
b54b9be7 2262static void shrink_submounts(struct mount *mnt)
5528f911
TM
2263{
2264 LIST_HEAD(graveyard);
761d5c38 2265 struct mount *m;
5528f911 2266
5528f911 2267 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2268 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2269 while (!list_empty(&graveyard)) {
761d5c38 2270 m = list_first_entry(&graveyard, struct mount,
6776db3d 2271 mnt_expire);
143c8c91 2272 touch_mnt_namespace(m->mnt_ns);
328e6d90 2273 umount_tree(m, 1);
bcc5c7d2
AV
2274 }
2275 }
1da177e4
LT
2276}
2277
1da177e4
LT
2278/*
2279 * Some copy_from_user() implementations do not return the exact number of
2280 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2281 * Note that this function differs from copy_from_user() in that it will oops
2282 * on bad values of `to', rather than returning a short copy.
2283 */
b58fed8b
RP
2284static long exact_copy_from_user(void *to, const void __user * from,
2285 unsigned long n)
1da177e4
LT
2286{
2287 char *t = to;
2288 const char __user *f = from;
2289 char c;
2290
2291 if (!access_ok(VERIFY_READ, from, n))
2292 return n;
2293
2294 while (n) {
2295 if (__get_user(c, f)) {
2296 memset(t, 0, n);
2297 break;
2298 }
2299 *t++ = c;
2300 f++;
2301 n--;
2302 }
2303 return n;
2304}
2305
b58fed8b 2306int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2307{
2308 int i;
2309 unsigned long page;
2310 unsigned long size;
b58fed8b 2311
1da177e4
LT
2312 *where = 0;
2313 if (!data)
2314 return 0;
2315
2316 if (!(page = __get_free_page(GFP_KERNEL)))
2317 return -ENOMEM;
2318
2319 /* We only care that *some* data at the address the user
2320 * gave us is valid. Just in case, we'll zero
2321 * the remainder of the page.
2322 */
2323 /* copy_from_user cannot cross TASK_SIZE ! */
2324 size = TASK_SIZE - (unsigned long)data;
2325 if (size > PAGE_SIZE)
2326 size = PAGE_SIZE;
2327
2328 i = size - exact_copy_from_user((void *)page, data, size);
2329 if (!i) {
b58fed8b 2330 free_page(page);
1da177e4
LT
2331 return -EFAULT;
2332 }
2333 if (i != PAGE_SIZE)
2334 memset((char *)page + i, 0, PAGE_SIZE - i);
2335 *where = page;
2336 return 0;
2337}
2338
eca6f534
VN
2339int copy_mount_string(const void __user *data, char **where)
2340{
2341 char *tmp;
2342
2343 if (!data) {
2344 *where = NULL;
2345 return 0;
2346 }
2347
2348 tmp = strndup_user(data, PAGE_SIZE);
2349 if (IS_ERR(tmp))
2350 return PTR_ERR(tmp);
2351
2352 *where = tmp;
2353 return 0;
2354}
2355
1da177e4
LT
2356/*
2357 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2358 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2359 *
2360 * data is a (void *) that can point to any structure up to
2361 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2362 * information (or be NULL).
2363 *
2364 * Pre-0.97 versions of mount() didn't have a flags word.
2365 * When the flags word was introduced its top half was required
2366 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2367 * Therefore, if this magic number is present, it carries no information
2368 * and must be discarded.
2369 */
808d4e3c
AV
2370long do_mount(const char *dev_name, const char *dir_name,
2371 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2372{
2d92ab3c 2373 struct path path;
1da177e4
LT
2374 int retval = 0;
2375 int mnt_flags = 0;
2376
2377 /* Discard magic */
2378 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2379 flags &= ~MS_MGC_MSK;
2380
2381 /* Basic sanity checks */
2382
2383 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2384 return -EINVAL;
1da177e4
LT
2385
2386 if (data_page)
2387 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2388
a27ab9f2
TH
2389 /* ... and get the mountpoint */
2390 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2391 if (retval)
2392 return retval;
2393
2394 retval = security_sb_mount(dev_name, &path,
2395 type_page, flags, data_page);
0d5cadb8
AV
2396 if (!retval && !may_mount())
2397 retval = -EPERM;
a27ab9f2
TH
2398 if (retval)
2399 goto dput_out;
2400
613cbe3d
AK
2401 /* Default to relatime unless overriden */
2402 if (!(flags & MS_NOATIME))
2403 mnt_flags |= MNT_RELATIME;
0a1c01c9 2404
1da177e4
LT
2405 /* Separate the per-mountpoint flags */
2406 if (flags & MS_NOSUID)
2407 mnt_flags |= MNT_NOSUID;
2408 if (flags & MS_NODEV)
2409 mnt_flags |= MNT_NODEV;
2410 if (flags & MS_NOEXEC)
2411 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2412 if (flags & MS_NOATIME)
2413 mnt_flags |= MNT_NOATIME;
2414 if (flags & MS_NODIRATIME)
2415 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2416 if (flags & MS_STRICTATIME)
2417 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2418 if (flags & MS_RDONLY)
2419 mnt_flags |= MNT_READONLY;
fc33a7bb 2420
7a4dec53 2421 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2422 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2423 MS_STRICTATIME);
1da177e4 2424
1da177e4 2425 if (flags & MS_REMOUNT)
2d92ab3c 2426 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2427 data_page);
2428 else if (flags & MS_BIND)
2d92ab3c 2429 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2430 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2431 retval = do_change_type(&path, flags);
1da177e4 2432 else if (flags & MS_MOVE)
2d92ab3c 2433 retval = do_move_mount(&path, dev_name);
1da177e4 2434 else
2d92ab3c 2435 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2436 dev_name, data_page);
2437dput_out:
2d92ab3c 2438 path_put(&path);
1da177e4
LT
2439 return retval;
2440}
2441
771b1371
EB
2442static void free_mnt_ns(struct mnt_namespace *ns)
2443{
98f842e6 2444 proc_free_inum(ns->proc_inum);
771b1371
EB
2445 put_user_ns(ns->user_ns);
2446 kfree(ns);
2447}
2448
8823c079
EB
2449/*
2450 * Assign a sequence number so we can detect when we attempt to bind
2451 * mount a reference to an older mount namespace into the current
2452 * mount namespace, preventing reference counting loops. A 64bit
2453 * number incrementing at 10Ghz will take 12,427 years to wrap which
2454 * is effectively never, so we can ignore the possibility.
2455 */
2456static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2457
771b1371 2458static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2459{
2460 struct mnt_namespace *new_ns;
98f842e6 2461 int ret;
cf8d2c11
TM
2462
2463 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2464 if (!new_ns)
2465 return ERR_PTR(-ENOMEM);
98f842e6
EB
2466 ret = proc_alloc_inum(&new_ns->proc_inum);
2467 if (ret) {
2468 kfree(new_ns);
2469 return ERR_PTR(ret);
2470 }
8823c079 2471 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2472 atomic_set(&new_ns->count, 1);
2473 new_ns->root = NULL;
2474 INIT_LIST_HEAD(&new_ns->list);
2475 init_waitqueue_head(&new_ns->poll);
2476 new_ns->event = 0;
771b1371 2477 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2478 return new_ns;
2479}
2480
9559f689
AV
2481struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2482 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2483{
6b3286ed 2484 struct mnt_namespace *new_ns;
7f2da1e7 2485 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2486 struct mount *p, *q;
9559f689 2487 struct mount *old;
cb338d06 2488 struct mount *new;
7a472ef4 2489 int copy_flags;
1da177e4 2490
9559f689
AV
2491 BUG_ON(!ns);
2492
2493 if (likely(!(flags & CLONE_NEWNS))) {
2494 get_mnt_ns(ns);
2495 return ns;
2496 }
2497
2498 old = ns->root;
2499
771b1371 2500 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2501 if (IS_ERR(new_ns))
2502 return new_ns;
1da177e4 2503
97216be0 2504 namespace_lock();
1da177e4 2505 /* First pass: copy the tree topology */
4ce5d2b1 2506 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2507 if (user_ns != ns->user_ns)
132c94e3 2508 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2509 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2510 if (IS_ERR(new)) {
328e6d90 2511 namespace_unlock();
771b1371 2512 free_mnt_ns(new_ns);
be34d1a3 2513 return ERR_CAST(new);
1da177e4 2514 }
be08d6d2 2515 new_ns->root = new;
1a4eeaf2 2516 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2517
2518 /*
2519 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2520 * as belonging to new namespace. We have already acquired a private
2521 * fs_struct, so tsk->fs->lock is not needed.
2522 */
909b0a88 2523 p = old;
cb338d06 2524 q = new;
1da177e4 2525 while (p) {
143c8c91 2526 q->mnt_ns = new_ns;
9559f689
AV
2527 if (new_fs) {
2528 if (&p->mnt == new_fs->root.mnt) {
2529 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2530 rootmnt = &p->mnt;
1da177e4 2531 }
9559f689
AV
2532 if (&p->mnt == new_fs->pwd.mnt) {
2533 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2534 pwdmnt = &p->mnt;
1da177e4 2535 }
1da177e4 2536 }
909b0a88
AV
2537 p = next_mnt(p, old);
2538 q = next_mnt(q, new);
4ce5d2b1
EB
2539 if (!q)
2540 break;
2541 while (p->mnt.mnt_root != q->mnt.mnt_root)
2542 p = next_mnt(p, old);
1da177e4 2543 }
328e6d90 2544 namespace_unlock();
1da177e4 2545
1da177e4 2546 if (rootmnt)
f03c6599 2547 mntput(rootmnt);
1da177e4 2548 if (pwdmnt)
f03c6599 2549 mntput(pwdmnt);
1da177e4 2550
741a2951 2551 return new_ns;
1da177e4
LT
2552}
2553
cf8d2c11
TM
2554/**
2555 * create_mnt_ns - creates a private namespace and adds a root filesystem
2556 * @mnt: pointer to the new root filesystem mountpoint
2557 */
1a4eeaf2 2558static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2559{
771b1371 2560 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2561 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2562 struct mount *mnt = real_mount(m);
2563 mnt->mnt_ns = new_ns;
be08d6d2 2564 new_ns->root = mnt;
b1983cd8 2565 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2566 } else {
1a4eeaf2 2567 mntput(m);
cf8d2c11
TM
2568 }
2569 return new_ns;
2570}
cf8d2c11 2571
ea441d11
AV
2572struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2573{
2574 struct mnt_namespace *ns;
d31da0f0 2575 struct super_block *s;
ea441d11
AV
2576 struct path path;
2577 int err;
2578
2579 ns = create_mnt_ns(mnt);
2580 if (IS_ERR(ns))
2581 return ERR_CAST(ns);
2582
2583 err = vfs_path_lookup(mnt->mnt_root, mnt,
2584 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2585
2586 put_mnt_ns(ns);
2587
2588 if (err)
2589 return ERR_PTR(err);
2590
2591 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2592 s = path.mnt->mnt_sb;
2593 atomic_inc(&s->s_active);
ea441d11
AV
2594 mntput(path.mnt);
2595 /* lock the sucker */
d31da0f0 2596 down_write(&s->s_umount);
ea441d11
AV
2597 /* ... and return the root of (sub)tree on it */
2598 return path.dentry;
2599}
2600EXPORT_SYMBOL(mount_subtree);
2601
bdc480e3
HC
2602SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2603 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2604{
eca6f534
VN
2605 int ret;
2606 char *kernel_type;
91a27b2a 2607 struct filename *kernel_dir;
eca6f534 2608 char *kernel_dev;
1da177e4 2609 unsigned long data_page;
1da177e4 2610
eca6f534
VN
2611 ret = copy_mount_string(type, &kernel_type);
2612 if (ret < 0)
2613 goto out_type;
1da177e4 2614
eca6f534
VN
2615 kernel_dir = getname(dir_name);
2616 if (IS_ERR(kernel_dir)) {
2617 ret = PTR_ERR(kernel_dir);
2618 goto out_dir;
2619 }
1da177e4 2620
eca6f534
VN
2621 ret = copy_mount_string(dev_name, &kernel_dev);
2622 if (ret < 0)
2623 goto out_dev;
1da177e4 2624
eca6f534
VN
2625 ret = copy_mount_options(data, &data_page);
2626 if (ret < 0)
2627 goto out_data;
1da177e4 2628
91a27b2a 2629 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2630 (void *) data_page);
1da177e4 2631
eca6f534
VN
2632 free_page(data_page);
2633out_data:
2634 kfree(kernel_dev);
2635out_dev:
2636 putname(kernel_dir);
2637out_dir:
2638 kfree(kernel_type);
2639out_type:
2640 return ret;
1da177e4
LT
2641}
2642
afac7cba
AV
2643/*
2644 * Return true if path is reachable from root
2645 *
48a066e7 2646 * namespace_sem or mount_lock is held
afac7cba 2647 */
643822b4 2648bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2649 const struct path *root)
2650{
643822b4 2651 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2652 dentry = mnt->mnt_mountpoint;
0714a533 2653 mnt = mnt->mnt_parent;
afac7cba 2654 }
643822b4 2655 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2656}
2657
2658int path_is_under(struct path *path1, struct path *path2)
2659{
2660 int res;
48a066e7 2661 read_seqlock_excl(&mount_lock);
643822b4 2662 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2663 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2664 return res;
2665}
2666EXPORT_SYMBOL(path_is_under);
2667
1da177e4
LT
2668/*
2669 * pivot_root Semantics:
2670 * Moves the root file system of the current process to the directory put_old,
2671 * makes new_root as the new root file system of the current process, and sets
2672 * root/cwd of all processes which had them on the current root to new_root.
2673 *
2674 * Restrictions:
2675 * The new_root and put_old must be directories, and must not be on the
2676 * same file system as the current process root. The put_old must be
2677 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2678 * pointed to by put_old must yield the same directory as new_root. No other
2679 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2680 *
4a0d11fa
NB
2681 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2682 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2683 * in this situation.
2684 *
1da177e4
LT
2685 * Notes:
2686 * - we don't move root/cwd if they are not at the root (reason: if something
2687 * cared enough to change them, it's probably wrong to force them elsewhere)
2688 * - it's okay to pick a root that isn't the root of a file system, e.g.
2689 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2690 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2691 * first.
2692 */
3480b257
HC
2693SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2694 const char __user *, put_old)
1da177e4 2695{
2d8f3038 2696 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2697 struct mount *new_mnt, *root_mnt, *old_mnt;
2698 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2699 int error;
2700
9b40bc90 2701 if (!may_mount())
1da177e4
LT
2702 return -EPERM;
2703
2d8f3038 2704 error = user_path_dir(new_root, &new);
1da177e4
LT
2705 if (error)
2706 goto out0;
1da177e4 2707
2d8f3038 2708 error = user_path_dir(put_old, &old);
1da177e4
LT
2709 if (error)
2710 goto out1;
2711
2d8f3038 2712 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2713 if (error)
2714 goto out2;
1da177e4 2715
f7ad3c6b 2716 get_fs_root(current->fs, &root);
84d17192
AV
2717 old_mp = lock_mount(&old);
2718 error = PTR_ERR(old_mp);
2719 if (IS_ERR(old_mp))
b12cea91
AV
2720 goto out3;
2721
1da177e4 2722 error = -EINVAL;
419148da
AV
2723 new_mnt = real_mount(new.mnt);
2724 root_mnt = real_mount(root.mnt);
84d17192
AV
2725 old_mnt = real_mount(old.mnt);
2726 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2727 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2728 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2729 goto out4;
143c8c91 2730 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2731 goto out4;
5ff9d8a6
EB
2732 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2733 goto out4;
1da177e4 2734 error = -ENOENT;
f3da392e 2735 if (d_unlinked(new.dentry))
b12cea91 2736 goto out4;
1da177e4 2737 error = -EBUSY;
84d17192 2738 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2739 goto out4; /* loop, on the same file system */
1da177e4 2740 error = -EINVAL;
8c3ee42e 2741 if (root.mnt->mnt_root != root.dentry)
b12cea91 2742 goto out4; /* not a mountpoint */
676da58d 2743 if (!mnt_has_parent(root_mnt))
b12cea91 2744 goto out4; /* not attached */
84d17192 2745 root_mp = root_mnt->mnt_mp;
2d8f3038 2746 if (new.mnt->mnt_root != new.dentry)
b12cea91 2747 goto out4; /* not a mountpoint */
676da58d 2748 if (!mnt_has_parent(new_mnt))
b12cea91 2749 goto out4; /* not attached */
4ac91378 2750 /* make sure we can reach put_old from new_root */
84d17192 2751 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2752 goto out4;
84d17192 2753 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2754 lock_mount_hash();
419148da
AV
2755 detach_mnt(new_mnt, &parent_path);
2756 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2757 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2758 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2759 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2760 }
4ac91378 2761 /* mount old root on put_old */
84d17192 2762 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2763 /* mount new_root on / */
84d17192 2764 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2765 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2766 unlock_mount_hash();
2d8f3038 2767 chroot_fs_refs(&root, &new);
84d17192 2768 put_mountpoint(root_mp);
1da177e4 2769 error = 0;
b12cea91 2770out4:
84d17192 2771 unlock_mount(old_mp);
b12cea91
AV
2772 if (!error) {
2773 path_put(&root_parent);
2774 path_put(&parent_path);
2775 }
2776out3:
8c3ee42e 2777 path_put(&root);
b12cea91 2778out2:
2d8f3038 2779 path_put(&old);
1da177e4 2780out1:
2d8f3038 2781 path_put(&new);
1da177e4 2782out0:
1da177e4 2783 return error;
1da177e4
LT
2784}
2785
2786static void __init init_mount_tree(void)
2787{
2788 struct vfsmount *mnt;
6b3286ed 2789 struct mnt_namespace *ns;
ac748a09 2790 struct path root;
0c55cfc4 2791 struct file_system_type *type;
1da177e4 2792
0c55cfc4
EB
2793 type = get_fs_type("rootfs");
2794 if (!type)
2795 panic("Can't find rootfs type");
2796 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2797 put_filesystem(type);
1da177e4
LT
2798 if (IS_ERR(mnt))
2799 panic("Can't create rootfs");
b3e19d92 2800
3b22edc5
TM
2801 ns = create_mnt_ns(mnt);
2802 if (IS_ERR(ns))
1da177e4 2803 panic("Can't allocate initial namespace");
6b3286ed
KK
2804
2805 init_task.nsproxy->mnt_ns = ns;
2806 get_mnt_ns(ns);
2807
be08d6d2
AV
2808 root.mnt = mnt;
2809 root.dentry = mnt->mnt_root;
ac748a09
JB
2810
2811 set_fs_pwd(current->fs, &root);
2812 set_fs_root(current->fs, &root);
1da177e4
LT
2813}
2814
74bf17cf 2815void __init mnt_init(void)
1da177e4 2816{
13f14b4d 2817 unsigned u;
15a67dd8 2818 int err;
1da177e4 2819
7d6fec45 2820 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2821 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2822
0818bf27 2823 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 2824 sizeof(struct hlist_head),
0818bf27
AV
2825 mhash_entries, 19,
2826 0,
2827 &m_hash_shift, &m_hash_mask, 0, 0);
2828 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2829 sizeof(struct hlist_head),
2830 mphash_entries, 19,
2831 0,
2832 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 2833
84d17192 2834 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2835 panic("Failed to allocate mount hash table\n");
2836
0818bf27 2837 for (u = 0; u <= m_hash_mask; u++)
38129a13 2838 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
2839 for (u = 0; u <= mp_hash_mask; u++)
2840 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2841
4b93dc9b
TH
2842 kernfs_init();
2843
15a67dd8
RD
2844 err = sysfs_init();
2845 if (err)
2846 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2847 __func__, err);
00d26666
GKH
2848 fs_kobj = kobject_create_and_add("fs", NULL);
2849 if (!fs_kobj)
8e24eea7 2850 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2851 init_rootfs();
2852 init_mount_tree();
2853}
2854
616511d0 2855void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2856{
d498b25a 2857 if (!atomic_dec_and_test(&ns->count))
616511d0 2858 return;
7b00ed6f 2859 drop_collected_mounts(&ns->root->mnt);
771b1371 2860 free_mnt_ns(ns);
1da177e4 2861}
9d412a43
AV
2862
2863struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2864{
423e0ab0
TC
2865 struct vfsmount *mnt;
2866 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2867 if (!IS_ERR(mnt)) {
2868 /*
2869 * it is a longterm mount, don't release mnt until
2870 * we unmount before file sys is unregistered
2871 */
f7a99c5b 2872 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2873 }
2874 return mnt;
9d412a43
AV
2875}
2876EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2877
2878void kern_unmount(struct vfsmount *mnt)
2879{
2880 /* release long term mount so mount point can be released */
2881 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 2882 real_mount(mnt)->mnt_ns = NULL;
48a066e7 2883 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
2884 mntput(mnt);
2885 }
2886}
2887EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2888
2889bool our_mnt(struct vfsmount *mnt)
2890{
143c8c91 2891 return check_mnt(real_mount(mnt));
02125a82 2892}
8823c079 2893
3151527e
EB
2894bool current_chrooted(void)
2895{
2896 /* Does the current process have a non-standard root */
2897 struct path ns_root;
2898 struct path fs_root;
2899 bool chrooted;
2900
2901 /* Find the namespace root */
2902 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2903 ns_root.dentry = ns_root.mnt->mnt_root;
2904 path_get(&ns_root);
2905 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2906 ;
2907
2908 get_fs_root(current->fs, &fs_root);
2909
2910 chrooted = !path_equal(&fs_root, &ns_root);
2911
2912 path_put(&fs_root);
2913 path_put(&ns_root);
2914
2915 return chrooted;
2916}
2917
e51db735 2918bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2919{
2920 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2921 struct mount *mnt;
e51db735 2922 bool visible = false;
87a8ebd6 2923
e51db735
EB
2924 if (unlikely(!ns))
2925 return false;
2926
44bb4385 2927 down_read(&namespace_sem);
87a8ebd6 2928 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2929 struct mount *child;
2930 if (mnt->mnt.mnt_sb->s_type != type)
2931 continue;
2932
2933 /* This mount is not fully visible if there are any child mounts
2934 * that cover anything except for empty directories.
2935 */
2936 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2937 struct inode *inode = child->mnt_mountpoint->d_inode;
2938 if (!S_ISDIR(inode->i_mode))
2939 goto next;
41301ae7 2940 if (inode->i_nlink > 2)
e51db735 2941 goto next;
87a8ebd6 2942 }
e51db735
EB
2943 visible = true;
2944 goto found;
2945 next: ;
87a8ebd6 2946 }
e51db735 2947found:
44bb4385 2948 up_read(&namespace_sem);
e51db735 2949 return visible;
87a8ebd6
EB
2950}
2951
8823c079
EB
2952static void *mntns_get(struct task_struct *task)
2953{
2954 struct mnt_namespace *ns = NULL;
2955 struct nsproxy *nsproxy;
2956
2957 rcu_read_lock();
2958 nsproxy = task_nsproxy(task);
2959 if (nsproxy) {
2960 ns = nsproxy->mnt_ns;
2961 get_mnt_ns(ns);
2962 }
2963 rcu_read_unlock();
2964
2965 return ns;
2966}
2967
2968static void mntns_put(void *ns)
2969{
2970 put_mnt_ns(ns);
2971}
2972
2973static int mntns_install(struct nsproxy *nsproxy, void *ns)
2974{
2975 struct fs_struct *fs = current->fs;
2976 struct mnt_namespace *mnt_ns = ns;
2977 struct path root;
2978
0c55cfc4 2979 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
2980 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2981 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 2982 return -EPERM;
8823c079
EB
2983
2984 if (fs->users != 1)
2985 return -EINVAL;
2986
2987 get_mnt_ns(mnt_ns);
2988 put_mnt_ns(nsproxy->mnt_ns);
2989 nsproxy->mnt_ns = mnt_ns;
2990
2991 /* Find the root */
2992 root.mnt = &mnt_ns->root->mnt;
2993 root.dentry = mnt_ns->root->mnt.mnt_root;
2994 path_get(&root);
2995 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2996 ;
2997
2998 /* Update the pwd and root */
2999 set_fs_pwd(fs, &root);
3000 set_fs_root(fs, &root);
3001
3002 path_put(&root);
3003 return 0;
3004}
3005
98f842e6
EB
3006static unsigned int mntns_inum(void *ns)
3007{
3008 struct mnt_namespace *mnt_ns = ns;
3009 return mnt_ns->proc_inum;
3010}
3011
8823c079
EB
3012const struct proc_ns_operations mntns_operations = {
3013 .name = "mnt",
3014 .type = CLONE_NEWNS,
3015 .get = mntns_get,
3016 .put = mntns_put,
3017 .install = mntns_install,
98f842e6 3018 .inum = mntns_inum,
8823c079 3019};