VFS: Make chown() and lchown() call fchownat()
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
1da177e4
LT
15#include <linux/namei.h>
16#include <linux/security.h>
73cd49ec 17#include <linux/idr.h>
d10577a8
AV
18#include <linux/acct.h> /* acct_auto_close_mnt */
19#include <linux/ramfs.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
07b20889 23#include "pnode.h"
948730b0 24#include "internal.h"
1da177e4 25
13f14b4d
ED
26#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27#define HASH_SIZE (1UL << HASH_SHIFT)
28
5addc5dd 29static int event;
73cd49ec 30static DEFINE_IDA(mnt_id_ida);
719f5d7f 31static DEFINE_IDA(mnt_group_ida);
99b7db7b 32static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
33static int mnt_id_start = 0;
34static int mnt_group_start = 1;
1da177e4 35
fa3536cc 36static struct list_head *mount_hashtable __read_mostly;
e18b890b 37static struct kmem_cache *mnt_cache __read_mostly;
390c6843 38static struct rw_semaphore namespace_sem;
1da177e4 39
f87fd4c2 40/* /sys/fs */
00d26666
GKH
41struct kobject *fs_kobj;
42EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 43
99b7db7b
NP
44/*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52DEFINE_BRLOCK(vfsmount_lock);
53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
99b7db7b
NP
64/*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
b105e270 68static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 74 spin_lock(&mnt_id_lock);
15169fe7 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 76 if (!res)
15169fe7 77 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 78 spin_unlock(&mnt_id_lock);
73cd49ec
MS
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
b105e270 85static void mnt_free_id(struct mount *mnt)
73cd49ec 86{
15169fe7 87 int id = mnt->mnt_id;
99b7db7b 88 spin_lock(&mnt_id_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
99b7db7b 92 spin_unlock(&mnt_id_lock);
73cd49ec
MS
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
4b8b21f4 100static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
15169fe7 109 &mnt->mnt_group_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
4b8b21f4 119void mnt_release_group_id(struct mount *mnt)
719f5d7f 120{
15169fe7 121 int id = mnt->mnt_group_id;
f21f6220
AV
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
15169fe7 125 mnt->mnt_group_id = 0;
719f5d7f
MS
126}
127
b3e19d92
NP
128/*
129 * vfsmount lock must be held for read
130 */
83adc753 131static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
132{
133#ifdef CONFIG_SMP
68e8a9fe 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
135#else
136 preempt_disable();
68e8a9fe 137 mnt->mnt_count += n;
b3e19d92
NP
138 preempt_enable();
139#endif
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for write
144 */
83adc753 145unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
f03c6599 148 unsigned int count = 0;
b3e19d92
NP
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
68e8a9fe 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
153 }
154
155 return count;
156#else
68e8a9fe 157 return mnt->mnt_count;
b3e19d92
NP
158#endif
159}
160
b105e270 161static struct mount *alloc_vfsmnt(const char *name)
1da177e4 162{
c63181e6
AV
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
73cd49ec
MS
165 int err;
166
c63181e6 167 err = mnt_alloc_id(mnt);
88b38782
LZ
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
c63181e6
AV
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
88b38782 174 goto out_free_id;
73cd49ec
MS
175 }
176
b3e19d92 177#ifdef CONFIG_SMP
c63181e6
AV
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
b3e19d92
NP
180 goto out_free_devname;
181
c63181e6 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 183#else
c63181e6
AV
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
b3e19d92
NP
186#endif
187
c63181e6
AV
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
196#ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 198#endif
1da177e4 199 }
c63181e6 200 return mnt;
88b38782 201
d3ef3d73 202#ifdef CONFIG_SMP
203out_free_devname:
c63181e6 204 kfree(mnt->mnt_devname);
d3ef3d73 205#endif
88b38782 206out_free_id:
c63181e6 207 mnt_free_id(mnt);
88b38782 208out_free_cache:
c63181e6 209 kmem_cache_free(mnt_cache, mnt);
88b38782 210 return NULL;
1da177e4
LT
211}
212
3d733633
DH
213/*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221/*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232int __mnt_is_readonly(struct vfsmount *mnt)
233{
2e4b7fcd
DH
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
3d733633
DH
239}
240EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
83adc753 242static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 243{
244#ifdef CONFIG_SMP
68e8a9fe 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 246#else
68e8a9fe 247 mnt->mnt_writers++;
d3ef3d73 248#endif
249}
3d733633 250
83adc753 251static inline void mnt_dec_writers(struct mount *mnt)
3d733633 252{
d3ef3d73 253#ifdef CONFIG_SMP
68e8a9fe 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 255#else
68e8a9fe 256 mnt->mnt_writers--;
d3ef3d73 257#endif
3d733633 258}
3d733633 259
83adc753 260static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 261{
d3ef3d73 262#ifdef CONFIG_SMP
263 unsigned int count = 0;
3d733633 264 int cpu;
3d733633
DH
265
266 for_each_possible_cpu(cpu) {
68e8a9fe 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 268 }
3d733633 269
d3ef3d73 270 return count;
271#else
272 return mnt->mnt_writers;
273#endif
3d733633
DH
274}
275
4ed5e82f
MS
276static int mnt_is_readonly(struct vfsmount *mnt)
277{
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283}
284
8366025e
DH
285/*
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
291 * a filesystem.
292 */
293/**
294 * mnt_want_write - get write access to a mount
83adc753 295 * @m: the mount on which to take a write
8366025e
DH
296 *
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
302 */
83adc753 303int mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
83adc753 316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
3d733633 329 return ret;
8366025e
DH
330}
331EXPORT_SYMBOL_GPL(mnt_want_write);
332
96029c4e 333/**
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
336 *
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
341 *
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
344 */
345int mnt_clone_write(struct vfsmount *mnt)
346{
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
349 return -EROFS;
350 preempt_disable();
83adc753 351 mnt_inc_writers(real_mount(mnt));
96029c4e 352 preempt_enable();
353 return 0;
354}
355EXPORT_SYMBOL_GPL(mnt_clone_write);
356
357/**
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
360 *
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
363 */
364int mnt_want_write_file(struct file *file)
365{
2d8dd38a
OH
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 368 return mnt_want_write(file->f_path.mnt);
369 else
370 return mnt_clone_write(file->f_path.mnt);
371}
372EXPORT_SYMBOL_GPL(mnt_want_write_file);
373
8366025e
DH
374/**
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
377 *
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
381 */
382void mnt_drop_write(struct vfsmount *mnt)
383{
d3ef3d73 384 preempt_disable();
83adc753 385 mnt_dec_writers(real_mount(mnt));
d3ef3d73 386 preempt_enable();
8366025e
DH
387}
388EXPORT_SYMBOL_GPL(mnt_drop_write);
389
2a79f17e
AV
390void mnt_drop_write_file(struct file *file)
391{
392 mnt_drop_write(file->f_path.mnt);
393}
394EXPORT_SYMBOL(mnt_drop_write_file);
395
83adc753 396static int mnt_make_readonly(struct mount *mnt)
8366025e 397{
3d733633
DH
398 int ret = 0;
399
962830df 400 br_write_lock(&vfsmount_lock);
83adc753 401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 402 /*
d3ef3d73 403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
3d733633 405 */
d3ef3d73 406 smp_mb();
407
3d733633 408 /*
d3ef3d73 409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
413 *
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
3d733633 423 */
c6653a83 424 if (mnt_get_writers(mnt) > 0)
d3ef3d73 425 ret = -EBUSY;
426 else
83adc753 427 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 428 /*
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
431 */
432 smp_wmb();
83adc753 433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 434 br_write_unlock(&vfsmount_lock);
3d733633 435 return ret;
8366025e 436}
8366025e 437
83adc753 438static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 439{
962830df 440 br_write_lock(&vfsmount_lock);
83adc753 441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 442 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
443}
444
4ed5e82f
MS
445int sb_prepare_remount_readonly(struct super_block *sb)
446{
447 struct mount *mnt;
448 int err = 0;
449
8e8b8796
MS
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
452 return -EBUSY;
453
962830df 454 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 smp_mb();
459 if (mnt_get_writers(mnt) > 0) {
460 err = -EBUSY;
461 break;
462 }
463 }
464 }
8e8b8796
MS
465 if (!err && atomic_long_read(&sb->s_remove_count))
466 err = -EBUSY;
467
4ed5e82f
MS
468 if (!err) {
469 sb->s_readonly_remount = 1;
470 smp_wmb();
471 }
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 }
962830df 476 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
477
478 return err;
479}
480
b105e270 481static void free_vfsmnt(struct mount *mnt)
1da177e4 482{
52ba1621 483 kfree(mnt->mnt_devname);
73cd49ec 484 mnt_free_id(mnt);
d3ef3d73 485#ifdef CONFIG_SMP
68e8a9fe 486 free_percpu(mnt->mnt_pcp);
d3ef3d73 487#endif
b105e270 488 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
489}
490
491/*
a05964f3
RP
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 494 * vfsmount_lock must be held for read or write.
1da177e4 495 */
c7105365 496struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 497 int dir)
1da177e4 498{
b58fed8b
RP
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
c7105365 501 struct mount *p, *found = NULL;
1da177e4 502
1da177e4 503 for (;;) {
a05964f3 504 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
505 p = NULL;
506 if (tmp == head)
507 break;
1b8e5564 508 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 510 found = p;
1da177e4
LT
511 break;
512 }
513 }
1da177e4
LT
514 return found;
515}
516
a05964f3
RP
517/*
518 * lookup_mnt increments the ref count before returning
519 * the vfsmount struct.
520 */
1c755af4 521struct vfsmount *lookup_mnt(struct path *path)
a05964f3 522{
c7105365 523 struct mount *child_mnt;
99b7db7b 524
962830df 525 br_read_lock(&vfsmount_lock);
c7105365
AV
526 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
527 if (child_mnt) {
528 mnt_add_count(child_mnt, 1);
962830df 529 br_read_unlock(&vfsmount_lock);
c7105365
AV
530 return &child_mnt->mnt;
531 } else {
962830df 532 br_read_unlock(&vfsmount_lock);
c7105365
AV
533 return NULL;
534 }
a05964f3
RP
535}
536
143c8c91 537static inline int check_mnt(struct mount *mnt)
1da177e4 538{
6b3286ed 539 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
540}
541
99b7db7b
NP
542/*
543 * vfsmount lock must be held for write
544 */
6b3286ed 545static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
546{
547 if (ns) {
548 ns->event = ++event;
549 wake_up_interruptible(&ns->poll);
550 }
551}
552
99b7db7b
NP
553/*
554 * vfsmount lock must be held for write
555 */
6b3286ed 556static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
557{
558 if (ns && ns->event != event) {
559 ns->event = event;
560 wake_up_interruptible(&ns->poll);
561 }
562}
563
5f57cbcc
NP
564/*
565 * Clear dentry's mounted state if it has no remaining mounts.
566 * vfsmount_lock must be held for write.
567 */
aa0a4cf0 568static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
569{
570 unsigned u;
571
572 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 573 struct mount *p;
5f57cbcc 574
1b8e5564 575 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 576 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
577 return;
578 }
579 }
580 spin_lock(&dentry->d_lock);
581 dentry->d_flags &= ~DCACHE_MOUNTED;
582 spin_unlock(&dentry->d_lock);
583}
584
99b7db7b
NP
585/*
586 * vfsmount lock must be held for write
587 */
419148da
AV
588static void detach_mnt(struct mount *mnt, struct path *old_path)
589{
a73324da 590 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
591 old_path->mnt = &mnt->mnt_parent->mnt;
592 mnt->mnt_parent = mnt;
a73324da 593 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 594 list_del_init(&mnt->mnt_child);
1b8e5564 595 list_del_init(&mnt->mnt_hash);
aa0a4cf0 596 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
597}
598
99b7db7b
NP
599/*
600 * vfsmount lock must be held for write
601 */
14cf1fa8 602void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 603 struct mount *child_mnt)
b90fa9ae 604{
3a2393d7 605 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 606 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 607 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
608 spin_lock(&dentry->d_lock);
609 dentry->d_flags |= DCACHE_MOUNTED;
610 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
611}
612
99b7db7b
NP
613/*
614 * vfsmount lock must be held for write
615 */
419148da 616static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 617{
14cf1fa8 618 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 619 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 620 hash(path->mnt, path->dentry));
6b41d536 621 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
622}
623
624/*
99b7db7b 625 * vfsmount lock must be held for write
b90fa9ae 626 */
4b2619a5 627static void commit_tree(struct mount *mnt)
b90fa9ae 628{
0714a533 629 struct mount *parent = mnt->mnt_parent;
83adc753 630 struct mount *m;
b90fa9ae 631 LIST_HEAD(head);
143c8c91 632 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 633
0714a533 634 BUG_ON(parent == mnt);
b90fa9ae 635
1a4eeaf2 636 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 637 list_for_each_entry(m, &head, mnt_list)
143c8c91 638 m->mnt_ns = n;
f03c6599 639
b90fa9ae
RP
640 list_splice(&head, n->list.prev);
641
1b8e5564 642 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 643 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 644 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 645 touch_mnt_namespace(n);
1da177e4
LT
646}
647
909b0a88 648static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 649{
6b41d536
AV
650 struct list_head *next = p->mnt_mounts.next;
651 if (next == &p->mnt_mounts) {
1da177e4 652 while (1) {
909b0a88 653 if (p == root)
1da177e4 654 return NULL;
6b41d536
AV
655 next = p->mnt_child.next;
656 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 657 break;
0714a533 658 p = p->mnt_parent;
1da177e4
LT
659 }
660 }
6b41d536 661 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
662}
663
315fc83e 664static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 665{
6b41d536
AV
666 struct list_head *prev = p->mnt_mounts.prev;
667 while (prev != &p->mnt_mounts) {
668 p = list_entry(prev, struct mount, mnt_child);
669 prev = p->mnt_mounts.prev;
9676f0c6
RP
670 }
671 return p;
672}
673
9d412a43
AV
674struct vfsmount *
675vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
676{
b105e270 677 struct mount *mnt;
9d412a43
AV
678 struct dentry *root;
679
680 if (!type)
681 return ERR_PTR(-ENODEV);
682
683 mnt = alloc_vfsmnt(name);
684 if (!mnt)
685 return ERR_PTR(-ENOMEM);
686
687 if (flags & MS_KERNMOUNT)
b105e270 688 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
689
690 root = mount_fs(type, flags, name, data);
691 if (IS_ERR(root)) {
692 free_vfsmnt(mnt);
693 return ERR_CAST(root);
694 }
695
b105e270
AV
696 mnt->mnt.mnt_root = root;
697 mnt->mnt.mnt_sb = root->d_sb;
a73324da 698 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 699 mnt->mnt_parent = mnt;
962830df 700 br_write_lock(&vfsmount_lock);
39f7c4db 701 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 702 br_write_unlock(&vfsmount_lock);
b105e270 703 return &mnt->mnt;
9d412a43
AV
704}
705EXPORT_SYMBOL_GPL(vfs_kern_mount);
706
87129cc0 707static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 708 int flag)
1da177e4 709{
87129cc0 710 struct super_block *sb = old->mnt.mnt_sb;
52ba1621 711 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
1da177e4
LT
712
713 if (mnt) {
719f5d7f 714 if (flag & (CL_SLAVE | CL_PRIVATE))
15169fe7 715 mnt->mnt_group_id = 0; /* not a peer of original */
719f5d7f 716 else
15169fe7 717 mnt->mnt_group_id = old->mnt_group_id;
719f5d7f 718
15169fe7 719 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
b105e270 720 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
721 if (err)
722 goto out_free;
723 }
724
87129cc0 725 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 726 atomic_inc(&sb->s_active);
b105e270
AV
727 mnt->mnt.mnt_sb = sb;
728 mnt->mnt.mnt_root = dget(root);
a73324da 729 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 730 mnt->mnt_parent = mnt;
962830df 731 br_write_lock(&vfsmount_lock);
39f7c4db 732 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
962830df 733 br_write_unlock(&vfsmount_lock);
b90fa9ae 734
5afe0022 735 if (flag & CL_SLAVE) {
6776db3d 736 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
32301920 737 mnt->mnt_master = old;
fc7be130 738 CLEAR_MNT_SHARED(mnt);
8aec0809 739 } else if (!(flag & CL_PRIVATE)) {
fc7be130 740 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
6776db3d 741 list_add(&mnt->mnt_share, &old->mnt_share);
d10e8def 742 if (IS_MNT_SLAVE(old))
6776db3d 743 list_add(&mnt->mnt_slave, &old->mnt_slave);
d10e8def 744 mnt->mnt_master = old->mnt_master;
5afe0022 745 }
b90fa9ae 746 if (flag & CL_MAKE_SHARED)
0f0afb1d 747 set_mnt_shared(mnt);
1da177e4
LT
748
749 /* stick the duplicate mount on the same expiry list
750 * as the original if that was on one */
36341f64 751 if (flag & CL_EXPIRE) {
6776db3d
AV
752 if (!list_empty(&old->mnt_expire))
753 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 754 }
1da177e4 755 }
cb338d06 756 return mnt;
719f5d7f
MS
757
758 out_free:
759 free_vfsmnt(mnt);
760 return NULL;
1da177e4
LT
761}
762
83adc753 763static inline void mntfree(struct mount *mnt)
1da177e4 764{
83adc753
AV
765 struct vfsmount *m = &mnt->mnt;
766 struct super_block *sb = m->mnt_sb;
b3e19d92 767
3d733633
DH
768 /*
769 * This probably indicates that somebody messed
770 * up a mnt_want/drop_write() pair. If this
771 * happens, the filesystem was probably unable
772 * to make r/w->r/o transitions.
773 */
d3ef3d73 774 /*
b3e19d92
NP
775 * The locking used to deal with mnt_count decrement provides barriers,
776 * so mnt_get_writers() below is safe.
d3ef3d73 777 */
c6653a83 778 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
779 fsnotify_vfsmount_delete(m);
780 dput(m->mnt_root);
781 free_vfsmnt(mnt);
1da177e4
LT
782 deactivate_super(sb);
783}
784
900148dc 785static void mntput_no_expire(struct mount *mnt)
b3e19d92 786{
b3e19d92 787put_again:
f03c6599 788#ifdef CONFIG_SMP
962830df 789 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
790 if (likely(mnt->mnt_ns)) {
791 /* shouldn't be the last one */
aa9c0e07 792 mnt_add_count(mnt, -1);
962830df 793 br_read_unlock(&vfsmount_lock);
f03c6599 794 return;
b3e19d92 795 }
962830df 796 br_read_unlock(&vfsmount_lock);
b3e19d92 797
962830df 798 br_write_lock(&vfsmount_lock);
aa9c0e07 799 mnt_add_count(mnt, -1);
b3e19d92 800 if (mnt_get_count(mnt)) {
962830df 801 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
802 return;
803 }
b3e19d92 804#else
aa9c0e07 805 mnt_add_count(mnt, -1);
b3e19d92 806 if (likely(mnt_get_count(mnt)))
99b7db7b 807 return;
962830df 808 br_write_lock(&vfsmount_lock);
f03c6599 809#endif
863d684f
AV
810 if (unlikely(mnt->mnt_pinned)) {
811 mnt_add_count(mnt, mnt->mnt_pinned + 1);
812 mnt->mnt_pinned = 0;
962830df 813 br_write_unlock(&vfsmount_lock);
900148dc 814 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 815 goto put_again;
7b7b1ace 816 }
962830df 817
39f7c4db 818 list_del(&mnt->mnt_instance);
962830df 819 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
820 mntfree(mnt);
821}
b3e19d92
NP
822
823void mntput(struct vfsmount *mnt)
824{
825 if (mnt) {
863d684f 826 struct mount *m = real_mount(mnt);
b3e19d92 827 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
828 if (unlikely(m->mnt_expiry_mark))
829 m->mnt_expiry_mark = 0;
830 mntput_no_expire(m);
b3e19d92
NP
831 }
832}
833EXPORT_SYMBOL(mntput);
834
835struct vfsmount *mntget(struct vfsmount *mnt)
836{
837 if (mnt)
83adc753 838 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
839 return mnt;
840}
841EXPORT_SYMBOL(mntget);
842
7b7b1ace
AV
843void mnt_pin(struct vfsmount *mnt)
844{
962830df 845 br_write_lock(&vfsmount_lock);
863d684f 846 real_mount(mnt)->mnt_pinned++;
962830df 847 br_write_unlock(&vfsmount_lock);
7b7b1ace 848}
7b7b1ace
AV
849EXPORT_SYMBOL(mnt_pin);
850
863d684f 851void mnt_unpin(struct vfsmount *m)
7b7b1ace 852{
863d684f 853 struct mount *mnt = real_mount(m);
962830df 854 br_write_lock(&vfsmount_lock);
7b7b1ace 855 if (mnt->mnt_pinned) {
863d684f 856 mnt_add_count(mnt, 1);
7b7b1ace
AV
857 mnt->mnt_pinned--;
858 }
962830df 859 br_write_unlock(&vfsmount_lock);
7b7b1ace 860}
7b7b1ace 861EXPORT_SYMBOL(mnt_unpin);
1da177e4 862
b3b304a2
MS
863static inline void mangle(struct seq_file *m, const char *s)
864{
865 seq_escape(m, s, " \t\n\\");
866}
867
868/*
869 * Simple .show_options callback for filesystems which don't want to
870 * implement more complex mount option showing.
871 *
872 * See also save_mount_options().
873 */
34c80b1d 874int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 875{
2a32cebd
AV
876 const char *options;
877
878 rcu_read_lock();
34c80b1d 879 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
880
881 if (options != NULL && options[0]) {
882 seq_putc(m, ',');
883 mangle(m, options);
884 }
2a32cebd 885 rcu_read_unlock();
b3b304a2
MS
886
887 return 0;
888}
889EXPORT_SYMBOL(generic_show_options);
890
891/*
892 * If filesystem uses generic_show_options(), this function should be
893 * called from the fill_super() callback.
894 *
895 * The .remount_fs callback usually needs to be handled in a special
896 * way, to make sure, that previous options are not overwritten if the
897 * remount fails.
898 *
899 * Also note, that if the filesystem's .remount_fs function doesn't
900 * reset all options to their default value, but changes only newly
901 * given options, then the displayed options will not reflect reality
902 * any more.
903 */
904void save_mount_options(struct super_block *sb, char *options)
905{
2a32cebd
AV
906 BUG_ON(sb->s_options);
907 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
908}
909EXPORT_SYMBOL(save_mount_options);
910
2a32cebd
AV
911void replace_mount_options(struct super_block *sb, char *options)
912{
913 char *old = sb->s_options;
914 rcu_assign_pointer(sb->s_options, options);
915 if (old) {
916 synchronize_rcu();
917 kfree(old);
918 }
919}
920EXPORT_SYMBOL(replace_mount_options);
921
a1a2c409 922#ifdef CONFIG_PROC_FS
0226f492 923/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
924static void *m_start(struct seq_file *m, loff_t *pos)
925{
6ce6e24e 926 struct proc_mounts *p = proc_mounts(m);
1da177e4 927
390c6843 928 down_read(&namespace_sem);
a1a2c409 929 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
930}
931
932static void *m_next(struct seq_file *m, void *v, loff_t *pos)
933{
6ce6e24e 934 struct proc_mounts *p = proc_mounts(m);
b0765fb8 935
a1a2c409 936 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
937}
938
939static void m_stop(struct seq_file *m, void *v)
940{
390c6843 941 up_read(&namespace_sem);
1da177e4
LT
942}
943
0226f492 944static int m_show(struct seq_file *m, void *v)
2d4d4864 945{
6ce6e24e 946 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 947 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 948 return p->show(m, &r->mnt);
1da177e4
LT
949}
950
a1a2c409 951const struct seq_operations mounts_op = {
1da177e4
LT
952 .start = m_start,
953 .next = m_next,
954 .stop = m_stop,
0226f492 955 .show = m_show,
b4629fe2 956};
a1a2c409 957#endif /* CONFIG_PROC_FS */
b4629fe2 958
1da177e4
LT
959/**
960 * may_umount_tree - check if a mount tree is busy
961 * @mnt: root of mount tree
962 *
963 * This is called to check if a tree of mounts has any
964 * open files, pwds, chroots or sub mounts that are
965 * busy.
966 */
909b0a88 967int may_umount_tree(struct vfsmount *m)
1da177e4 968{
909b0a88 969 struct mount *mnt = real_mount(m);
36341f64
RP
970 int actual_refs = 0;
971 int minimum_refs = 0;
315fc83e 972 struct mount *p;
909b0a88 973 BUG_ON(!m);
1da177e4 974
b3e19d92 975 /* write lock needed for mnt_get_count */
962830df 976 br_write_lock(&vfsmount_lock);
909b0a88 977 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 978 actual_refs += mnt_get_count(p);
1da177e4 979 minimum_refs += 2;
1da177e4 980 }
962830df 981 br_write_unlock(&vfsmount_lock);
1da177e4
LT
982
983 if (actual_refs > minimum_refs)
e3474a8e 984 return 0;
1da177e4 985
e3474a8e 986 return 1;
1da177e4
LT
987}
988
989EXPORT_SYMBOL(may_umount_tree);
990
991/**
992 * may_umount - check if a mount point is busy
993 * @mnt: root of mount
994 *
995 * This is called to check if a mount point has any
996 * open files, pwds, chroots or sub mounts. If the
997 * mount has sub mounts this will return busy
998 * regardless of whether the sub mounts are busy.
999 *
1000 * Doesn't take quota and stuff into account. IOW, in some cases it will
1001 * give false negatives. The main reason why it's here is that we need
1002 * a non-destructive way to look for easily umountable filesystems.
1003 */
1004int may_umount(struct vfsmount *mnt)
1005{
e3474a8e 1006 int ret = 1;
8ad08d8a 1007 down_read(&namespace_sem);
962830df 1008 br_write_lock(&vfsmount_lock);
1ab59738 1009 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1010 ret = 0;
962830df 1011 br_write_unlock(&vfsmount_lock);
8ad08d8a 1012 up_read(&namespace_sem);
a05964f3 1013 return ret;
1da177e4
LT
1014}
1015
1016EXPORT_SYMBOL(may_umount);
1017
b90fa9ae 1018void release_mounts(struct list_head *head)
70fbcdf4 1019{
d5e50f74 1020 struct mount *mnt;
bf066c7d 1021 while (!list_empty(head)) {
1b8e5564
AV
1022 mnt = list_first_entry(head, struct mount, mnt_hash);
1023 list_del_init(&mnt->mnt_hash);
676da58d 1024 if (mnt_has_parent(mnt)) {
70fbcdf4 1025 struct dentry *dentry;
863d684f 1026 struct mount *m;
99b7db7b 1027
962830df 1028 br_write_lock(&vfsmount_lock);
a73324da 1029 dentry = mnt->mnt_mountpoint;
863d684f 1030 m = mnt->mnt_parent;
a73324da 1031 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1032 mnt->mnt_parent = mnt;
7c4b93d8 1033 m->mnt_ghosts--;
962830df 1034 br_write_unlock(&vfsmount_lock);
70fbcdf4 1035 dput(dentry);
863d684f 1036 mntput(&m->mnt);
70fbcdf4 1037 }
d5e50f74 1038 mntput(&mnt->mnt);
70fbcdf4
RP
1039 }
1040}
1041
99b7db7b
NP
1042/*
1043 * vfsmount lock must be held for write
1044 * namespace_sem must be held for write
1045 */
761d5c38 1046void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1047{
7b8a53fd 1048 LIST_HEAD(tmp_list);
315fc83e 1049 struct mount *p;
1da177e4 1050
909b0a88 1051 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1052 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1053
a05964f3 1054 if (propagate)
7b8a53fd 1055 propagate_umount(&tmp_list);
a05964f3 1056
1b8e5564 1057 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1058 list_del_init(&p->mnt_expire);
1a4eeaf2 1059 list_del_init(&p->mnt_list);
143c8c91
AV
1060 __touch_mnt_namespace(p->mnt_ns);
1061 p->mnt_ns = NULL;
6b41d536 1062 list_del_init(&p->mnt_child);
676da58d 1063 if (mnt_has_parent(p)) {
863d684f 1064 p->mnt_parent->mnt_ghosts++;
a73324da 1065 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1066 }
0f0afb1d 1067 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1068 }
7b8a53fd 1069 list_splice(&tmp_list, kill);
1da177e4
LT
1070}
1071
692afc31 1072static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1073
1ab59738 1074static int do_umount(struct mount *mnt, int flags)
1da177e4 1075{
1ab59738 1076 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1077 int retval;
70fbcdf4 1078 LIST_HEAD(umount_list);
1da177e4 1079
1ab59738 1080 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1081 if (retval)
1082 return retval;
1083
1084 /*
1085 * Allow userspace to request a mountpoint be expired rather than
1086 * unmounting unconditionally. Unmount only happens if:
1087 * (1) the mark is already set (the mark is cleared by mntput())
1088 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1089 */
1090 if (flags & MNT_EXPIRE) {
1ab59738 1091 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1092 flags & (MNT_FORCE | MNT_DETACH))
1093 return -EINVAL;
1094
b3e19d92
NP
1095 /*
1096 * probably don't strictly need the lock here if we examined
1097 * all race cases, but it's a slowpath.
1098 */
962830df 1099 br_write_lock(&vfsmount_lock);
83adc753 1100 if (mnt_get_count(mnt) != 2) {
962830df 1101 br_write_unlock(&vfsmount_lock);
1da177e4 1102 return -EBUSY;
b3e19d92 1103 }
962830df 1104 br_write_unlock(&vfsmount_lock);
1da177e4 1105
863d684f 1106 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1107 return -EAGAIN;
1108 }
1109
1110 /*
1111 * If we may have to abort operations to get out of this
1112 * mount, and they will themselves hold resources we must
1113 * allow the fs to do things. In the Unix tradition of
1114 * 'Gee thats tricky lets do it in userspace' the umount_begin
1115 * might fail to complete on the first run through as other tasks
1116 * must return, and the like. Thats for the mount program to worry
1117 * about for the moment.
1118 */
1119
42faad99 1120 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1121 sb->s_op->umount_begin(sb);
42faad99 1122 }
1da177e4
LT
1123
1124 /*
1125 * No sense to grab the lock for this test, but test itself looks
1126 * somewhat bogus. Suggestions for better replacement?
1127 * Ho-hum... In principle, we might treat that as umount + switch
1128 * to rootfs. GC would eventually take care of the old vfsmount.
1129 * Actually it makes sense, especially if rootfs would contain a
1130 * /reboot - static binary that would close all descriptors and
1131 * call reboot(9). Then init(8) could umount root and exec /reboot.
1132 */
1ab59738 1133 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1134 /*
1135 * Special case for "unmounting" root ...
1136 * we just try to remount it readonly.
1137 */
1138 down_write(&sb->s_umount);
4aa98cf7 1139 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1140 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1141 up_write(&sb->s_umount);
1142 return retval;
1143 }
1144
390c6843 1145 down_write(&namespace_sem);
962830df 1146 br_write_lock(&vfsmount_lock);
5addc5dd 1147 event++;
1da177e4 1148
c35038be 1149 if (!(flags & MNT_DETACH))
1ab59738 1150 shrink_submounts(mnt, &umount_list);
c35038be 1151
1da177e4 1152 retval = -EBUSY;
a05964f3 1153 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1154 if (!list_empty(&mnt->mnt_list))
1ab59738 1155 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1156 retval = 0;
1157 }
962830df 1158 br_write_unlock(&vfsmount_lock);
390c6843 1159 up_write(&namespace_sem);
70fbcdf4 1160 release_mounts(&umount_list);
1da177e4
LT
1161 return retval;
1162}
1163
1164/*
1165 * Now umount can handle mount points as well as block devices.
1166 * This is important for filesystems which use unnamed block devices.
1167 *
1168 * We now support a flag for forced unmount like the other 'big iron'
1169 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1170 */
1171
bdc480e3 1172SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1173{
2d8f3038 1174 struct path path;
900148dc 1175 struct mount *mnt;
1da177e4 1176 int retval;
db1f05bb 1177 int lookup_flags = 0;
1da177e4 1178
db1f05bb
MS
1179 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1180 return -EINVAL;
1181
1182 if (!(flags & UMOUNT_NOFOLLOW))
1183 lookup_flags |= LOOKUP_FOLLOW;
1184
1185 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1186 if (retval)
1187 goto out;
900148dc 1188 mnt = real_mount(path.mnt);
1da177e4 1189 retval = -EINVAL;
2d8f3038 1190 if (path.dentry != path.mnt->mnt_root)
1da177e4 1191 goto dput_and_out;
143c8c91 1192 if (!check_mnt(mnt))
1da177e4
LT
1193 goto dput_and_out;
1194
1195 retval = -EPERM;
1196 if (!capable(CAP_SYS_ADMIN))
1197 goto dput_and_out;
1198
900148dc 1199 retval = do_umount(mnt, flags);
1da177e4 1200dput_and_out:
429731b1 1201 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1202 dput(path.dentry);
900148dc 1203 mntput_no_expire(mnt);
1da177e4
LT
1204out:
1205 return retval;
1206}
1207
1208#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1209
1210/*
b58fed8b 1211 * The 2.0 compatible umount. No flags.
1da177e4 1212 */
bdc480e3 1213SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1214{
b58fed8b 1215 return sys_umount(name, 0);
1da177e4
LT
1216}
1217
1218#endif
1219
2d92ab3c 1220static int mount_is_safe(struct path *path)
1da177e4
LT
1221{
1222 if (capable(CAP_SYS_ADMIN))
1223 return 0;
1224 return -EPERM;
1225#ifdef notyet
2d92ab3c 1226 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1227 return -EPERM;
2d92ab3c 1228 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1229 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1230 return -EPERM;
1231 }
2d92ab3c 1232 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1233 return -EPERM;
1234 return 0;
1235#endif
1236}
1237
87129cc0 1238struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1239 int flag)
1da177e4 1240{
a73324da 1241 struct mount *res, *p, *q, *r;
1a390689 1242 struct path path;
1da177e4 1243
fc7be130 1244 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
9676f0c6
RP
1245 return NULL;
1246
36341f64 1247 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1248 if (!q)
1249 goto Enomem;
a73324da 1250 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1251
1252 p = mnt;
6b41d536 1253 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1254 struct mount *s;
7ec02ef1 1255 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1256 continue;
1257
909b0a88 1258 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1259 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1260 s = skip_mnt_tree(s);
1261 continue;
1262 }
0714a533
AV
1263 while (p != s->mnt_parent) {
1264 p = p->mnt_parent;
1265 q = q->mnt_parent;
1da177e4 1266 }
87129cc0 1267 p = s;
cb338d06 1268 path.mnt = &q->mnt;
a73324da 1269 path.dentry = p->mnt_mountpoint;
87129cc0 1270 q = clone_mnt(p, p->mnt.mnt_root, flag);
1da177e4
LT
1271 if (!q)
1272 goto Enomem;
962830df 1273 br_write_lock(&vfsmount_lock);
1a4eeaf2 1274 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1275 attach_mnt(q, &path);
962830df 1276 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1277 }
1278 }
1279 return res;
b58fed8b 1280Enomem:
1da177e4 1281 if (res) {
70fbcdf4 1282 LIST_HEAD(umount_list);
962830df 1283 br_write_lock(&vfsmount_lock);
761d5c38 1284 umount_tree(res, 0, &umount_list);
962830df 1285 br_write_unlock(&vfsmount_lock);
70fbcdf4 1286 release_mounts(&umount_list);
1da177e4
LT
1287 }
1288 return NULL;
1289}
1290
589ff870 1291struct vfsmount *collect_mounts(struct path *path)
8aec0809 1292{
cb338d06 1293 struct mount *tree;
1a60a280 1294 down_write(&namespace_sem);
87129cc0
AV
1295 tree = copy_tree(real_mount(path->mnt), path->dentry,
1296 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1297 up_write(&namespace_sem);
cb338d06 1298 return tree ? &tree->mnt : NULL;
8aec0809
AV
1299}
1300
1301void drop_collected_mounts(struct vfsmount *mnt)
1302{
1303 LIST_HEAD(umount_list);
1a60a280 1304 down_write(&namespace_sem);
962830df 1305 br_write_lock(&vfsmount_lock);
761d5c38 1306 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1307 br_write_unlock(&vfsmount_lock);
1a60a280 1308 up_write(&namespace_sem);
8aec0809
AV
1309 release_mounts(&umount_list);
1310}
1311
1f707137
AV
1312int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1313 struct vfsmount *root)
1314{
1a4eeaf2 1315 struct mount *mnt;
1f707137
AV
1316 int res = f(root, arg);
1317 if (res)
1318 return res;
1a4eeaf2
AV
1319 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1320 res = f(&mnt->mnt, arg);
1f707137
AV
1321 if (res)
1322 return res;
1323 }
1324 return 0;
1325}
1326
4b8b21f4 1327static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1328{
315fc83e 1329 struct mount *p;
719f5d7f 1330
909b0a88 1331 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1332 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1333 mnt_release_group_id(p);
719f5d7f
MS
1334 }
1335}
1336
4b8b21f4 1337static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1338{
315fc83e 1339 struct mount *p;
719f5d7f 1340
909b0a88 1341 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1342 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1343 int err = mnt_alloc_group_id(p);
719f5d7f 1344 if (err) {
4b8b21f4 1345 cleanup_group_ids(mnt, p);
719f5d7f
MS
1346 return err;
1347 }
1348 }
1349 }
1350
1351 return 0;
1352}
1353
b90fa9ae
RP
1354/*
1355 * @source_mnt : mount tree to be attached
21444403
RP
1356 * @nd : place the mount tree @source_mnt is attached
1357 * @parent_nd : if non-null, detach the source_mnt from its parent and
1358 * store the parent mount and mountpoint dentry.
1359 * (done when source_mnt is moved)
b90fa9ae
RP
1360 *
1361 * NOTE: in the table below explains the semantics when a source mount
1362 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1363 * ---------------------------------------------------------------------------
1364 * | BIND MOUNT OPERATION |
1365 * |**************************************************************************
1366 * | source-->| shared | private | slave | unbindable |
1367 * | dest | | | | |
1368 * | | | | | | |
1369 * | v | | | | |
1370 * |**************************************************************************
1371 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1372 * | | | | | |
1373 * |non-shared| shared (+) | private | slave (*) | invalid |
1374 * ***************************************************************************
b90fa9ae
RP
1375 * A bind operation clones the source mount and mounts the clone on the
1376 * destination mount.
1377 *
1378 * (++) the cloned mount is propagated to all the mounts in the propagation
1379 * tree of the destination mount and the cloned mount is added to
1380 * the peer group of the source mount.
1381 * (+) the cloned mount is created under the destination mount and is marked
1382 * as shared. The cloned mount is added to the peer group of the source
1383 * mount.
5afe0022
RP
1384 * (+++) the mount is propagated to all the mounts in the propagation tree
1385 * of the destination mount and the cloned mount is made slave
1386 * of the same master as that of the source mount. The cloned mount
1387 * is marked as 'shared and slave'.
1388 * (*) the cloned mount is made a slave of the same master as that of the
1389 * source mount.
1390 *
9676f0c6
RP
1391 * ---------------------------------------------------------------------------
1392 * | MOVE MOUNT OPERATION |
1393 * |**************************************************************************
1394 * | source-->| shared | private | slave | unbindable |
1395 * | dest | | | | |
1396 * | | | | | | |
1397 * | v | | | | |
1398 * |**************************************************************************
1399 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1400 * | | | | | |
1401 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1402 * ***************************************************************************
5afe0022
RP
1403 *
1404 * (+) the mount is moved to the destination. And is then propagated to
1405 * all the mounts in the propagation tree of the destination mount.
21444403 1406 * (+*) the mount is moved to the destination.
5afe0022
RP
1407 * (+++) the mount is moved to the destination and is then propagated to
1408 * all the mounts belonging to the destination mount's propagation tree.
1409 * the mount is marked as 'shared and slave'.
1410 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1411 *
1412 * if the source mount is a tree, the operations explained above is
1413 * applied to each mount in the tree.
1414 * Must be called without spinlocks held, since this function can sleep
1415 * in allocations.
1416 */
0fb54e50 1417static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1418 struct path *path, struct path *parent_path)
b90fa9ae
RP
1419{
1420 LIST_HEAD(tree_list);
a8d56d8e 1421 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1422 struct dentry *dest_dentry = path->dentry;
315fc83e 1423 struct mount *child, *p;
719f5d7f 1424 int err;
b90fa9ae 1425
fc7be130 1426 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1427 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1428 if (err)
1429 goto out;
1430 }
a8d56d8e 1431 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1432 if (err)
1433 goto out_cleanup_ids;
b90fa9ae 1434
962830df 1435 br_write_lock(&vfsmount_lock);
df1a1ad2 1436
fc7be130 1437 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1438 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1439 set_mnt_shared(p);
b90fa9ae 1440 }
1a390689 1441 if (parent_path) {
0fb54e50
AV
1442 detach_mnt(source_mnt, parent_path);
1443 attach_mnt(source_mnt, path);
143c8c91 1444 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1445 } else {
14cf1fa8 1446 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1447 commit_tree(source_mnt);
21444403 1448 }
b90fa9ae 1449
1b8e5564
AV
1450 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1451 list_del_init(&child->mnt_hash);
4b2619a5 1452 commit_tree(child);
b90fa9ae 1453 }
962830df 1454 br_write_unlock(&vfsmount_lock);
99b7db7b 1455
b90fa9ae 1456 return 0;
719f5d7f
MS
1457
1458 out_cleanup_ids:
fc7be130 1459 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1460 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1461 out:
1462 return err;
b90fa9ae
RP
1463}
1464
b12cea91
AV
1465static int lock_mount(struct path *path)
1466{
1467 struct vfsmount *mnt;
1468retry:
1469 mutex_lock(&path->dentry->d_inode->i_mutex);
1470 if (unlikely(cant_mount(path->dentry))) {
1471 mutex_unlock(&path->dentry->d_inode->i_mutex);
1472 return -ENOENT;
1473 }
1474 down_write(&namespace_sem);
1475 mnt = lookup_mnt(path);
1476 if (likely(!mnt))
1477 return 0;
1478 up_write(&namespace_sem);
1479 mutex_unlock(&path->dentry->d_inode->i_mutex);
1480 path_put(path);
1481 path->mnt = mnt;
1482 path->dentry = dget(mnt->mnt_root);
1483 goto retry;
1484}
1485
1486static void unlock_mount(struct path *path)
1487{
1488 up_write(&namespace_sem);
1489 mutex_unlock(&path->dentry->d_inode->i_mutex);
1490}
1491
95bc5f25 1492static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1493{
95bc5f25 1494 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1495 return -EINVAL;
1496
8c3ee42e 1497 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1498 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1499 return -ENOTDIR;
1500
b12cea91
AV
1501 if (d_unlinked(path->dentry))
1502 return -ENOENT;
1da177e4 1503
95bc5f25 1504 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1505}
1506
7a2e8a8f
VA
1507/*
1508 * Sanity check the flags to change_mnt_propagation.
1509 */
1510
1511static int flags_to_propagation_type(int flags)
1512{
7c6e984d 1513 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1514
1515 /* Fail if any non-propagation flags are set */
1516 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1517 return 0;
1518 /* Only one propagation flag should be set */
1519 if (!is_power_of_2(type))
1520 return 0;
1521 return type;
1522}
1523
07b20889
RP
1524/*
1525 * recursively change the type of the mountpoint.
1526 */
0a0d8a46 1527static int do_change_type(struct path *path, int flag)
07b20889 1528{
315fc83e 1529 struct mount *m;
4b8b21f4 1530 struct mount *mnt = real_mount(path->mnt);
07b20889 1531 int recurse = flag & MS_REC;
7a2e8a8f 1532 int type;
719f5d7f 1533 int err = 0;
07b20889 1534
ee6f9582
MS
1535 if (!capable(CAP_SYS_ADMIN))
1536 return -EPERM;
1537
2d92ab3c 1538 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1539 return -EINVAL;
1540
7a2e8a8f
VA
1541 type = flags_to_propagation_type(flag);
1542 if (!type)
1543 return -EINVAL;
1544
07b20889 1545 down_write(&namespace_sem);
719f5d7f
MS
1546 if (type == MS_SHARED) {
1547 err = invent_group_ids(mnt, recurse);
1548 if (err)
1549 goto out_unlock;
1550 }
1551
962830df 1552 br_write_lock(&vfsmount_lock);
909b0a88 1553 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1554 change_mnt_propagation(m, type);
962830df 1555 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1556
1557 out_unlock:
07b20889 1558 up_write(&namespace_sem);
719f5d7f 1559 return err;
07b20889
RP
1560}
1561
1da177e4
LT
1562/*
1563 * do loopback mount.
1564 */
0a0d8a46 1565static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1566 int recurse)
1da177e4 1567{
b12cea91 1568 LIST_HEAD(umount_list);
2d92ab3c 1569 struct path old_path;
87129cc0 1570 struct mount *mnt = NULL, *old;
2d92ab3c 1571 int err = mount_is_safe(path);
1da177e4
LT
1572 if (err)
1573 return err;
1574 if (!old_name || !*old_name)
1575 return -EINVAL;
815d405c 1576 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1577 if (err)
1578 return err;
1579
b12cea91
AV
1580 err = lock_mount(path);
1581 if (err)
1582 goto out;
1583
87129cc0
AV
1584 old = real_mount(old_path.mnt);
1585
1da177e4 1586 err = -EINVAL;
fc7be130 1587 if (IS_MNT_UNBINDABLE(old))
b12cea91 1588 goto out2;
9676f0c6 1589
143c8c91 1590 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1591 goto out2;
1da177e4 1592
ccd48bc7
AV
1593 err = -ENOMEM;
1594 if (recurse)
87129cc0 1595 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1596 else
87129cc0 1597 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7
AV
1598
1599 if (!mnt)
b12cea91 1600 goto out2;
ccd48bc7 1601
95bc5f25 1602 err = graft_tree(mnt, path);
ccd48bc7 1603 if (err) {
962830df 1604 br_write_lock(&vfsmount_lock);
761d5c38 1605 umount_tree(mnt, 0, &umount_list);
962830df 1606 br_write_unlock(&vfsmount_lock);
5b83d2c5 1607 }
b12cea91
AV
1608out2:
1609 unlock_mount(path);
1610 release_mounts(&umount_list);
ccd48bc7 1611out:
2d92ab3c 1612 path_put(&old_path);
1da177e4
LT
1613 return err;
1614}
1615
2e4b7fcd
DH
1616static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1617{
1618 int error = 0;
1619 int readonly_request = 0;
1620
1621 if (ms_flags & MS_RDONLY)
1622 readonly_request = 1;
1623 if (readonly_request == __mnt_is_readonly(mnt))
1624 return 0;
1625
1626 if (readonly_request)
83adc753 1627 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1628 else
83adc753 1629 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1630 return error;
1631}
1632
1da177e4
LT
1633/*
1634 * change filesystem flags. dir should be a physical root of filesystem.
1635 * If you've mounted a non-root directory somewhere and want to do remount
1636 * on it - tough luck.
1637 */
0a0d8a46 1638static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1639 void *data)
1640{
1641 int err;
2d92ab3c 1642 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1643 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1644
1645 if (!capable(CAP_SYS_ADMIN))
1646 return -EPERM;
1647
143c8c91 1648 if (!check_mnt(mnt))
1da177e4
LT
1649 return -EINVAL;
1650
2d92ab3c 1651 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1652 return -EINVAL;
1653
ff36fe2c
EP
1654 err = security_sb_remount(sb, data);
1655 if (err)
1656 return err;
1657
1da177e4 1658 down_write(&sb->s_umount);
2e4b7fcd 1659 if (flags & MS_BIND)
2d92ab3c 1660 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1661 else
2e4b7fcd 1662 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1663 if (!err) {
962830df 1664 br_write_lock(&vfsmount_lock);
143c8c91
AV
1665 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1666 mnt->mnt.mnt_flags = mnt_flags;
962830df 1667 br_write_unlock(&vfsmount_lock);
7b43a79f 1668 }
1da177e4 1669 up_write(&sb->s_umount);
0e55a7cc 1670 if (!err) {
962830df 1671 br_write_lock(&vfsmount_lock);
143c8c91 1672 touch_mnt_namespace(mnt->mnt_ns);
962830df 1673 br_write_unlock(&vfsmount_lock);
0e55a7cc 1674 }
1da177e4
LT
1675 return err;
1676}
1677
cbbe362c 1678static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1679{
315fc83e 1680 struct mount *p;
909b0a88 1681 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1682 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1683 return 1;
1684 }
1685 return 0;
1686}
1687
0a0d8a46 1688static int do_move_mount(struct path *path, char *old_name)
1da177e4 1689{
2d92ab3c 1690 struct path old_path, parent_path;
676da58d 1691 struct mount *p;
0fb54e50 1692 struct mount *old;
1da177e4
LT
1693 int err = 0;
1694 if (!capable(CAP_SYS_ADMIN))
1695 return -EPERM;
1696 if (!old_name || !*old_name)
1697 return -EINVAL;
2d92ab3c 1698 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1699 if (err)
1700 return err;
1701
b12cea91 1702 err = lock_mount(path);
cc53ce53
DH
1703 if (err < 0)
1704 goto out;
1705
143c8c91 1706 old = real_mount(old_path.mnt);
fc7be130 1707 p = real_mount(path->mnt);
143c8c91 1708
1da177e4 1709 err = -EINVAL;
fc7be130 1710 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1711 goto out1;
1712
f3da392e 1713 if (d_unlinked(path->dentry))
21444403 1714 goto out1;
1da177e4
LT
1715
1716 err = -EINVAL;
2d92ab3c 1717 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1718 goto out1;
1da177e4 1719
676da58d 1720 if (!mnt_has_parent(old))
21444403 1721 goto out1;
1da177e4 1722
2d92ab3c
AV
1723 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1724 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1725 goto out1;
1726 /*
1727 * Don't move a mount residing in a shared parent.
1728 */
fc7be130 1729 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1730 goto out1;
9676f0c6
RP
1731 /*
1732 * Don't move a mount tree containing unbindable mounts to a destination
1733 * mount which is shared.
1734 */
fc7be130 1735 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1736 goto out1;
1da177e4 1737 err = -ELOOP;
fc7be130 1738 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1739 if (p == old)
21444403 1740 goto out1;
1da177e4 1741
0fb54e50 1742 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1743 if (err)
21444403 1744 goto out1;
1da177e4
LT
1745
1746 /* if the mount is moved, it should no longer be expire
1747 * automatically */
6776db3d 1748 list_del_init(&old->mnt_expire);
1da177e4 1749out1:
b12cea91 1750 unlock_mount(path);
1da177e4 1751out:
1da177e4 1752 if (!err)
1a390689 1753 path_put(&parent_path);
2d92ab3c 1754 path_put(&old_path);
1da177e4
LT
1755 return err;
1756}
1757
9d412a43
AV
1758static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1759{
1760 int err;
1761 const char *subtype = strchr(fstype, '.');
1762 if (subtype) {
1763 subtype++;
1764 err = -EINVAL;
1765 if (!subtype[0])
1766 goto err;
1767 } else
1768 subtype = "";
1769
1770 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1771 err = -ENOMEM;
1772 if (!mnt->mnt_sb->s_subtype)
1773 goto err;
1774 return mnt;
1775
1776 err:
1777 mntput(mnt);
1778 return ERR_PTR(err);
1779}
1780
79e801a9 1781static struct vfsmount *
9d412a43
AV
1782do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1783{
1784 struct file_system_type *type = get_fs_type(fstype);
1785 struct vfsmount *mnt;
1786 if (!type)
1787 return ERR_PTR(-ENODEV);
1788 mnt = vfs_kern_mount(type, flags, name, data);
1789 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1790 !mnt->mnt_sb->s_subtype)
1791 mnt = fs_set_subtype(mnt, fstype);
1792 put_filesystem(type);
1793 return mnt;
1794}
9d412a43
AV
1795
1796/*
1797 * add a mount into a namespace's mount tree
1798 */
95bc5f25 1799static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1800{
1801 int err;
1802
1803 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1804
b12cea91
AV
1805 err = lock_mount(path);
1806 if (err)
1807 return err;
9d412a43
AV
1808
1809 err = -EINVAL;
143c8c91 1810 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1811 goto unlock;
1812
1813 /* Refuse the same filesystem on the same mount point */
1814 err = -EBUSY;
95bc5f25 1815 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1816 path->mnt->mnt_root == path->dentry)
1817 goto unlock;
1818
1819 err = -EINVAL;
95bc5f25 1820 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1821 goto unlock;
1822
95bc5f25 1823 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1824 err = graft_tree(newmnt, path);
1825
1826unlock:
b12cea91 1827 unlock_mount(path);
9d412a43
AV
1828 return err;
1829}
b1e75df4 1830
1da177e4
LT
1831/*
1832 * create a new mount for userspace and request it to be added into the
1833 * namespace's tree
1834 */
0a0d8a46 1835static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1836 int mnt_flags, char *name, void *data)
1837{
1838 struct vfsmount *mnt;
15f9a3f3 1839 int err;
1da177e4 1840
eca6f534 1841 if (!type)
1da177e4
LT
1842 return -EINVAL;
1843
1844 /* we need capabilities... */
1845 if (!capable(CAP_SYS_ADMIN))
1846 return -EPERM;
1847
1848 mnt = do_kern_mount(type, flags, name, data);
1849 if (IS_ERR(mnt))
1850 return PTR_ERR(mnt);
1851
95bc5f25 1852 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1853 if (err)
1854 mntput(mnt);
1855 return err;
1da177e4
LT
1856}
1857
19a167af
AV
1858int finish_automount(struct vfsmount *m, struct path *path)
1859{
6776db3d 1860 struct mount *mnt = real_mount(m);
19a167af
AV
1861 int err;
1862 /* The new mount record should have at least 2 refs to prevent it being
1863 * expired before we get a chance to add it
1864 */
6776db3d 1865 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1866
1867 if (m->mnt_sb == path->mnt->mnt_sb &&
1868 m->mnt_root == path->dentry) {
b1e75df4
AV
1869 err = -ELOOP;
1870 goto fail;
19a167af
AV
1871 }
1872
95bc5f25 1873 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1874 if (!err)
1875 return 0;
1876fail:
1877 /* remove m from any expiration list it may be on */
6776db3d 1878 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 1879 down_write(&namespace_sem);
962830df 1880 br_write_lock(&vfsmount_lock);
6776db3d 1881 list_del_init(&mnt->mnt_expire);
962830df 1882 br_write_unlock(&vfsmount_lock);
b1e75df4 1883 up_write(&namespace_sem);
19a167af 1884 }
b1e75df4
AV
1885 mntput(m);
1886 mntput(m);
19a167af
AV
1887 return err;
1888}
1889
ea5b778a
DH
1890/**
1891 * mnt_set_expiry - Put a mount on an expiration list
1892 * @mnt: The mount to list.
1893 * @expiry_list: The list to add the mount to.
1894 */
1895void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1896{
1897 down_write(&namespace_sem);
962830df 1898 br_write_lock(&vfsmount_lock);
ea5b778a 1899
6776db3d 1900 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 1901
962830df 1902 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
1903 up_write(&namespace_sem);
1904}
1905EXPORT_SYMBOL(mnt_set_expiry);
1906
1da177e4
LT
1907/*
1908 * process a list of expirable mountpoints with the intent of discarding any
1909 * mountpoints that aren't in use and haven't been touched since last we came
1910 * here
1911 */
1912void mark_mounts_for_expiry(struct list_head *mounts)
1913{
761d5c38 1914 struct mount *mnt, *next;
1da177e4 1915 LIST_HEAD(graveyard);
bcc5c7d2 1916 LIST_HEAD(umounts);
1da177e4
LT
1917
1918 if (list_empty(mounts))
1919 return;
1920
bcc5c7d2 1921 down_write(&namespace_sem);
962830df 1922 br_write_lock(&vfsmount_lock);
1da177e4
LT
1923
1924 /* extract from the expiration list every vfsmount that matches the
1925 * following criteria:
1926 * - only referenced by its parent vfsmount
1927 * - still marked for expiry (marked on the last call here; marks are
1928 * cleared by mntput())
1929 */
6776db3d 1930 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 1931 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 1932 propagate_mount_busy(mnt, 1))
1da177e4 1933 continue;
6776db3d 1934 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1935 }
bcc5c7d2 1936 while (!list_empty(&graveyard)) {
6776db3d 1937 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 1938 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
1939 umount_tree(mnt, 1, &umounts);
1940 }
962830df 1941 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
1942 up_write(&namespace_sem);
1943
1944 release_mounts(&umounts);
5528f911
TM
1945}
1946
1947EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1948
1949/*
1950 * Ripoff of 'select_parent()'
1951 *
1952 * search the list of submounts for a given mountpoint, and move any
1953 * shrinkable submounts to the 'graveyard' list.
1954 */
692afc31 1955static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 1956{
692afc31 1957 struct mount *this_parent = parent;
5528f911
TM
1958 struct list_head *next;
1959 int found = 0;
1960
1961repeat:
6b41d536 1962 next = this_parent->mnt_mounts.next;
5528f911 1963resume:
6b41d536 1964 while (next != &this_parent->mnt_mounts) {
5528f911 1965 struct list_head *tmp = next;
6b41d536 1966 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
1967
1968 next = tmp->next;
692afc31 1969 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 1970 continue;
5528f911
TM
1971 /*
1972 * Descend a level if the d_mounts list is non-empty.
1973 */
6b41d536 1974 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
1975 this_parent = mnt;
1976 goto repeat;
1977 }
1da177e4 1978
1ab59738 1979 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 1980 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
1981 found++;
1982 }
1da177e4 1983 }
5528f911
TM
1984 /*
1985 * All done at this level ... ascend and resume the search
1986 */
1987 if (this_parent != parent) {
6b41d536 1988 next = this_parent->mnt_child.next;
0714a533 1989 this_parent = this_parent->mnt_parent;
5528f911
TM
1990 goto resume;
1991 }
1992 return found;
1993}
1994
1995/*
1996 * process a list of expirable mountpoints with the intent of discarding any
1997 * submounts of a specific parent mountpoint
99b7db7b
NP
1998 *
1999 * vfsmount_lock must be held for write
5528f911 2000 */
692afc31 2001static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2002{
2003 LIST_HEAD(graveyard);
761d5c38 2004 struct mount *m;
5528f911 2005
5528f911 2006 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2007 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2008 while (!list_empty(&graveyard)) {
761d5c38 2009 m = list_first_entry(&graveyard, struct mount,
6776db3d 2010 mnt_expire);
143c8c91 2011 touch_mnt_namespace(m->mnt_ns);
afef80b3 2012 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2013 }
2014 }
1da177e4
LT
2015}
2016
1da177e4
LT
2017/*
2018 * Some copy_from_user() implementations do not return the exact number of
2019 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2020 * Note that this function differs from copy_from_user() in that it will oops
2021 * on bad values of `to', rather than returning a short copy.
2022 */
b58fed8b
RP
2023static long exact_copy_from_user(void *to, const void __user * from,
2024 unsigned long n)
1da177e4
LT
2025{
2026 char *t = to;
2027 const char __user *f = from;
2028 char c;
2029
2030 if (!access_ok(VERIFY_READ, from, n))
2031 return n;
2032
2033 while (n) {
2034 if (__get_user(c, f)) {
2035 memset(t, 0, n);
2036 break;
2037 }
2038 *t++ = c;
2039 f++;
2040 n--;
2041 }
2042 return n;
2043}
2044
b58fed8b 2045int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2046{
2047 int i;
2048 unsigned long page;
2049 unsigned long size;
b58fed8b 2050
1da177e4
LT
2051 *where = 0;
2052 if (!data)
2053 return 0;
2054
2055 if (!(page = __get_free_page(GFP_KERNEL)))
2056 return -ENOMEM;
2057
2058 /* We only care that *some* data at the address the user
2059 * gave us is valid. Just in case, we'll zero
2060 * the remainder of the page.
2061 */
2062 /* copy_from_user cannot cross TASK_SIZE ! */
2063 size = TASK_SIZE - (unsigned long)data;
2064 if (size > PAGE_SIZE)
2065 size = PAGE_SIZE;
2066
2067 i = size - exact_copy_from_user((void *)page, data, size);
2068 if (!i) {
b58fed8b 2069 free_page(page);
1da177e4
LT
2070 return -EFAULT;
2071 }
2072 if (i != PAGE_SIZE)
2073 memset((char *)page + i, 0, PAGE_SIZE - i);
2074 *where = page;
2075 return 0;
2076}
2077
eca6f534
VN
2078int copy_mount_string(const void __user *data, char **where)
2079{
2080 char *tmp;
2081
2082 if (!data) {
2083 *where = NULL;
2084 return 0;
2085 }
2086
2087 tmp = strndup_user(data, PAGE_SIZE);
2088 if (IS_ERR(tmp))
2089 return PTR_ERR(tmp);
2090
2091 *where = tmp;
2092 return 0;
2093}
2094
1da177e4
LT
2095/*
2096 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2097 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2098 *
2099 * data is a (void *) that can point to any structure up to
2100 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2101 * information (or be NULL).
2102 *
2103 * Pre-0.97 versions of mount() didn't have a flags word.
2104 * When the flags word was introduced its top half was required
2105 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2106 * Therefore, if this magic number is present, it carries no information
2107 * and must be discarded.
2108 */
b58fed8b 2109long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2110 unsigned long flags, void *data_page)
2111{
2d92ab3c 2112 struct path path;
1da177e4
LT
2113 int retval = 0;
2114 int mnt_flags = 0;
2115
2116 /* Discard magic */
2117 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2118 flags &= ~MS_MGC_MSK;
2119
2120 /* Basic sanity checks */
2121
2122 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2123 return -EINVAL;
1da177e4
LT
2124
2125 if (data_page)
2126 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2127
a27ab9f2
TH
2128 /* ... and get the mountpoint */
2129 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2130 if (retval)
2131 return retval;
2132
2133 retval = security_sb_mount(dev_name, &path,
2134 type_page, flags, data_page);
2135 if (retval)
2136 goto dput_out;
2137
613cbe3d
AK
2138 /* Default to relatime unless overriden */
2139 if (!(flags & MS_NOATIME))
2140 mnt_flags |= MNT_RELATIME;
0a1c01c9 2141
1da177e4
LT
2142 /* Separate the per-mountpoint flags */
2143 if (flags & MS_NOSUID)
2144 mnt_flags |= MNT_NOSUID;
2145 if (flags & MS_NODEV)
2146 mnt_flags |= MNT_NODEV;
2147 if (flags & MS_NOEXEC)
2148 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2149 if (flags & MS_NOATIME)
2150 mnt_flags |= MNT_NOATIME;
2151 if (flags & MS_NODIRATIME)
2152 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2153 if (flags & MS_STRICTATIME)
2154 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2155 if (flags & MS_RDONLY)
2156 mnt_flags |= MNT_READONLY;
fc33a7bb 2157
7a4dec53 2158 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2159 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2160 MS_STRICTATIME);
1da177e4 2161
1da177e4 2162 if (flags & MS_REMOUNT)
2d92ab3c 2163 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2164 data_page);
2165 else if (flags & MS_BIND)
2d92ab3c 2166 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2167 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2168 retval = do_change_type(&path, flags);
1da177e4 2169 else if (flags & MS_MOVE)
2d92ab3c 2170 retval = do_move_mount(&path, dev_name);
1da177e4 2171 else
2d92ab3c 2172 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2173 dev_name, data_page);
2174dput_out:
2d92ab3c 2175 path_put(&path);
1da177e4
LT
2176 return retval;
2177}
2178
cf8d2c11
TM
2179static struct mnt_namespace *alloc_mnt_ns(void)
2180{
2181 struct mnt_namespace *new_ns;
2182
2183 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2184 if (!new_ns)
2185 return ERR_PTR(-ENOMEM);
2186 atomic_set(&new_ns->count, 1);
2187 new_ns->root = NULL;
2188 INIT_LIST_HEAD(&new_ns->list);
2189 init_waitqueue_head(&new_ns->poll);
2190 new_ns->event = 0;
2191 return new_ns;
2192}
2193
741a2951
JD
2194/*
2195 * Allocate a new namespace structure and populate it with contents
2196 * copied from the namespace of the passed in task structure.
2197 */
e3222c4e 2198static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2199 struct fs_struct *fs)
1da177e4 2200{
6b3286ed 2201 struct mnt_namespace *new_ns;
7f2da1e7 2202 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2203 struct mount *p, *q;
be08d6d2 2204 struct mount *old = mnt_ns->root;
cb338d06 2205 struct mount *new;
1da177e4 2206
cf8d2c11
TM
2207 new_ns = alloc_mnt_ns();
2208 if (IS_ERR(new_ns))
2209 return new_ns;
1da177e4 2210
390c6843 2211 down_write(&namespace_sem);
1da177e4 2212 /* First pass: copy the tree topology */
909b0a88 2213 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
cb338d06 2214 if (!new) {
390c6843 2215 up_write(&namespace_sem);
1da177e4 2216 kfree(new_ns);
5cc4a034 2217 return ERR_PTR(-ENOMEM);
1da177e4 2218 }
be08d6d2 2219 new_ns->root = new;
962830df 2220 br_write_lock(&vfsmount_lock);
1a4eeaf2 2221 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2222 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2223
2224 /*
2225 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2226 * as belonging to new namespace. We have already acquired a private
2227 * fs_struct, so tsk->fs->lock is not needed.
2228 */
909b0a88 2229 p = old;
cb338d06 2230 q = new;
1da177e4 2231 while (p) {
143c8c91 2232 q->mnt_ns = new_ns;
1da177e4 2233 if (fs) {
315fc83e
AV
2234 if (&p->mnt == fs->root.mnt) {
2235 fs->root.mnt = mntget(&q->mnt);
315fc83e 2236 rootmnt = &p->mnt;
1da177e4 2237 }
315fc83e
AV
2238 if (&p->mnt == fs->pwd.mnt) {
2239 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2240 pwdmnt = &p->mnt;
1da177e4 2241 }
1da177e4 2242 }
909b0a88
AV
2243 p = next_mnt(p, old);
2244 q = next_mnt(q, new);
1da177e4 2245 }
390c6843 2246 up_write(&namespace_sem);
1da177e4 2247
1da177e4 2248 if (rootmnt)
f03c6599 2249 mntput(rootmnt);
1da177e4 2250 if (pwdmnt)
f03c6599 2251 mntput(pwdmnt);
1da177e4 2252
741a2951
JD
2253 return new_ns;
2254}
2255
213dd266 2256struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2257 struct fs_struct *new_fs)
741a2951 2258{
6b3286ed 2259 struct mnt_namespace *new_ns;
741a2951 2260
e3222c4e 2261 BUG_ON(!ns);
6b3286ed 2262 get_mnt_ns(ns);
741a2951
JD
2263
2264 if (!(flags & CLONE_NEWNS))
e3222c4e 2265 return ns;
741a2951 2266
e3222c4e 2267 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2268
6b3286ed 2269 put_mnt_ns(ns);
e3222c4e 2270 return new_ns;
1da177e4
LT
2271}
2272
cf8d2c11
TM
2273/**
2274 * create_mnt_ns - creates a private namespace and adds a root filesystem
2275 * @mnt: pointer to the new root filesystem mountpoint
2276 */
1a4eeaf2 2277static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2278{
1a4eeaf2 2279 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2280 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2281 struct mount *mnt = real_mount(m);
2282 mnt->mnt_ns = new_ns;
be08d6d2 2283 new_ns->root = mnt;
1a4eeaf2 2284 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2285 } else {
1a4eeaf2 2286 mntput(m);
cf8d2c11
TM
2287 }
2288 return new_ns;
2289}
cf8d2c11 2290
ea441d11
AV
2291struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2292{
2293 struct mnt_namespace *ns;
d31da0f0 2294 struct super_block *s;
ea441d11
AV
2295 struct path path;
2296 int err;
2297
2298 ns = create_mnt_ns(mnt);
2299 if (IS_ERR(ns))
2300 return ERR_CAST(ns);
2301
2302 err = vfs_path_lookup(mnt->mnt_root, mnt,
2303 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2304
2305 put_mnt_ns(ns);
2306
2307 if (err)
2308 return ERR_PTR(err);
2309
2310 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2311 s = path.mnt->mnt_sb;
2312 atomic_inc(&s->s_active);
ea441d11
AV
2313 mntput(path.mnt);
2314 /* lock the sucker */
d31da0f0 2315 down_write(&s->s_umount);
ea441d11
AV
2316 /* ... and return the root of (sub)tree on it */
2317 return path.dentry;
2318}
2319EXPORT_SYMBOL(mount_subtree);
2320
bdc480e3
HC
2321SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2322 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2323{
eca6f534
VN
2324 int ret;
2325 char *kernel_type;
2326 char *kernel_dir;
2327 char *kernel_dev;
1da177e4 2328 unsigned long data_page;
1da177e4 2329
eca6f534
VN
2330 ret = copy_mount_string(type, &kernel_type);
2331 if (ret < 0)
2332 goto out_type;
1da177e4 2333
eca6f534
VN
2334 kernel_dir = getname(dir_name);
2335 if (IS_ERR(kernel_dir)) {
2336 ret = PTR_ERR(kernel_dir);
2337 goto out_dir;
2338 }
1da177e4 2339
eca6f534
VN
2340 ret = copy_mount_string(dev_name, &kernel_dev);
2341 if (ret < 0)
2342 goto out_dev;
1da177e4 2343
eca6f534
VN
2344 ret = copy_mount_options(data, &data_page);
2345 if (ret < 0)
2346 goto out_data;
1da177e4 2347
eca6f534
VN
2348 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2349 (void *) data_page);
1da177e4 2350
eca6f534
VN
2351 free_page(data_page);
2352out_data:
2353 kfree(kernel_dev);
2354out_dev:
2355 putname(kernel_dir);
2356out_dir:
2357 kfree(kernel_type);
2358out_type:
2359 return ret;
1da177e4
LT
2360}
2361
afac7cba
AV
2362/*
2363 * Return true if path is reachable from root
2364 *
2365 * namespace_sem or vfsmount_lock is held
2366 */
643822b4 2367bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2368 const struct path *root)
2369{
643822b4 2370 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2371 dentry = mnt->mnt_mountpoint;
0714a533 2372 mnt = mnt->mnt_parent;
afac7cba 2373 }
643822b4 2374 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2375}
2376
2377int path_is_under(struct path *path1, struct path *path2)
2378{
2379 int res;
962830df 2380 br_read_lock(&vfsmount_lock);
643822b4 2381 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2382 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2383 return res;
2384}
2385EXPORT_SYMBOL(path_is_under);
2386
1da177e4
LT
2387/*
2388 * pivot_root Semantics:
2389 * Moves the root file system of the current process to the directory put_old,
2390 * makes new_root as the new root file system of the current process, and sets
2391 * root/cwd of all processes which had them on the current root to new_root.
2392 *
2393 * Restrictions:
2394 * The new_root and put_old must be directories, and must not be on the
2395 * same file system as the current process root. The put_old must be
2396 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2397 * pointed to by put_old must yield the same directory as new_root. No other
2398 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2399 *
4a0d11fa
NB
2400 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2401 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2402 * in this situation.
2403 *
1da177e4
LT
2404 * Notes:
2405 * - we don't move root/cwd if they are not at the root (reason: if something
2406 * cared enough to change them, it's probably wrong to force them elsewhere)
2407 * - it's okay to pick a root that isn't the root of a file system, e.g.
2408 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2409 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2410 * first.
2411 */
3480b257
HC
2412SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2413 const char __user *, put_old)
1da177e4 2414{
2d8f3038 2415 struct path new, old, parent_path, root_parent, root;
419148da 2416 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2417 int error;
2418
2419 if (!capable(CAP_SYS_ADMIN))
2420 return -EPERM;
2421
2d8f3038 2422 error = user_path_dir(new_root, &new);
1da177e4
LT
2423 if (error)
2424 goto out0;
1da177e4 2425
2d8f3038 2426 error = user_path_dir(put_old, &old);
1da177e4
LT
2427 if (error)
2428 goto out1;
2429
2d8f3038 2430 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2431 if (error)
2432 goto out2;
1da177e4 2433
f7ad3c6b 2434 get_fs_root(current->fs, &root);
b12cea91
AV
2435 error = lock_mount(&old);
2436 if (error)
2437 goto out3;
2438
1da177e4 2439 error = -EINVAL;
419148da
AV
2440 new_mnt = real_mount(new.mnt);
2441 root_mnt = real_mount(root.mnt);
fc7be130
AV
2442 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2443 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2444 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2445 goto out4;
143c8c91 2446 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2447 goto out4;
1da177e4 2448 error = -ENOENT;
f3da392e 2449 if (d_unlinked(new.dentry))
b12cea91 2450 goto out4;
f3da392e 2451 if (d_unlinked(old.dentry))
b12cea91 2452 goto out4;
1da177e4 2453 error = -EBUSY;
2d8f3038
AV
2454 if (new.mnt == root.mnt ||
2455 old.mnt == root.mnt)
b12cea91 2456 goto out4; /* loop, on the same file system */
1da177e4 2457 error = -EINVAL;
8c3ee42e 2458 if (root.mnt->mnt_root != root.dentry)
b12cea91 2459 goto out4; /* not a mountpoint */
676da58d 2460 if (!mnt_has_parent(root_mnt))
b12cea91 2461 goto out4; /* not attached */
2d8f3038 2462 if (new.mnt->mnt_root != new.dentry)
b12cea91 2463 goto out4; /* not a mountpoint */
676da58d 2464 if (!mnt_has_parent(new_mnt))
b12cea91 2465 goto out4; /* not attached */
4ac91378 2466 /* make sure we can reach put_old from new_root */
643822b4 2467 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2468 goto out4;
962830df 2469 br_write_lock(&vfsmount_lock);
419148da
AV
2470 detach_mnt(new_mnt, &parent_path);
2471 detach_mnt(root_mnt, &root_parent);
4ac91378 2472 /* mount old root on put_old */
419148da 2473 attach_mnt(root_mnt, &old);
4ac91378 2474 /* mount new_root on / */
419148da 2475 attach_mnt(new_mnt, &root_parent);
6b3286ed 2476 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2477 br_write_unlock(&vfsmount_lock);
2d8f3038 2478 chroot_fs_refs(&root, &new);
1da177e4 2479 error = 0;
b12cea91
AV
2480out4:
2481 unlock_mount(&old);
2482 if (!error) {
2483 path_put(&root_parent);
2484 path_put(&parent_path);
2485 }
2486out3:
8c3ee42e 2487 path_put(&root);
b12cea91 2488out2:
2d8f3038 2489 path_put(&old);
1da177e4 2490out1:
2d8f3038 2491 path_put(&new);
1da177e4 2492out0:
1da177e4 2493 return error;
1da177e4
LT
2494}
2495
2496static void __init init_mount_tree(void)
2497{
2498 struct vfsmount *mnt;
6b3286ed 2499 struct mnt_namespace *ns;
ac748a09 2500 struct path root;
1da177e4
LT
2501
2502 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2503 if (IS_ERR(mnt))
2504 panic("Can't create rootfs");
b3e19d92 2505
3b22edc5
TM
2506 ns = create_mnt_ns(mnt);
2507 if (IS_ERR(ns))
1da177e4 2508 panic("Can't allocate initial namespace");
6b3286ed
KK
2509
2510 init_task.nsproxy->mnt_ns = ns;
2511 get_mnt_ns(ns);
2512
be08d6d2
AV
2513 root.mnt = mnt;
2514 root.dentry = mnt->mnt_root;
ac748a09
JB
2515
2516 set_fs_pwd(current->fs, &root);
2517 set_fs_root(current->fs, &root);
1da177e4
LT
2518}
2519
74bf17cf 2520void __init mnt_init(void)
1da177e4 2521{
13f14b4d 2522 unsigned u;
15a67dd8 2523 int err;
1da177e4 2524
390c6843
RP
2525 init_rwsem(&namespace_sem);
2526
7d6fec45 2527 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2528 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2529
b58fed8b 2530 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2531
2532 if (!mount_hashtable)
2533 panic("Failed to allocate mount hash table\n");
2534
80cdc6da 2535 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2536
2537 for (u = 0; u < HASH_SIZE; u++)
2538 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2539
962830df 2540 br_lock_init(&vfsmount_lock);
99b7db7b 2541
15a67dd8
RD
2542 err = sysfs_init();
2543 if (err)
2544 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2545 __func__, err);
00d26666
GKH
2546 fs_kobj = kobject_create_and_add("fs", NULL);
2547 if (!fs_kobj)
8e24eea7 2548 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2549 init_rootfs();
2550 init_mount_tree();
2551}
2552
616511d0 2553void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2554{
70fbcdf4 2555 LIST_HEAD(umount_list);
616511d0 2556
d498b25a 2557 if (!atomic_dec_and_test(&ns->count))
616511d0 2558 return;
390c6843 2559 down_write(&namespace_sem);
962830df 2560 br_write_lock(&vfsmount_lock);
be08d6d2 2561 umount_tree(ns->root, 0, &umount_list);
962830df 2562 br_write_unlock(&vfsmount_lock);
390c6843 2563 up_write(&namespace_sem);
70fbcdf4 2564 release_mounts(&umount_list);
6b3286ed 2565 kfree(ns);
1da177e4 2566}
9d412a43
AV
2567
2568struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2569{
423e0ab0
TC
2570 struct vfsmount *mnt;
2571 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2572 if (!IS_ERR(mnt)) {
2573 /*
2574 * it is a longterm mount, don't release mnt until
2575 * we unmount before file sys is unregistered
2576 */
f7a99c5b 2577 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2578 }
2579 return mnt;
9d412a43
AV
2580}
2581EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2582
2583void kern_unmount(struct vfsmount *mnt)
2584{
2585 /* release long term mount so mount point can be released */
2586 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2587 br_write_lock(&vfsmount_lock);
2588 real_mount(mnt)->mnt_ns = NULL;
2589 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2590 mntput(mnt);
2591 }
2592}
2593EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2594
2595bool our_mnt(struct vfsmount *mnt)
2596{
143c8c91 2597 return check_mnt(real_mount(mnt));
02125a82 2598}