switch shrink_dcache_for_umount() to use of d_walk()
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8 19#include <linux/acct.h> /* acct_auto_close_mnt */
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
13f14b4d
ED
29#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30#define HASH_SIZE (1UL << HASH_SHIFT)
31
5addc5dd 32static int event;
73cd49ec 33static DEFINE_IDA(mnt_id_ida);
719f5d7f 34static DEFINE_IDA(mnt_group_ida);
99b7db7b 35static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
36static int mnt_id_start = 0;
37static int mnt_group_start = 1;
1da177e4 38
fa3536cc 39static struct list_head *mount_hashtable __read_mostly;
84d17192 40static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 41static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 42static DECLARE_RWSEM(namespace_sem);
1da177e4 43
f87fd4c2 44/* /sys/fs */
00d26666
GKH
45struct kobject *fs_kobj;
46EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 47
99b7db7b
NP
48/*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56DEFINE_BRLOCK(vfsmount_lock);
57
1da177e4
LT
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
b58fed8b
RP
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
1da177e4
LT
64}
65
99b7db7b
NP
66/*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
b105e270 70static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
71{
72 int res;
73
74retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 76 spin_lock(&mnt_id_lock);
15169fe7 77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 78 if (!res)
15169fe7 79 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 80 spin_unlock(&mnt_id_lock);
73cd49ec
MS
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85}
86
b105e270 87static void mnt_free_id(struct mount *mnt)
73cd49ec 88{
15169fe7 89 int id = mnt->mnt_id;
99b7db7b 90 spin_lock(&mnt_id_lock);
f21f6220
AV
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
99b7db7b 94 spin_unlock(&mnt_id_lock);
73cd49ec
MS
95}
96
719f5d7f
MS
97/*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
4b8b21f4 102static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 103{
f21f6220
AV
104 int res;
105
719f5d7f
MS
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
f21f6220
AV
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
15169fe7 111 &mnt->mnt_group_id);
f21f6220 112 if (!res)
15169fe7 113 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
114
115 return res;
719f5d7f
MS
116}
117
118/*
119 * Release a peer group ID
120 */
4b8b21f4 121void mnt_release_group_id(struct mount *mnt)
719f5d7f 122{
15169fe7 123 int id = mnt->mnt_group_id;
f21f6220
AV
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
15169fe7 127 mnt->mnt_group_id = 0;
719f5d7f
MS
128}
129
b3e19d92
NP
130/*
131 * vfsmount lock must be held for read
132 */
83adc753 133static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
134{
135#ifdef CONFIG_SMP
68e8a9fe 136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
137#else
138 preempt_disable();
68e8a9fe 139 mnt->mnt_count += n;
b3e19d92
NP
140 preempt_enable();
141#endif
142}
143
b3e19d92
NP
144/*
145 * vfsmount lock must be held for write
146 */
83adc753 147unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
148{
149#ifdef CONFIG_SMP
f03c6599 150 unsigned int count = 0;
b3e19d92
NP
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
68e8a9fe 154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
155 }
156
157 return count;
158#else
68e8a9fe 159 return mnt->mnt_count;
b3e19d92
NP
160#endif
161}
162
b105e270 163static struct mount *alloc_vfsmnt(const char *name)
1da177e4 164{
c63181e6
AV
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
73cd49ec
MS
167 int err;
168
c63181e6 169 err = mnt_alloc_id(mnt);
88b38782
LZ
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
c63181e6
AV
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
88b38782 176 goto out_free_id;
73cd49ec
MS
177 }
178
b3e19d92 179#ifdef CONFIG_SMP
c63181e6
AV
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
b3e19d92
NP
182 goto out_free_devname;
183
c63181e6 184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 185#else
c63181e6
AV
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
b3e19d92
NP
188#endif
189
c63181e6
AV
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
198#ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 200#endif
1da177e4 201 }
c63181e6 202 return mnt;
88b38782 203
d3ef3d73 204#ifdef CONFIG_SMP
205out_free_devname:
c63181e6 206 kfree(mnt->mnt_devname);
d3ef3d73 207#endif
88b38782 208out_free_id:
c63181e6 209 mnt_free_id(mnt);
88b38782 210out_free_cache:
c63181e6 211 kmem_cache_free(mnt_cache, mnt);
88b38782 212 return NULL;
1da177e4
LT
213}
214
3d733633
DH
215/*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223/*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
234int __mnt_is_readonly(struct vfsmount *mnt)
235{
2e4b7fcd
DH
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
3d733633
DH
241}
242EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
83adc753 244static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 245{
246#ifdef CONFIG_SMP
68e8a9fe 247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 248#else
68e8a9fe 249 mnt->mnt_writers++;
d3ef3d73 250#endif
251}
3d733633 252
83adc753 253static inline void mnt_dec_writers(struct mount *mnt)
3d733633 254{
d3ef3d73 255#ifdef CONFIG_SMP
68e8a9fe 256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 257#else
68e8a9fe 258 mnt->mnt_writers--;
d3ef3d73 259#endif
3d733633 260}
3d733633 261
83adc753 262static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 263{
d3ef3d73 264#ifdef CONFIG_SMP
265 unsigned int count = 0;
3d733633 266 int cpu;
3d733633
DH
267
268 for_each_possible_cpu(cpu) {
68e8a9fe 269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 270 }
3d733633 271
d3ef3d73 272 return count;
273#else
274 return mnt->mnt_writers;
275#endif
3d733633
DH
276}
277
4ed5e82f
MS
278static int mnt_is_readonly(struct vfsmount *mnt)
279{
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285}
286
8366025e 287/*
eb04c282
JK
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
8366025e
DH
292 */
293/**
eb04c282 294 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 295 * @m: the mount on which to take a write
8366025e 296 *
eb04c282
JK
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
8366025e 302 */
eb04c282 303int __mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
1e75529e 316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
eb04c282
JK
329
330 return ret;
331}
332
333/**
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
341 */
342int mnt_want_write(struct vfsmount *m)
343{
344 int ret;
345
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
3d733633 350 return ret;
8366025e
DH
351}
352EXPORT_SYMBOL_GPL(mnt_want_write);
353
96029c4e 354/**
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
357 *
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
362 *
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
365 */
366int mnt_clone_write(struct vfsmount *mnt)
367{
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
83adc753 372 mnt_inc_writers(real_mount(mnt));
96029c4e 373 preempt_enable();
374 return 0;
375}
376EXPORT_SYMBOL_GPL(mnt_clone_write);
377
378/**
eb04c282 379 * __mnt_want_write_file - get write access to a file's mount
96029c4e 380 * @file: the file who's mount on which to take a write
381 *
eb04c282 382 * This is like __mnt_want_write, but it takes a file and can
96029c4e 383 * do some optimisations if the file is open for write already
384 */
eb04c282 385int __mnt_want_write_file(struct file *file)
96029c4e 386{
496ad9aa 387 struct inode *inode = file_inode(file);
eb04c282 388
2d8dd38a 389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 390 return __mnt_want_write(file->f_path.mnt);
96029c4e 391 else
392 return mnt_clone_write(file->f_path.mnt);
393}
eb04c282
JK
394
395/**
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
398 *
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
401 */
402int mnt_want_write_file(struct file *file)
403{
404 int ret;
405
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
411}
96029c4e 412EXPORT_SYMBOL_GPL(mnt_want_write_file);
413
8366025e 414/**
eb04c282 415 * __mnt_drop_write - give up write access to a mount
8366025e
DH
416 * @mnt: the mount on which to give up write access
417 *
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
eb04c282 420 * __mnt_want_write() call above.
8366025e 421 */
eb04c282 422void __mnt_drop_write(struct vfsmount *mnt)
8366025e 423{
d3ef3d73 424 preempt_disable();
83adc753 425 mnt_dec_writers(real_mount(mnt));
d3ef3d73 426 preempt_enable();
8366025e 427}
eb04c282
JK
428
429/**
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
436 */
437void mnt_drop_write(struct vfsmount *mnt)
438{
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
441}
8366025e
DH
442EXPORT_SYMBOL_GPL(mnt_drop_write);
443
eb04c282
JK
444void __mnt_drop_write_file(struct file *file)
445{
446 __mnt_drop_write(file->f_path.mnt);
447}
448
2a79f17e
AV
449void mnt_drop_write_file(struct file *file)
450{
451 mnt_drop_write(file->f_path.mnt);
452}
453EXPORT_SYMBOL(mnt_drop_write_file);
454
83adc753 455static int mnt_make_readonly(struct mount *mnt)
8366025e 456{
3d733633
DH
457 int ret = 0;
458
719ea2fb 459 lock_mount_hash();
83adc753 460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 461 /*
d3ef3d73 462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
3d733633 464 */
d3ef3d73 465 smp_mb();
466
3d733633 467 /*
d3ef3d73 468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
472 *
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
3d733633 482 */
c6653a83 483 if (mnt_get_writers(mnt) > 0)
d3ef3d73 484 ret = -EBUSY;
485 else
83adc753 486 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 487 /*
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
490 */
491 smp_wmb();
83adc753 492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 493 unlock_mount_hash();
3d733633 494 return ret;
8366025e 495}
8366025e 496
83adc753 497static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 498{
719ea2fb 499 lock_mount_hash();
83adc753 500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 501 unlock_mount_hash();
2e4b7fcd
DH
502}
503
4ed5e82f
MS
504int sb_prepare_remount_readonly(struct super_block *sb)
505{
506 struct mount *mnt;
507 int err = 0;
508
8e8b8796
MS
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
512
719ea2fb 513 lock_mount_hash();
4ed5e82f
MS
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
521 }
522 }
523 }
8e8b8796
MS
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
526
4ed5e82f
MS
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
530 }
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 }
719ea2fb 535 unlock_mount_hash();
4ed5e82f
MS
536
537 return err;
538}
539
b105e270 540static void free_vfsmnt(struct mount *mnt)
1da177e4 541{
52ba1621 542 kfree(mnt->mnt_devname);
73cd49ec 543 mnt_free_id(mnt);
d3ef3d73 544#ifdef CONFIG_SMP
68e8a9fe 545 free_percpu(mnt->mnt_pcp);
d3ef3d73 546#endif
b105e270 547 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
548}
549
550/*
474279dc 551 * find the first mount at @dentry on vfsmount @mnt.
99b7db7b 552 * vfsmount_lock must be held for read or write.
1da177e4 553 */
474279dc 554struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 555{
b58fed8b 556 struct list_head *head = mount_hashtable + hash(mnt, dentry);
474279dc
AV
557 struct mount *p;
558
559 list_for_each_entry(p, head, mnt_hash)
560 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
561 return p;
562 return NULL;
563}
564
565/*
566 * find the last mount at @dentry on vfsmount @mnt.
567 * vfsmount_lock must be held for read or write.
568 */
569struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
570{
571 struct list_head *head = mount_hashtable + hash(mnt, dentry);
572 struct mount *p;
573
574 list_for_each_entry_reverse(p, head, mnt_hash)
575 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
576 return p;
577 return NULL;
1da177e4
LT
578}
579
a05964f3 580/*
f015f126
DH
581 * lookup_mnt - Return the first child mount mounted at path
582 *
583 * "First" means first mounted chronologically. If you create the
584 * following mounts:
585 *
586 * mount /dev/sda1 /mnt
587 * mount /dev/sda2 /mnt
588 * mount /dev/sda3 /mnt
589 *
590 * Then lookup_mnt() on the base /mnt dentry in the root mount will
591 * return successively the root dentry and vfsmount of /dev/sda1, then
592 * /dev/sda2, then /dev/sda3, then NULL.
593 *
594 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 595 */
1c755af4 596struct vfsmount *lookup_mnt(struct path *path)
a05964f3 597{
c7105365 598 struct mount *child_mnt;
99b7db7b 599
962830df 600 br_read_lock(&vfsmount_lock);
474279dc 601 child_mnt = __lookup_mnt(path->mnt, path->dentry);
c7105365
AV
602 if (child_mnt) {
603 mnt_add_count(child_mnt, 1);
962830df 604 br_read_unlock(&vfsmount_lock);
c7105365
AV
605 return &child_mnt->mnt;
606 } else {
962830df 607 br_read_unlock(&vfsmount_lock);
c7105365
AV
608 return NULL;
609 }
a05964f3
RP
610}
611
84d17192
AV
612static struct mountpoint *new_mountpoint(struct dentry *dentry)
613{
614 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
615 struct mountpoint *mp;
eed81007 616 int ret;
84d17192
AV
617
618 list_for_each_entry(mp, chain, m_hash) {
619 if (mp->m_dentry == dentry) {
620 /* might be worth a WARN_ON() */
621 if (d_unlinked(dentry))
622 return ERR_PTR(-ENOENT);
623 mp->m_count++;
624 return mp;
625 }
626 }
627
628 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
629 if (!mp)
630 return ERR_PTR(-ENOMEM);
631
eed81007
MS
632 ret = d_set_mounted(dentry);
633 if (ret) {
84d17192 634 kfree(mp);
eed81007 635 return ERR_PTR(ret);
84d17192 636 }
eed81007 637
84d17192
AV
638 mp->m_dentry = dentry;
639 mp->m_count = 1;
640 list_add(&mp->m_hash, chain);
641 return mp;
642}
643
644static void put_mountpoint(struct mountpoint *mp)
645{
646 if (!--mp->m_count) {
647 struct dentry *dentry = mp->m_dentry;
648 spin_lock(&dentry->d_lock);
649 dentry->d_flags &= ~DCACHE_MOUNTED;
650 spin_unlock(&dentry->d_lock);
651 list_del(&mp->m_hash);
652 kfree(mp);
653 }
654}
655
143c8c91 656static inline int check_mnt(struct mount *mnt)
1da177e4 657{
6b3286ed 658 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
659}
660
99b7db7b
NP
661/*
662 * vfsmount lock must be held for write
663 */
6b3286ed 664static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
665{
666 if (ns) {
667 ns->event = ++event;
668 wake_up_interruptible(&ns->poll);
669 }
670}
671
99b7db7b
NP
672/*
673 * vfsmount lock must be held for write
674 */
6b3286ed 675static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
676{
677 if (ns && ns->event != event) {
678 ns->event = event;
679 wake_up_interruptible(&ns->poll);
680 }
681}
682
99b7db7b
NP
683/*
684 * vfsmount lock must be held for write
685 */
419148da
AV
686static void detach_mnt(struct mount *mnt, struct path *old_path)
687{
a73324da 688 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
689 old_path->mnt = &mnt->mnt_parent->mnt;
690 mnt->mnt_parent = mnt;
a73324da 691 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 692 list_del_init(&mnt->mnt_child);
1b8e5564 693 list_del_init(&mnt->mnt_hash);
84d17192
AV
694 put_mountpoint(mnt->mnt_mp);
695 mnt->mnt_mp = NULL;
1da177e4
LT
696}
697
99b7db7b
NP
698/*
699 * vfsmount lock must be held for write
700 */
84d17192
AV
701void mnt_set_mountpoint(struct mount *mnt,
702 struct mountpoint *mp,
44d964d6 703 struct mount *child_mnt)
b90fa9ae 704{
84d17192 705 mp->m_count++;
3a2393d7 706 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 707 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 708 child_mnt->mnt_parent = mnt;
84d17192 709 child_mnt->mnt_mp = mp;
b90fa9ae
RP
710}
711
99b7db7b
NP
712/*
713 * vfsmount lock must be held for write
714 */
84d17192
AV
715static void attach_mnt(struct mount *mnt,
716 struct mount *parent,
717 struct mountpoint *mp)
1da177e4 718{
84d17192 719 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 720 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
721 hash(&parent->mnt, mp->m_dentry));
722 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
723}
724
725/*
99b7db7b 726 * vfsmount lock must be held for write
b90fa9ae 727 */
4b2619a5 728static void commit_tree(struct mount *mnt)
b90fa9ae 729{
0714a533 730 struct mount *parent = mnt->mnt_parent;
83adc753 731 struct mount *m;
b90fa9ae 732 LIST_HEAD(head);
143c8c91 733 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 734
0714a533 735 BUG_ON(parent == mnt);
b90fa9ae 736
1a4eeaf2 737 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 738 list_for_each_entry(m, &head, mnt_list)
143c8c91 739 m->mnt_ns = n;
f03c6599 740
b90fa9ae
RP
741 list_splice(&head, n->list.prev);
742
1b8e5564 743 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 744 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 745 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 746 touch_mnt_namespace(n);
1da177e4
LT
747}
748
909b0a88 749static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 750{
6b41d536
AV
751 struct list_head *next = p->mnt_mounts.next;
752 if (next == &p->mnt_mounts) {
1da177e4 753 while (1) {
909b0a88 754 if (p == root)
1da177e4 755 return NULL;
6b41d536
AV
756 next = p->mnt_child.next;
757 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 758 break;
0714a533 759 p = p->mnt_parent;
1da177e4
LT
760 }
761 }
6b41d536 762 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
763}
764
315fc83e 765static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 766{
6b41d536
AV
767 struct list_head *prev = p->mnt_mounts.prev;
768 while (prev != &p->mnt_mounts) {
769 p = list_entry(prev, struct mount, mnt_child);
770 prev = p->mnt_mounts.prev;
9676f0c6
RP
771 }
772 return p;
773}
774
9d412a43
AV
775struct vfsmount *
776vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
777{
b105e270 778 struct mount *mnt;
9d412a43
AV
779 struct dentry *root;
780
781 if (!type)
782 return ERR_PTR(-ENODEV);
783
784 mnt = alloc_vfsmnt(name);
785 if (!mnt)
786 return ERR_PTR(-ENOMEM);
787
788 if (flags & MS_KERNMOUNT)
b105e270 789 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
790
791 root = mount_fs(type, flags, name, data);
792 if (IS_ERR(root)) {
793 free_vfsmnt(mnt);
794 return ERR_CAST(root);
795 }
796
b105e270
AV
797 mnt->mnt.mnt_root = root;
798 mnt->mnt.mnt_sb = root->d_sb;
a73324da 799 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 800 mnt->mnt_parent = mnt;
719ea2fb 801 lock_mount_hash();
39f7c4db 802 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 803 unlock_mount_hash();
b105e270 804 return &mnt->mnt;
9d412a43
AV
805}
806EXPORT_SYMBOL_GPL(vfs_kern_mount);
807
87129cc0 808static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 809 int flag)
1da177e4 810{
87129cc0 811 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
812 struct mount *mnt;
813 int err;
1da177e4 814
be34d1a3
DH
815 mnt = alloc_vfsmnt(old->mnt_devname);
816 if (!mnt)
817 return ERR_PTR(-ENOMEM);
719f5d7f 818
7a472ef4 819 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
820 mnt->mnt_group_id = 0; /* not a peer of original */
821 else
822 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 823
be34d1a3
DH
824 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
825 err = mnt_alloc_group_id(mnt);
826 if (err)
827 goto out_free;
1da177e4 828 }
be34d1a3
DH
829
830 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
132c94e3
EB
831 /* Don't allow unprivileged users to change mount flags */
832 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
833 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
834
5ff9d8a6
EB
835 /* Don't allow unprivileged users to reveal what is under a mount */
836 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
837 mnt->mnt.mnt_flags |= MNT_LOCKED;
838
be34d1a3
DH
839 atomic_inc(&sb->s_active);
840 mnt->mnt.mnt_sb = sb;
841 mnt->mnt.mnt_root = dget(root);
842 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
843 mnt->mnt_parent = mnt;
719ea2fb 844 lock_mount_hash();
be34d1a3 845 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 846 unlock_mount_hash();
be34d1a3 847
7a472ef4
EB
848 if ((flag & CL_SLAVE) ||
849 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
850 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
851 mnt->mnt_master = old;
852 CLEAR_MNT_SHARED(mnt);
853 } else if (!(flag & CL_PRIVATE)) {
854 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
855 list_add(&mnt->mnt_share, &old->mnt_share);
856 if (IS_MNT_SLAVE(old))
857 list_add(&mnt->mnt_slave, &old->mnt_slave);
858 mnt->mnt_master = old->mnt_master;
859 }
860 if (flag & CL_MAKE_SHARED)
861 set_mnt_shared(mnt);
862
863 /* stick the duplicate mount on the same expiry list
864 * as the original if that was on one */
865 if (flag & CL_EXPIRE) {
866 if (!list_empty(&old->mnt_expire))
867 list_add(&mnt->mnt_expire, &old->mnt_expire);
868 }
869
cb338d06 870 return mnt;
719f5d7f
MS
871
872 out_free:
873 free_vfsmnt(mnt);
be34d1a3 874 return ERR_PTR(err);
1da177e4
LT
875}
876
900148dc 877static void mntput_no_expire(struct mount *mnt)
b3e19d92 878{
b3e19d92 879put_again:
f03c6599 880#ifdef CONFIG_SMP
962830df 881 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
882 if (likely(mnt->mnt_ns)) {
883 /* shouldn't be the last one */
aa9c0e07 884 mnt_add_count(mnt, -1);
962830df 885 br_read_unlock(&vfsmount_lock);
f03c6599 886 return;
b3e19d92 887 }
962830df 888 br_read_unlock(&vfsmount_lock);
b3e19d92 889
719ea2fb 890 lock_mount_hash();
aa9c0e07 891 mnt_add_count(mnt, -1);
b3e19d92 892 if (mnt_get_count(mnt)) {
719ea2fb 893 unlock_mount_hash();
99b7db7b
NP
894 return;
895 }
b3e19d92 896#else
aa9c0e07 897 mnt_add_count(mnt, -1);
b3e19d92 898 if (likely(mnt_get_count(mnt)))
99b7db7b 899 return;
719ea2fb 900 lock_mount_hash();
f03c6599 901#endif
863d684f
AV
902 if (unlikely(mnt->mnt_pinned)) {
903 mnt_add_count(mnt, mnt->mnt_pinned + 1);
904 mnt->mnt_pinned = 0;
719ea2fb 905 unlock_mount_hash();
900148dc 906 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 907 goto put_again;
7b7b1ace 908 }
962830df 909
39f7c4db 910 list_del(&mnt->mnt_instance);
719ea2fb 911 unlock_mount_hash();
649a795a
AV
912
913 /*
914 * This probably indicates that somebody messed
915 * up a mnt_want/drop_write() pair. If this
916 * happens, the filesystem was probably unable
917 * to make r/w->r/o transitions.
918 */
919 /*
920 * The locking used to deal with mnt_count decrement provides barriers,
921 * so mnt_get_writers() below is safe.
922 */
923 WARN_ON(mnt_get_writers(mnt));
924 fsnotify_vfsmount_delete(&mnt->mnt);
925 dput(mnt->mnt.mnt_root);
926 deactivate_super(mnt->mnt.mnt_sb);
927 free_vfsmnt(mnt);
b3e19d92 928}
b3e19d92
NP
929
930void mntput(struct vfsmount *mnt)
931{
932 if (mnt) {
863d684f 933 struct mount *m = real_mount(mnt);
b3e19d92 934 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
935 if (unlikely(m->mnt_expiry_mark))
936 m->mnt_expiry_mark = 0;
937 mntput_no_expire(m);
b3e19d92
NP
938 }
939}
940EXPORT_SYMBOL(mntput);
941
942struct vfsmount *mntget(struct vfsmount *mnt)
943{
944 if (mnt)
83adc753 945 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
946 return mnt;
947}
948EXPORT_SYMBOL(mntget);
949
7b7b1ace
AV
950void mnt_pin(struct vfsmount *mnt)
951{
719ea2fb 952 lock_mount_hash();
863d684f 953 real_mount(mnt)->mnt_pinned++;
719ea2fb 954 unlock_mount_hash();
7b7b1ace 955}
7b7b1ace
AV
956EXPORT_SYMBOL(mnt_pin);
957
863d684f 958void mnt_unpin(struct vfsmount *m)
7b7b1ace 959{
863d684f 960 struct mount *mnt = real_mount(m);
719ea2fb 961 lock_mount_hash();
7b7b1ace 962 if (mnt->mnt_pinned) {
863d684f 963 mnt_add_count(mnt, 1);
7b7b1ace
AV
964 mnt->mnt_pinned--;
965 }
719ea2fb 966 unlock_mount_hash();
7b7b1ace 967}
7b7b1ace 968EXPORT_SYMBOL(mnt_unpin);
1da177e4 969
b3b304a2
MS
970static inline void mangle(struct seq_file *m, const char *s)
971{
972 seq_escape(m, s, " \t\n\\");
973}
974
975/*
976 * Simple .show_options callback for filesystems which don't want to
977 * implement more complex mount option showing.
978 *
979 * See also save_mount_options().
980 */
34c80b1d 981int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 982{
2a32cebd
AV
983 const char *options;
984
985 rcu_read_lock();
34c80b1d 986 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
987
988 if (options != NULL && options[0]) {
989 seq_putc(m, ',');
990 mangle(m, options);
991 }
2a32cebd 992 rcu_read_unlock();
b3b304a2
MS
993
994 return 0;
995}
996EXPORT_SYMBOL(generic_show_options);
997
998/*
999 * If filesystem uses generic_show_options(), this function should be
1000 * called from the fill_super() callback.
1001 *
1002 * The .remount_fs callback usually needs to be handled in a special
1003 * way, to make sure, that previous options are not overwritten if the
1004 * remount fails.
1005 *
1006 * Also note, that if the filesystem's .remount_fs function doesn't
1007 * reset all options to their default value, but changes only newly
1008 * given options, then the displayed options will not reflect reality
1009 * any more.
1010 */
1011void save_mount_options(struct super_block *sb, char *options)
1012{
2a32cebd
AV
1013 BUG_ON(sb->s_options);
1014 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1015}
1016EXPORT_SYMBOL(save_mount_options);
1017
2a32cebd
AV
1018void replace_mount_options(struct super_block *sb, char *options)
1019{
1020 char *old = sb->s_options;
1021 rcu_assign_pointer(sb->s_options, options);
1022 if (old) {
1023 synchronize_rcu();
1024 kfree(old);
1025 }
1026}
1027EXPORT_SYMBOL(replace_mount_options);
1028
a1a2c409 1029#ifdef CONFIG_PROC_FS
0226f492 1030/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1031static void *m_start(struct seq_file *m, loff_t *pos)
1032{
6ce6e24e 1033 struct proc_mounts *p = proc_mounts(m);
1da177e4 1034
390c6843 1035 down_read(&namespace_sem);
a1a2c409 1036 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1037}
1038
1039static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1040{
6ce6e24e 1041 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1042
a1a2c409 1043 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1044}
1045
1046static void m_stop(struct seq_file *m, void *v)
1047{
390c6843 1048 up_read(&namespace_sem);
1da177e4
LT
1049}
1050
0226f492 1051static int m_show(struct seq_file *m, void *v)
2d4d4864 1052{
6ce6e24e 1053 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1054 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1055 return p->show(m, &r->mnt);
1da177e4
LT
1056}
1057
a1a2c409 1058const struct seq_operations mounts_op = {
1da177e4
LT
1059 .start = m_start,
1060 .next = m_next,
1061 .stop = m_stop,
0226f492 1062 .show = m_show,
b4629fe2 1063};
a1a2c409 1064#endif /* CONFIG_PROC_FS */
b4629fe2 1065
1da177e4
LT
1066/**
1067 * may_umount_tree - check if a mount tree is busy
1068 * @mnt: root of mount tree
1069 *
1070 * This is called to check if a tree of mounts has any
1071 * open files, pwds, chroots or sub mounts that are
1072 * busy.
1073 */
909b0a88 1074int may_umount_tree(struct vfsmount *m)
1da177e4 1075{
909b0a88 1076 struct mount *mnt = real_mount(m);
36341f64
RP
1077 int actual_refs = 0;
1078 int minimum_refs = 0;
315fc83e 1079 struct mount *p;
909b0a88 1080 BUG_ON(!m);
1da177e4 1081
b3e19d92 1082 /* write lock needed for mnt_get_count */
719ea2fb 1083 lock_mount_hash();
909b0a88 1084 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1085 actual_refs += mnt_get_count(p);
1da177e4 1086 minimum_refs += 2;
1da177e4 1087 }
719ea2fb 1088 unlock_mount_hash();
1da177e4
LT
1089
1090 if (actual_refs > minimum_refs)
e3474a8e 1091 return 0;
1da177e4 1092
e3474a8e 1093 return 1;
1da177e4
LT
1094}
1095
1096EXPORT_SYMBOL(may_umount_tree);
1097
1098/**
1099 * may_umount - check if a mount point is busy
1100 * @mnt: root of mount
1101 *
1102 * This is called to check if a mount point has any
1103 * open files, pwds, chroots or sub mounts. If the
1104 * mount has sub mounts this will return busy
1105 * regardless of whether the sub mounts are busy.
1106 *
1107 * Doesn't take quota and stuff into account. IOW, in some cases it will
1108 * give false negatives. The main reason why it's here is that we need
1109 * a non-destructive way to look for easily umountable filesystems.
1110 */
1111int may_umount(struct vfsmount *mnt)
1112{
e3474a8e 1113 int ret = 1;
8ad08d8a 1114 down_read(&namespace_sem);
719ea2fb 1115 lock_mount_hash();
1ab59738 1116 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1117 ret = 0;
719ea2fb 1118 unlock_mount_hash();
8ad08d8a 1119 up_read(&namespace_sem);
a05964f3 1120 return ret;
1da177e4
LT
1121}
1122
1123EXPORT_SYMBOL(may_umount);
1124
e3197d83
AV
1125static LIST_HEAD(unmounted); /* protected by namespace_sem */
1126
97216be0 1127static void namespace_unlock(void)
70fbcdf4 1128{
d5e50f74 1129 struct mount *mnt;
97216be0
AV
1130 LIST_HEAD(head);
1131
1132 if (likely(list_empty(&unmounted))) {
1133 up_write(&namespace_sem);
1134 return;
1135 }
1136
1137 list_splice_init(&unmounted, &head);
1138 up_write(&namespace_sem);
1139
1140 while (!list_empty(&head)) {
1141 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1142 list_del_init(&mnt->mnt_hash);
aba809cf
AV
1143 if (mnt->mnt_ex_mountpoint.mnt)
1144 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1145 mntput(&mnt->mnt);
70fbcdf4
RP
1146 }
1147}
1148
97216be0 1149static inline void namespace_lock(void)
e3197d83 1150{
97216be0 1151 down_write(&namespace_sem);
e3197d83
AV
1152}
1153
99b7db7b
NP
1154/*
1155 * vfsmount lock must be held for write
1156 * namespace_sem must be held for write
1157 */
328e6d90 1158void umount_tree(struct mount *mnt, int propagate)
1da177e4 1159{
7b8a53fd 1160 LIST_HEAD(tmp_list);
315fc83e 1161 struct mount *p;
1da177e4 1162
909b0a88 1163 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1164 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1165
a05964f3 1166 if (propagate)
7b8a53fd 1167 propagate_umount(&tmp_list);
a05964f3 1168
1b8e5564 1169 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1170 list_del_init(&p->mnt_expire);
1a4eeaf2 1171 list_del_init(&p->mnt_list);
143c8c91
AV
1172 __touch_mnt_namespace(p->mnt_ns);
1173 p->mnt_ns = NULL;
6b41d536 1174 list_del_init(&p->mnt_child);
676da58d 1175 if (mnt_has_parent(p)) {
84d17192 1176 put_mountpoint(p->mnt_mp);
aba809cf
AV
1177 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1178 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1179 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1180 p->mnt_mountpoint = p->mnt.mnt_root;
1181 p->mnt_parent = p;
84d17192 1182 p->mnt_mp = NULL;
7c4b93d8 1183 }
0f0afb1d 1184 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1185 }
328e6d90 1186 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1187}
1188
b54b9be7 1189static void shrink_submounts(struct mount *mnt);
c35038be 1190
1ab59738 1191static int do_umount(struct mount *mnt, int flags)
1da177e4 1192{
1ab59738 1193 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1194 int retval;
1195
1ab59738 1196 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1197 if (retval)
1198 return retval;
1199
1200 /*
1201 * Allow userspace to request a mountpoint be expired rather than
1202 * unmounting unconditionally. Unmount only happens if:
1203 * (1) the mark is already set (the mark is cleared by mntput())
1204 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1205 */
1206 if (flags & MNT_EXPIRE) {
1ab59738 1207 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1208 flags & (MNT_FORCE | MNT_DETACH))
1209 return -EINVAL;
1210
b3e19d92
NP
1211 /*
1212 * probably don't strictly need the lock here if we examined
1213 * all race cases, but it's a slowpath.
1214 */
719ea2fb 1215 lock_mount_hash();
83adc753 1216 if (mnt_get_count(mnt) != 2) {
719ea2fb 1217 unlock_mount_hash();
1da177e4 1218 return -EBUSY;
b3e19d92 1219 }
719ea2fb 1220 unlock_mount_hash();
1da177e4 1221
863d684f 1222 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1223 return -EAGAIN;
1224 }
1225
1226 /*
1227 * If we may have to abort operations to get out of this
1228 * mount, and they will themselves hold resources we must
1229 * allow the fs to do things. In the Unix tradition of
1230 * 'Gee thats tricky lets do it in userspace' the umount_begin
1231 * might fail to complete on the first run through as other tasks
1232 * must return, and the like. Thats for the mount program to worry
1233 * about for the moment.
1234 */
1235
42faad99 1236 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1237 sb->s_op->umount_begin(sb);
42faad99 1238 }
1da177e4
LT
1239
1240 /*
1241 * No sense to grab the lock for this test, but test itself looks
1242 * somewhat bogus. Suggestions for better replacement?
1243 * Ho-hum... In principle, we might treat that as umount + switch
1244 * to rootfs. GC would eventually take care of the old vfsmount.
1245 * Actually it makes sense, especially if rootfs would contain a
1246 * /reboot - static binary that would close all descriptors and
1247 * call reboot(9). Then init(8) could umount root and exec /reboot.
1248 */
1ab59738 1249 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1250 /*
1251 * Special case for "unmounting" root ...
1252 * we just try to remount it readonly.
1253 */
1254 down_write(&sb->s_umount);
4aa98cf7 1255 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1256 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1257 up_write(&sb->s_umount);
1258 return retval;
1259 }
1260
97216be0 1261 namespace_lock();
719ea2fb 1262 lock_mount_hash();
5addc5dd 1263 event++;
1da177e4 1264
c35038be 1265 if (!(flags & MNT_DETACH))
b54b9be7 1266 shrink_submounts(mnt);
c35038be 1267
1da177e4 1268 retval = -EBUSY;
a05964f3 1269 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1270 if (!list_empty(&mnt->mnt_list))
328e6d90 1271 umount_tree(mnt, 1);
1da177e4
LT
1272 retval = 0;
1273 }
719ea2fb 1274 unlock_mount_hash();
e3197d83 1275 namespace_unlock();
1da177e4
LT
1276 return retval;
1277}
1278
9b40bc90
AV
1279/*
1280 * Is the caller allowed to modify his namespace?
1281 */
1282static inline bool may_mount(void)
1283{
1284 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1285}
1286
1da177e4
LT
1287/*
1288 * Now umount can handle mount points as well as block devices.
1289 * This is important for filesystems which use unnamed block devices.
1290 *
1291 * We now support a flag for forced unmount like the other 'big iron'
1292 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1293 */
1294
bdc480e3 1295SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1296{
2d8f3038 1297 struct path path;
900148dc 1298 struct mount *mnt;
1da177e4 1299 int retval;
db1f05bb 1300 int lookup_flags = 0;
1da177e4 1301
db1f05bb
MS
1302 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1303 return -EINVAL;
1304
9b40bc90
AV
1305 if (!may_mount())
1306 return -EPERM;
1307
db1f05bb
MS
1308 if (!(flags & UMOUNT_NOFOLLOW))
1309 lookup_flags |= LOOKUP_FOLLOW;
1310
197df04c 1311 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1312 if (retval)
1313 goto out;
900148dc 1314 mnt = real_mount(path.mnt);
1da177e4 1315 retval = -EINVAL;
2d8f3038 1316 if (path.dentry != path.mnt->mnt_root)
1da177e4 1317 goto dput_and_out;
143c8c91 1318 if (!check_mnt(mnt))
1da177e4 1319 goto dput_and_out;
5ff9d8a6
EB
1320 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1321 goto dput_and_out;
1da177e4 1322
900148dc 1323 retval = do_umount(mnt, flags);
1da177e4 1324dput_and_out:
429731b1 1325 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1326 dput(path.dentry);
900148dc 1327 mntput_no_expire(mnt);
1da177e4
LT
1328out:
1329 return retval;
1330}
1331
1332#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1333
1334/*
b58fed8b 1335 * The 2.0 compatible umount. No flags.
1da177e4 1336 */
bdc480e3 1337SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1338{
b58fed8b 1339 return sys_umount(name, 0);
1da177e4
LT
1340}
1341
1342#endif
1343
4ce5d2b1 1344static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1345{
4ce5d2b1
EB
1346 /* Is this a proxy for a mount namespace? */
1347 struct inode *inode = dentry->d_inode;
0bb80f24 1348 struct proc_ns *ei;
8823c079
EB
1349
1350 if (!proc_ns_inode(inode))
1351 return false;
1352
0bb80f24 1353 ei = get_proc_ns(inode);
8823c079
EB
1354 if (ei->ns_ops != &mntns_operations)
1355 return false;
1356
4ce5d2b1
EB
1357 return true;
1358}
1359
1360static bool mnt_ns_loop(struct dentry *dentry)
1361{
1362 /* Could bind mounting the mount namespace inode cause a
1363 * mount namespace loop?
1364 */
1365 struct mnt_namespace *mnt_ns;
1366 if (!is_mnt_ns_file(dentry))
1367 return false;
1368
1369 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1370 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1371}
1372
87129cc0 1373struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1374 int flag)
1da177e4 1375{
84d17192 1376 struct mount *res, *p, *q, *r, *parent;
1da177e4 1377
4ce5d2b1
EB
1378 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1379 return ERR_PTR(-EINVAL);
1380
1381 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1382 return ERR_PTR(-EINVAL);
9676f0c6 1383
36341f64 1384 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1385 if (IS_ERR(q))
1386 return q;
1387
5ff9d8a6 1388 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1389 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1390
1391 p = mnt;
6b41d536 1392 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1393 struct mount *s;
7ec02ef1 1394 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1395 continue;
1396
909b0a88 1397 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1398 if (!(flag & CL_COPY_UNBINDABLE) &&
1399 IS_MNT_UNBINDABLE(s)) {
1400 s = skip_mnt_tree(s);
1401 continue;
1402 }
1403 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1404 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1405 s = skip_mnt_tree(s);
1406 continue;
1407 }
0714a533
AV
1408 while (p != s->mnt_parent) {
1409 p = p->mnt_parent;
1410 q = q->mnt_parent;
1da177e4 1411 }
87129cc0 1412 p = s;
84d17192 1413 parent = q;
87129cc0 1414 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1415 if (IS_ERR(q))
1416 goto out;
719ea2fb 1417 lock_mount_hash();
1a4eeaf2 1418 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1419 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1420 unlock_mount_hash();
1da177e4
LT
1421 }
1422 }
1423 return res;
be34d1a3 1424out:
1da177e4 1425 if (res) {
719ea2fb 1426 lock_mount_hash();
328e6d90 1427 umount_tree(res, 0);
719ea2fb 1428 unlock_mount_hash();
1da177e4 1429 }
be34d1a3 1430 return q;
1da177e4
LT
1431}
1432
be34d1a3
DH
1433/* Caller should check returned pointer for errors */
1434
589ff870 1435struct vfsmount *collect_mounts(struct path *path)
8aec0809 1436{
cb338d06 1437 struct mount *tree;
97216be0 1438 namespace_lock();
87129cc0
AV
1439 tree = copy_tree(real_mount(path->mnt), path->dentry,
1440 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1441 namespace_unlock();
be34d1a3 1442 if (IS_ERR(tree))
52e220d3 1443 return ERR_CAST(tree);
be34d1a3 1444 return &tree->mnt;
8aec0809
AV
1445}
1446
1447void drop_collected_mounts(struct vfsmount *mnt)
1448{
97216be0 1449 namespace_lock();
719ea2fb 1450 lock_mount_hash();
328e6d90 1451 umount_tree(real_mount(mnt), 0);
719ea2fb 1452 unlock_mount_hash();
3ab6abee 1453 namespace_unlock();
8aec0809
AV
1454}
1455
1f707137
AV
1456int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1457 struct vfsmount *root)
1458{
1a4eeaf2 1459 struct mount *mnt;
1f707137
AV
1460 int res = f(root, arg);
1461 if (res)
1462 return res;
1a4eeaf2
AV
1463 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1464 res = f(&mnt->mnt, arg);
1f707137
AV
1465 if (res)
1466 return res;
1467 }
1468 return 0;
1469}
1470
4b8b21f4 1471static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1472{
315fc83e 1473 struct mount *p;
719f5d7f 1474
909b0a88 1475 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1476 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1477 mnt_release_group_id(p);
719f5d7f
MS
1478 }
1479}
1480
4b8b21f4 1481static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1482{
315fc83e 1483 struct mount *p;
719f5d7f 1484
909b0a88 1485 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1486 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1487 int err = mnt_alloc_group_id(p);
719f5d7f 1488 if (err) {
4b8b21f4 1489 cleanup_group_ids(mnt, p);
719f5d7f
MS
1490 return err;
1491 }
1492 }
1493 }
1494
1495 return 0;
1496}
1497
b90fa9ae
RP
1498/*
1499 * @source_mnt : mount tree to be attached
21444403
RP
1500 * @nd : place the mount tree @source_mnt is attached
1501 * @parent_nd : if non-null, detach the source_mnt from its parent and
1502 * store the parent mount and mountpoint dentry.
1503 * (done when source_mnt is moved)
b90fa9ae
RP
1504 *
1505 * NOTE: in the table below explains the semantics when a source mount
1506 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1507 * ---------------------------------------------------------------------------
1508 * | BIND MOUNT OPERATION |
1509 * |**************************************************************************
1510 * | source-->| shared | private | slave | unbindable |
1511 * | dest | | | | |
1512 * | | | | | | |
1513 * | v | | | | |
1514 * |**************************************************************************
1515 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1516 * | | | | | |
1517 * |non-shared| shared (+) | private | slave (*) | invalid |
1518 * ***************************************************************************
b90fa9ae
RP
1519 * A bind operation clones the source mount and mounts the clone on the
1520 * destination mount.
1521 *
1522 * (++) the cloned mount is propagated to all the mounts in the propagation
1523 * tree of the destination mount and the cloned mount is added to
1524 * the peer group of the source mount.
1525 * (+) the cloned mount is created under the destination mount and is marked
1526 * as shared. The cloned mount is added to the peer group of the source
1527 * mount.
5afe0022
RP
1528 * (+++) the mount is propagated to all the mounts in the propagation tree
1529 * of the destination mount and the cloned mount is made slave
1530 * of the same master as that of the source mount. The cloned mount
1531 * is marked as 'shared and slave'.
1532 * (*) the cloned mount is made a slave of the same master as that of the
1533 * source mount.
1534 *
9676f0c6
RP
1535 * ---------------------------------------------------------------------------
1536 * | MOVE MOUNT OPERATION |
1537 * |**************************************************************************
1538 * | source-->| shared | private | slave | unbindable |
1539 * | dest | | | | |
1540 * | | | | | | |
1541 * | v | | | | |
1542 * |**************************************************************************
1543 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1544 * | | | | | |
1545 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1546 * ***************************************************************************
5afe0022
RP
1547 *
1548 * (+) the mount is moved to the destination. And is then propagated to
1549 * all the mounts in the propagation tree of the destination mount.
21444403 1550 * (+*) the mount is moved to the destination.
5afe0022
RP
1551 * (+++) the mount is moved to the destination and is then propagated to
1552 * all the mounts belonging to the destination mount's propagation tree.
1553 * the mount is marked as 'shared and slave'.
1554 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1555 *
1556 * if the source mount is a tree, the operations explained above is
1557 * applied to each mount in the tree.
1558 * Must be called without spinlocks held, since this function can sleep
1559 * in allocations.
1560 */
0fb54e50 1561static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1562 struct mount *dest_mnt,
1563 struct mountpoint *dest_mp,
1564 struct path *parent_path)
b90fa9ae
RP
1565{
1566 LIST_HEAD(tree_list);
315fc83e 1567 struct mount *child, *p;
719f5d7f 1568 int err;
b90fa9ae 1569
fc7be130 1570 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1571 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1572 if (err)
1573 goto out;
1574 }
84d17192 1575 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1576 if (err)
1577 goto out_cleanup_ids;
b90fa9ae 1578
719ea2fb 1579 lock_mount_hash();
df1a1ad2 1580
fc7be130 1581 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1582 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1583 set_mnt_shared(p);
b90fa9ae 1584 }
1a390689 1585 if (parent_path) {
0fb54e50 1586 detach_mnt(source_mnt, parent_path);
84d17192 1587 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1588 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1589 } else {
84d17192 1590 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1591 commit_tree(source_mnt);
21444403 1592 }
b90fa9ae 1593
1b8e5564
AV
1594 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1595 list_del_init(&child->mnt_hash);
4b2619a5 1596 commit_tree(child);
b90fa9ae 1597 }
719ea2fb 1598 unlock_mount_hash();
99b7db7b 1599
b90fa9ae 1600 return 0;
719f5d7f
MS
1601
1602 out_cleanup_ids:
fc7be130 1603 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1604 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1605 out:
1606 return err;
b90fa9ae
RP
1607}
1608
84d17192 1609static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1610{
1611 struct vfsmount *mnt;
84d17192 1612 struct dentry *dentry = path->dentry;
b12cea91 1613retry:
84d17192
AV
1614 mutex_lock(&dentry->d_inode->i_mutex);
1615 if (unlikely(cant_mount(dentry))) {
1616 mutex_unlock(&dentry->d_inode->i_mutex);
1617 return ERR_PTR(-ENOENT);
b12cea91 1618 }
97216be0 1619 namespace_lock();
b12cea91 1620 mnt = lookup_mnt(path);
84d17192
AV
1621 if (likely(!mnt)) {
1622 struct mountpoint *mp = new_mountpoint(dentry);
1623 if (IS_ERR(mp)) {
97216be0 1624 namespace_unlock();
84d17192
AV
1625 mutex_unlock(&dentry->d_inode->i_mutex);
1626 return mp;
1627 }
1628 return mp;
1629 }
97216be0 1630 namespace_unlock();
b12cea91
AV
1631 mutex_unlock(&path->dentry->d_inode->i_mutex);
1632 path_put(path);
1633 path->mnt = mnt;
84d17192 1634 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1635 goto retry;
1636}
1637
84d17192 1638static void unlock_mount(struct mountpoint *where)
b12cea91 1639{
84d17192
AV
1640 struct dentry *dentry = where->m_dentry;
1641 put_mountpoint(where);
328e6d90 1642 namespace_unlock();
84d17192 1643 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1644}
1645
84d17192 1646static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1647{
95bc5f25 1648 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1649 return -EINVAL;
1650
84d17192 1651 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1652 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1653 return -ENOTDIR;
1654
84d17192 1655 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1656}
1657
7a2e8a8f
VA
1658/*
1659 * Sanity check the flags to change_mnt_propagation.
1660 */
1661
1662static int flags_to_propagation_type(int flags)
1663{
7c6e984d 1664 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1665
1666 /* Fail if any non-propagation flags are set */
1667 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1668 return 0;
1669 /* Only one propagation flag should be set */
1670 if (!is_power_of_2(type))
1671 return 0;
1672 return type;
1673}
1674
07b20889
RP
1675/*
1676 * recursively change the type of the mountpoint.
1677 */
0a0d8a46 1678static int do_change_type(struct path *path, int flag)
07b20889 1679{
315fc83e 1680 struct mount *m;
4b8b21f4 1681 struct mount *mnt = real_mount(path->mnt);
07b20889 1682 int recurse = flag & MS_REC;
7a2e8a8f 1683 int type;
719f5d7f 1684 int err = 0;
07b20889 1685
2d92ab3c 1686 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1687 return -EINVAL;
1688
7a2e8a8f
VA
1689 type = flags_to_propagation_type(flag);
1690 if (!type)
1691 return -EINVAL;
1692
97216be0 1693 namespace_lock();
719f5d7f
MS
1694 if (type == MS_SHARED) {
1695 err = invent_group_ids(mnt, recurse);
1696 if (err)
1697 goto out_unlock;
1698 }
1699
719ea2fb 1700 lock_mount_hash();
909b0a88 1701 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1702 change_mnt_propagation(m, type);
719ea2fb 1703 unlock_mount_hash();
719f5d7f
MS
1704
1705 out_unlock:
97216be0 1706 namespace_unlock();
719f5d7f 1707 return err;
07b20889
RP
1708}
1709
5ff9d8a6
EB
1710static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1711{
1712 struct mount *child;
1713 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1714 if (!is_subdir(child->mnt_mountpoint, dentry))
1715 continue;
1716
1717 if (child->mnt.mnt_flags & MNT_LOCKED)
1718 return true;
1719 }
1720 return false;
1721}
1722
1da177e4
LT
1723/*
1724 * do loopback mount.
1725 */
808d4e3c 1726static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1727 int recurse)
1da177e4 1728{
2d92ab3c 1729 struct path old_path;
84d17192
AV
1730 struct mount *mnt = NULL, *old, *parent;
1731 struct mountpoint *mp;
57eccb83 1732 int err;
1da177e4
LT
1733 if (!old_name || !*old_name)
1734 return -EINVAL;
815d405c 1735 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1736 if (err)
1737 return err;
1738
8823c079 1739 err = -EINVAL;
4ce5d2b1 1740 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1741 goto out;
1742
84d17192
AV
1743 mp = lock_mount(path);
1744 err = PTR_ERR(mp);
1745 if (IS_ERR(mp))
b12cea91
AV
1746 goto out;
1747
87129cc0 1748 old = real_mount(old_path.mnt);
84d17192 1749 parent = real_mount(path->mnt);
87129cc0 1750
1da177e4 1751 err = -EINVAL;
fc7be130 1752 if (IS_MNT_UNBINDABLE(old))
b12cea91 1753 goto out2;
9676f0c6 1754
84d17192 1755 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1756 goto out2;
1da177e4 1757
5ff9d8a6
EB
1758 if (!recurse && has_locked_children(old, old_path.dentry))
1759 goto out2;
1760
ccd48bc7 1761 if (recurse)
4ce5d2b1 1762 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1763 else
87129cc0 1764 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1765
be34d1a3
DH
1766 if (IS_ERR(mnt)) {
1767 err = PTR_ERR(mnt);
e9c5d8a5 1768 goto out2;
be34d1a3 1769 }
ccd48bc7 1770
5ff9d8a6
EB
1771 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1772
84d17192 1773 err = graft_tree(mnt, parent, mp);
ccd48bc7 1774 if (err) {
719ea2fb 1775 lock_mount_hash();
328e6d90 1776 umount_tree(mnt, 0);
719ea2fb 1777 unlock_mount_hash();
5b83d2c5 1778 }
b12cea91 1779out2:
84d17192 1780 unlock_mount(mp);
ccd48bc7 1781out:
2d92ab3c 1782 path_put(&old_path);
1da177e4
LT
1783 return err;
1784}
1785
2e4b7fcd
DH
1786static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1787{
1788 int error = 0;
1789 int readonly_request = 0;
1790
1791 if (ms_flags & MS_RDONLY)
1792 readonly_request = 1;
1793 if (readonly_request == __mnt_is_readonly(mnt))
1794 return 0;
1795
90563b19
EB
1796 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1797 return -EPERM;
1798
2e4b7fcd 1799 if (readonly_request)
83adc753 1800 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1801 else
83adc753 1802 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1803 return error;
1804}
1805
1da177e4
LT
1806/*
1807 * change filesystem flags. dir should be a physical root of filesystem.
1808 * If you've mounted a non-root directory somewhere and want to do remount
1809 * on it - tough luck.
1810 */
0a0d8a46 1811static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1812 void *data)
1813{
1814 int err;
2d92ab3c 1815 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1816 struct mount *mnt = real_mount(path->mnt);
1da177e4 1817
143c8c91 1818 if (!check_mnt(mnt))
1da177e4
LT
1819 return -EINVAL;
1820
2d92ab3c 1821 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1822 return -EINVAL;
1823
ff36fe2c
EP
1824 err = security_sb_remount(sb, data);
1825 if (err)
1826 return err;
1827
1da177e4 1828 down_write(&sb->s_umount);
2e4b7fcd 1829 if (flags & MS_BIND)
2d92ab3c 1830 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1831 else if (!capable(CAP_SYS_ADMIN))
1832 err = -EPERM;
4aa98cf7 1833 else
2e4b7fcd 1834 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1835 if (!err) {
719ea2fb 1836 lock_mount_hash();
143c8c91
AV
1837 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1838 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 1839 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 1840 unlock_mount_hash();
0e55a7cc 1841 }
6339dab8 1842 up_write(&sb->s_umount);
1da177e4
LT
1843 return err;
1844}
1845
cbbe362c 1846static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1847{
315fc83e 1848 struct mount *p;
909b0a88 1849 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1850 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1851 return 1;
1852 }
1853 return 0;
1854}
1855
808d4e3c 1856static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1857{
2d92ab3c 1858 struct path old_path, parent_path;
676da58d 1859 struct mount *p;
0fb54e50 1860 struct mount *old;
84d17192 1861 struct mountpoint *mp;
57eccb83 1862 int err;
1da177e4
LT
1863 if (!old_name || !*old_name)
1864 return -EINVAL;
2d92ab3c 1865 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1866 if (err)
1867 return err;
1868
84d17192
AV
1869 mp = lock_mount(path);
1870 err = PTR_ERR(mp);
1871 if (IS_ERR(mp))
cc53ce53
DH
1872 goto out;
1873
143c8c91 1874 old = real_mount(old_path.mnt);
fc7be130 1875 p = real_mount(path->mnt);
143c8c91 1876
1da177e4 1877 err = -EINVAL;
fc7be130 1878 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1879 goto out1;
1880
5ff9d8a6
EB
1881 if (old->mnt.mnt_flags & MNT_LOCKED)
1882 goto out1;
1883
1da177e4 1884 err = -EINVAL;
2d92ab3c 1885 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1886 goto out1;
1da177e4 1887
676da58d 1888 if (!mnt_has_parent(old))
21444403 1889 goto out1;
1da177e4 1890
2d92ab3c
AV
1891 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1892 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1893 goto out1;
1894 /*
1895 * Don't move a mount residing in a shared parent.
1896 */
fc7be130 1897 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1898 goto out1;
9676f0c6
RP
1899 /*
1900 * Don't move a mount tree containing unbindable mounts to a destination
1901 * mount which is shared.
1902 */
fc7be130 1903 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1904 goto out1;
1da177e4 1905 err = -ELOOP;
fc7be130 1906 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1907 if (p == old)
21444403 1908 goto out1;
1da177e4 1909
84d17192 1910 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1911 if (err)
21444403 1912 goto out1;
1da177e4
LT
1913
1914 /* if the mount is moved, it should no longer be expire
1915 * automatically */
6776db3d 1916 list_del_init(&old->mnt_expire);
1da177e4 1917out1:
84d17192 1918 unlock_mount(mp);
1da177e4 1919out:
1da177e4 1920 if (!err)
1a390689 1921 path_put(&parent_path);
2d92ab3c 1922 path_put(&old_path);
1da177e4
LT
1923 return err;
1924}
1925
9d412a43
AV
1926static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1927{
1928 int err;
1929 const char *subtype = strchr(fstype, '.');
1930 if (subtype) {
1931 subtype++;
1932 err = -EINVAL;
1933 if (!subtype[0])
1934 goto err;
1935 } else
1936 subtype = "";
1937
1938 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1939 err = -ENOMEM;
1940 if (!mnt->mnt_sb->s_subtype)
1941 goto err;
1942 return mnt;
1943
1944 err:
1945 mntput(mnt);
1946 return ERR_PTR(err);
1947}
1948
9d412a43
AV
1949/*
1950 * add a mount into a namespace's mount tree
1951 */
95bc5f25 1952static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1953{
84d17192
AV
1954 struct mountpoint *mp;
1955 struct mount *parent;
9d412a43
AV
1956 int err;
1957
1958 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1959
84d17192
AV
1960 mp = lock_mount(path);
1961 if (IS_ERR(mp))
1962 return PTR_ERR(mp);
9d412a43 1963
84d17192 1964 parent = real_mount(path->mnt);
9d412a43 1965 err = -EINVAL;
84d17192 1966 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1967 /* that's acceptable only for automounts done in private ns */
1968 if (!(mnt_flags & MNT_SHRINKABLE))
1969 goto unlock;
1970 /* ... and for those we'd better have mountpoint still alive */
84d17192 1971 if (!parent->mnt_ns)
156cacb1
AV
1972 goto unlock;
1973 }
9d412a43
AV
1974
1975 /* Refuse the same filesystem on the same mount point */
1976 err = -EBUSY;
95bc5f25 1977 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1978 path->mnt->mnt_root == path->dentry)
1979 goto unlock;
1980
1981 err = -EINVAL;
95bc5f25 1982 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1983 goto unlock;
1984
95bc5f25 1985 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 1986 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
1987
1988unlock:
84d17192 1989 unlock_mount(mp);
9d412a43
AV
1990 return err;
1991}
b1e75df4 1992
1da177e4
LT
1993/*
1994 * create a new mount for userspace and request it to be added into the
1995 * namespace's tree
1996 */
0c55cfc4 1997static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 1998 int mnt_flags, const char *name, void *data)
1da177e4 1999{
0c55cfc4 2000 struct file_system_type *type;
9b40bc90 2001 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2002 struct vfsmount *mnt;
15f9a3f3 2003 int err;
1da177e4 2004
0c55cfc4 2005 if (!fstype)
1da177e4
LT
2006 return -EINVAL;
2007
0c55cfc4
EB
2008 type = get_fs_type(fstype);
2009 if (!type)
2010 return -ENODEV;
2011
2012 if (user_ns != &init_user_ns) {
2013 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2014 put_filesystem(type);
2015 return -EPERM;
2016 }
2017 /* Only in special cases allow devices from mounts
2018 * created outside the initial user namespace.
2019 */
2020 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2021 flags |= MS_NODEV;
2022 mnt_flags |= MNT_NODEV;
2023 }
2024 }
2025
2026 mnt = vfs_kern_mount(type, flags, name, data);
2027 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2028 !mnt->mnt_sb->s_subtype)
2029 mnt = fs_set_subtype(mnt, fstype);
2030
2031 put_filesystem(type);
1da177e4
LT
2032 if (IS_ERR(mnt))
2033 return PTR_ERR(mnt);
2034
95bc5f25 2035 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2036 if (err)
2037 mntput(mnt);
2038 return err;
1da177e4
LT
2039}
2040
19a167af
AV
2041int finish_automount(struct vfsmount *m, struct path *path)
2042{
6776db3d 2043 struct mount *mnt = real_mount(m);
19a167af
AV
2044 int err;
2045 /* The new mount record should have at least 2 refs to prevent it being
2046 * expired before we get a chance to add it
2047 */
6776db3d 2048 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2049
2050 if (m->mnt_sb == path->mnt->mnt_sb &&
2051 m->mnt_root == path->dentry) {
b1e75df4
AV
2052 err = -ELOOP;
2053 goto fail;
19a167af
AV
2054 }
2055
95bc5f25 2056 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2057 if (!err)
2058 return 0;
2059fail:
2060 /* remove m from any expiration list it may be on */
6776db3d 2061 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2062 namespace_lock();
6776db3d 2063 list_del_init(&mnt->mnt_expire);
97216be0 2064 namespace_unlock();
19a167af 2065 }
b1e75df4
AV
2066 mntput(m);
2067 mntput(m);
19a167af
AV
2068 return err;
2069}
2070
ea5b778a
DH
2071/**
2072 * mnt_set_expiry - Put a mount on an expiration list
2073 * @mnt: The mount to list.
2074 * @expiry_list: The list to add the mount to.
2075 */
2076void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2077{
97216be0 2078 namespace_lock();
ea5b778a 2079
6776db3d 2080 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2081
97216be0 2082 namespace_unlock();
ea5b778a
DH
2083}
2084EXPORT_SYMBOL(mnt_set_expiry);
2085
1da177e4
LT
2086/*
2087 * process a list of expirable mountpoints with the intent of discarding any
2088 * mountpoints that aren't in use and haven't been touched since last we came
2089 * here
2090 */
2091void mark_mounts_for_expiry(struct list_head *mounts)
2092{
761d5c38 2093 struct mount *mnt, *next;
1da177e4
LT
2094 LIST_HEAD(graveyard);
2095
2096 if (list_empty(mounts))
2097 return;
2098
97216be0 2099 namespace_lock();
719ea2fb 2100 lock_mount_hash();
1da177e4
LT
2101
2102 /* extract from the expiration list every vfsmount that matches the
2103 * following criteria:
2104 * - only referenced by its parent vfsmount
2105 * - still marked for expiry (marked on the last call here; marks are
2106 * cleared by mntput())
2107 */
6776db3d 2108 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2109 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2110 propagate_mount_busy(mnt, 1))
1da177e4 2111 continue;
6776db3d 2112 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2113 }
bcc5c7d2 2114 while (!list_empty(&graveyard)) {
6776db3d 2115 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2116 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2117 umount_tree(mnt, 1);
bcc5c7d2 2118 }
719ea2fb 2119 unlock_mount_hash();
3ab6abee 2120 namespace_unlock();
5528f911
TM
2121}
2122
2123EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2124
2125/*
2126 * Ripoff of 'select_parent()'
2127 *
2128 * search the list of submounts for a given mountpoint, and move any
2129 * shrinkable submounts to the 'graveyard' list.
2130 */
692afc31 2131static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2132{
692afc31 2133 struct mount *this_parent = parent;
5528f911
TM
2134 struct list_head *next;
2135 int found = 0;
2136
2137repeat:
6b41d536 2138 next = this_parent->mnt_mounts.next;
5528f911 2139resume:
6b41d536 2140 while (next != &this_parent->mnt_mounts) {
5528f911 2141 struct list_head *tmp = next;
6b41d536 2142 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2143
2144 next = tmp->next;
692afc31 2145 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2146 continue;
5528f911
TM
2147 /*
2148 * Descend a level if the d_mounts list is non-empty.
2149 */
6b41d536 2150 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2151 this_parent = mnt;
2152 goto repeat;
2153 }
1da177e4 2154
1ab59738 2155 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2156 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2157 found++;
2158 }
1da177e4 2159 }
5528f911
TM
2160 /*
2161 * All done at this level ... ascend and resume the search
2162 */
2163 if (this_parent != parent) {
6b41d536 2164 next = this_parent->mnt_child.next;
0714a533 2165 this_parent = this_parent->mnt_parent;
5528f911
TM
2166 goto resume;
2167 }
2168 return found;
2169}
2170
2171/*
2172 * process a list of expirable mountpoints with the intent of discarding any
2173 * submounts of a specific parent mountpoint
99b7db7b
NP
2174 *
2175 * vfsmount_lock must be held for write
5528f911 2176 */
b54b9be7 2177static void shrink_submounts(struct mount *mnt)
5528f911
TM
2178{
2179 LIST_HEAD(graveyard);
761d5c38 2180 struct mount *m;
5528f911 2181
5528f911 2182 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2183 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2184 while (!list_empty(&graveyard)) {
761d5c38 2185 m = list_first_entry(&graveyard, struct mount,
6776db3d 2186 mnt_expire);
143c8c91 2187 touch_mnt_namespace(m->mnt_ns);
328e6d90 2188 umount_tree(m, 1);
bcc5c7d2
AV
2189 }
2190 }
1da177e4
LT
2191}
2192
1da177e4
LT
2193/*
2194 * Some copy_from_user() implementations do not return the exact number of
2195 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2196 * Note that this function differs from copy_from_user() in that it will oops
2197 * on bad values of `to', rather than returning a short copy.
2198 */
b58fed8b
RP
2199static long exact_copy_from_user(void *to, const void __user * from,
2200 unsigned long n)
1da177e4
LT
2201{
2202 char *t = to;
2203 const char __user *f = from;
2204 char c;
2205
2206 if (!access_ok(VERIFY_READ, from, n))
2207 return n;
2208
2209 while (n) {
2210 if (__get_user(c, f)) {
2211 memset(t, 0, n);
2212 break;
2213 }
2214 *t++ = c;
2215 f++;
2216 n--;
2217 }
2218 return n;
2219}
2220
b58fed8b 2221int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2222{
2223 int i;
2224 unsigned long page;
2225 unsigned long size;
b58fed8b 2226
1da177e4
LT
2227 *where = 0;
2228 if (!data)
2229 return 0;
2230
2231 if (!(page = __get_free_page(GFP_KERNEL)))
2232 return -ENOMEM;
2233
2234 /* We only care that *some* data at the address the user
2235 * gave us is valid. Just in case, we'll zero
2236 * the remainder of the page.
2237 */
2238 /* copy_from_user cannot cross TASK_SIZE ! */
2239 size = TASK_SIZE - (unsigned long)data;
2240 if (size > PAGE_SIZE)
2241 size = PAGE_SIZE;
2242
2243 i = size - exact_copy_from_user((void *)page, data, size);
2244 if (!i) {
b58fed8b 2245 free_page(page);
1da177e4
LT
2246 return -EFAULT;
2247 }
2248 if (i != PAGE_SIZE)
2249 memset((char *)page + i, 0, PAGE_SIZE - i);
2250 *where = page;
2251 return 0;
2252}
2253
eca6f534
VN
2254int copy_mount_string(const void __user *data, char **where)
2255{
2256 char *tmp;
2257
2258 if (!data) {
2259 *where = NULL;
2260 return 0;
2261 }
2262
2263 tmp = strndup_user(data, PAGE_SIZE);
2264 if (IS_ERR(tmp))
2265 return PTR_ERR(tmp);
2266
2267 *where = tmp;
2268 return 0;
2269}
2270
1da177e4
LT
2271/*
2272 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2273 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2274 *
2275 * data is a (void *) that can point to any structure up to
2276 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2277 * information (or be NULL).
2278 *
2279 * Pre-0.97 versions of mount() didn't have a flags word.
2280 * When the flags word was introduced its top half was required
2281 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2282 * Therefore, if this magic number is present, it carries no information
2283 * and must be discarded.
2284 */
808d4e3c
AV
2285long do_mount(const char *dev_name, const char *dir_name,
2286 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2287{
2d92ab3c 2288 struct path path;
1da177e4
LT
2289 int retval = 0;
2290 int mnt_flags = 0;
2291
2292 /* Discard magic */
2293 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2294 flags &= ~MS_MGC_MSK;
2295
2296 /* Basic sanity checks */
2297
2298 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2299 return -EINVAL;
1da177e4
LT
2300
2301 if (data_page)
2302 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2303
a27ab9f2
TH
2304 /* ... and get the mountpoint */
2305 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2306 if (retval)
2307 return retval;
2308
2309 retval = security_sb_mount(dev_name, &path,
2310 type_page, flags, data_page);
0d5cadb8
AV
2311 if (!retval && !may_mount())
2312 retval = -EPERM;
a27ab9f2
TH
2313 if (retval)
2314 goto dput_out;
2315
613cbe3d
AK
2316 /* Default to relatime unless overriden */
2317 if (!(flags & MS_NOATIME))
2318 mnt_flags |= MNT_RELATIME;
0a1c01c9 2319
1da177e4
LT
2320 /* Separate the per-mountpoint flags */
2321 if (flags & MS_NOSUID)
2322 mnt_flags |= MNT_NOSUID;
2323 if (flags & MS_NODEV)
2324 mnt_flags |= MNT_NODEV;
2325 if (flags & MS_NOEXEC)
2326 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2327 if (flags & MS_NOATIME)
2328 mnt_flags |= MNT_NOATIME;
2329 if (flags & MS_NODIRATIME)
2330 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2331 if (flags & MS_STRICTATIME)
2332 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2333 if (flags & MS_RDONLY)
2334 mnt_flags |= MNT_READONLY;
fc33a7bb 2335
7a4dec53 2336 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2337 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2338 MS_STRICTATIME);
1da177e4 2339
1da177e4 2340 if (flags & MS_REMOUNT)
2d92ab3c 2341 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2342 data_page);
2343 else if (flags & MS_BIND)
2d92ab3c 2344 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2345 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2346 retval = do_change_type(&path, flags);
1da177e4 2347 else if (flags & MS_MOVE)
2d92ab3c 2348 retval = do_move_mount(&path, dev_name);
1da177e4 2349 else
2d92ab3c 2350 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2351 dev_name, data_page);
2352dput_out:
2d92ab3c 2353 path_put(&path);
1da177e4
LT
2354 return retval;
2355}
2356
771b1371
EB
2357static void free_mnt_ns(struct mnt_namespace *ns)
2358{
98f842e6 2359 proc_free_inum(ns->proc_inum);
771b1371
EB
2360 put_user_ns(ns->user_ns);
2361 kfree(ns);
2362}
2363
8823c079
EB
2364/*
2365 * Assign a sequence number so we can detect when we attempt to bind
2366 * mount a reference to an older mount namespace into the current
2367 * mount namespace, preventing reference counting loops. A 64bit
2368 * number incrementing at 10Ghz will take 12,427 years to wrap which
2369 * is effectively never, so we can ignore the possibility.
2370 */
2371static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2372
771b1371 2373static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2374{
2375 struct mnt_namespace *new_ns;
98f842e6 2376 int ret;
cf8d2c11
TM
2377
2378 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2379 if (!new_ns)
2380 return ERR_PTR(-ENOMEM);
98f842e6
EB
2381 ret = proc_alloc_inum(&new_ns->proc_inum);
2382 if (ret) {
2383 kfree(new_ns);
2384 return ERR_PTR(ret);
2385 }
8823c079 2386 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2387 atomic_set(&new_ns->count, 1);
2388 new_ns->root = NULL;
2389 INIT_LIST_HEAD(&new_ns->list);
2390 init_waitqueue_head(&new_ns->poll);
2391 new_ns->event = 0;
771b1371 2392 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2393 return new_ns;
2394}
2395
9559f689
AV
2396struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2397 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2398{
6b3286ed 2399 struct mnt_namespace *new_ns;
7f2da1e7 2400 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2401 struct mount *p, *q;
9559f689 2402 struct mount *old;
cb338d06 2403 struct mount *new;
7a472ef4 2404 int copy_flags;
1da177e4 2405
9559f689
AV
2406 BUG_ON(!ns);
2407
2408 if (likely(!(flags & CLONE_NEWNS))) {
2409 get_mnt_ns(ns);
2410 return ns;
2411 }
2412
2413 old = ns->root;
2414
771b1371 2415 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2416 if (IS_ERR(new_ns))
2417 return new_ns;
1da177e4 2418
97216be0 2419 namespace_lock();
1da177e4 2420 /* First pass: copy the tree topology */
4ce5d2b1 2421 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2422 if (user_ns != ns->user_ns)
132c94e3 2423 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2424 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2425 if (IS_ERR(new)) {
328e6d90 2426 namespace_unlock();
771b1371 2427 free_mnt_ns(new_ns);
be34d1a3 2428 return ERR_CAST(new);
1da177e4 2429 }
be08d6d2 2430 new_ns->root = new;
1a4eeaf2 2431 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2432
2433 /*
2434 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2435 * as belonging to new namespace. We have already acquired a private
2436 * fs_struct, so tsk->fs->lock is not needed.
2437 */
909b0a88 2438 p = old;
cb338d06 2439 q = new;
1da177e4 2440 while (p) {
143c8c91 2441 q->mnt_ns = new_ns;
9559f689
AV
2442 if (new_fs) {
2443 if (&p->mnt == new_fs->root.mnt) {
2444 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2445 rootmnt = &p->mnt;
1da177e4 2446 }
9559f689
AV
2447 if (&p->mnt == new_fs->pwd.mnt) {
2448 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2449 pwdmnt = &p->mnt;
1da177e4 2450 }
1da177e4 2451 }
909b0a88
AV
2452 p = next_mnt(p, old);
2453 q = next_mnt(q, new);
4ce5d2b1
EB
2454 if (!q)
2455 break;
2456 while (p->mnt.mnt_root != q->mnt.mnt_root)
2457 p = next_mnt(p, old);
1da177e4 2458 }
328e6d90 2459 namespace_unlock();
1da177e4 2460
1da177e4 2461 if (rootmnt)
f03c6599 2462 mntput(rootmnt);
1da177e4 2463 if (pwdmnt)
f03c6599 2464 mntput(pwdmnt);
1da177e4 2465
741a2951 2466 return new_ns;
1da177e4
LT
2467}
2468
cf8d2c11
TM
2469/**
2470 * create_mnt_ns - creates a private namespace and adds a root filesystem
2471 * @mnt: pointer to the new root filesystem mountpoint
2472 */
1a4eeaf2 2473static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2474{
771b1371 2475 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2476 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2477 struct mount *mnt = real_mount(m);
2478 mnt->mnt_ns = new_ns;
be08d6d2 2479 new_ns->root = mnt;
b1983cd8 2480 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2481 } else {
1a4eeaf2 2482 mntput(m);
cf8d2c11
TM
2483 }
2484 return new_ns;
2485}
cf8d2c11 2486
ea441d11
AV
2487struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2488{
2489 struct mnt_namespace *ns;
d31da0f0 2490 struct super_block *s;
ea441d11
AV
2491 struct path path;
2492 int err;
2493
2494 ns = create_mnt_ns(mnt);
2495 if (IS_ERR(ns))
2496 return ERR_CAST(ns);
2497
2498 err = vfs_path_lookup(mnt->mnt_root, mnt,
2499 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2500
2501 put_mnt_ns(ns);
2502
2503 if (err)
2504 return ERR_PTR(err);
2505
2506 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2507 s = path.mnt->mnt_sb;
2508 atomic_inc(&s->s_active);
ea441d11
AV
2509 mntput(path.mnt);
2510 /* lock the sucker */
d31da0f0 2511 down_write(&s->s_umount);
ea441d11
AV
2512 /* ... and return the root of (sub)tree on it */
2513 return path.dentry;
2514}
2515EXPORT_SYMBOL(mount_subtree);
2516
bdc480e3
HC
2517SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2518 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2519{
eca6f534
VN
2520 int ret;
2521 char *kernel_type;
91a27b2a 2522 struct filename *kernel_dir;
eca6f534 2523 char *kernel_dev;
1da177e4 2524 unsigned long data_page;
1da177e4 2525
eca6f534
VN
2526 ret = copy_mount_string(type, &kernel_type);
2527 if (ret < 0)
2528 goto out_type;
1da177e4 2529
eca6f534
VN
2530 kernel_dir = getname(dir_name);
2531 if (IS_ERR(kernel_dir)) {
2532 ret = PTR_ERR(kernel_dir);
2533 goto out_dir;
2534 }
1da177e4 2535
eca6f534
VN
2536 ret = copy_mount_string(dev_name, &kernel_dev);
2537 if (ret < 0)
2538 goto out_dev;
1da177e4 2539
eca6f534
VN
2540 ret = copy_mount_options(data, &data_page);
2541 if (ret < 0)
2542 goto out_data;
1da177e4 2543
91a27b2a 2544 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2545 (void *) data_page);
1da177e4 2546
eca6f534
VN
2547 free_page(data_page);
2548out_data:
2549 kfree(kernel_dev);
2550out_dev:
2551 putname(kernel_dir);
2552out_dir:
2553 kfree(kernel_type);
2554out_type:
2555 return ret;
1da177e4
LT
2556}
2557
afac7cba
AV
2558/*
2559 * Return true if path is reachable from root
2560 *
2561 * namespace_sem or vfsmount_lock is held
2562 */
643822b4 2563bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2564 const struct path *root)
2565{
643822b4 2566 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2567 dentry = mnt->mnt_mountpoint;
0714a533 2568 mnt = mnt->mnt_parent;
afac7cba 2569 }
643822b4 2570 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2571}
2572
2573int path_is_under(struct path *path1, struct path *path2)
2574{
2575 int res;
962830df 2576 br_read_lock(&vfsmount_lock);
643822b4 2577 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2578 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2579 return res;
2580}
2581EXPORT_SYMBOL(path_is_under);
2582
1da177e4
LT
2583/*
2584 * pivot_root Semantics:
2585 * Moves the root file system of the current process to the directory put_old,
2586 * makes new_root as the new root file system of the current process, and sets
2587 * root/cwd of all processes which had them on the current root to new_root.
2588 *
2589 * Restrictions:
2590 * The new_root and put_old must be directories, and must not be on the
2591 * same file system as the current process root. The put_old must be
2592 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2593 * pointed to by put_old must yield the same directory as new_root. No other
2594 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2595 *
4a0d11fa
NB
2596 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2597 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2598 * in this situation.
2599 *
1da177e4
LT
2600 * Notes:
2601 * - we don't move root/cwd if they are not at the root (reason: if something
2602 * cared enough to change them, it's probably wrong to force them elsewhere)
2603 * - it's okay to pick a root that isn't the root of a file system, e.g.
2604 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2605 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2606 * first.
2607 */
3480b257
HC
2608SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2609 const char __user *, put_old)
1da177e4 2610{
2d8f3038 2611 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2612 struct mount *new_mnt, *root_mnt, *old_mnt;
2613 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2614 int error;
2615
9b40bc90 2616 if (!may_mount())
1da177e4
LT
2617 return -EPERM;
2618
2d8f3038 2619 error = user_path_dir(new_root, &new);
1da177e4
LT
2620 if (error)
2621 goto out0;
1da177e4 2622
2d8f3038 2623 error = user_path_dir(put_old, &old);
1da177e4
LT
2624 if (error)
2625 goto out1;
2626
2d8f3038 2627 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2628 if (error)
2629 goto out2;
1da177e4 2630
f7ad3c6b 2631 get_fs_root(current->fs, &root);
84d17192
AV
2632 old_mp = lock_mount(&old);
2633 error = PTR_ERR(old_mp);
2634 if (IS_ERR(old_mp))
b12cea91
AV
2635 goto out3;
2636
1da177e4 2637 error = -EINVAL;
419148da
AV
2638 new_mnt = real_mount(new.mnt);
2639 root_mnt = real_mount(root.mnt);
84d17192
AV
2640 old_mnt = real_mount(old.mnt);
2641 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2642 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2643 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2644 goto out4;
143c8c91 2645 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2646 goto out4;
5ff9d8a6
EB
2647 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2648 goto out4;
1da177e4 2649 error = -ENOENT;
f3da392e 2650 if (d_unlinked(new.dentry))
b12cea91 2651 goto out4;
1da177e4 2652 error = -EBUSY;
84d17192 2653 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2654 goto out4; /* loop, on the same file system */
1da177e4 2655 error = -EINVAL;
8c3ee42e 2656 if (root.mnt->mnt_root != root.dentry)
b12cea91 2657 goto out4; /* not a mountpoint */
676da58d 2658 if (!mnt_has_parent(root_mnt))
b12cea91 2659 goto out4; /* not attached */
84d17192 2660 root_mp = root_mnt->mnt_mp;
2d8f3038 2661 if (new.mnt->mnt_root != new.dentry)
b12cea91 2662 goto out4; /* not a mountpoint */
676da58d 2663 if (!mnt_has_parent(new_mnt))
b12cea91 2664 goto out4; /* not attached */
4ac91378 2665 /* make sure we can reach put_old from new_root */
84d17192 2666 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2667 goto out4;
84d17192 2668 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2669 lock_mount_hash();
419148da
AV
2670 detach_mnt(new_mnt, &parent_path);
2671 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2672 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2673 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2674 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2675 }
4ac91378 2676 /* mount old root on put_old */
84d17192 2677 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2678 /* mount new_root on / */
84d17192 2679 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2680 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2681 unlock_mount_hash();
2d8f3038 2682 chroot_fs_refs(&root, &new);
84d17192 2683 put_mountpoint(root_mp);
1da177e4 2684 error = 0;
b12cea91 2685out4:
84d17192 2686 unlock_mount(old_mp);
b12cea91
AV
2687 if (!error) {
2688 path_put(&root_parent);
2689 path_put(&parent_path);
2690 }
2691out3:
8c3ee42e 2692 path_put(&root);
b12cea91 2693out2:
2d8f3038 2694 path_put(&old);
1da177e4 2695out1:
2d8f3038 2696 path_put(&new);
1da177e4 2697out0:
1da177e4 2698 return error;
1da177e4
LT
2699}
2700
2701static void __init init_mount_tree(void)
2702{
2703 struct vfsmount *mnt;
6b3286ed 2704 struct mnt_namespace *ns;
ac748a09 2705 struct path root;
0c55cfc4 2706 struct file_system_type *type;
1da177e4 2707
0c55cfc4
EB
2708 type = get_fs_type("rootfs");
2709 if (!type)
2710 panic("Can't find rootfs type");
2711 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2712 put_filesystem(type);
1da177e4
LT
2713 if (IS_ERR(mnt))
2714 panic("Can't create rootfs");
b3e19d92 2715
3b22edc5
TM
2716 ns = create_mnt_ns(mnt);
2717 if (IS_ERR(ns))
1da177e4 2718 panic("Can't allocate initial namespace");
6b3286ed
KK
2719
2720 init_task.nsproxy->mnt_ns = ns;
2721 get_mnt_ns(ns);
2722
be08d6d2
AV
2723 root.mnt = mnt;
2724 root.dentry = mnt->mnt_root;
ac748a09
JB
2725
2726 set_fs_pwd(current->fs, &root);
2727 set_fs_root(current->fs, &root);
1da177e4
LT
2728}
2729
74bf17cf 2730void __init mnt_init(void)
1da177e4 2731{
13f14b4d 2732 unsigned u;
15a67dd8 2733 int err;
1da177e4 2734
7d6fec45 2735 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2736 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2737
b58fed8b 2738 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2739 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2740
84d17192 2741 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2742 panic("Failed to allocate mount hash table\n");
2743
80cdc6da 2744 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2745
2746 for (u = 0; u < HASH_SIZE; u++)
2747 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2748 for (u = 0; u < HASH_SIZE; u++)
2749 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2750
962830df 2751 br_lock_init(&vfsmount_lock);
99b7db7b 2752
15a67dd8
RD
2753 err = sysfs_init();
2754 if (err)
2755 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2756 __func__, err);
00d26666
GKH
2757 fs_kobj = kobject_create_and_add("fs", NULL);
2758 if (!fs_kobj)
8e24eea7 2759 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2760 init_rootfs();
2761 init_mount_tree();
2762}
2763
616511d0 2764void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2765{
d498b25a 2766 if (!atomic_dec_and_test(&ns->count))
616511d0 2767 return;
7b00ed6f 2768 drop_collected_mounts(&ns->root->mnt);
771b1371 2769 free_mnt_ns(ns);
1da177e4 2770}
9d412a43
AV
2771
2772struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2773{
423e0ab0
TC
2774 struct vfsmount *mnt;
2775 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2776 if (!IS_ERR(mnt)) {
2777 /*
2778 * it is a longterm mount, don't release mnt until
2779 * we unmount before file sys is unregistered
2780 */
f7a99c5b 2781 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2782 }
2783 return mnt;
9d412a43
AV
2784}
2785EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2786
2787void kern_unmount(struct vfsmount *mnt)
2788{
2789 /* release long term mount so mount point can be released */
2790 if (!IS_ERR_OR_NULL(mnt)) {
719ea2fb 2791 lock_mount_hash();
f7a99c5b 2792 real_mount(mnt)->mnt_ns = NULL;
719ea2fb 2793 unlock_mount_hash();
423e0ab0
TC
2794 mntput(mnt);
2795 }
2796}
2797EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2798
2799bool our_mnt(struct vfsmount *mnt)
2800{
143c8c91 2801 return check_mnt(real_mount(mnt));
02125a82 2802}
8823c079 2803
3151527e
EB
2804bool current_chrooted(void)
2805{
2806 /* Does the current process have a non-standard root */
2807 struct path ns_root;
2808 struct path fs_root;
2809 bool chrooted;
2810
2811 /* Find the namespace root */
2812 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2813 ns_root.dentry = ns_root.mnt->mnt_root;
2814 path_get(&ns_root);
2815 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2816 ;
2817
2818 get_fs_root(current->fs, &fs_root);
2819
2820 chrooted = !path_equal(&fs_root, &ns_root);
2821
2822 path_put(&fs_root);
2823 path_put(&ns_root);
2824
2825 return chrooted;
2826}
2827
e51db735 2828bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2829{
2830 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2831 struct mount *mnt;
e51db735 2832 bool visible = false;
87a8ebd6 2833
e51db735
EB
2834 if (unlikely(!ns))
2835 return false;
2836
44bb4385 2837 down_read(&namespace_sem);
87a8ebd6 2838 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2839 struct mount *child;
2840 if (mnt->mnt.mnt_sb->s_type != type)
2841 continue;
2842
2843 /* This mount is not fully visible if there are any child mounts
2844 * that cover anything except for empty directories.
2845 */
2846 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2847 struct inode *inode = child->mnt_mountpoint->d_inode;
2848 if (!S_ISDIR(inode->i_mode))
2849 goto next;
2850 if (inode->i_nlink != 2)
2851 goto next;
87a8ebd6 2852 }
e51db735
EB
2853 visible = true;
2854 goto found;
2855 next: ;
87a8ebd6 2856 }
e51db735 2857found:
44bb4385 2858 up_read(&namespace_sem);
e51db735 2859 return visible;
87a8ebd6
EB
2860}
2861
8823c079
EB
2862static void *mntns_get(struct task_struct *task)
2863{
2864 struct mnt_namespace *ns = NULL;
2865 struct nsproxy *nsproxy;
2866
2867 rcu_read_lock();
2868 nsproxy = task_nsproxy(task);
2869 if (nsproxy) {
2870 ns = nsproxy->mnt_ns;
2871 get_mnt_ns(ns);
2872 }
2873 rcu_read_unlock();
2874
2875 return ns;
2876}
2877
2878static void mntns_put(void *ns)
2879{
2880 put_mnt_ns(ns);
2881}
2882
2883static int mntns_install(struct nsproxy *nsproxy, void *ns)
2884{
2885 struct fs_struct *fs = current->fs;
2886 struct mnt_namespace *mnt_ns = ns;
2887 struct path root;
2888
0c55cfc4 2889 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
2890 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2891 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 2892 return -EPERM;
8823c079
EB
2893
2894 if (fs->users != 1)
2895 return -EINVAL;
2896
2897 get_mnt_ns(mnt_ns);
2898 put_mnt_ns(nsproxy->mnt_ns);
2899 nsproxy->mnt_ns = mnt_ns;
2900
2901 /* Find the root */
2902 root.mnt = &mnt_ns->root->mnt;
2903 root.dentry = mnt_ns->root->mnt.mnt_root;
2904 path_get(&root);
2905 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2906 ;
2907
2908 /* Update the pwd and root */
2909 set_fs_pwd(fs, &root);
2910 set_fs_root(fs, &root);
2911
2912 path_put(&root);
2913 return 0;
2914}
2915
98f842e6
EB
2916static unsigned int mntns_inum(void *ns)
2917{
2918 struct mnt_namespace *mnt_ns = ns;
2919 return mnt_ns->proc_inum;
2920}
2921
8823c079
EB
2922const struct proc_ns_operations mntns_operations = {
2923 .name = "mnt",
2924 .type = CLONE_NEWNS,
2925 .get = mntns_get,
2926 .put = mntns_put,
2927 .install = mntns_install,
98f842e6 2928 .inum = mntns_inum,
8823c079 2929};