mm/slab: convert cache name allocations to kstrdup_const
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 228 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
229#ifdef CONFIG_FSNOTIFY
230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 231#endif
1da177e4 232 }
c63181e6 233 return mnt;
88b38782 234
d3ef3d73 235#ifdef CONFIG_SMP
236out_free_devname:
c63181e6 237 kfree(mnt->mnt_devname);
d3ef3d73 238#endif
88b38782 239out_free_id:
c63181e6 240 mnt_free_id(mnt);
88b38782 241out_free_cache:
c63181e6 242 kmem_cache_free(mnt_cache, mnt);
88b38782 243 return NULL;
1da177e4
LT
244}
245
3d733633
DH
246/*
247 * Most r/o checks on a fs are for operations that take
248 * discrete amounts of time, like a write() or unlink().
249 * We must keep track of when those operations start
250 * (for permission checks) and when they end, so that
251 * we can determine when writes are able to occur to
252 * a filesystem.
253 */
254/*
255 * __mnt_is_readonly: check whether a mount is read-only
256 * @mnt: the mount to check for its write status
257 *
258 * This shouldn't be used directly ouside of the VFS.
259 * It does not guarantee that the filesystem will stay
260 * r/w, just that it is right *now*. This can not and
261 * should not be used in place of IS_RDONLY(inode).
262 * mnt_want/drop_write() will _keep_ the filesystem
263 * r/w.
264 */
265int __mnt_is_readonly(struct vfsmount *mnt)
266{
2e4b7fcd
DH
267 if (mnt->mnt_flags & MNT_READONLY)
268 return 1;
269 if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 return 1;
271 return 0;
3d733633
DH
272}
273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
83adc753 275static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 276{
277#ifdef CONFIG_SMP
68e8a9fe 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 279#else
68e8a9fe 280 mnt->mnt_writers++;
d3ef3d73 281#endif
282}
3d733633 283
83adc753 284static inline void mnt_dec_writers(struct mount *mnt)
3d733633 285{
d3ef3d73 286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers--;
d3ef3d73 290#endif
3d733633 291}
3d733633 292
83adc753 293static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
296 unsigned int count = 0;
3d733633 297 int cpu;
3d733633
DH
298
299 for_each_possible_cpu(cpu) {
68e8a9fe 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 301 }
3d733633 302
d3ef3d73 303 return count;
304#else
305 return mnt->mnt_writers;
306#endif
3d733633
DH
307}
308
4ed5e82f
MS
309static int mnt_is_readonly(struct vfsmount *mnt)
310{
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316}
317
8366025e 318/*
eb04c282
JK
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
8366025e
DH
323 */
324/**
eb04c282 325 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 326 * @m: the mount on which to take a write
8366025e 327 *
eb04c282
JK
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
8366025e 333 */
eb04c282 334int __mnt_want_write(struct vfsmount *m)
8366025e 335{
83adc753 336 struct mount *mnt = real_mount(m);
3d733633 337 int ret = 0;
3d733633 338
d3ef3d73 339 preempt_disable();
c6653a83 340 mnt_inc_writers(mnt);
d3ef3d73 341 /*
c6653a83 342 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
1e75529e 347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 348 cpu_relax();
349 /*
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
353 */
354 smp_rmb();
4ed5e82f 355 if (mnt_is_readonly(m)) {
c6653a83 356 mnt_dec_writers(mnt);
3d733633 357 ret = -EROFS;
3d733633 358 }
d3ef3d73 359 preempt_enable();
eb04c282
JK
360
361 return ret;
362}
363
364/**
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
367 *
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 */
373int mnt_want_write(struct vfsmount *m)
374{
375 int ret;
376
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
3d733633 381 return ret;
8366025e
DH
382}
383EXPORT_SYMBOL_GPL(mnt_want_write);
384
96029c4e 385/**
386 * mnt_clone_write - get write access to a mount
387 * @mnt: the mount on which to take a write
388 *
389 * This is effectively like mnt_want_write, except
390 * it must only be used to take an extra write reference
391 * on a mountpoint that we already know has a write reference
392 * on it. This allows some optimisation.
393 *
394 * After finished, mnt_drop_write must be called as usual to
395 * drop the reference.
396 */
397int mnt_clone_write(struct vfsmount *mnt)
398{
399 /* superblock may be r/o */
400 if (__mnt_is_readonly(mnt))
401 return -EROFS;
402 preempt_disable();
83adc753 403 mnt_inc_writers(real_mount(mnt));
96029c4e 404 preempt_enable();
405 return 0;
406}
407EXPORT_SYMBOL_GPL(mnt_clone_write);
408
409/**
eb04c282 410 * __mnt_want_write_file - get write access to a file's mount
96029c4e 411 * @file: the file who's mount on which to take a write
412 *
eb04c282 413 * This is like __mnt_want_write, but it takes a file and can
96029c4e 414 * do some optimisations if the file is open for write already
415 */
eb04c282 416int __mnt_want_write_file(struct file *file)
96029c4e 417{
83f936c7 418 if (!(file->f_mode & FMODE_WRITER))
eb04c282 419 return __mnt_want_write(file->f_path.mnt);
96029c4e 420 else
421 return mnt_clone_write(file->f_path.mnt);
422}
eb04c282
JK
423
424/**
425 * mnt_want_write_file - get write access to a file's mount
426 * @file: the file who's mount on which to take a write
427 *
428 * This is like mnt_want_write, but it takes a file and can
429 * do some optimisations if the file is open for write already
430 */
431int mnt_want_write_file(struct file *file)
432{
433 int ret;
434
435 sb_start_write(file->f_path.mnt->mnt_sb);
436 ret = __mnt_want_write_file(file);
437 if (ret)
438 sb_end_write(file->f_path.mnt->mnt_sb);
439 return ret;
440}
96029c4e 441EXPORT_SYMBOL_GPL(mnt_want_write_file);
442
8366025e 443/**
eb04c282 444 * __mnt_drop_write - give up write access to a mount
8366025e
DH
445 * @mnt: the mount on which to give up write access
446 *
447 * Tells the low-level filesystem that we are done
448 * performing writes to it. Must be matched with
eb04c282 449 * __mnt_want_write() call above.
8366025e 450 */
eb04c282 451void __mnt_drop_write(struct vfsmount *mnt)
8366025e 452{
d3ef3d73 453 preempt_disable();
83adc753 454 mnt_dec_writers(real_mount(mnt));
d3ef3d73 455 preempt_enable();
8366025e 456}
eb04c282
JK
457
458/**
459 * mnt_drop_write - give up write access to a mount
460 * @mnt: the mount on which to give up write access
461 *
462 * Tells the low-level filesystem that we are done performing writes to it and
463 * also allows filesystem to be frozen again. Must be matched with
464 * mnt_want_write() call above.
465 */
466void mnt_drop_write(struct vfsmount *mnt)
467{
468 __mnt_drop_write(mnt);
469 sb_end_write(mnt->mnt_sb);
470}
8366025e
DH
471EXPORT_SYMBOL_GPL(mnt_drop_write);
472
eb04c282
JK
473void __mnt_drop_write_file(struct file *file)
474{
475 __mnt_drop_write(file->f_path.mnt);
476}
477
2a79f17e
AV
478void mnt_drop_write_file(struct file *file)
479{
480 mnt_drop_write(file->f_path.mnt);
481}
482EXPORT_SYMBOL(mnt_drop_write_file);
483
83adc753 484static int mnt_make_readonly(struct mount *mnt)
8366025e 485{
3d733633
DH
486 int ret = 0;
487
719ea2fb 488 lock_mount_hash();
83adc753 489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 490 /*
d3ef3d73 491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 * should be visible before we do.
3d733633 493 */
d3ef3d73 494 smp_mb();
495
3d733633 496 /*
d3ef3d73 497 * With writers on hold, if this value is zero, then there are
498 * definitely no active writers (although held writers may subsequently
499 * increment the count, they'll have to wait, and decrement it after
500 * seeing MNT_READONLY).
501 *
502 * It is OK to have counter incremented on one CPU and decremented on
503 * another: the sum will add up correctly. The danger would be when we
504 * sum up each counter, if we read a counter before it is incremented,
505 * but then read another CPU's count which it has been subsequently
506 * decremented from -- we would see more decrements than we should.
507 * MNT_WRITE_HOLD protects against this scenario, because
508 * mnt_want_write first increments count, then smp_mb, then spins on
509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 * we're counting up here.
3d733633 511 */
c6653a83 512 if (mnt_get_writers(mnt) > 0)
d3ef3d73 513 ret = -EBUSY;
514 else
83adc753 515 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 516 /*
517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 * that become unheld will see MNT_READONLY.
519 */
520 smp_wmb();
83adc753 521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 522 unlock_mount_hash();
3d733633 523 return ret;
8366025e 524}
8366025e 525
83adc753 526static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 527{
719ea2fb 528 lock_mount_hash();
83adc753 529 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 530 unlock_mount_hash();
2e4b7fcd
DH
531}
532
4ed5e82f
MS
533int sb_prepare_remount_readonly(struct super_block *sb)
534{
535 struct mount *mnt;
536 int err = 0;
537
8e8b8796
MS
538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
539 if (atomic_long_read(&sb->s_remove_count))
540 return -EBUSY;
541
719ea2fb 542 lock_mount_hash();
4ed5e82f
MS
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 smp_mb();
547 if (mnt_get_writers(mnt) > 0) {
548 err = -EBUSY;
549 break;
550 }
551 }
552 }
8e8b8796
MS
553 if (!err && atomic_long_read(&sb->s_remove_count))
554 err = -EBUSY;
555
4ed5e82f
MS
556 if (!err) {
557 sb->s_readonly_remount = 1;
558 smp_wmb();
559 }
560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 }
719ea2fb 564 unlock_mount_hash();
4ed5e82f
MS
565
566 return err;
567}
568
b105e270 569static void free_vfsmnt(struct mount *mnt)
1da177e4 570{
52ba1621 571 kfree(mnt->mnt_devname);
d3ef3d73 572#ifdef CONFIG_SMP
68e8a9fe 573 free_percpu(mnt->mnt_pcp);
d3ef3d73 574#endif
b105e270 575 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
576}
577
8ffcb32e
DH
578static void delayed_free_vfsmnt(struct rcu_head *head)
579{
580 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
581}
582
48a066e7
AV
583/* call under rcu_read_lock */
584bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
585{
586 struct mount *mnt;
587 if (read_seqretry(&mount_lock, seq))
588 return false;
589 if (bastard == NULL)
590 return true;
591 mnt = real_mount(bastard);
592 mnt_add_count(mnt, 1);
593 if (likely(!read_seqretry(&mount_lock, seq)))
594 return true;
595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 mnt_add_count(mnt, -1);
597 return false;
598 }
599 rcu_read_unlock();
600 mntput(bastard);
601 rcu_read_lock();
602 return false;
603}
604
1da177e4 605/*
474279dc 606 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 607 * call under rcu_read_lock()
1da177e4 608 */
474279dc 609struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 610{
38129a13 611 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
612 struct mount *p;
613
38129a13 614 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
618}
619
620/*
621 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 622 * mount_lock must be held.
474279dc
AV
623 */
624struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
625{
38129a13
AV
626 struct mount *p, *res;
627 res = p = __lookup_mnt(mnt, dentry);
628 if (!p)
629 goto out;
630 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 break;
633 res = p;
634 }
38129a13 635out:
1d6a32ac 636 return res;
1da177e4
LT
637}
638
a05964f3 639/*
f015f126
DH
640 * lookup_mnt - Return the first child mount mounted at path
641 *
642 * "First" means first mounted chronologically. If you create the
643 * following mounts:
644 *
645 * mount /dev/sda1 /mnt
646 * mount /dev/sda2 /mnt
647 * mount /dev/sda3 /mnt
648 *
649 * Then lookup_mnt() on the base /mnt dentry in the root mount will
650 * return successively the root dentry and vfsmount of /dev/sda1, then
651 * /dev/sda2, then /dev/sda3, then NULL.
652 *
653 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 654 */
1c755af4 655struct vfsmount *lookup_mnt(struct path *path)
a05964f3 656{
c7105365 657 struct mount *child_mnt;
48a066e7
AV
658 struct vfsmount *m;
659 unsigned seq;
99b7db7b 660
48a066e7
AV
661 rcu_read_lock();
662 do {
663 seq = read_seqbegin(&mount_lock);
664 child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 m = child_mnt ? &child_mnt->mnt : NULL;
666 } while (!legitimize_mnt(m, seq));
667 rcu_read_unlock();
668 return m;
a05964f3
RP
669}
670
7af1364f
EB
671/*
672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673 * current mount namespace.
674 *
675 * The common case is dentries are not mountpoints at all and that
676 * test is handled inline. For the slow case when we are actually
677 * dealing with a mountpoint of some kind, walk through all of the
678 * mounts in the current mount namespace and test to see if the dentry
679 * is a mountpoint.
680 *
681 * The mount_hashtable is not usable in the context because we
682 * need to identify all mounts that may be in the current mount
683 * namespace not just a mount that happens to have some specified
684 * parent mount.
685 */
686bool __is_local_mountpoint(struct dentry *dentry)
687{
688 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 struct mount *mnt;
690 bool is_covered = false;
691
692 if (!d_mountpoint(dentry))
693 goto out;
694
695 down_read(&namespace_sem);
696 list_for_each_entry(mnt, &ns->list, mnt_list) {
697 is_covered = (mnt->mnt_mountpoint == dentry);
698 if (is_covered)
699 break;
700 }
701 up_read(&namespace_sem);
702out:
703 return is_covered;
704}
705
e2dfa935 706static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 707{
0818bf27 708 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
709 struct mountpoint *mp;
710
0818bf27 711 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
712 if (mp->m_dentry == dentry) {
713 /* might be worth a WARN_ON() */
714 if (d_unlinked(dentry))
715 return ERR_PTR(-ENOENT);
716 mp->m_count++;
717 return mp;
718 }
719 }
e2dfa935
EB
720 return NULL;
721}
722
723static struct mountpoint *new_mountpoint(struct dentry *dentry)
724{
725 struct hlist_head *chain = mp_hash(dentry);
726 struct mountpoint *mp;
727 int ret;
84d17192
AV
728
729 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
730 if (!mp)
731 return ERR_PTR(-ENOMEM);
732
eed81007
MS
733 ret = d_set_mounted(dentry);
734 if (ret) {
84d17192 735 kfree(mp);
eed81007 736 return ERR_PTR(ret);
84d17192 737 }
eed81007 738
84d17192
AV
739 mp->m_dentry = dentry;
740 mp->m_count = 1;
0818bf27 741 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 742 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
743 return mp;
744}
745
746static void put_mountpoint(struct mountpoint *mp)
747{
748 if (!--mp->m_count) {
749 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 750 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
751 spin_lock(&dentry->d_lock);
752 dentry->d_flags &= ~DCACHE_MOUNTED;
753 spin_unlock(&dentry->d_lock);
0818bf27 754 hlist_del(&mp->m_hash);
84d17192
AV
755 kfree(mp);
756 }
757}
758
143c8c91 759static inline int check_mnt(struct mount *mnt)
1da177e4 760{
6b3286ed 761 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
762}
763
99b7db7b
NP
764/*
765 * vfsmount lock must be held for write
766 */
6b3286ed 767static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
768{
769 if (ns) {
770 ns->event = ++event;
771 wake_up_interruptible(&ns->poll);
772 }
773}
774
99b7db7b
NP
775/*
776 * vfsmount lock must be held for write
777 */
6b3286ed 778static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
779{
780 if (ns && ns->event != event) {
781 ns->event = event;
782 wake_up_interruptible(&ns->poll);
783 }
784}
785
99b7db7b
NP
786/*
787 * vfsmount lock must be held for write
788 */
419148da
AV
789static void detach_mnt(struct mount *mnt, struct path *old_path)
790{
a73324da 791 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
792 old_path->mnt = &mnt->mnt_parent->mnt;
793 mnt->mnt_parent = mnt;
a73324da 794 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 795 list_del_init(&mnt->mnt_child);
38129a13 796 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 797 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
798 put_mountpoint(mnt->mnt_mp);
799 mnt->mnt_mp = NULL;
1da177e4
LT
800}
801
99b7db7b
NP
802/*
803 * vfsmount lock must be held for write
804 */
84d17192
AV
805void mnt_set_mountpoint(struct mount *mnt,
806 struct mountpoint *mp,
44d964d6 807 struct mount *child_mnt)
b90fa9ae 808{
84d17192 809 mp->m_count++;
3a2393d7 810 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 811 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 812 child_mnt->mnt_parent = mnt;
84d17192 813 child_mnt->mnt_mp = mp;
0a5eb7c8 814 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
815}
816
99b7db7b
NP
817/*
818 * vfsmount lock must be held for write
819 */
84d17192
AV
820static void attach_mnt(struct mount *mnt,
821 struct mount *parent,
822 struct mountpoint *mp)
1da177e4 823{
84d17192 824 mnt_set_mountpoint(parent, mp, mnt);
38129a13 825 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 826 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
827}
828
12a5b529
AV
829static void attach_shadowed(struct mount *mnt,
830 struct mount *parent,
831 struct mount *shadows)
832{
833 if (shadows) {
f6f99332 834 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
835 list_add(&mnt->mnt_child, &shadows->mnt_child);
836 } else {
837 hlist_add_head_rcu(&mnt->mnt_hash,
838 m_hash(&parent->mnt, mnt->mnt_mountpoint));
839 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
840 }
841}
842
b90fa9ae 843/*
99b7db7b 844 * vfsmount lock must be held for write
b90fa9ae 845 */
1d6a32ac 846static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 847{
0714a533 848 struct mount *parent = mnt->mnt_parent;
83adc753 849 struct mount *m;
b90fa9ae 850 LIST_HEAD(head);
143c8c91 851 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 852
0714a533 853 BUG_ON(parent == mnt);
b90fa9ae 854
1a4eeaf2 855 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 856 list_for_each_entry(m, &head, mnt_list)
143c8c91 857 m->mnt_ns = n;
f03c6599 858
b90fa9ae
RP
859 list_splice(&head, n->list.prev);
860
12a5b529 861 attach_shadowed(mnt, parent, shadows);
6b3286ed 862 touch_mnt_namespace(n);
1da177e4
LT
863}
864
909b0a88 865static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 866{
6b41d536
AV
867 struct list_head *next = p->mnt_mounts.next;
868 if (next == &p->mnt_mounts) {
1da177e4 869 while (1) {
909b0a88 870 if (p == root)
1da177e4 871 return NULL;
6b41d536
AV
872 next = p->mnt_child.next;
873 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 874 break;
0714a533 875 p = p->mnt_parent;
1da177e4
LT
876 }
877 }
6b41d536 878 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
879}
880
315fc83e 881static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 882{
6b41d536
AV
883 struct list_head *prev = p->mnt_mounts.prev;
884 while (prev != &p->mnt_mounts) {
885 p = list_entry(prev, struct mount, mnt_child);
886 prev = p->mnt_mounts.prev;
9676f0c6
RP
887 }
888 return p;
889}
890
9d412a43
AV
891struct vfsmount *
892vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
893{
b105e270 894 struct mount *mnt;
9d412a43
AV
895 struct dentry *root;
896
897 if (!type)
898 return ERR_PTR(-ENODEV);
899
900 mnt = alloc_vfsmnt(name);
901 if (!mnt)
902 return ERR_PTR(-ENOMEM);
903
904 if (flags & MS_KERNMOUNT)
b105e270 905 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
906
907 root = mount_fs(type, flags, name, data);
908 if (IS_ERR(root)) {
8ffcb32e 909 mnt_free_id(mnt);
9d412a43
AV
910 free_vfsmnt(mnt);
911 return ERR_CAST(root);
912 }
913
b105e270
AV
914 mnt->mnt.mnt_root = root;
915 mnt->mnt.mnt_sb = root->d_sb;
a73324da 916 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 917 mnt->mnt_parent = mnt;
719ea2fb 918 lock_mount_hash();
39f7c4db 919 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 920 unlock_mount_hash();
b105e270 921 return &mnt->mnt;
9d412a43
AV
922}
923EXPORT_SYMBOL_GPL(vfs_kern_mount);
924
87129cc0 925static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 926 int flag)
1da177e4 927{
87129cc0 928 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
929 struct mount *mnt;
930 int err;
1da177e4 931
be34d1a3
DH
932 mnt = alloc_vfsmnt(old->mnt_devname);
933 if (!mnt)
934 return ERR_PTR(-ENOMEM);
719f5d7f 935
7a472ef4 936 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
937 mnt->mnt_group_id = 0; /* not a peer of original */
938 else
939 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 940
be34d1a3
DH
941 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
942 err = mnt_alloc_group_id(mnt);
943 if (err)
944 goto out_free;
1da177e4 945 }
be34d1a3 946
f2ebb3a9 947 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 948 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
949 if (flag & CL_UNPRIVILEGED) {
950 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
951
952 if (mnt->mnt.mnt_flags & MNT_READONLY)
953 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
954
955 if (mnt->mnt.mnt_flags & MNT_NODEV)
956 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
957
958 if (mnt->mnt.mnt_flags & MNT_NOSUID)
959 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
960
961 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
962 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
963 }
132c94e3 964
5ff9d8a6 965 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
966 if ((flag & CL_UNPRIVILEGED) &&
967 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
968 mnt->mnt.mnt_flags |= MNT_LOCKED;
969
be34d1a3
DH
970 atomic_inc(&sb->s_active);
971 mnt->mnt.mnt_sb = sb;
972 mnt->mnt.mnt_root = dget(root);
973 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
974 mnt->mnt_parent = mnt;
719ea2fb 975 lock_mount_hash();
be34d1a3 976 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 977 unlock_mount_hash();
be34d1a3 978
7a472ef4
EB
979 if ((flag & CL_SLAVE) ||
980 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
981 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
982 mnt->mnt_master = old;
983 CLEAR_MNT_SHARED(mnt);
984 } else if (!(flag & CL_PRIVATE)) {
985 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
986 list_add(&mnt->mnt_share, &old->mnt_share);
987 if (IS_MNT_SLAVE(old))
988 list_add(&mnt->mnt_slave, &old->mnt_slave);
989 mnt->mnt_master = old->mnt_master;
990 }
991 if (flag & CL_MAKE_SHARED)
992 set_mnt_shared(mnt);
993
994 /* stick the duplicate mount on the same expiry list
995 * as the original if that was on one */
996 if (flag & CL_EXPIRE) {
997 if (!list_empty(&old->mnt_expire))
998 list_add(&mnt->mnt_expire, &old->mnt_expire);
999 }
1000
cb338d06 1001 return mnt;
719f5d7f
MS
1002
1003 out_free:
8ffcb32e 1004 mnt_free_id(mnt);
719f5d7f 1005 free_vfsmnt(mnt);
be34d1a3 1006 return ERR_PTR(err);
1da177e4
LT
1007}
1008
9ea459e1
AV
1009static void cleanup_mnt(struct mount *mnt)
1010{
1011 /*
1012 * This probably indicates that somebody messed
1013 * up a mnt_want/drop_write() pair. If this
1014 * happens, the filesystem was probably unable
1015 * to make r/w->r/o transitions.
1016 */
1017 /*
1018 * The locking used to deal with mnt_count decrement provides barriers,
1019 * so mnt_get_writers() below is safe.
1020 */
1021 WARN_ON(mnt_get_writers(mnt));
1022 if (unlikely(mnt->mnt_pins.first))
1023 mnt_pin_kill(mnt);
1024 fsnotify_vfsmount_delete(&mnt->mnt);
1025 dput(mnt->mnt.mnt_root);
1026 deactivate_super(mnt->mnt.mnt_sb);
1027 mnt_free_id(mnt);
1028 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1029}
1030
1031static void __cleanup_mnt(struct rcu_head *head)
1032{
1033 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1034}
1035
1036static LLIST_HEAD(delayed_mntput_list);
1037static void delayed_mntput(struct work_struct *unused)
1038{
1039 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1040 struct llist_node *next;
1041
1042 for (; node; node = next) {
1043 next = llist_next(node);
1044 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1045 }
1046}
1047static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1048
900148dc 1049static void mntput_no_expire(struct mount *mnt)
b3e19d92 1050{
48a066e7
AV
1051 rcu_read_lock();
1052 mnt_add_count(mnt, -1);
1053 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1054 rcu_read_unlock();
f03c6599 1055 return;
b3e19d92 1056 }
719ea2fb 1057 lock_mount_hash();
b3e19d92 1058 if (mnt_get_count(mnt)) {
48a066e7 1059 rcu_read_unlock();
719ea2fb 1060 unlock_mount_hash();
99b7db7b
NP
1061 return;
1062 }
48a066e7
AV
1063 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1064 rcu_read_unlock();
1065 unlock_mount_hash();
1066 return;
1067 }
1068 mnt->mnt.mnt_flags |= MNT_DOOMED;
1069 rcu_read_unlock();
962830df 1070
39f7c4db 1071 list_del(&mnt->mnt_instance);
719ea2fb 1072 unlock_mount_hash();
649a795a 1073
9ea459e1
AV
1074 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1075 struct task_struct *task = current;
1076 if (likely(!(task->flags & PF_KTHREAD))) {
1077 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1078 if (!task_work_add(task, &mnt->mnt_rcu, true))
1079 return;
1080 }
1081 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1082 schedule_delayed_work(&delayed_mntput_work, 1);
1083 return;
1084 }
1085 cleanup_mnt(mnt);
b3e19d92 1086}
b3e19d92
NP
1087
1088void mntput(struct vfsmount *mnt)
1089{
1090 if (mnt) {
863d684f 1091 struct mount *m = real_mount(mnt);
b3e19d92 1092 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1093 if (unlikely(m->mnt_expiry_mark))
1094 m->mnt_expiry_mark = 0;
1095 mntput_no_expire(m);
b3e19d92
NP
1096 }
1097}
1098EXPORT_SYMBOL(mntput);
1099
1100struct vfsmount *mntget(struct vfsmount *mnt)
1101{
1102 if (mnt)
83adc753 1103 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1104 return mnt;
1105}
1106EXPORT_SYMBOL(mntget);
1107
3064c356 1108struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1109{
3064c356
AV
1110 struct mount *p;
1111 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1112 if (IS_ERR(p))
1113 return ERR_CAST(p);
1114 p->mnt.mnt_flags |= MNT_INTERNAL;
1115 return &p->mnt;
7b7b1ace 1116}
1da177e4 1117
b3b304a2
MS
1118static inline void mangle(struct seq_file *m, const char *s)
1119{
1120 seq_escape(m, s, " \t\n\\");
1121}
1122
1123/*
1124 * Simple .show_options callback for filesystems which don't want to
1125 * implement more complex mount option showing.
1126 *
1127 * See also save_mount_options().
1128 */
34c80b1d 1129int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1130{
2a32cebd
AV
1131 const char *options;
1132
1133 rcu_read_lock();
34c80b1d 1134 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1135
1136 if (options != NULL && options[0]) {
1137 seq_putc(m, ',');
1138 mangle(m, options);
1139 }
2a32cebd 1140 rcu_read_unlock();
b3b304a2
MS
1141
1142 return 0;
1143}
1144EXPORT_SYMBOL(generic_show_options);
1145
1146/*
1147 * If filesystem uses generic_show_options(), this function should be
1148 * called from the fill_super() callback.
1149 *
1150 * The .remount_fs callback usually needs to be handled in a special
1151 * way, to make sure, that previous options are not overwritten if the
1152 * remount fails.
1153 *
1154 * Also note, that if the filesystem's .remount_fs function doesn't
1155 * reset all options to their default value, but changes only newly
1156 * given options, then the displayed options will not reflect reality
1157 * any more.
1158 */
1159void save_mount_options(struct super_block *sb, char *options)
1160{
2a32cebd
AV
1161 BUG_ON(sb->s_options);
1162 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1163}
1164EXPORT_SYMBOL(save_mount_options);
1165
2a32cebd
AV
1166void replace_mount_options(struct super_block *sb, char *options)
1167{
1168 char *old = sb->s_options;
1169 rcu_assign_pointer(sb->s_options, options);
1170 if (old) {
1171 synchronize_rcu();
1172 kfree(old);
1173 }
1174}
1175EXPORT_SYMBOL(replace_mount_options);
1176
a1a2c409 1177#ifdef CONFIG_PROC_FS
0226f492 1178/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1179static void *m_start(struct seq_file *m, loff_t *pos)
1180{
6ce6e24e 1181 struct proc_mounts *p = proc_mounts(m);
1da177e4 1182
390c6843 1183 down_read(&namespace_sem);
c7999c36
AV
1184 if (p->cached_event == p->ns->event) {
1185 void *v = p->cached_mount;
1186 if (*pos == p->cached_index)
1187 return v;
1188 if (*pos == p->cached_index + 1) {
1189 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1190 return p->cached_mount = v;
1191 }
1192 }
1193
1194 p->cached_event = p->ns->event;
1195 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1196 p->cached_index = *pos;
1197 return p->cached_mount;
1da177e4
LT
1198}
1199
1200static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1201{
6ce6e24e 1202 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1203
c7999c36
AV
1204 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1205 p->cached_index = *pos;
1206 return p->cached_mount;
1da177e4
LT
1207}
1208
1209static void m_stop(struct seq_file *m, void *v)
1210{
390c6843 1211 up_read(&namespace_sem);
1da177e4
LT
1212}
1213
0226f492 1214static int m_show(struct seq_file *m, void *v)
2d4d4864 1215{
6ce6e24e 1216 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1217 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1218 return p->show(m, &r->mnt);
1da177e4
LT
1219}
1220
a1a2c409 1221const struct seq_operations mounts_op = {
1da177e4
LT
1222 .start = m_start,
1223 .next = m_next,
1224 .stop = m_stop,
0226f492 1225 .show = m_show,
b4629fe2 1226};
a1a2c409 1227#endif /* CONFIG_PROC_FS */
b4629fe2 1228
1da177e4
LT
1229/**
1230 * may_umount_tree - check if a mount tree is busy
1231 * @mnt: root of mount tree
1232 *
1233 * This is called to check if a tree of mounts has any
1234 * open files, pwds, chroots or sub mounts that are
1235 * busy.
1236 */
909b0a88 1237int may_umount_tree(struct vfsmount *m)
1da177e4 1238{
909b0a88 1239 struct mount *mnt = real_mount(m);
36341f64
RP
1240 int actual_refs = 0;
1241 int minimum_refs = 0;
315fc83e 1242 struct mount *p;
909b0a88 1243 BUG_ON(!m);
1da177e4 1244
b3e19d92 1245 /* write lock needed for mnt_get_count */
719ea2fb 1246 lock_mount_hash();
909b0a88 1247 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1248 actual_refs += mnt_get_count(p);
1da177e4 1249 minimum_refs += 2;
1da177e4 1250 }
719ea2fb 1251 unlock_mount_hash();
1da177e4
LT
1252
1253 if (actual_refs > minimum_refs)
e3474a8e 1254 return 0;
1da177e4 1255
e3474a8e 1256 return 1;
1da177e4
LT
1257}
1258
1259EXPORT_SYMBOL(may_umount_tree);
1260
1261/**
1262 * may_umount - check if a mount point is busy
1263 * @mnt: root of mount
1264 *
1265 * This is called to check if a mount point has any
1266 * open files, pwds, chroots or sub mounts. If the
1267 * mount has sub mounts this will return busy
1268 * regardless of whether the sub mounts are busy.
1269 *
1270 * Doesn't take quota and stuff into account. IOW, in some cases it will
1271 * give false negatives. The main reason why it's here is that we need
1272 * a non-destructive way to look for easily umountable filesystems.
1273 */
1274int may_umount(struct vfsmount *mnt)
1275{
e3474a8e 1276 int ret = 1;
8ad08d8a 1277 down_read(&namespace_sem);
719ea2fb 1278 lock_mount_hash();
1ab59738 1279 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1280 ret = 0;
719ea2fb 1281 unlock_mount_hash();
8ad08d8a 1282 up_read(&namespace_sem);
a05964f3 1283 return ret;
1da177e4
LT
1284}
1285
1286EXPORT_SYMBOL(may_umount);
1287
38129a13 1288static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1289
97216be0 1290static void namespace_unlock(void)
70fbcdf4 1291{
d5e50f74 1292 struct mount *mnt;
38129a13 1293 struct hlist_head head = unmounted;
97216be0 1294
38129a13 1295 if (likely(hlist_empty(&head))) {
97216be0
AV
1296 up_write(&namespace_sem);
1297 return;
1298 }
1299
38129a13
AV
1300 head.first->pprev = &head.first;
1301 INIT_HLIST_HEAD(&unmounted);
1302
81b6b061
AV
1303 /* undo decrements we'd done in umount_tree() */
1304 hlist_for_each_entry(mnt, &head, mnt_hash)
1305 if (mnt->mnt_ex_mountpoint.mnt)
1306 mntget(mnt->mnt_ex_mountpoint.mnt);
1307
97216be0
AV
1308 up_write(&namespace_sem);
1309
48a066e7
AV
1310 synchronize_rcu();
1311
38129a13
AV
1312 while (!hlist_empty(&head)) {
1313 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1314 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1315 if (mnt->mnt_ex_mountpoint.mnt)
1316 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1317 mntput(&mnt->mnt);
70fbcdf4
RP
1318 }
1319}
1320
97216be0 1321static inline void namespace_lock(void)
e3197d83 1322{
97216be0 1323 down_write(&namespace_sem);
e3197d83
AV
1324}
1325
99b7db7b 1326/*
48a066e7 1327 * mount_lock must be held
99b7db7b 1328 * namespace_sem must be held for write
48a066e7
AV
1329 * how = 0 => just this tree, don't propagate
1330 * how = 1 => propagate; we know that nobody else has reference to any victims
1331 * how = 2 => lazy umount
99b7db7b 1332 */
48a066e7 1333void umount_tree(struct mount *mnt, int how)
1da177e4 1334{
38129a13 1335 HLIST_HEAD(tmp_list);
315fc83e 1336 struct mount *p;
38129a13 1337 struct mount *last = NULL;
1da177e4 1338
38129a13
AV
1339 for (p = mnt; p; p = next_mnt(p, mnt)) {
1340 hlist_del_init_rcu(&p->mnt_hash);
1341 hlist_add_head(&p->mnt_hash, &tmp_list);
1342 }
1da177e4 1343
88b368f2
AV
1344 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1345 list_del_init(&p->mnt_child);
1346
48a066e7 1347 if (how)
7b8a53fd 1348 propagate_umount(&tmp_list);
a05964f3 1349
38129a13 1350 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1351 list_del_init(&p->mnt_expire);
1a4eeaf2 1352 list_del_init(&p->mnt_list);
143c8c91
AV
1353 __touch_mnt_namespace(p->mnt_ns);
1354 p->mnt_ns = NULL;
48a066e7
AV
1355 if (how < 2)
1356 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
676da58d 1357 if (mnt_has_parent(p)) {
0a5eb7c8 1358 hlist_del_init(&p->mnt_mp_list);
84d17192 1359 put_mountpoint(p->mnt_mp);
81b6b061 1360 mnt_add_count(p->mnt_parent, -1);
aba809cf
AV
1361 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1362 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1363 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1364 p->mnt_mountpoint = p->mnt.mnt_root;
1365 p->mnt_parent = p;
84d17192 1366 p->mnt_mp = NULL;
7c4b93d8 1367 }
0f0afb1d 1368 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1369 last = p;
1370 }
1371 if (last) {
1372 last->mnt_hash.next = unmounted.first;
c297abfd
EB
1373 if (unmounted.first)
1374 unmounted.first->pprev = &last->mnt_hash.next;
38129a13
AV
1375 unmounted.first = tmp_list.first;
1376 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1377 }
1378}
1379
b54b9be7 1380static void shrink_submounts(struct mount *mnt);
c35038be 1381
1ab59738 1382static int do_umount(struct mount *mnt, int flags)
1da177e4 1383{
1ab59738 1384 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1385 int retval;
1386
1ab59738 1387 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1388 if (retval)
1389 return retval;
1390
1391 /*
1392 * Allow userspace to request a mountpoint be expired rather than
1393 * unmounting unconditionally. Unmount only happens if:
1394 * (1) the mark is already set (the mark is cleared by mntput())
1395 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1396 */
1397 if (flags & MNT_EXPIRE) {
1ab59738 1398 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1399 flags & (MNT_FORCE | MNT_DETACH))
1400 return -EINVAL;
1401
b3e19d92
NP
1402 /*
1403 * probably don't strictly need the lock here if we examined
1404 * all race cases, but it's a slowpath.
1405 */
719ea2fb 1406 lock_mount_hash();
83adc753 1407 if (mnt_get_count(mnt) != 2) {
719ea2fb 1408 unlock_mount_hash();
1da177e4 1409 return -EBUSY;
b3e19d92 1410 }
719ea2fb 1411 unlock_mount_hash();
1da177e4 1412
863d684f 1413 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1414 return -EAGAIN;
1415 }
1416
1417 /*
1418 * If we may have to abort operations to get out of this
1419 * mount, and they will themselves hold resources we must
1420 * allow the fs to do things. In the Unix tradition of
1421 * 'Gee thats tricky lets do it in userspace' the umount_begin
1422 * might fail to complete on the first run through as other tasks
1423 * must return, and the like. Thats for the mount program to worry
1424 * about for the moment.
1425 */
1426
42faad99 1427 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1428 sb->s_op->umount_begin(sb);
42faad99 1429 }
1da177e4
LT
1430
1431 /*
1432 * No sense to grab the lock for this test, but test itself looks
1433 * somewhat bogus. Suggestions for better replacement?
1434 * Ho-hum... In principle, we might treat that as umount + switch
1435 * to rootfs. GC would eventually take care of the old vfsmount.
1436 * Actually it makes sense, especially if rootfs would contain a
1437 * /reboot - static binary that would close all descriptors and
1438 * call reboot(9). Then init(8) could umount root and exec /reboot.
1439 */
1ab59738 1440 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1441 /*
1442 * Special case for "unmounting" root ...
1443 * we just try to remount it readonly.
1444 */
a1480dcc
AL
1445 if (!capable(CAP_SYS_ADMIN))
1446 return -EPERM;
1da177e4 1447 down_write(&sb->s_umount);
4aa98cf7 1448 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1449 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1450 up_write(&sb->s_umount);
1451 return retval;
1452 }
1453
97216be0 1454 namespace_lock();
719ea2fb 1455 lock_mount_hash();
5addc5dd 1456 event++;
1da177e4 1457
48a066e7 1458 if (flags & MNT_DETACH) {
1a4eeaf2 1459 if (!list_empty(&mnt->mnt_list))
48a066e7 1460 umount_tree(mnt, 2);
1da177e4 1461 retval = 0;
48a066e7
AV
1462 } else {
1463 shrink_submounts(mnt);
1464 retval = -EBUSY;
1465 if (!propagate_mount_busy(mnt, 2)) {
1466 if (!list_empty(&mnt->mnt_list))
1467 umount_tree(mnt, 1);
1468 retval = 0;
1469 }
1da177e4 1470 }
719ea2fb 1471 unlock_mount_hash();
e3197d83 1472 namespace_unlock();
1da177e4
LT
1473 return retval;
1474}
1475
80b5dce8
EB
1476/*
1477 * __detach_mounts - lazily unmount all mounts on the specified dentry
1478 *
1479 * During unlink, rmdir, and d_drop it is possible to loose the path
1480 * to an existing mountpoint, and wind up leaking the mount.
1481 * detach_mounts allows lazily unmounting those mounts instead of
1482 * leaking them.
1483 *
1484 * The caller may hold dentry->d_inode->i_mutex.
1485 */
1486void __detach_mounts(struct dentry *dentry)
1487{
1488 struct mountpoint *mp;
1489 struct mount *mnt;
1490
1491 namespace_lock();
1492 mp = lookup_mountpoint(dentry);
1493 if (!mp)
1494 goto out_unlock;
1495
1496 lock_mount_hash();
1497 while (!hlist_empty(&mp->m_list)) {
1498 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1499 umount_tree(mnt, 2);
1500 }
1501 unlock_mount_hash();
1502 put_mountpoint(mp);
1503out_unlock:
1504 namespace_unlock();
1505}
1506
9b40bc90
AV
1507/*
1508 * Is the caller allowed to modify his namespace?
1509 */
1510static inline bool may_mount(void)
1511{
1512 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1513}
1514
1da177e4
LT
1515/*
1516 * Now umount can handle mount points as well as block devices.
1517 * This is important for filesystems which use unnamed block devices.
1518 *
1519 * We now support a flag for forced unmount like the other 'big iron'
1520 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1521 */
1522
bdc480e3 1523SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1524{
2d8f3038 1525 struct path path;
900148dc 1526 struct mount *mnt;
1da177e4 1527 int retval;
db1f05bb 1528 int lookup_flags = 0;
1da177e4 1529
db1f05bb
MS
1530 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1531 return -EINVAL;
1532
9b40bc90
AV
1533 if (!may_mount())
1534 return -EPERM;
1535
db1f05bb
MS
1536 if (!(flags & UMOUNT_NOFOLLOW))
1537 lookup_flags |= LOOKUP_FOLLOW;
1538
197df04c 1539 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1540 if (retval)
1541 goto out;
900148dc 1542 mnt = real_mount(path.mnt);
1da177e4 1543 retval = -EINVAL;
2d8f3038 1544 if (path.dentry != path.mnt->mnt_root)
1da177e4 1545 goto dput_and_out;
143c8c91 1546 if (!check_mnt(mnt))
1da177e4 1547 goto dput_and_out;
5ff9d8a6
EB
1548 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1549 goto dput_and_out;
b2f5d4dc
EB
1550 retval = -EPERM;
1551 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1552 goto dput_and_out;
1da177e4 1553
900148dc 1554 retval = do_umount(mnt, flags);
1da177e4 1555dput_and_out:
429731b1 1556 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1557 dput(path.dentry);
900148dc 1558 mntput_no_expire(mnt);
1da177e4
LT
1559out:
1560 return retval;
1561}
1562
1563#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1564
1565/*
b58fed8b 1566 * The 2.0 compatible umount. No flags.
1da177e4 1567 */
bdc480e3 1568SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1569{
b58fed8b 1570 return sys_umount(name, 0);
1da177e4
LT
1571}
1572
1573#endif
1574
4ce5d2b1 1575static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1576{
4ce5d2b1 1577 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1578 return dentry->d_op == &ns_dentry_operations &&
1579 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1580}
1581
58be2825
AV
1582struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1583{
1584 return container_of(ns, struct mnt_namespace, ns);
1585}
1586
4ce5d2b1
EB
1587static bool mnt_ns_loop(struct dentry *dentry)
1588{
1589 /* Could bind mounting the mount namespace inode cause a
1590 * mount namespace loop?
1591 */
1592 struct mnt_namespace *mnt_ns;
1593 if (!is_mnt_ns_file(dentry))
1594 return false;
1595
f77c8014 1596 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1597 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1598}
1599
87129cc0 1600struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1601 int flag)
1da177e4 1602{
84d17192 1603 struct mount *res, *p, *q, *r, *parent;
1da177e4 1604
4ce5d2b1
EB
1605 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1606 return ERR_PTR(-EINVAL);
1607
1608 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1609 return ERR_PTR(-EINVAL);
9676f0c6 1610
36341f64 1611 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1612 if (IS_ERR(q))
1613 return q;
1614
a73324da 1615 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1616
1617 p = mnt;
6b41d536 1618 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1619 struct mount *s;
7ec02ef1 1620 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1621 continue;
1622
909b0a88 1623 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1624 struct mount *t = NULL;
4ce5d2b1
EB
1625 if (!(flag & CL_COPY_UNBINDABLE) &&
1626 IS_MNT_UNBINDABLE(s)) {
1627 s = skip_mnt_tree(s);
1628 continue;
1629 }
1630 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1631 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1632 s = skip_mnt_tree(s);
1633 continue;
1634 }
0714a533
AV
1635 while (p != s->mnt_parent) {
1636 p = p->mnt_parent;
1637 q = q->mnt_parent;
1da177e4 1638 }
87129cc0 1639 p = s;
84d17192 1640 parent = q;
87129cc0 1641 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1642 if (IS_ERR(q))
1643 goto out;
719ea2fb 1644 lock_mount_hash();
1a4eeaf2 1645 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1646 mnt_set_mountpoint(parent, p->mnt_mp, q);
1647 if (!list_empty(&parent->mnt_mounts)) {
1648 t = list_last_entry(&parent->mnt_mounts,
1649 struct mount, mnt_child);
1650 if (t->mnt_mp != p->mnt_mp)
1651 t = NULL;
1652 }
1653 attach_shadowed(q, parent, t);
719ea2fb 1654 unlock_mount_hash();
1da177e4
LT
1655 }
1656 }
1657 return res;
be34d1a3 1658out:
1da177e4 1659 if (res) {
719ea2fb 1660 lock_mount_hash();
328e6d90 1661 umount_tree(res, 0);
719ea2fb 1662 unlock_mount_hash();
1da177e4 1663 }
be34d1a3 1664 return q;
1da177e4
LT
1665}
1666
be34d1a3
DH
1667/* Caller should check returned pointer for errors */
1668
589ff870 1669struct vfsmount *collect_mounts(struct path *path)
8aec0809 1670{
cb338d06 1671 struct mount *tree;
97216be0 1672 namespace_lock();
87129cc0
AV
1673 tree = copy_tree(real_mount(path->mnt), path->dentry,
1674 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1675 namespace_unlock();
be34d1a3 1676 if (IS_ERR(tree))
52e220d3 1677 return ERR_CAST(tree);
be34d1a3 1678 return &tree->mnt;
8aec0809
AV
1679}
1680
1681void drop_collected_mounts(struct vfsmount *mnt)
1682{
97216be0 1683 namespace_lock();
719ea2fb 1684 lock_mount_hash();
328e6d90 1685 umount_tree(real_mount(mnt), 0);
719ea2fb 1686 unlock_mount_hash();
3ab6abee 1687 namespace_unlock();
8aec0809
AV
1688}
1689
c771d683
MS
1690/**
1691 * clone_private_mount - create a private clone of a path
1692 *
1693 * This creates a new vfsmount, which will be the clone of @path. The new will
1694 * not be attached anywhere in the namespace and will be private (i.e. changes
1695 * to the originating mount won't be propagated into this).
1696 *
1697 * Release with mntput().
1698 */
1699struct vfsmount *clone_private_mount(struct path *path)
1700{
1701 struct mount *old_mnt = real_mount(path->mnt);
1702 struct mount *new_mnt;
1703
1704 if (IS_MNT_UNBINDABLE(old_mnt))
1705 return ERR_PTR(-EINVAL);
1706
1707 down_read(&namespace_sem);
1708 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1709 up_read(&namespace_sem);
1710 if (IS_ERR(new_mnt))
1711 return ERR_CAST(new_mnt);
1712
1713 return &new_mnt->mnt;
1714}
1715EXPORT_SYMBOL_GPL(clone_private_mount);
1716
1f707137
AV
1717int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1718 struct vfsmount *root)
1719{
1a4eeaf2 1720 struct mount *mnt;
1f707137
AV
1721 int res = f(root, arg);
1722 if (res)
1723 return res;
1a4eeaf2
AV
1724 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1725 res = f(&mnt->mnt, arg);
1f707137
AV
1726 if (res)
1727 return res;
1728 }
1729 return 0;
1730}
1731
4b8b21f4 1732static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1733{
315fc83e 1734 struct mount *p;
719f5d7f 1735
909b0a88 1736 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1737 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1738 mnt_release_group_id(p);
719f5d7f
MS
1739 }
1740}
1741
4b8b21f4 1742static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1743{
315fc83e 1744 struct mount *p;
719f5d7f 1745
909b0a88 1746 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1747 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1748 int err = mnt_alloc_group_id(p);
719f5d7f 1749 if (err) {
4b8b21f4 1750 cleanup_group_ids(mnt, p);
719f5d7f
MS
1751 return err;
1752 }
1753 }
1754 }
1755
1756 return 0;
1757}
1758
b90fa9ae
RP
1759/*
1760 * @source_mnt : mount tree to be attached
21444403
RP
1761 * @nd : place the mount tree @source_mnt is attached
1762 * @parent_nd : if non-null, detach the source_mnt from its parent and
1763 * store the parent mount and mountpoint dentry.
1764 * (done when source_mnt is moved)
b90fa9ae
RP
1765 *
1766 * NOTE: in the table below explains the semantics when a source mount
1767 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1768 * ---------------------------------------------------------------------------
1769 * | BIND MOUNT OPERATION |
1770 * |**************************************************************************
1771 * | source-->| shared | private | slave | unbindable |
1772 * | dest | | | | |
1773 * | | | | | | |
1774 * | v | | | | |
1775 * |**************************************************************************
1776 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1777 * | | | | | |
1778 * |non-shared| shared (+) | private | slave (*) | invalid |
1779 * ***************************************************************************
b90fa9ae
RP
1780 * A bind operation clones the source mount and mounts the clone on the
1781 * destination mount.
1782 *
1783 * (++) the cloned mount is propagated to all the mounts in the propagation
1784 * tree of the destination mount and the cloned mount is added to
1785 * the peer group of the source mount.
1786 * (+) the cloned mount is created under the destination mount and is marked
1787 * as shared. The cloned mount is added to the peer group of the source
1788 * mount.
5afe0022
RP
1789 * (+++) the mount is propagated to all the mounts in the propagation tree
1790 * of the destination mount and the cloned mount is made slave
1791 * of the same master as that of the source mount. The cloned mount
1792 * is marked as 'shared and slave'.
1793 * (*) the cloned mount is made a slave of the same master as that of the
1794 * source mount.
1795 *
9676f0c6
RP
1796 * ---------------------------------------------------------------------------
1797 * | MOVE MOUNT OPERATION |
1798 * |**************************************************************************
1799 * | source-->| shared | private | slave | unbindable |
1800 * | dest | | | | |
1801 * | | | | | | |
1802 * | v | | | | |
1803 * |**************************************************************************
1804 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1805 * | | | | | |
1806 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1807 * ***************************************************************************
5afe0022
RP
1808 *
1809 * (+) the mount is moved to the destination. And is then propagated to
1810 * all the mounts in the propagation tree of the destination mount.
21444403 1811 * (+*) the mount is moved to the destination.
5afe0022
RP
1812 * (+++) the mount is moved to the destination and is then propagated to
1813 * all the mounts belonging to the destination mount's propagation tree.
1814 * the mount is marked as 'shared and slave'.
1815 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1816 *
1817 * if the source mount is a tree, the operations explained above is
1818 * applied to each mount in the tree.
1819 * Must be called without spinlocks held, since this function can sleep
1820 * in allocations.
1821 */
0fb54e50 1822static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1823 struct mount *dest_mnt,
1824 struct mountpoint *dest_mp,
1825 struct path *parent_path)
b90fa9ae 1826{
38129a13 1827 HLIST_HEAD(tree_list);
315fc83e 1828 struct mount *child, *p;
38129a13 1829 struct hlist_node *n;
719f5d7f 1830 int err;
b90fa9ae 1831
fc7be130 1832 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1833 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1834 if (err)
1835 goto out;
0b1b901b 1836 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1837 lock_mount_hash();
0b1b901b
AV
1838 if (err)
1839 goto out_cleanup_ids;
909b0a88 1840 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1841 set_mnt_shared(p);
0b1b901b
AV
1842 } else {
1843 lock_mount_hash();
b90fa9ae 1844 }
1a390689 1845 if (parent_path) {
0fb54e50 1846 detach_mnt(source_mnt, parent_path);
84d17192 1847 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1848 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1849 } else {
84d17192 1850 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1851 commit_tree(source_mnt, NULL);
21444403 1852 }
b90fa9ae 1853
38129a13 1854 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1855 struct mount *q;
38129a13 1856 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1857 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1858 child->mnt_mountpoint);
1859 commit_tree(child, q);
b90fa9ae 1860 }
719ea2fb 1861 unlock_mount_hash();
99b7db7b 1862
b90fa9ae 1863 return 0;
719f5d7f
MS
1864
1865 out_cleanup_ids:
f2ebb3a9
AV
1866 while (!hlist_empty(&tree_list)) {
1867 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1868 umount_tree(child, 0);
1869 }
1870 unlock_mount_hash();
0b1b901b 1871 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1872 out:
1873 return err;
b90fa9ae
RP
1874}
1875
84d17192 1876static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1877{
1878 struct vfsmount *mnt;
84d17192 1879 struct dentry *dentry = path->dentry;
b12cea91 1880retry:
84d17192
AV
1881 mutex_lock(&dentry->d_inode->i_mutex);
1882 if (unlikely(cant_mount(dentry))) {
1883 mutex_unlock(&dentry->d_inode->i_mutex);
1884 return ERR_PTR(-ENOENT);
b12cea91 1885 }
97216be0 1886 namespace_lock();
b12cea91 1887 mnt = lookup_mnt(path);
84d17192 1888 if (likely(!mnt)) {
e2dfa935
EB
1889 struct mountpoint *mp = lookup_mountpoint(dentry);
1890 if (!mp)
1891 mp = new_mountpoint(dentry);
84d17192 1892 if (IS_ERR(mp)) {
97216be0 1893 namespace_unlock();
84d17192
AV
1894 mutex_unlock(&dentry->d_inode->i_mutex);
1895 return mp;
1896 }
1897 return mp;
1898 }
97216be0 1899 namespace_unlock();
b12cea91
AV
1900 mutex_unlock(&path->dentry->d_inode->i_mutex);
1901 path_put(path);
1902 path->mnt = mnt;
84d17192 1903 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1904 goto retry;
1905}
1906
84d17192 1907static void unlock_mount(struct mountpoint *where)
b12cea91 1908{
84d17192
AV
1909 struct dentry *dentry = where->m_dentry;
1910 put_mountpoint(where);
328e6d90 1911 namespace_unlock();
84d17192 1912 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1913}
1914
84d17192 1915static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1916{
95bc5f25 1917 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1918 return -EINVAL;
1919
84d17192 1920 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1921 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1922 return -ENOTDIR;
1923
84d17192 1924 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1925}
1926
7a2e8a8f
VA
1927/*
1928 * Sanity check the flags to change_mnt_propagation.
1929 */
1930
1931static int flags_to_propagation_type(int flags)
1932{
7c6e984d 1933 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1934
1935 /* Fail if any non-propagation flags are set */
1936 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1937 return 0;
1938 /* Only one propagation flag should be set */
1939 if (!is_power_of_2(type))
1940 return 0;
1941 return type;
1942}
1943
07b20889
RP
1944/*
1945 * recursively change the type of the mountpoint.
1946 */
0a0d8a46 1947static int do_change_type(struct path *path, int flag)
07b20889 1948{
315fc83e 1949 struct mount *m;
4b8b21f4 1950 struct mount *mnt = real_mount(path->mnt);
07b20889 1951 int recurse = flag & MS_REC;
7a2e8a8f 1952 int type;
719f5d7f 1953 int err = 0;
07b20889 1954
2d92ab3c 1955 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1956 return -EINVAL;
1957
7a2e8a8f
VA
1958 type = flags_to_propagation_type(flag);
1959 if (!type)
1960 return -EINVAL;
1961
97216be0 1962 namespace_lock();
719f5d7f
MS
1963 if (type == MS_SHARED) {
1964 err = invent_group_ids(mnt, recurse);
1965 if (err)
1966 goto out_unlock;
1967 }
1968
719ea2fb 1969 lock_mount_hash();
909b0a88 1970 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1971 change_mnt_propagation(m, type);
719ea2fb 1972 unlock_mount_hash();
719f5d7f
MS
1973
1974 out_unlock:
97216be0 1975 namespace_unlock();
719f5d7f 1976 return err;
07b20889
RP
1977}
1978
5ff9d8a6
EB
1979static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1980{
1981 struct mount *child;
1982 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1983 if (!is_subdir(child->mnt_mountpoint, dentry))
1984 continue;
1985
1986 if (child->mnt.mnt_flags & MNT_LOCKED)
1987 return true;
1988 }
1989 return false;
1990}
1991
1da177e4
LT
1992/*
1993 * do loopback mount.
1994 */
808d4e3c 1995static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1996 int recurse)
1da177e4 1997{
2d92ab3c 1998 struct path old_path;
84d17192
AV
1999 struct mount *mnt = NULL, *old, *parent;
2000 struct mountpoint *mp;
57eccb83 2001 int err;
1da177e4
LT
2002 if (!old_name || !*old_name)
2003 return -EINVAL;
815d405c 2004 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2005 if (err)
2006 return err;
2007
8823c079 2008 err = -EINVAL;
4ce5d2b1 2009 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2010 goto out;
2011
84d17192
AV
2012 mp = lock_mount(path);
2013 err = PTR_ERR(mp);
2014 if (IS_ERR(mp))
b12cea91
AV
2015 goto out;
2016
87129cc0 2017 old = real_mount(old_path.mnt);
84d17192 2018 parent = real_mount(path->mnt);
87129cc0 2019
1da177e4 2020 err = -EINVAL;
fc7be130 2021 if (IS_MNT_UNBINDABLE(old))
b12cea91 2022 goto out2;
9676f0c6 2023
e149ed2b
AV
2024 if (!check_mnt(parent))
2025 goto out2;
2026
2027 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2028 goto out2;
1da177e4 2029
5ff9d8a6
EB
2030 if (!recurse && has_locked_children(old, old_path.dentry))
2031 goto out2;
2032
ccd48bc7 2033 if (recurse)
4ce5d2b1 2034 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2035 else
87129cc0 2036 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2037
be34d1a3
DH
2038 if (IS_ERR(mnt)) {
2039 err = PTR_ERR(mnt);
e9c5d8a5 2040 goto out2;
be34d1a3 2041 }
ccd48bc7 2042
5ff9d8a6
EB
2043 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2044
84d17192 2045 err = graft_tree(mnt, parent, mp);
ccd48bc7 2046 if (err) {
719ea2fb 2047 lock_mount_hash();
328e6d90 2048 umount_tree(mnt, 0);
719ea2fb 2049 unlock_mount_hash();
5b83d2c5 2050 }
b12cea91 2051out2:
84d17192 2052 unlock_mount(mp);
ccd48bc7 2053out:
2d92ab3c 2054 path_put(&old_path);
1da177e4
LT
2055 return err;
2056}
2057
2e4b7fcd
DH
2058static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2059{
2060 int error = 0;
2061 int readonly_request = 0;
2062
2063 if (ms_flags & MS_RDONLY)
2064 readonly_request = 1;
2065 if (readonly_request == __mnt_is_readonly(mnt))
2066 return 0;
2067
2068 if (readonly_request)
83adc753 2069 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2070 else
83adc753 2071 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2072 return error;
2073}
2074
1da177e4
LT
2075/*
2076 * change filesystem flags. dir should be a physical root of filesystem.
2077 * If you've mounted a non-root directory somewhere and want to do remount
2078 * on it - tough luck.
2079 */
0a0d8a46 2080static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2081 void *data)
2082{
2083 int err;
2d92ab3c 2084 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2085 struct mount *mnt = real_mount(path->mnt);
1da177e4 2086
143c8c91 2087 if (!check_mnt(mnt))
1da177e4
LT
2088 return -EINVAL;
2089
2d92ab3c 2090 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2091 return -EINVAL;
2092
07b64558
EB
2093 /* Don't allow changing of locked mnt flags.
2094 *
2095 * No locks need to be held here while testing the various
2096 * MNT_LOCK flags because those flags can never be cleared
2097 * once they are set.
2098 */
2099 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2100 !(mnt_flags & MNT_READONLY)) {
2101 return -EPERM;
2102 }
9566d674
EB
2103 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2104 !(mnt_flags & MNT_NODEV)) {
3e186641
EB
2105 /* Was the nodev implicitly added in mount? */
2106 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2107 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2108 mnt_flags |= MNT_NODEV;
2109 } else {
2110 return -EPERM;
2111 }
9566d674
EB
2112 }
2113 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2114 !(mnt_flags & MNT_NOSUID)) {
2115 return -EPERM;
2116 }
2117 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2118 !(mnt_flags & MNT_NOEXEC)) {
2119 return -EPERM;
2120 }
2121 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2122 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2123 return -EPERM;
2124 }
2125
ff36fe2c
EP
2126 err = security_sb_remount(sb, data);
2127 if (err)
2128 return err;
2129
1da177e4 2130 down_write(&sb->s_umount);
2e4b7fcd 2131 if (flags & MS_BIND)
2d92ab3c 2132 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2133 else if (!capable(CAP_SYS_ADMIN))
2134 err = -EPERM;
4aa98cf7 2135 else
2e4b7fcd 2136 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2137 if (!err) {
719ea2fb 2138 lock_mount_hash();
a6138db8 2139 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2140 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2141 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2142 unlock_mount_hash();
0e55a7cc 2143 }
6339dab8 2144 up_write(&sb->s_umount);
1da177e4
LT
2145 return err;
2146}
2147
cbbe362c 2148static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2149{
315fc83e 2150 struct mount *p;
909b0a88 2151 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2152 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2153 return 1;
2154 }
2155 return 0;
2156}
2157
808d4e3c 2158static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2159{
2d92ab3c 2160 struct path old_path, parent_path;
676da58d 2161 struct mount *p;
0fb54e50 2162 struct mount *old;
84d17192 2163 struct mountpoint *mp;
57eccb83 2164 int err;
1da177e4
LT
2165 if (!old_name || !*old_name)
2166 return -EINVAL;
2d92ab3c 2167 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2168 if (err)
2169 return err;
2170
84d17192
AV
2171 mp = lock_mount(path);
2172 err = PTR_ERR(mp);
2173 if (IS_ERR(mp))
cc53ce53
DH
2174 goto out;
2175
143c8c91 2176 old = real_mount(old_path.mnt);
fc7be130 2177 p = real_mount(path->mnt);
143c8c91 2178
1da177e4 2179 err = -EINVAL;
fc7be130 2180 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2181 goto out1;
2182
5ff9d8a6
EB
2183 if (old->mnt.mnt_flags & MNT_LOCKED)
2184 goto out1;
2185
1da177e4 2186 err = -EINVAL;
2d92ab3c 2187 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2188 goto out1;
1da177e4 2189
676da58d 2190 if (!mnt_has_parent(old))
21444403 2191 goto out1;
1da177e4 2192
2d92ab3c
AV
2193 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2194 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
2195 goto out1;
2196 /*
2197 * Don't move a mount residing in a shared parent.
2198 */
fc7be130 2199 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2200 goto out1;
9676f0c6
RP
2201 /*
2202 * Don't move a mount tree containing unbindable mounts to a destination
2203 * mount which is shared.
2204 */
fc7be130 2205 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2206 goto out1;
1da177e4 2207 err = -ELOOP;
fc7be130 2208 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2209 if (p == old)
21444403 2210 goto out1;
1da177e4 2211
84d17192 2212 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2213 if (err)
21444403 2214 goto out1;
1da177e4
LT
2215
2216 /* if the mount is moved, it should no longer be expire
2217 * automatically */
6776db3d 2218 list_del_init(&old->mnt_expire);
1da177e4 2219out1:
84d17192 2220 unlock_mount(mp);
1da177e4 2221out:
1da177e4 2222 if (!err)
1a390689 2223 path_put(&parent_path);
2d92ab3c 2224 path_put(&old_path);
1da177e4
LT
2225 return err;
2226}
2227
9d412a43
AV
2228static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2229{
2230 int err;
2231 const char *subtype = strchr(fstype, '.');
2232 if (subtype) {
2233 subtype++;
2234 err = -EINVAL;
2235 if (!subtype[0])
2236 goto err;
2237 } else
2238 subtype = "";
2239
2240 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2241 err = -ENOMEM;
2242 if (!mnt->mnt_sb->s_subtype)
2243 goto err;
2244 return mnt;
2245
2246 err:
2247 mntput(mnt);
2248 return ERR_PTR(err);
2249}
2250
9d412a43
AV
2251/*
2252 * add a mount into a namespace's mount tree
2253 */
95bc5f25 2254static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2255{
84d17192
AV
2256 struct mountpoint *mp;
2257 struct mount *parent;
9d412a43
AV
2258 int err;
2259
f2ebb3a9 2260 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2261
84d17192
AV
2262 mp = lock_mount(path);
2263 if (IS_ERR(mp))
2264 return PTR_ERR(mp);
9d412a43 2265
84d17192 2266 parent = real_mount(path->mnt);
9d412a43 2267 err = -EINVAL;
84d17192 2268 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2269 /* that's acceptable only for automounts done in private ns */
2270 if (!(mnt_flags & MNT_SHRINKABLE))
2271 goto unlock;
2272 /* ... and for those we'd better have mountpoint still alive */
84d17192 2273 if (!parent->mnt_ns)
156cacb1
AV
2274 goto unlock;
2275 }
9d412a43
AV
2276
2277 /* Refuse the same filesystem on the same mount point */
2278 err = -EBUSY;
95bc5f25 2279 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2280 path->mnt->mnt_root == path->dentry)
2281 goto unlock;
2282
2283 err = -EINVAL;
95bc5f25 2284 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2285 goto unlock;
2286
95bc5f25 2287 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2288 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2289
2290unlock:
84d17192 2291 unlock_mount(mp);
9d412a43
AV
2292 return err;
2293}
b1e75df4 2294
1da177e4
LT
2295/*
2296 * create a new mount for userspace and request it to be added into the
2297 * namespace's tree
2298 */
0c55cfc4 2299static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2300 int mnt_flags, const char *name, void *data)
1da177e4 2301{
0c55cfc4 2302 struct file_system_type *type;
9b40bc90 2303 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2304 struct vfsmount *mnt;
15f9a3f3 2305 int err;
1da177e4 2306
0c55cfc4 2307 if (!fstype)
1da177e4
LT
2308 return -EINVAL;
2309
0c55cfc4
EB
2310 type = get_fs_type(fstype);
2311 if (!type)
2312 return -ENODEV;
2313
2314 if (user_ns != &init_user_ns) {
2315 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2316 put_filesystem(type);
2317 return -EPERM;
2318 }
2319 /* Only in special cases allow devices from mounts
2320 * created outside the initial user namespace.
2321 */
2322 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2323 flags |= MS_NODEV;
9566d674 2324 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2325 }
2326 }
2327
2328 mnt = vfs_kern_mount(type, flags, name, data);
2329 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2330 !mnt->mnt_sb->s_subtype)
2331 mnt = fs_set_subtype(mnt, fstype);
2332
2333 put_filesystem(type);
1da177e4
LT
2334 if (IS_ERR(mnt))
2335 return PTR_ERR(mnt);
2336
95bc5f25 2337 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2338 if (err)
2339 mntput(mnt);
2340 return err;
1da177e4
LT
2341}
2342
19a167af
AV
2343int finish_automount(struct vfsmount *m, struct path *path)
2344{
6776db3d 2345 struct mount *mnt = real_mount(m);
19a167af
AV
2346 int err;
2347 /* The new mount record should have at least 2 refs to prevent it being
2348 * expired before we get a chance to add it
2349 */
6776db3d 2350 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2351
2352 if (m->mnt_sb == path->mnt->mnt_sb &&
2353 m->mnt_root == path->dentry) {
b1e75df4
AV
2354 err = -ELOOP;
2355 goto fail;
19a167af
AV
2356 }
2357
95bc5f25 2358 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2359 if (!err)
2360 return 0;
2361fail:
2362 /* remove m from any expiration list it may be on */
6776db3d 2363 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2364 namespace_lock();
6776db3d 2365 list_del_init(&mnt->mnt_expire);
97216be0 2366 namespace_unlock();
19a167af 2367 }
b1e75df4
AV
2368 mntput(m);
2369 mntput(m);
19a167af
AV
2370 return err;
2371}
2372
ea5b778a
DH
2373/**
2374 * mnt_set_expiry - Put a mount on an expiration list
2375 * @mnt: The mount to list.
2376 * @expiry_list: The list to add the mount to.
2377 */
2378void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2379{
97216be0 2380 namespace_lock();
ea5b778a 2381
6776db3d 2382 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2383
97216be0 2384 namespace_unlock();
ea5b778a
DH
2385}
2386EXPORT_SYMBOL(mnt_set_expiry);
2387
1da177e4
LT
2388/*
2389 * process a list of expirable mountpoints with the intent of discarding any
2390 * mountpoints that aren't in use and haven't been touched since last we came
2391 * here
2392 */
2393void mark_mounts_for_expiry(struct list_head *mounts)
2394{
761d5c38 2395 struct mount *mnt, *next;
1da177e4
LT
2396 LIST_HEAD(graveyard);
2397
2398 if (list_empty(mounts))
2399 return;
2400
97216be0 2401 namespace_lock();
719ea2fb 2402 lock_mount_hash();
1da177e4
LT
2403
2404 /* extract from the expiration list every vfsmount that matches the
2405 * following criteria:
2406 * - only referenced by its parent vfsmount
2407 * - still marked for expiry (marked on the last call here; marks are
2408 * cleared by mntput())
2409 */
6776db3d 2410 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2411 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2412 propagate_mount_busy(mnt, 1))
1da177e4 2413 continue;
6776db3d 2414 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2415 }
bcc5c7d2 2416 while (!list_empty(&graveyard)) {
6776db3d 2417 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2418 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2419 umount_tree(mnt, 1);
bcc5c7d2 2420 }
719ea2fb 2421 unlock_mount_hash();
3ab6abee 2422 namespace_unlock();
5528f911
TM
2423}
2424
2425EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2426
2427/*
2428 * Ripoff of 'select_parent()'
2429 *
2430 * search the list of submounts for a given mountpoint, and move any
2431 * shrinkable submounts to the 'graveyard' list.
2432 */
692afc31 2433static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2434{
692afc31 2435 struct mount *this_parent = parent;
5528f911
TM
2436 struct list_head *next;
2437 int found = 0;
2438
2439repeat:
6b41d536 2440 next = this_parent->mnt_mounts.next;
5528f911 2441resume:
6b41d536 2442 while (next != &this_parent->mnt_mounts) {
5528f911 2443 struct list_head *tmp = next;
6b41d536 2444 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2445
2446 next = tmp->next;
692afc31 2447 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2448 continue;
5528f911
TM
2449 /*
2450 * Descend a level if the d_mounts list is non-empty.
2451 */
6b41d536 2452 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2453 this_parent = mnt;
2454 goto repeat;
2455 }
1da177e4 2456
1ab59738 2457 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2458 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2459 found++;
2460 }
1da177e4 2461 }
5528f911
TM
2462 /*
2463 * All done at this level ... ascend and resume the search
2464 */
2465 if (this_parent != parent) {
6b41d536 2466 next = this_parent->mnt_child.next;
0714a533 2467 this_parent = this_parent->mnt_parent;
5528f911
TM
2468 goto resume;
2469 }
2470 return found;
2471}
2472
2473/*
2474 * process a list of expirable mountpoints with the intent of discarding any
2475 * submounts of a specific parent mountpoint
99b7db7b 2476 *
48a066e7 2477 * mount_lock must be held for write
5528f911 2478 */
b54b9be7 2479static void shrink_submounts(struct mount *mnt)
5528f911
TM
2480{
2481 LIST_HEAD(graveyard);
761d5c38 2482 struct mount *m;
5528f911 2483
5528f911 2484 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2485 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2486 while (!list_empty(&graveyard)) {
761d5c38 2487 m = list_first_entry(&graveyard, struct mount,
6776db3d 2488 mnt_expire);
143c8c91 2489 touch_mnt_namespace(m->mnt_ns);
328e6d90 2490 umount_tree(m, 1);
bcc5c7d2
AV
2491 }
2492 }
1da177e4
LT
2493}
2494
1da177e4
LT
2495/*
2496 * Some copy_from_user() implementations do not return the exact number of
2497 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2498 * Note that this function differs from copy_from_user() in that it will oops
2499 * on bad values of `to', rather than returning a short copy.
2500 */
b58fed8b
RP
2501static long exact_copy_from_user(void *to, const void __user * from,
2502 unsigned long n)
1da177e4
LT
2503{
2504 char *t = to;
2505 const char __user *f = from;
2506 char c;
2507
2508 if (!access_ok(VERIFY_READ, from, n))
2509 return n;
2510
2511 while (n) {
2512 if (__get_user(c, f)) {
2513 memset(t, 0, n);
2514 break;
2515 }
2516 *t++ = c;
2517 f++;
2518 n--;
2519 }
2520 return n;
2521}
2522
b58fed8b 2523int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2524{
2525 int i;
2526 unsigned long page;
2527 unsigned long size;
b58fed8b 2528
1da177e4
LT
2529 *where = 0;
2530 if (!data)
2531 return 0;
2532
2533 if (!(page = __get_free_page(GFP_KERNEL)))
2534 return -ENOMEM;
2535
2536 /* We only care that *some* data at the address the user
2537 * gave us is valid. Just in case, we'll zero
2538 * the remainder of the page.
2539 */
2540 /* copy_from_user cannot cross TASK_SIZE ! */
2541 size = TASK_SIZE - (unsigned long)data;
2542 if (size > PAGE_SIZE)
2543 size = PAGE_SIZE;
2544
2545 i = size - exact_copy_from_user((void *)page, data, size);
2546 if (!i) {
b58fed8b 2547 free_page(page);
1da177e4
LT
2548 return -EFAULT;
2549 }
2550 if (i != PAGE_SIZE)
2551 memset((char *)page + i, 0, PAGE_SIZE - i);
2552 *where = page;
2553 return 0;
2554}
2555
b8850d1f 2556char *copy_mount_string(const void __user *data)
eca6f534 2557{
b8850d1f 2558 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2559}
2560
1da177e4
LT
2561/*
2562 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2563 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2564 *
2565 * data is a (void *) that can point to any structure up to
2566 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2567 * information (or be NULL).
2568 *
2569 * Pre-0.97 versions of mount() didn't have a flags word.
2570 * When the flags word was introduced its top half was required
2571 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2572 * Therefore, if this magic number is present, it carries no information
2573 * and must be discarded.
2574 */
5e6123f3 2575long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2576 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2577{
2d92ab3c 2578 struct path path;
1da177e4
LT
2579 int retval = 0;
2580 int mnt_flags = 0;
2581
2582 /* Discard magic */
2583 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2584 flags &= ~MS_MGC_MSK;
2585
2586 /* Basic sanity checks */
1da177e4
LT
2587 if (data_page)
2588 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2589
a27ab9f2 2590 /* ... and get the mountpoint */
5e6123f3 2591 retval = user_path(dir_name, &path);
a27ab9f2
TH
2592 if (retval)
2593 return retval;
2594
2595 retval = security_sb_mount(dev_name, &path,
2596 type_page, flags, data_page);
0d5cadb8
AV
2597 if (!retval && !may_mount())
2598 retval = -EPERM;
a27ab9f2
TH
2599 if (retval)
2600 goto dput_out;
2601
613cbe3d
AK
2602 /* Default to relatime unless overriden */
2603 if (!(flags & MS_NOATIME))
2604 mnt_flags |= MNT_RELATIME;
0a1c01c9 2605
1da177e4
LT
2606 /* Separate the per-mountpoint flags */
2607 if (flags & MS_NOSUID)
2608 mnt_flags |= MNT_NOSUID;
2609 if (flags & MS_NODEV)
2610 mnt_flags |= MNT_NODEV;
2611 if (flags & MS_NOEXEC)
2612 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2613 if (flags & MS_NOATIME)
2614 mnt_flags |= MNT_NOATIME;
2615 if (flags & MS_NODIRATIME)
2616 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2617 if (flags & MS_STRICTATIME)
2618 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2619 if (flags & MS_RDONLY)
2620 mnt_flags |= MNT_READONLY;
fc33a7bb 2621
ffbc6f0e
EB
2622 /* The default atime for remount is preservation */
2623 if ((flags & MS_REMOUNT) &&
2624 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2625 MS_STRICTATIME)) == 0)) {
2626 mnt_flags &= ~MNT_ATIME_MASK;
2627 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2628 }
2629
7a4dec53 2630 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2631 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2632 MS_STRICTATIME);
1da177e4 2633
1da177e4 2634 if (flags & MS_REMOUNT)
2d92ab3c 2635 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2636 data_page);
2637 else if (flags & MS_BIND)
2d92ab3c 2638 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2639 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2640 retval = do_change_type(&path, flags);
1da177e4 2641 else if (flags & MS_MOVE)
2d92ab3c 2642 retval = do_move_mount(&path, dev_name);
1da177e4 2643 else
2d92ab3c 2644 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2645 dev_name, data_page);
2646dput_out:
2d92ab3c 2647 path_put(&path);
1da177e4
LT
2648 return retval;
2649}
2650
771b1371
EB
2651static void free_mnt_ns(struct mnt_namespace *ns)
2652{
6344c433 2653 ns_free_inum(&ns->ns);
771b1371
EB
2654 put_user_ns(ns->user_ns);
2655 kfree(ns);
2656}
2657
8823c079
EB
2658/*
2659 * Assign a sequence number so we can detect when we attempt to bind
2660 * mount a reference to an older mount namespace into the current
2661 * mount namespace, preventing reference counting loops. A 64bit
2662 * number incrementing at 10Ghz will take 12,427 years to wrap which
2663 * is effectively never, so we can ignore the possibility.
2664 */
2665static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2666
771b1371 2667static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2668{
2669 struct mnt_namespace *new_ns;
98f842e6 2670 int ret;
cf8d2c11
TM
2671
2672 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2673 if (!new_ns)
2674 return ERR_PTR(-ENOMEM);
6344c433 2675 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2676 if (ret) {
2677 kfree(new_ns);
2678 return ERR_PTR(ret);
2679 }
33c42940 2680 new_ns->ns.ops = &mntns_operations;
8823c079 2681 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2682 atomic_set(&new_ns->count, 1);
2683 new_ns->root = NULL;
2684 INIT_LIST_HEAD(&new_ns->list);
2685 init_waitqueue_head(&new_ns->poll);
2686 new_ns->event = 0;
771b1371 2687 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2688 return new_ns;
2689}
2690
9559f689
AV
2691struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2692 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2693{
6b3286ed 2694 struct mnt_namespace *new_ns;
7f2da1e7 2695 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2696 struct mount *p, *q;
9559f689 2697 struct mount *old;
cb338d06 2698 struct mount *new;
7a472ef4 2699 int copy_flags;
1da177e4 2700
9559f689
AV
2701 BUG_ON(!ns);
2702
2703 if (likely(!(flags & CLONE_NEWNS))) {
2704 get_mnt_ns(ns);
2705 return ns;
2706 }
2707
2708 old = ns->root;
2709
771b1371 2710 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2711 if (IS_ERR(new_ns))
2712 return new_ns;
1da177e4 2713
97216be0 2714 namespace_lock();
1da177e4 2715 /* First pass: copy the tree topology */
4ce5d2b1 2716 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2717 if (user_ns != ns->user_ns)
132c94e3 2718 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2719 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2720 if (IS_ERR(new)) {
328e6d90 2721 namespace_unlock();
771b1371 2722 free_mnt_ns(new_ns);
be34d1a3 2723 return ERR_CAST(new);
1da177e4 2724 }
be08d6d2 2725 new_ns->root = new;
1a4eeaf2 2726 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2727
2728 /*
2729 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2730 * as belonging to new namespace. We have already acquired a private
2731 * fs_struct, so tsk->fs->lock is not needed.
2732 */
909b0a88 2733 p = old;
cb338d06 2734 q = new;
1da177e4 2735 while (p) {
143c8c91 2736 q->mnt_ns = new_ns;
9559f689
AV
2737 if (new_fs) {
2738 if (&p->mnt == new_fs->root.mnt) {
2739 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2740 rootmnt = &p->mnt;
1da177e4 2741 }
9559f689
AV
2742 if (&p->mnt == new_fs->pwd.mnt) {
2743 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2744 pwdmnt = &p->mnt;
1da177e4 2745 }
1da177e4 2746 }
909b0a88
AV
2747 p = next_mnt(p, old);
2748 q = next_mnt(q, new);
4ce5d2b1
EB
2749 if (!q)
2750 break;
2751 while (p->mnt.mnt_root != q->mnt.mnt_root)
2752 p = next_mnt(p, old);
1da177e4 2753 }
328e6d90 2754 namespace_unlock();
1da177e4 2755
1da177e4 2756 if (rootmnt)
f03c6599 2757 mntput(rootmnt);
1da177e4 2758 if (pwdmnt)
f03c6599 2759 mntput(pwdmnt);
1da177e4 2760
741a2951 2761 return new_ns;
1da177e4
LT
2762}
2763
cf8d2c11
TM
2764/**
2765 * create_mnt_ns - creates a private namespace and adds a root filesystem
2766 * @mnt: pointer to the new root filesystem mountpoint
2767 */
1a4eeaf2 2768static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2769{
771b1371 2770 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2771 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2772 struct mount *mnt = real_mount(m);
2773 mnt->mnt_ns = new_ns;
be08d6d2 2774 new_ns->root = mnt;
b1983cd8 2775 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2776 } else {
1a4eeaf2 2777 mntput(m);
cf8d2c11
TM
2778 }
2779 return new_ns;
2780}
cf8d2c11 2781
ea441d11
AV
2782struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2783{
2784 struct mnt_namespace *ns;
d31da0f0 2785 struct super_block *s;
ea441d11
AV
2786 struct path path;
2787 int err;
2788
2789 ns = create_mnt_ns(mnt);
2790 if (IS_ERR(ns))
2791 return ERR_CAST(ns);
2792
2793 err = vfs_path_lookup(mnt->mnt_root, mnt,
2794 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2795
2796 put_mnt_ns(ns);
2797
2798 if (err)
2799 return ERR_PTR(err);
2800
2801 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2802 s = path.mnt->mnt_sb;
2803 atomic_inc(&s->s_active);
ea441d11
AV
2804 mntput(path.mnt);
2805 /* lock the sucker */
d31da0f0 2806 down_write(&s->s_umount);
ea441d11
AV
2807 /* ... and return the root of (sub)tree on it */
2808 return path.dentry;
2809}
2810EXPORT_SYMBOL(mount_subtree);
2811
bdc480e3
HC
2812SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2813 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2814{
eca6f534
VN
2815 int ret;
2816 char *kernel_type;
eca6f534 2817 char *kernel_dev;
1da177e4 2818 unsigned long data_page;
1da177e4 2819
b8850d1f
TG
2820 kernel_type = copy_mount_string(type);
2821 ret = PTR_ERR(kernel_type);
2822 if (IS_ERR(kernel_type))
eca6f534 2823 goto out_type;
1da177e4 2824
b8850d1f
TG
2825 kernel_dev = copy_mount_string(dev_name);
2826 ret = PTR_ERR(kernel_dev);
2827 if (IS_ERR(kernel_dev))
eca6f534 2828 goto out_dev;
1da177e4 2829
eca6f534
VN
2830 ret = copy_mount_options(data, &data_page);
2831 if (ret < 0)
2832 goto out_data;
1da177e4 2833
5e6123f3 2834 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
eca6f534 2835 (void *) data_page);
1da177e4 2836
eca6f534
VN
2837 free_page(data_page);
2838out_data:
2839 kfree(kernel_dev);
2840out_dev:
eca6f534
VN
2841 kfree(kernel_type);
2842out_type:
2843 return ret;
1da177e4
LT
2844}
2845
afac7cba
AV
2846/*
2847 * Return true if path is reachable from root
2848 *
48a066e7 2849 * namespace_sem or mount_lock is held
afac7cba 2850 */
643822b4 2851bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2852 const struct path *root)
2853{
643822b4 2854 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2855 dentry = mnt->mnt_mountpoint;
0714a533 2856 mnt = mnt->mnt_parent;
afac7cba 2857 }
643822b4 2858 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2859}
2860
2861int path_is_under(struct path *path1, struct path *path2)
2862{
2863 int res;
48a066e7 2864 read_seqlock_excl(&mount_lock);
643822b4 2865 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2866 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2867 return res;
2868}
2869EXPORT_SYMBOL(path_is_under);
2870
1da177e4
LT
2871/*
2872 * pivot_root Semantics:
2873 * Moves the root file system of the current process to the directory put_old,
2874 * makes new_root as the new root file system of the current process, and sets
2875 * root/cwd of all processes which had them on the current root to new_root.
2876 *
2877 * Restrictions:
2878 * The new_root and put_old must be directories, and must not be on the
2879 * same file system as the current process root. The put_old must be
2880 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2881 * pointed to by put_old must yield the same directory as new_root. No other
2882 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2883 *
4a0d11fa
NB
2884 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2885 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2886 * in this situation.
2887 *
1da177e4
LT
2888 * Notes:
2889 * - we don't move root/cwd if they are not at the root (reason: if something
2890 * cared enough to change them, it's probably wrong to force them elsewhere)
2891 * - it's okay to pick a root that isn't the root of a file system, e.g.
2892 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2893 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2894 * first.
2895 */
3480b257
HC
2896SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2897 const char __user *, put_old)
1da177e4 2898{
2d8f3038 2899 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2900 struct mount *new_mnt, *root_mnt, *old_mnt;
2901 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2902 int error;
2903
9b40bc90 2904 if (!may_mount())
1da177e4
LT
2905 return -EPERM;
2906
2d8f3038 2907 error = user_path_dir(new_root, &new);
1da177e4
LT
2908 if (error)
2909 goto out0;
1da177e4 2910
2d8f3038 2911 error = user_path_dir(put_old, &old);
1da177e4
LT
2912 if (error)
2913 goto out1;
2914
2d8f3038 2915 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2916 if (error)
2917 goto out2;
1da177e4 2918
f7ad3c6b 2919 get_fs_root(current->fs, &root);
84d17192
AV
2920 old_mp = lock_mount(&old);
2921 error = PTR_ERR(old_mp);
2922 if (IS_ERR(old_mp))
b12cea91
AV
2923 goto out3;
2924
1da177e4 2925 error = -EINVAL;
419148da
AV
2926 new_mnt = real_mount(new.mnt);
2927 root_mnt = real_mount(root.mnt);
84d17192
AV
2928 old_mnt = real_mount(old.mnt);
2929 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2930 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2931 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2932 goto out4;
143c8c91 2933 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2934 goto out4;
5ff9d8a6
EB
2935 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2936 goto out4;
1da177e4 2937 error = -ENOENT;
f3da392e 2938 if (d_unlinked(new.dentry))
b12cea91 2939 goto out4;
1da177e4 2940 error = -EBUSY;
84d17192 2941 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2942 goto out4; /* loop, on the same file system */
1da177e4 2943 error = -EINVAL;
8c3ee42e 2944 if (root.mnt->mnt_root != root.dentry)
b12cea91 2945 goto out4; /* not a mountpoint */
676da58d 2946 if (!mnt_has_parent(root_mnt))
b12cea91 2947 goto out4; /* not attached */
84d17192 2948 root_mp = root_mnt->mnt_mp;
2d8f3038 2949 if (new.mnt->mnt_root != new.dentry)
b12cea91 2950 goto out4; /* not a mountpoint */
676da58d 2951 if (!mnt_has_parent(new_mnt))
b12cea91 2952 goto out4; /* not attached */
4ac91378 2953 /* make sure we can reach put_old from new_root */
84d17192 2954 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2955 goto out4;
0d082601
EB
2956 /* make certain new is below the root */
2957 if (!is_path_reachable(new_mnt, new.dentry, &root))
2958 goto out4;
84d17192 2959 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2960 lock_mount_hash();
419148da
AV
2961 detach_mnt(new_mnt, &parent_path);
2962 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2963 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2964 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2965 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2966 }
4ac91378 2967 /* mount old root on put_old */
84d17192 2968 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2969 /* mount new_root on / */
84d17192 2970 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2971 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
2972 /* A moved mount should not expire automatically */
2973 list_del_init(&new_mnt->mnt_expire);
719ea2fb 2974 unlock_mount_hash();
2d8f3038 2975 chroot_fs_refs(&root, &new);
84d17192 2976 put_mountpoint(root_mp);
1da177e4 2977 error = 0;
b12cea91 2978out4:
84d17192 2979 unlock_mount(old_mp);
b12cea91
AV
2980 if (!error) {
2981 path_put(&root_parent);
2982 path_put(&parent_path);
2983 }
2984out3:
8c3ee42e 2985 path_put(&root);
b12cea91 2986out2:
2d8f3038 2987 path_put(&old);
1da177e4 2988out1:
2d8f3038 2989 path_put(&new);
1da177e4 2990out0:
1da177e4 2991 return error;
1da177e4
LT
2992}
2993
2994static void __init init_mount_tree(void)
2995{
2996 struct vfsmount *mnt;
6b3286ed 2997 struct mnt_namespace *ns;
ac748a09 2998 struct path root;
0c55cfc4 2999 struct file_system_type *type;
1da177e4 3000
0c55cfc4
EB
3001 type = get_fs_type("rootfs");
3002 if (!type)
3003 panic("Can't find rootfs type");
3004 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3005 put_filesystem(type);
1da177e4
LT
3006 if (IS_ERR(mnt))
3007 panic("Can't create rootfs");
b3e19d92 3008
3b22edc5
TM
3009 ns = create_mnt_ns(mnt);
3010 if (IS_ERR(ns))
1da177e4 3011 panic("Can't allocate initial namespace");
6b3286ed
KK
3012
3013 init_task.nsproxy->mnt_ns = ns;
3014 get_mnt_ns(ns);
3015
be08d6d2
AV
3016 root.mnt = mnt;
3017 root.dentry = mnt->mnt_root;
da362b09 3018 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3019
3020 set_fs_pwd(current->fs, &root);
3021 set_fs_root(current->fs, &root);
1da177e4
LT
3022}
3023
74bf17cf 3024void __init mnt_init(void)
1da177e4 3025{
13f14b4d 3026 unsigned u;
15a67dd8 3027 int err;
1da177e4 3028
7d6fec45 3029 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3030 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3031
0818bf27 3032 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3033 sizeof(struct hlist_head),
0818bf27
AV
3034 mhash_entries, 19,
3035 0,
3036 &m_hash_shift, &m_hash_mask, 0, 0);
3037 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3038 sizeof(struct hlist_head),
3039 mphash_entries, 19,
3040 0,
3041 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3042
84d17192 3043 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3044 panic("Failed to allocate mount hash table\n");
3045
0818bf27 3046 for (u = 0; u <= m_hash_mask; u++)
38129a13 3047 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3048 for (u = 0; u <= mp_hash_mask; u++)
3049 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3050
4b93dc9b
TH
3051 kernfs_init();
3052
15a67dd8
RD
3053 err = sysfs_init();
3054 if (err)
3055 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3056 __func__, err);
00d26666
GKH
3057 fs_kobj = kobject_create_and_add("fs", NULL);
3058 if (!fs_kobj)
8e24eea7 3059 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3060 init_rootfs();
3061 init_mount_tree();
3062}
3063
616511d0 3064void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3065{
d498b25a 3066 if (!atomic_dec_and_test(&ns->count))
616511d0 3067 return;
7b00ed6f 3068 drop_collected_mounts(&ns->root->mnt);
771b1371 3069 free_mnt_ns(ns);
1da177e4 3070}
9d412a43
AV
3071
3072struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3073{
423e0ab0
TC
3074 struct vfsmount *mnt;
3075 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3076 if (!IS_ERR(mnt)) {
3077 /*
3078 * it is a longterm mount, don't release mnt until
3079 * we unmount before file sys is unregistered
3080 */
f7a99c5b 3081 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3082 }
3083 return mnt;
9d412a43
AV
3084}
3085EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3086
3087void kern_unmount(struct vfsmount *mnt)
3088{
3089 /* release long term mount so mount point can be released */
3090 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3091 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3092 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3093 mntput(mnt);
3094 }
3095}
3096EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3097
3098bool our_mnt(struct vfsmount *mnt)
3099{
143c8c91 3100 return check_mnt(real_mount(mnt));
02125a82 3101}
8823c079 3102
3151527e
EB
3103bool current_chrooted(void)
3104{
3105 /* Does the current process have a non-standard root */
3106 struct path ns_root;
3107 struct path fs_root;
3108 bool chrooted;
3109
3110 /* Find the namespace root */
3111 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3112 ns_root.dentry = ns_root.mnt->mnt_root;
3113 path_get(&ns_root);
3114 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3115 ;
3116
3117 get_fs_root(current->fs, &fs_root);
3118
3119 chrooted = !path_equal(&fs_root, &ns_root);
3120
3121 path_put(&fs_root);
3122 path_put(&ns_root);
3123
3124 return chrooted;
3125}
3126
e51db735 3127bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3128{
3129 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3130 struct mount *mnt;
e51db735 3131 bool visible = false;
87a8ebd6 3132
e51db735
EB
3133 if (unlikely(!ns))
3134 return false;
3135
44bb4385 3136 down_read(&namespace_sem);
87a8ebd6 3137 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3138 struct mount *child;
3139 if (mnt->mnt.mnt_sb->s_type != type)
3140 continue;
3141
3142 /* This mount is not fully visible if there are any child mounts
3143 * that cover anything except for empty directories.
3144 */
3145 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3146 struct inode *inode = child->mnt_mountpoint->d_inode;
3147 if (!S_ISDIR(inode->i_mode))
3148 goto next;
41301ae7 3149 if (inode->i_nlink > 2)
e51db735 3150 goto next;
87a8ebd6 3151 }
e51db735
EB
3152 visible = true;
3153 goto found;
3154 next: ;
87a8ebd6 3155 }
e51db735 3156found:
44bb4385 3157 up_read(&namespace_sem);
e51db735 3158 return visible;
87a8ebd6
EB
3159}
3160
64964528 3161static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3162{
58be2825 3163 struct ns_common *ns = NULL;
8823c079
EB
3164 struct nsproxy *nsproxy;
3165
728dba3a
EB
3166 task_lock(task);
3167 nsproxy = task->nsproxy;
8823c079 3168 if (nsproxy) {
58be2825
AV
3169 ns = &nsproxy->mnt_ns->ns;
3170 get_mnt_ns(to_mnt_ns(ns));
8823c079 3171 }
728dba3a 3172 task_unlock(task);
8823c079
EB
3173
3174 return ns;
3175}
3176
64964528 3177static void mntns_put(struct ns_common *ns)
8823c079 3178{
58be2825 3179 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3180}
3181
64964528 3182static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3183{
3184 struct fs_struct *fs = current->fs;
58be2825 3185 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3186 struct path root;
3187
0c55cfc4 3188 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3189 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3190 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3191 return -EPERM;
8823c079
EB
3192
3193 if (fs->users != 1)
3194 return -EINVAL;
3195
3196 get_mnt_ns(mnt_ns);
3197 put_mnt_ns(nsproxy->mnt_ns);
3198 nsproxy->mnt_ns = mnt_ns;
3199
3200 /* Find the root */
3201 root.mnt = &mnt_ns->root->mnt;
3202 root.dentry = mnt_ns->root->mnt.mnt_root;
3203 path_get(&root);
3204 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3205 ;
3206
3207 /* Update the pwd and root */
3208 set_fs_pwd(fs, &root);
3209 set_fs_root(fs, &root);
3210
3211 path_put(&root);
3212 return 0;
3213}
3214
3215const struct proc_ns_operations mntns_operations = {
3216 .name = "mnt",
3217 .type = CLONE_NEWNS,
3218 .get = mntns_get,
3219 .put = mntns_put,
3220 .install = mntns_install,
3221};